WO2000037983A1 - Verfahren zum auffinden, zur aufnahme und gegebenenfalls zur auswertung von objektstrukturen - Google Patents
Verfahren zum auffinden, zur aufnahme und gegebenenfalls zur auswertung von objektstrukturen Download PDFInfo
- Publication number
- WO2000037983A1 WO2000037983A1 PCT/DE1999/003931 DE9903931W WO0037983A1 WO 2000037983 A1 WO2000037983 A1 WO 2000037983A1 DE 9903931 W DE9903931 W DE 9903931W WO 0037983 A1 WO0037983 A1 WO 0037983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- illumination
- detection
- mask
- pattern
- object structures
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/008—Details of detection or image processing, including general computer control
Definitions
- the invention relates to a method for locating, recording and possibly evaluating object structures, in particular on specimen slides, preferably fluorescent object structures such as gene spots, a microscope with a CCD camera, a scanning microscope or a preferably confocal laser scanning microscope being used for the recording
- individual - arbitrary - object structures are localized, for example in the context of an automatic manufacturing process. Often, object structures have to be found and classified with a predetermined reliability
- the invention relates in principle to a method for locating, recording and, if necessary, subsequently evaluating object structures of any kind, these object structures, for example fluorescent gene spots, usually being arranged or applied to specimen slides.
- object structures for example fluorescent gene spots
- this is a method for the so-called gene scanner has been used so far.
- Slides or fluorescent spots arranged on them with a diameter in the range between 50 ⁇ m and 100 ⁇ m are imaged. This can be a conventional microscopic image that is recorded, for example, in connection with a CCD camera A scanning microscope or a confocal laser scanning microscope (CLSM) can also be used.
- the detectable dynamic range is generally higher, so that the detection technology by means of confocal Laser scanning microscopy is to be preferred
- pictures are taken with a very high spatial resolution, so that, for example, a computer-controlled segmentation is subsequently required for object identification. This involves a very long expenditure of time and requires a considerable computer capacity Requirements for acquisition and evaluation methods usually with one molecule per ⁇ m 2 and at about one percent
- the present invention is therefore based on the object of specifying a method for locating, recording and possibly evaluating object structures, in particular on object carriers, preferably fluorescent object structures such as gene spots, in which a rapid and sufficiently reliable detection of the object structures is possible
- object structures in particular on object carriers, preferably fluorescent object structures such as gene spots
- the detection of the object structures must be efficient, whereby a special evaluation procedure should enable the precise, fast and reliable identification and localization of the object structures
- fluorescent objects can emit a limited fluorescence intensity
- a generic method is characterized in that the image data are recorded with an illumination pattern projected into the object plane
- object structures in particular fluorescent object structures - for example gene spots - on object carriers if the object structures in the object space are illuminated with a special illumination pattern or if the Fluorescence in the object space - in the case of fluorescent object structures - is excited with a special illumination pattern.
- This is realized by projecting a special illumination mask onto the object structures.
- the object holder or the object structures - for example fluorescent gene spots - are moved linearly under an illumination pattern , whereby it is also conceivable to move the illumination pattern linearly over the object structures.
- intensity profiles When recording, specific intensity courses result, depending on the position of the object structures relative to the movement course of the Illumination patterns These intensity profiles can be described, for example, by folding the illumination pattern with the respective object structures.
- the shape of the intensity profiles can be used to quickly and easily determine with simple calculation routines whether the scan was central or at the edge of the respective object structures.
- the object structures can be localized without complex segmentation algorithms , the localization of the object structures being particularly easy to calculate if the measured intensities of the respective object structures differ from one another.
- a suitable choice of the boundary conditions in particular given a predetermined arrangement of the object structures and the object structure sizes, enables an object structure classification and an object structure location to be unambiguously carried out, namely by "unfolding" the recorded image data with the respective lighting pattern
- the jerk reflex or the fluorescence in the object space is advantageously excited with a predefinable illumination pattern.
- the illumination pattern can be predefined in size and geometry in order to be able to make an optimal adaptation to the object structures to be found and recorded
- the illumination pattern is generated by projecting an illumination mask arranged in the illumination beam path.
