WO2000030975A1 - CRISTAL SiGe - Google Patents

CRISTAL SiGe Download PDF

Info

Publication number
WO2000030975A1
WO2000030975A1 PCT/JP1999/006168 JP9906168W WO0030975A1 WO 2000030975 A1 WO2000030975 A1 WO 2000030975A1 JP 9906168 W JP9906168 W JP 9906168W WO 0030975 A1 WO0030975 A1 WO 0030975A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
value
temperature
range
seebeck coefficient
Prior art date
Application number
PCT/JP1999/006168
Other languages
English (en)
French (fr)
Inventor
Takao Abe
Ichiro Yonenaga
Tetsuya Igarashi
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to JP2000583811A priority Critical patent/JP3975676B2/ja
Priority to DE69920662T priority patent/DE69920662T2/de
Priority to EP99954399A priority patent/EP1052222B1/en
Priority to KR1020007007308A priority patent/KR100654486B1/ko
Priority to US09/582,237 priority patent/US6498288B1/en
Publication of WO2000030975A1 publication Critical patent/WO2000030975A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the present invention relates to a silicon germanium (SiGe) crystal suitably used as a thermoelectric element material and a thermoelectric element using the SiGe crystal.
  • SiGe silicon germanium
  • thermoelectric power is generated between the two locations due to the so-called Seebeck effect. I do.
  • thermoelectric elements that apply this principle have no moving parts and have a simple structure.Therefore, there is a high possibility that a thermoelectric element with high reliability, a long service life, and easy maintenance can be used. . For this purpose, various thermoelectric element materials have been conventionally manufactured and developed.
  • SiGe is known as a typical thermoelectric element material that is chemically stable, and many proposals have been made on the improvement of its performance and the manufacturing method [JP-A-6-11-1].
  • No. 494553 U.S. Pat.No. 4,711,971; European Patent No. 1,849,499); Japanese Unexamined Patent Publication No. H8-56020; Patent No. 2623 No.172 publication etc.].
  • the figure of merit Z which is an index of thermoelectric element performance, is given by the following equation (1).
  • Figure 7 shows the figure of merit Z of various thermoelectric element materials in relation to temperature.
  • the figure of merit ⁇ was inferior to Bi 2 Te 3 and PbTe of tellurium-based materials.
  • ⁇ -type materials include B, A1, and Ga