- This illumination mask can be located between the light source or the laser and a
- Beam plate can be arranged
- the arrangement between the beam plate and a lens arranged in front of the object plane is also conceivable, but in the case of such an arrangement very special measures for unhindered passage of the jerk reflex or the fluorescence light as well as for avoiding the direct detection of the portion reflected on the illumination mask of
- the illuminating mask could be arranged symmetrically to the optical axis in the illuminating beam path of a microscope, the illuminating light being projected via a lens or a lens system and via the objective into the object plane or to the object structure - through the illuminating mask - the shape and
- the size of the projected illumination pattern is further advantageously adapted to the shape and possibly also the size of the object structure to be detected
- the illumination of the object structures it is of further advantage if at least two illumination sources with the same or different illumination masks or an illumination source with a suitable beam distribution are used, so that more than just one wavelength of the jerk reflex or more can be detected simultaneously as only one fluorescent dye.
- the scanning speed can be increased considerably by parallelizing at least two illumination sources
- the jerk reflex or the fluorescence distribution is detected via a detection mask arranged in the detection beam path, the
- Detection mask is arranged in a further advantageous manner between the beam splitter and the detector.
- the pattern of the detection mask is - likewise in an advantageous manner - at least largely identical to the pattern of the illumination mask, in which respect a match with the object structure to be detected is also advantageous
- the illumination pattern is scanned over the object or over the object structure.
- This is referred to as beam or beam scanning.
- the object is moved under the stationary light beam in a particularly advantageous manner. This is referred to as object scanning.
- the object scanning is compared to the beam or Beam scanning to be preferred, since the imaging optics can be made simpler, which in turn results in lower costs
- the object characterization and possibly determination of the object position can take place during the image acquisition or shortly thereafter. Further processing of the image information can follow
- Intensity profiles are described after mathematical "processing", for example by folding the lighting pattern with the respective object structures.
- the shape of the intensity profiles using suitable computing routines is used to identify whether the scan is central or at the edge of the object structures
- the course of intensity can be used to determine the specific position of the individual object structures
- the information about the recorded object structures is extracted with the aid of a mathematical unfolding of the measured image data with the illumination pattern. It is possible that the image data Simultaneously recorded with illuminating light of at least two different wavelengths and can be detected in at least two different detection channels.
- the mathematical unfolding on the respective detection channel is carried out with the corresponding illumination mask, an adaptation between the illumination mask and the detection mask being advantageous
- the illumination or detection can be carried out in a further advantageous manner via at least two illumination and detection masks, the individual illumination and detection masks having a different shape and size.
- a particular advantage of the method according to the invention can be seen in the fact that data is reduced, as a result of which the requirements for the memory or the memory requirement of the recording and evaluation computer are reduced
- the illumination of the object or the object structures takes place with light of a preferably predeterminable wavelength with an essentially circular, rectangular or polygonal illumination mask.
- an adaptation of the shape and size of the illumination mask to the respective object structure is advantageous.
- the illumination mask ensures a quasi-homogeneous illumination intensity.
- the detection takes place via an essentially circular, rectangular or polygonal detection mask which can be adapted to the shape and size of the illumination mask.
- the measured intensity signal is the cross-correlation of the illumination pattern and Form of
- the object structure can have both microscopic and macroscopic dimensions.
- a corresponding adaptation of the illumination mask and detection mask is possible
- FIG. 2 shows a schematic plan view of a slide with gene spots and indicated scan path
- FIG. 3 shows the intensity profile of the scan movements indicated in FIG. 2 in two diagrams arranged one below the other
- a confocal laser scanning microscope arrangement which is only indicated here, is used to apply the method according to the invention
- a lens system 6, an illumination mask 7, a further lens system 8, the beam splitter 4 and an objective 9 are arranged in the illumination beam path 3.
- the jerk reflex or the fluorescent light passes from the object plane 5 through the objective 9 through the detection beam path 10 the beam splitter 4 through a lens system 11 to the detection mask 12 and through the detection mask 12 through a further lens system 13 to the detector 2
- Essential components with respect to the method according to the invention are the illumination mask 7 and the detection mask 12 which are shown in FIG their shape and size on the one hand and on the other hand adapted to the respective object structures (in object level 5) and arranged in conjugate levels
- FIG. 2 shows, by way of example and schematically, an object holder 14 with object structures arranged thereon, in this case specifically gene spots 15.
- the gene spots 15 shown there have the same shape and the same size and are arranged in an equidistant manner from one another
- the slide 14 is moved according to the method according to the invention under a specific illumination pattern 16 in the x-direction along the lines 17, 18, namely according to line 17 in the edge region of the respective gene spots 15 and according to line 18 in the center of the respective gene spots 15
- the intensity profiles 19, 20 can be mathematically described by folding the illumination pattern 16 with the respective gene spots 15.