  • a group V element such as P, As, or Sb may be added as a dopant, or as disclosed in JP-A-61-14953 and JP-A-8-560.
  • metals such as Pb, Sn, Fe, Ni, and Cr and silicides thereof.
  • the constituents Si and Ge and dopants such as dopants are mixed and dissolved to form a composition as uniform as possible, followed by cooling.
  • the resulting ingots are aggregates of crystal grains because the ingot method or the Prideman method or the mixture is manufactured by the powder sintering method.
  • An object of the present invention is to provide a SiGe crystal material which is improved in the figure of merit as a thermoelectric element, is excellent in workability, and is free from characteristic deterioration and cracks during use. Disclosure of the invention
  • the above-mentioned S x Ge, _ x (0 ⁇ x ⁇ 1) crystal is preferably formed by a pull-up method.
  • the absolute value of the Seebeck coefficient of the Six Ge ⁇ (0 ⁇ x ⁇ 1) crystal is preferably in the range of 100 to 700 V / K.
  • the thermal conductivity of the crystal value is preferably in the range of 1 ⁇ 2 0 W / m ⁇ K.
  • the value of the electrical conductivity of the crystal is 1 0 1 ⁇ 10 5 / ⁇ ⁇ m.
  • the absolute value of the Seebeck coefficient of the above Six Ge ⁇ (0 ⁇ x ⁇ 1) crystal is in the range of 100 to 700 V / K, and the thermal conductivity is 1 to 20 W / m. More preferably the values of range and the electric conductivity of K is in the range of 1 0 1 ⁇ 1 0 5 / ⁇ ⁇ ⁇ .
  • the S i x G e, _ ⁇ (0 ⁇ ⁇ 1) in the crystal it is preferable that the value of X is 0.6 or more 0.8 or less.
  • the crystal of S x Ge, —x (0 ⁇ x ⁇ 1) is a single crystal.
  • Thermoelectric element of the present invention is characterized by using crystals of the above-mentioned S i x G e 1-x (0 ⁇ x ⁇ 1).
  • FIG. 1 is a graph showing the relationship between the value of the thermal conductivity and the temperature of S x Ge, _ ⁇ crystals having different compositions.
  • FIG. Figure 3 is a graph showing the change in electrical conductivity with respect to temperature of the S i x G ei _ x crystals.
  • FIG. 4 is a graph showing changes in intrinsic electric conductivity and band gap energy of Six Ge ⁇ crystals at 600 ° C. depending on the composition.
  • Figure 5 is a view to graphically change against temperature Seebeck coefficient S i x G ei _ x crystals.
  • Figure 6 is a graph showing the dependence on the composition of the Seebeck coefficient in S i x G for e 1-x crystal 6 0 0 ° C.
  • FIG. 7 is a graph showing the relationship between the performance index of various thermoelectric element materials and the temperature.
  • Figure 8 is a graph showing the relationship between S i x G e ⁇ 6 0 0 ° peptidase one Beck coefficient and electric conductivity in the C crystal.
  • Si, Ge and dopant are dissolved in a quartz crucible, and the Si single crystal is used as a seed crystal in an argon gas (1 atm) air flow of 1 to 10 mm / hr.
  • the Si Ge crystal was pulled at the pulling speed.
  • S i G e crystal was pulled up S i x G e, and varied between 0.9 9 the value of X in _ x from 0.0 1 seven crystals shown in Table 1 .
  • Grain size of each crystal is 5 X 1 0 - 5 mm 3 or more (average grain size of about 5 0 ⁇ higher) it was.
  • Ga was doped for the purpose of obtaining a P-type crystal. ; 1 raised Si Ge crystal
  • the laser-flash method is a method in which the surface of a sample is irradiated with a laser instantaneously, and the thermal conductivity is evaluated by the temperature change on the back surface.
  • Figure 2 is a typical example of the low-temperature side temperature and the upper temperature of the S i x G thermal resistance of ei _ x crystal (thermal conductivity reciprocal) junctions how the thus changes the value of X
  • the four-probe method is a method in which a current is applied from two outer needles of four needles arranged in a straight line, and a potential difference generated between two inner needles is measured.
  • FIG. 3 shows the change in electrical conductivity with temperature. In most samples, the electrical conductivity value increases exponentially with temperature above 100 ° C to 200 ° C.
  • the Ga-added sample shows almost constant conductivity up to high temperatures. Addition of a higher concentration of Ga is expected to increase its conductivity up to high temperatures and keep it constant.
  • FIG. 4 shows the change in intrinsic electrical conductivity at 600 ° C. depending on the composition. It can be seen that the electric conductivity is larger for the Ge rich. However, high electrical conductivity can be obtained even with Si richness by adding a high concentration of impurities. Dependence on band cap composition is also shown.
  • the temperature difference method is a method of measuring the thermoelectromotive force generated on both contact surfaces of a sample sandwiched between thermal blocks having different temperatures.