- the shape of the intensity profiles 19, 20 can be used to determine whether the scan is central according to line 18 or at the edge according to line 17 using simple arithmetic routines from FIG. 2
- the position of the individual gene spots 15 can be determined without complicated segmentation algorithms
- the gene spots In the intensity curves 19, 20 shown in FIG. 3 or in the arrangement of the gene spots 15 on the slide 14 selected in FIG. 2, the gene spots have the same fluorescence intensity, even if the measured intensities of the gene If spots (15) differ from one another, the location of the gene spots 15 could be calculated on the basis of the intensity curve
- the measured intensity curve 20 is shown schematically in FIG. 3 (lower graphic) under the following assumptions.
- the illumination pattern 16 has a homogeneous illumination intensity and the emitted fluorescence intensity of the gene spots 15 is homogeneous
- the measured signal or the course of the intensity 20 increases almost linearly, as long as the area of the illumination pattern 16 does not yet completely overlap with the area of the gene spot 15 (increasing on the left Area of the intensity curve, d)
- a constant signal is measured, namely over an area Dd as soon as the area of the illumination pattern 16 is removed again in the course of the scanning If the area of the gene spot 15 emerges, an almost linearly falling signal is measured (right area of the intensity curve, d) No signal is detected for the duration where the area of the illumination pattern 16 has no overlap with the area of a gene spot (area Md)
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000589986A JP2002537570A (ja) | 1998-12-18 | 1999-12-09 | 物体構造を見いだし、記録し、場合によっては、評価する方法 |
EP99967871A EP1153328A1 (de) | 1998-12-18 | 1999-12-09 | Verfahren zum auffinden, zur aufnahme und gegebenenfalls zur auswertung von objektstrukturen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19858456.3 | 1998-12-18 | ||
DE19858456A DE19858456A1 (de) | 1998-12-18 | 1998-12-18 | Verfahren zum Auffinden, zur Aufnahme und gegebenenfalls zur Auswertung von Objektstrukturen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000037983A1 true WO2000037983A1 (de) | 2000-06-29 |
Family
ID=7891549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1999/003931 WO2000037983A1 (de) | 1998-12-18 | 1999-12-09 | Verfahren zum auffinden, zur aufnahme und gegebenenfalls zur auswertung von objektstrukturen |
Country Status (5)
Country | Link |
---|---|
US (1) | US6529271B1 (de) |
EP (1) | EP1153328A1 (de) |
JP (1) | JP2002537570A (de) |
DE (1) | DE19858456A1 (de) |
WO (1) | WO2000037983A1 (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6908770B1 (en) * | 1998-07-16 | 2005-06-21 | Board Of Regents, The University Of Texas System | Fluid based analysis of multiple analytes by a sensor array |
US7050087B2 (en) * | 2000-12-06 | 2006-05-23 | Bioview Ltd. | Data acquisition and display system and method |
WO2002095651A2 (de) * | 2001-05-23 | 2002-11-28 | Lifebits Ag | Verfahren für biochemische nachweise von analyten |
DE10127221A1 (de) * | 2001-05-23 | 2002-11-28 | Lifebits Ag | Träger für chemische, biochemische und biologische Substanzen |
CA2523626A1 (en) * | 2002-04-26 | 2003-11-06 | Board Of Regents, The University Of Texas System | Method and system for the detection of cardiac risk factors |
DE10252313B9 (de) * | 2002-11-11 | 2006-10-19 | Carl Zeiss | Untersuchungssystem zur gleichzeitigen direkten Sichtbarmachung einer Fluoreszenzmarkierung und eines die Fluoreszenzmarkierung umgebenden Gewebebereichs und Untersuchungsverfahren dafür |
WO2005059551A2 (en) * | 2003-12-11 | 2005-06-30 | Board Of Regents, The University Of Texas System | Method and system for the analysis of saliva using a sensor array |
US8105849B2 (en) * | 2004-02-27 | 2012-01-31 | Board Of Regents, The University Of Texas System | Integration of fluids and reagents into self-contained cartridges containing sensor elements |