  • Figure 5 shows the change in Seebeck coefficient with temperature.
  • the composition of a sample having a composition of 0.6 to 0.8 changes remarkably from a positive value (P-type semiconductor) to a negative value (N-type semiconductor or intrinsic semiconductor region), each having a large value. It increases monotonically in the sample added with Ga.
  • FIG. 6 shows the dependence of the Seebeck coefficient on the composition at 600 ° C.
  • a large absolute value is expected when the composition is around 0.8.
  • the Seebeck coefficient becomes smaller as the concentration increases with respect to the Ga impurity concentration. Therefore, it is necessary to study the optimum concentration in practical use.
  • a large Seebeck coefficient is expected because the difference in mobility between electrons and holes becomes small. I can't wait.
  • Region is known to be preferable in order to obtain a high figure of merit Z, and a Si Ge crystal having this level of dopant concentration is a preferable material from a practical point of view.
  • the average particle diameters of the polycrystals of Sample B and Sample D are about 50 m and about 200 m, respectively. Assuming that these particles are spherical, their volume is about 6.5 x 1 respectively. 0- 5 mm 3, approximately 4. 2 x 1 0- 3 mm 3 . Table 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明 細
S i G e結晶 技術分野
本発明は、 熱電素子材料として好適に用いられるシリコンゲルマニウ ム (S i Ge ) 結晶及び該 S i G e結晶を用いる熱電素子に関する。 背景技術
P型半導体材料と N型半導体材料を 2ケ所で接合させ、 その 2ケ所の 接合部位の間に温度差を与えると、 いわゆるゼーベック効果によって、 この 2ケ所の接合部位の間に熱起電力が発生する。
この原理を応用した熱電素子は、 可動部分が無く構造が簡単であるた め、 これを用いて、 信頼性が高く又高寿命かつ保守の容易なエネルギー 直接変換システムを構成しうる可能性が高い。 そのために、 従来から種 々の熱電素子材料が製造開発されてきている。
その中でも S i G eは化学的に安定で代表的な熱電素子材料として知 られており、 その性能の改良や製造法について従来より多くの提案がな されている 〔特開昭 6 1 - 1 4 9 4 5 3号公報 (米国特許第 4 7 1 1 9 7 1号、 欧州特許第 1 8 5 4 9 9号) 、 特開平 8— 5 6 0 2 0号公報、 特許第 2 6 2 3 1 7 2号公報等〕 。
熱電素子の性能の指標である性能指数 Zは次の式 ( 1 ) で与えられる
Z =ひ2 σ/Κ ( 1 )
〔式 ( 1 ) 中、 ひ : ゼーベック係数、 σ : 電気伝導度、 Κ : 熱伝導度で ある。 〕 各種の熱電素子材料の性能指数 Zは、 温度との関係で、 図 7のように 表わされる。 図 7から明らかなように、 従来の製造法によって得られた S i G e多結晶体の場合は、 実用温度領域といわれる 2 0 0 °C以上、 特 に 6 0 0 °C迄の領域では、 例えば、 テルル系材料の B i 2 T e 3 や P b T eに比較して性能指数 Ζが劣ることが実用上の弱点であった。
このため、 この性能指数 Ζを向上させるために材料中の伝導電子ゃホ —ルの濃度を上げて電気伝導度を高めるために Ρ型材料には B、 A 1、 G a等の I I I 族の元素を、 N型材料は P、 A s、 S b等の V族の元素を ドーパーン ト として添加することや又特開昭 6 1— 1 4 9 5 3号公報や 特開平 8— 5 6 0 2 0号公報に開示されるように、 P b、 S n、 F e、 N i、 C r等の金属やこれらの硅化物を添加することが試みられてきた これらの改良によって、 S i G eの性能指数 Zは向上したが、 実用化 のためにはさらに一段の性能指数の向上が求められている。