US8101431B2 (en) * | 2004-02-27 | 2012-01-24 | Board Of Regents, The University Of Texas System | Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems |
US7274027B2 (en) * | 2004-03-18 | 2007-09-25 | Optometrix Inc. | Scanning systems and methods with time delay sensing |
US8377398B2 (en) | 2005-05-31 | 2013-02-19 | The Board Of Regents Of The University Of Texas System | Methods and compositions related to determination and use of white blood cell counts |
DE102006034905B4 (de) | 2006-07-28 | 2015-07-30 | Carl Zeiss Microscopy Gmbh | Anordnung zur Signalverarbeitung am Ausgang eines Mehrkanaldetektors |
JP5739351B2 (ja) | 2009-03-11 | 2015-06-24 | サクラ ファインテック ユー.エス.エー., インコーポレイテッド | 自動合焦方法および自動合焦装置 |
US10139613B2 (en) | 2010-08-20 | 2018-11-27 | Sakura Finetek U.S.A., Inc. | Digital microscope and method of sensing an image of a tissue sample |
WO2014020967A1 (ja) * | 2012-08-02 | 2014-02-06 | オリンパス株式会社 | 共焦点顕微鏡又は多光子顕微鏡の光学系を用いた光分析装置、光分析方法及び光分析用コンピュータプログラム |
DE102013103971A1 (de) | 2013-04-19 | 2014-11-06 | Sensovation Ag | Verfahren zum Erzeugen eines aus mehreren Teilbildern zusammengesetzten Gesamtbilds eines Objekts |
US10007102B2 (en) | 2013-12-23 | 2018-06-26 | Sakura Finetek U.S.A., Inc. | Microscope with slide clamping assembly |
DE102014009142A1 (de) | 2014-06-20 | 2015-12-24 | Carl Zeiss Microscopy Gmbh | Verfahren und Vorrichtung zur Ansteuerung eines akustooptischen Bauteils |
CN104296687A (zh) * | 2014-11-05 | 2015-01-21 | 哈尔滨工业大学 | 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法 |
US11280803B2 (en) | 2016-11-22 | 2022-03-22 | Sakura Finetek U.S.A., Inc. | Slide management system |
DE102018123381A1 (de) * | 2018-09-24 | 2020-03-26 | Leica Microsystems Cms Gmbh | Verfahren und Vorrichtung zum Abrastern einer Probe |
AU2020286971A1 (en) * | 2019-06-07 | 2022-01-06 | Basf Coatings Gmbh | System and method for object recognition using three dimensional mapping tools in a computer vision application |
WO2021099568A1 (en) * | 2019-11-20 | 2021-05-27 | Konstantinos Balas | Trace microanalysis microscope systems and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0408035A2 (de) * | 1989-07-13 | 1991-01-16 | Anritsu Corporation | Hochauflösendes Mikroskopiersystem mit Konvolutionsintegrationsprozess |
EP0440342A2 (de) * | 1990-01-12 | 1991-08-07 | The Regents Of The University Of California | Lasererregter konfokaler Mikroskop-Fluoreszenzscanner und Verfahren |
US5587832A (en) * | 1993-10-20 | 1996-12-24 | Biophysica Technologies, Inc. | Spatially light modulated confocal microscope and method |
US5631734A (en) * | 1994-02-10 | 1997-05-20 | Affymetrix, Inc. | Method and apparatus for detection of fluorescently labeled materials |
WO1998007022A1 (en) * | 1996-08-16 | 1998-02-19 | Imaging Research, Inc. | A digital imaging system for assays in well plates, gels and blots |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3833064A1 (de) * | 1988-09-29 | 1990-04-05 | Dynatech Ag Branch Denkendorf | Leseeinheit fuer eine mikrotestplatte |
JP2897027B2 (ja) * | 1988-10-27 | 1999-05-31 | スズキ株式会社 | 免疫学的凝集反応検出装置 |
JP2750605B2 (ja) * | 1989-05-17 | 1998-05-13 | スズキ株式会社 | 粒子凝集パターン判定方法 |
DE4040726C2 (de) * | 1989-12-21 | 1995-05-24 | Olympus Optical Co | Verfahren zum Untersuchen von Teilchenmustern |
JP2874008B2 (ja) * | 1990-05-18 | 1999-03-24 | スズキ株式会社 | 粒子凝集パターン判定装置 |
DE4211904C2 (de) * | 1991-04-09 | 1994-03-17 | Werner Maier | Automatisches Verfahren zum Erstellen einer Liste unterschiedlicher Arten für eine flüssige Probe |
DK0656938T3 (da) * | 1992-07-13 | 1998-07-20 | Minnesota Mining & Mfg | Teknik til at tælle objekter i et skanderet billede |
US5545531A (en) * | 1995-06-07 | 1996-08-13 | Affymax Technologies N.V. | Methods for making a device for concurrently processing multiple biological chip assays |
-
1998
- 1998-12-18 DE DE19858456A patent/DE19858456A1/de not_active Ceased
-
1999
- 1999-12-09 EP EP99967871A patent/EP1153328A1/de not_active Withdrawn
- 1999-12-09 JP JP2000589986A patent/JP2002537570A/ja not_active Withdrawn