この他、 従来の S i G eインゴッ トは、 構成成分となる S i と G e及 びドーパン ト等の添加物の所定量を混合後溶解してできるだけ均一な組 成とした後冷却する铸込法又はプリ ッジマン法や、 混合物を粉末焼結法 によって製造するため、 得られるィンゴッ トは結晶粒子の集合凝結体で ある。
このため、 本格的な実用化を防げる次のような障害①〜③が生じてい た。 ①結晶粒界におけるキヤリャの散乱が避けられず電気伝導度の向上 が妨げられる。 ②実用温度域である 2 0 0 °C以上、 特に 5 0 0 °C以上の 高温度熱源に近い部分において粒界偏祈が生じ、 特性が時間と共に劣化 する。 ③組成の局所的な不均質が避けられないため、 このことによる特 性の一層の低下が生じたり、 加工中、 使用中におけるクラックの発生も 起こ り易い。 本発明者らは、 上記した従来の製造法による多結晶状の S i Geの問 題点に鑑み、 鋭意研究を重ねたところ、 S i Ge結晶ブロックを構成す る結晶粒子の大きさを増大させること、 好ま しくは単結晶とすることに よって、 上記した問題点を解決し実用化可能な S i Ge熱電素子を実現 できることを着想し、 その方法を実際に種々検討した結果、 チヨクラル スキ一法によって S ix G e ,_x ( 0 < x < 1 ) の xのほぼ全域に亘つて 結晶粒子の大きさが 5 X 10— 5mm3 以上の S i G e結晶インゴッ トを作 成することに成功し、 本発明に到達した。
本発明は、 熱電素子としての性能指数の向上と加工性に優れ、 使用中 における特性劣化やクラックの生じない S i G e結晶材料を提供するこ とを目的とする。 発明の開示
上記課題を解決するために、 本発明の S ix G e ^ ( 0 <x < 1 ) 結 晶は結晶を構成する結晶粒の大きさが 5 x 10— 5mm3 以上であることを 特徴とする。
上記した S ix Ge,_x ( 0 < x< 1 ) 結晶は、 引上法によって作成さ れるのが好適である。
上記した S ix Ge^ ( 0 < x< 1 ) 結晶のゼ一ベヅク係数の値の絶 対値は 1 0 0〜 7 0 0 V/Kの範囲とするのが好ましい。
上記した S ix Ge i_x (0<x< 1 ) 結晶の熱伝導度の値は 1〜2 0 W/m · Kの範囲とするのが好ましい。
上記した S i x G e 1-x ( 0 < x < 1 ) 結晶の電気伝導度の値は 1 01 〜 105 /Ω · mの範囲とするのが好ましい。
上記した S ix Ge^ ( 0 < x < 1 ) 結晶のゼーベック係数の値の絶 対値が 1 0 0〜 7 0 0 V/Kの範囲、 熱伝導度の値が 1〜 2 0 W/m Kの範囲および電気伝導度の値が 1 01〜 1 05 /Ω · πιの範囲とするの がさらに好ましい。
上記 S ix G e ,_χ ( 0 < χ < 1 ) 結晶において、 Xの値が 0. 6以上 0. 8以下であるのが好適である。
上記 S ix G e ( 0 < χ < 1 ) の結晶に対して、 Β、 八 1又は0 & のうちのいずれかの元素を添加することによって Ρ型熱電材料とするこ とができる。
上記 S ix G e 1-x ( 0 < x < 1 ) の結晶に対して、 P、 A s又は S b のいずれかの元素を添加することによつて N型熱電材料とすることがで きる。
上記 S ixG e,— x ( 0 <x < 1 ) の結晶としては、 単結晶であるのがよ り好ましい。
本発明の熱電素子は、 上記した S ix G e 1-x ( 0 < x < 1 ) の結晶を 用いることを特徴とするものである。
S ix G e,_x ( 0 <x< 1 ) 結晶イ ンゴヅ トを構成する結晶の粒度を 増大させると、 強度が向上し、 特に熱電素子を使用する高温において高 い強度が維持されるため、 素子の使用環境下においても機械的に安定で 、 したがって、 素子の劣化を抑制することが出来る。 このことは、 結晶 インゴッ トが単結晶であると一層好都合である。 図面の簡単な説明
図 1は、 組成の異なる S ix G e ,_χ結晶の熱伝導度の値と温度との関 係を示すグラフである。
図 2は、 S ix G e卜 結晶の熱抵抗率が xの値によって変化する様子 を接合点の低温側温度 ( 2 0°C) と高温側温度 ( 6 0 0 °C) の場合につ いて示すグラフである。 図 3は、 S ix G e i_x結晶の温度に対する電気伝導度の変化を示すグ ラフである。
図 4は、 S ix G e ^結晶の 6 0 0 °Cにおける固有電気伝導度とバン ドギヤップエネルギーの組成による変化を示すグラフである。
図 5は、 S ix Ge i_x結晶のゼーベック係数の温度に対する変化を示 すグラフである。
図 6は、 S ix G e1-x結晶の 6 0 0 °Cにおけるゼーベック係数の組成 に対する依存性を示すグラフである。
図 7は、 各種の熱電素子材料の性能指数と温度との関係を示すグラフ である。
図 8は、 S ix G e ^結晶の 6 0 0 °Cにおけるゼ一べック係数と電気 伝導度との関係を示すグラフである。 発明を実施するための最良の形態
以下に本発明の実施例をあげて説明するが、 これらの実施例は、 例示 的に示されるもので限定的に解釈されるものでないことはいうまでもな い。
(実施例 1 )
結晶引上装置を用い、 S i と G e及びドーパン トを石英ルツポ内で溶 解し、 S i単結晶を種結晶としてアルゴンガス ( 1気圧) 気流中で 1〜 1 0 mm/H rの引上速度で S i G e結晶を引上げた。 この S i G e結 晶としては、 S ix G e ,_x の Xの値を 0. 0 1から 0. 9 9の間で変化 させて表 1に示した 7種類の結晶を引上げた。 各結晶の結晶粒の大きさ は 5 X 1 0 -5mm3 以上 (平均粒径は約 5 0 ίπι以上) であった。 なお、 試料 No.5においては、 P—型結晶を得る目的で Gaを ド一プした。 ;1上げた S i G e結晶
Figure imgf000008_0001
熱伝導度の測定
引上げた結晶から直径 1 O mm厚さ 1 mmの円板状試料を切り出し、 これを用いて熱伝導度をレーザーフラッシュ法によって測定した。 レー ザ一フラ ッシュ法は、 試料の表面にレーザーを瞬時照射し、 裏面での温 度変化によって熱伝導度を評価する方法である。
試料 No. l〜No.7の組成の異なる S ix G 結晶の熱伝導度の値と温 度との関係を図 1に示した。 S iや G eに比して、 混晶では熱伝導度が いずれの温度においても小さいことがわかる。
図 2は、 S i x G e i_x結晶の熱抵抗率 (熱伝導度の逆数) が Xの値に よって変化する様子を接合点の低温側温度と高温側温度の代表例として
2 0 °Cと 6 0 0 °Cの場合について示しているが、 Xが 0. 6付近で最大 値となる。 これはフオノ ン散乱に起因すると考えられる。 G aの添加は 若干熱抵抗率を上昇させている (図 2において、 黒丸及び黒三角) 。 G aの高濃度の添加はさらに大き くなることが期待される。 比熱は S i成 分の増加と共に大きくなる。
S_気伝導^ Sの 定 引上げた結晶から 3 x 1 x 1 0 m m3 の試料を作製して電気伝導度を 4 探針法によって測定した。 4探針法は、 一直線上に並べられた 4本の針 の外側 2本から電流を流し、 内部 2本の針間に生ずる電位差を測定する 方法である。
温度に対する電気伝導度の変化を図 3に示した。 大部分の試料は 1 0 0〜 2 0 0 °C以上で電気伝導度の値が温度とともに指数的に増大してい る。 G a添加試料は高温までほぼ一定の伝導度を示す。 より高濃度の G aの添加はその伝導度が高温まで高く、 一定となることが期待される。 図 4には 6 0 0 °Cにおける固有電気伝導度の組成による変化を示した 。 G e リ ッチほどその電気伝導度は大きいことがわかる。 しかし、 不純 物を高濃度添加すれば S i リ ツチでも大きな電気伝導度を得ることがで きる。 バン ドキャップの組成に対する依存性も示す。
ゼ一べック係数の測定
引上げた結晶から直径 1 0 m m厚さ 1 m mの円板状試料を切り出し、 これを用いてゼ一ペック係数を温度差法によって測定した。 温度差法は 、 温度の異なる熱プロックで挟んだ試料の両接触面に生じた熱起電力を 測定する方法である。
図 5はゼーベック係数の温度に対する変化を示す。 無添加の結晶では 組成が 0 . 6〜 0 . 8の試料で正の値 (P型半導体) から負の値 (N型 半導体又は真性半導体領域) に著しく変化し、 それぞれ大きな値を持つ 。 G a添加試料では単調に増加する。
図 6は 6 0 0 °Cにおけるゼ一ベック係数の組成に対する依存性を示す 。 組成が 0 . 8付近で大きな絶対値が期待される。 ゼ一ベック係数は G a不純物濃度に対してはその濃度が大きくなるほど小さ くなるので、 実 用上はその最適濃度の検討が必要である。 組成 0 . 1〜 0 . 5付近では 電子とホールの移動度の差が小さ くなるため大きなゼーベック係数を期 待できない。
性能指数 Z
高い性能指数を得るためには、 熱伝導度としては低く、 電気伝導度と ゼーペック係数は高いことが望ましいが、 S ix G e卜 結晶についての これらの値は本発明者らの測定によって初めて明らかとなったもので、 素子の使用条件 (温度領域) を考慮し、 性能指数 Zの値ができるだけ大 きくなるように S ix G e卜 x の組成 ( Xの値) やドーパン トの濃度を決 定すればよい。
ドーパン トの添加量によって電気伝導度は変化し、 その濃度と共にほ ぼ比例して増大する。 一方、 ゼーベック係数はド一パン ト濃度と共に低 下し、 理論的には 1 019/ cm3近辺を中心として 1 018〜 1 02Q (/c m3
) の領域が高い性能指数 Zを得るために好ましいことが知られており、 このレベルのドーパン ト濃度を有する S i G e結晶が実用面からみて好 ましい素材である。
(実施例 2 )
ドーパン トである G aの濃度を変化させて、 表 2に示す 4種類の S i G e結晶を引上げ、 実施例 1 と同一の測定法により、 6 0 0 °Cにおける 電気伝導度とゼーベック係数を測定し、 図 8に記載した。
尚、 試料 Bと試料 Dの多結晶の平均粒径はそれそれ約 5 0 m、 約 2 0 0 mであり、 これらの粒子形状を球体と仮定するとその体積はそれ それ約 6. 5 x 1 0— 5mm3、 約 4. 2 x 1 0— 3 m m 3となる。 表 2
Figure imgf000011_0001
産業上の利用可能性
以上述べたごとく、 本発明の S ix G e1-x ( 0 < X < 1 ) の結晶によ れば、 熱電素子としての性能指数の向上を図ることができ、 かつ加工性 に優れ、 使用中における特性劣化やクラックの発生もないという大きな 効果が達成される。