- 1999-12-09 WO PCT/DE1999/003931 patent/WO2000037983A1/de not_active Application Discontinuation
- 1999-12-20 US US09/467,801 patent/US6529271B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0408035A2 (de) * | 1989-07-13 | 1991-01-16 | Anritsu Corporation | Hochauflösendes Mikroskopiersystem mit Konvolutionsintegrationsprozess |
EP0440342A2 (de) * | 1990-01-12 | 1991-08-07 | The Regents Of The University Of California | Lasererregter konfokaler Mikroskop-Fluoreszenzscanner und Verfahren |
US5587832A (en) * | 1993-10-20 | 1996-12-24 | Biophysica Technologies, Inc. | Spatially light modulated confocal microscope and method |
US5631734A (en) * | 1994-02-10 | 1997-05-20 | Affymetrix, Inc. | Method and apparatus for detection of fluorescently labeled materials |
WO1998007022A1 (en) * | 1996-08-16 | 1998-02-19 | Imaging Research, Inc. | A digital imaging system for assays in well plates, gels and blots |
Also Published As
Publication number | Publication date |
---|---|
US6529271B1 (en) | 2003-03-04 |
DE19858456A1 (de) | 2000-07-06 |
EP1153328A1 (de) | 2001-11-14 |
JP2002537570A (ja) | 2002-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1153328A1 (de) | Verfahren zum auffinden, zur aufnahme und gegebenenfalls zur auswertung von objektstrukturen | |
EP2917776B1 (de) | Lichtmikroskop und mikroskopieverfahren | |
EP1186930B1 (de) | Vorrichtung zur Untersuchung und Manipulation von mikroskopischen Objekten | |
DE102012218382B4 (de) | Verfahren zum Festlegen eines Lasermikrodissektionsbereichs und zugehöriges Lasermikrodissektionssystem | |
WO2017013054A1 (de) | Lichtblattmikroskop zum gleichzeitigen abbilden mehrerer objektebenen | |
EP2437027A2 (de) | Vorrichtung und Verfahren zur dreidimensionalen optischen Abtastung einer Probe | |
DE10050529B4 (de) | Verfahren zur Strahlsteuerung in einem Scanmikroskop, Anordnung zur Strahlsteuerung in einem Scanmikroskop und Scanmikroskop | |
WO2016005571A1 (de) | Positionsbestimmung eines objekts im strahlengang einer optischen vorrichtung | |
EP2887117A1 (de) | Mikroskop und Verfahren zur SPIM Mikroskopie | |
WO2014005866A1 (de) | Verfahren zur vorbereitung und durchführung der aufnahme von bildstapeln einer probe aus verschiedenen orientierungswinkeln | |
EP1862839A1 (de) | Mikroskop mit erhöhter Auflösung | |
EP0943950A1 (de) | Verfahren zum Rastern bei der konfokalen Mikroskopie und konfokales Mikroskop | |
DE102015116452A1 (de) | Mikroskop | |
DE102009032210A1 (de) | Bearbeitungsanlage | |
EP3345032B1 (de) | Verfahren zur bestimmung einer höhenlage eines objekts | |
EP3992687B1 (de) | Mikroskop und verfahren zur lichtfeldmikroskopie mit lichtblattanregung sowie zur konfokalen mikroskopie | |
DE102015116598B4 (de) | Verfahren und Mikroskop zur hochauflösenden Abbildung mittels SIM | |
DE10037783A1 (de) | Verfahren und Vorrichtung zur Phasenkorrektur von Positions- und Detektionssignalen in der Scanmikroskopie und Scanmikroskop | |
DE10315592B4 (de) | Verfahren zum Ausführen von Interaktionen an sich räumlich und zeitlich verändernden mikroskopischen Objekten und System hierzu | |
EP1164405A2 (de) | Verfahren und Vorrichtung zum generieren eines dreidimensionalen Objekts | |
DE102017223435B9 (de) | Verfahren zum Betrieb eines Mikroskops | |
DE10261155B4 (de) | Verfahren zur Detektion eines Objekts mit einem konfokalen Rastermikroskop und konfokales Rastermikroskop zur Detektion eines Objekts | |
EP3988989A1 (de) | Verfahren und mikroskop mit einer einrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv | |
DE10058100A1 (de) | Verfahren und eine Anordnung zur Abtastung mikroskopischer Objekte mit einer Scaneinrichtung | |
DE102023104335B3 (de) | Beleuchtungsmodul, Mikroskop und Verfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999967871 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 589986 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1999967871 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999967871 Country of ref document: EP |