Claims

請 求 の 範 囲
1 · 結晶を構成する結晶粒の大きさが 5 X 1 0-5mm3以上であること を特徴とする S ix G e!— χ ( 0 <χ< 1 ) の結晶。
2. 引上法によって作成されることを特徴とする請求項 1記載の S ix Ge,— x ( 0 <x< 1 ) の結晶。
3 . ゼーベック係数の値の絶対値が 1 0 0〜 7 0 O V/Kの範囲で あることを特徴とする請求項 1又は 2記載の S ix G e^ ( 0 < X < 1 ) の結晶。
4. 熱伝導度の値が 1〜 2 0 W/m · Kの範囲であることを特徴とす る請求項 1又は 2記載の S ix Ge!— χ ( 0 <χ< 1 ) の結晶。
5. 電気伝導度の値が l O i l O 5 /Ω · πιの範囲であることを特徴 とする請求項 1又は 2記載の S ix ( 0 <x< 1 ) の結晶。
6. ゼ一べック係数の値の絶対値が 1 0 0〜 7 0 0 V/Kの範囲、 熱伝導度の値が 1〜 2 0 W/mKの範囲および電気伝導度の値が 1 0 i〜 1 05 /Ω · πιの範囲であることを特徴とする請求項 1又は 2記載の S ix Ge1-X ( 0 <x< 1 ) の結晶。
7. Xの値が 0. 6以上 0. 8以下であることを特徴とする請求項 1 〜 6のいずれか 1項記載の S ix G e i_x ( 0 < x < 1 ) の結晶。
8. B、 A 1又は G aのいずれかの元素を添加することを特徴とする 請求項 1〜 7のいずれか 1項記載の S ix G e 1-x ( 0 <χ < 1 ) の結晶
9. P、 A s又は S bのいずれかの元素を添加することを特徴とする 請求項 1〜 7のいずれか 1項記載の S ix G e^ ( 0 <χ < 1 ) の結晶
1 0 . 前記結晶が単結晶によって構成されることを特徴とする請求項 〜 9のいずれか 1項記載の S ix G β!_χ ( 0 <χ< 1 ) の結晶。
1 1. 請求項 1〜 1 0のいずれか 1項記載の S ix G e!— χ ( 0 < χ < ) の結晶を用いることを特徴とする熱電素子。
PCT/JP1999/006168 1998-11-26 1999-11-05 CRISTAL SiGe WO2000030975A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000583811A JP3975676B2 (ja) 1998-11-26 1999-11-05 SiGe多結晶
DE69920662T DE69920662T2 (de) 1998-11-26 1999-11-05 Sibe-kristall
EP99954399A EP1052222B1 (en) 1998-11-26 1999-11-05 SiGe CRYSTAL
KR1020007007308A KR100654486B1 (ko) 1998-11-26 1999-11-05 SiGe 결정
US09/582,237 US6498288B1 (en) 1998-11-26 1999-11-05 Silicon germanium crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33589498 1998-11-26
JP10/335894 1998-11-26

Publications (1)

Publication Number Publication Date
WO2000030975A1 true WO2000030975A1 (fr) 2000-06-02

Family

ID=18293571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006168 WO2000030975A1 (fr) 1998-11-26 1999-11-05 CRISTAL SiGe

Country Status (8)

Country Link
US (1) US6498288B1 (ja)
EP (1) EP1052222B1 (ja)
JP (1) JP3975676B2 (ja)
KR (1) KR100654486B1 (ja)
CN (1) CN1130308C (ja)
DE (1) DE69920662T2 (ja)
RU (1) RU2206643C2 (ja)
WO (1) WO2000030975A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002221A1 (ja) * 2019-07-03 2021-01-07 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094131A (ja) * 2000-09-13 2002-03-29 Sumitomo Special Metals Co Ltd 熱電変換素子
CN100459202C (zh) * 2007-07-02 2009-02-04 北京科技大学 一种硅锗系热电材料的制备方法
RU2739887C1 (ru) * 2020-05-06 2020-12-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА n-ТИПА ПРОВОДИМОСТИ НА ОСНОВЕ ТВЕРДОГО РАСТВОРА Gex-δSi1-xSbδ ПРИ х=0,26-0,36, δ=0,008-0,01

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285096A (ja) * 1991-03-12 1992-10-09 Nec Corp Si−Ge単結晶育成法
JPH0624893A (ja) * 1992-07-07 1994-02-01 Tokuzo Sukegawa 半導体結晶の製造方法および装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8431071D0 (en) * 1984-12-08 1985-01-16 Univ Glasgow Alloys
JP2686928B2 (ja) * 1985-08-26 1997-12-08 アンリツ株式会社 シリコン・ゲルマニウム混晶薄膜導電体
JPH07321323A (ja) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285096A (ja) * 1991-03-12 1992-10-09 Nec Corp Si−Ge単結晶育成法
JPH0624893A (ja) * 1992-07-07 1994-02-01 Tokuzo Sukegawa 半導体結晶の製造方法および装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ED.: Y. MUTO: "New Chemistry VIII - Semiconductor and Pure Metals (in japanese)", KYORITSU SHUPPAN, 10 August 1963 (1963-08-10), pages 25, XP002932127 *
K. ISHIGO ET AL.: "Development of Single Crystal; Ge(1-x)-Si(x) (in Japanese)", TRANSACTION OF JAPAN CRYSTAL SOCIETY,, vol. 19, no. 1, 1 July 1992 (1992-07-01), pages 72, XP002932126 *
See also references of EP1052222A4 *
T. SUMITANI ET AL.: "Evaluation of Single Crystal; Ge(1-x)Six using X-ray Topography (in Japanese)", TRANSACTION OF JAPAN CRYSTAL SOCIETY,, vol. 19, no. 1, 1 July 1992 (1992-07-01), pages 34, XP002932125 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002221A1 (ja) * 2019-07-03 2021-01-07 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
JPWO2021002221A1 (ja) * 2019-07-03 2021-01-07
JP7476191B2 (ja) 2019-07-03 2024-04-30 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
US12029127B2 (en) 2019-07-03 2024-07-02 Sumitomo Electric Industries, Ltd. Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and light sensor

Also Published As

Publication number Publication date
EP1052222B1 (en) 2004-09-29
EP1052222A4 (en) 2002-02-13
JP3975676B2 (ja) 2007-09-12
KR20010033781A (ko) 2001-04-25
US6498288B1 (en) 2002-12-24
DE69920662T2 (de) 2005-02-10
CN1130308C (zh) 2003-12-10
RU2206643C2 (ru) 2003-06-20
DE69920662D1 (de) 2004-11-04
EP1052222A1 (en) 2000-11-15
CN1288443A (zh) 2001-03-21
KR100654486B1 (ko) 2006-12-05

Similar Documents

Publication Publication Date Title
Jeon et al. Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals
Sharp et al. Thermoelectric properties of CoSb3 and related alloys
Yim et al. Thermoelectric properties of Bi 2 Te 3-Sb 2 Te 3-Sb 2 Se 3 pseudo-ternary alloys in the temperature range 77 to 300 K
Noda et al. Preparation and thermoelectric properties of Mg2Si1− xGex (x= 0.0∼ 0.4) solid solution semiconductors
Kitagawa et al. Thermoelectric properties of Bi–Sb semiconducting alloys prepared by quenching and annealing
Hogan et al. Nanostructured thermoelectric materials and high-efficiency power-generation modules
EP3246959B1 (en) Compound semiconductor thermoelectric material and method for manufacturing same
Yamashita et al. High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit
Yonenaga et al. Thermal and electrical properties of Czochralski grown GeSi single crystals
Kuznetsov et al. Electrical transport properties of SnBi4Te7 and PbBi4Te7 with different deviations from stoichiometry
Hyun et al. Thermoelectric properties of the n-type 85% Bi2 Te3-15% Bi2 Se3 alloys doped with Sbl3 and CuBr
Vandersande et al. Effect of high temperature annealing on the thermoelectric properties of GaP doped SiGe
Huong et al. High thermoelectric performance at low temperature of p-Bi1. 8Sb0. 2Te3. 0 grown by the gradient freeze method from Te-rich melt
WO2000030975A1 (fr) CRISTAL SiGe
Avila et al. Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30
Koukharenko et al. Electrical properties of Bi2− xSbxTe3 materials obtained by ultrarapid quenching
Völklein Review of the thermoelectric efficiency of bulk and thin-film materials
Gu et al. Crystal structure and thermoelectric properties of ReSi 1.75 silicide
Sher et al. Transport properties of thermoelectric materials for coolers
JP3952354B2 (ja) SiGe結晶およびその製造方法
Zhu et al. Carrier-concentration-dependent transport and thermoelectric properties of PbTe doped with Sb2Te3
JPH0856020A (ja) 熱電材料および熱電素子
Zhu et al. Composition-dependent thermoelectric properties of PbTe doped with Sb2Te3
Vining et al. Progress in Doping of Ruthenium Suicide (Ru2Si3)
Bhatta et al. Properties of p-and n-Type PbTe microwires for thermoelectric devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802262.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID IN JP KR MX RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007007308

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09582237

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999954399

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999954399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007308

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999954399

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007007308

Country of ref document: KR