WO2000029756A1 - Dispositif de guidage de mouvement lineaire et dispositif de transfert de table - Google Patents

Dispositif de guidage de mouvement lineaire et dispositif de transfert de table Download PDF

Info

Publication number
WO2000029756A1
WO2000029756A1 PCT/JP1998/005162 JP9805162W WO0029756A1 WO 2000029756 A1 WO2000029756 A1 WO 2000029756A1 JP 9805162 W JP9805162 W JP 9805162W WO 0029756 A1 WO0029756 A1 WO 0029756A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
load
ball
moving block
linear motion
Prior art date
Application number
PCT/JP1998/005162
Other languages
English (en)
French (fr)
Inventor
Hiroshi Teramachi
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP9140884A priority Critical patent/JPH10141370A/ja
Priority claimed from JP9140884A external-priority patent/JPH10141370A/ja
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to KR1020007003500A priority patent/KR20010030842A/ko
Priority to EP98953074A priority patent/EP1055834A4/en
Priority to PCT/JP1998/005162 priority patent/WO2000029756A1/ja
Publication of WO2000029756A1 publication Critical patent/WO2000029756A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0652Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage
    • F16C29/0654Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage with balls
    • F16C29/0657Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage with balls with two rows of balls, one on each side of the rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/40Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using ball, roller or wheel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/58Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism a single sliding pair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/008Systems with a plurality of bearings, e.g. four carriages supporting a slide on two parallel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0604Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section
    • F16C29/0607Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section of parts or members for retaining the rolling elements, i.e. members to prevent the rolling elements from falling out of the bearing body or carriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3825Ball cages formed as a flexible belt, e.g. spacers connected by a thin film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a linear motion guide device that guides linear motion via a pole.
  • This type of conventional linear motion guide device generally includes a track rail and a movable block movably provided on the track rail via a number of poles.
  • the moving block includes a moving block main body having a no-load ball return path provided in parallel with a load pole rolling groove corresponding to the load ball rolling groove of the track rail, and a moving block main body having both ends. And an end plate which forms a pole direction changing path which forms an infinite circulation path of the pole by communicating between the load pole rolling groove and the rolling element return path.
  • retainers 102 are provided on both left and right sides of the load ball rolling groove 101 of the moving block 100, and the left and right retainers 102 are provided.
  • the retainer 102 is provided between the track rails on both sides of the load pole rolling grooves 101 and 105 and the opposing surface of the moving block.
  • the groove depth of the load pole rolling grooves 101 and 105 was limited by the height of, and the grooves were relatively shallow. Therefore, when the contact point of the ball 104 in the load pole rolling groove 101, 105 shifts from the deepest part of the groove in the groove width direction, the pole 104 becomes the load ball rolling groove 101, 100. 5
  • an edge load where stress concentrates upon contact with the upper edge corners.
  • a load in the “shearing direction” that shifts the opposing faces of the moving block 100 and the track rail 103 on which the pole rolling grooves 101 and 105 are formed in parallel and in opposite directions is applied.
  • the contact point of the pole 104 in each of the load pole rolling grooves 101 and 105 may be displaced in the groove width direction, and an edge load may be generated.
  • the present invention has been made in order to solve the above-mentioned problems of the conventional technology.
  • the purpose of the present invention is to make it possible to prevent the occurrence of edge load by setting the load ball rolling groove as a deep groove, and to further move the track rail from the moving block.
  • An object of the present invention is to provide a linear motion guide device that can prevent the ball from falling off when the ball is pulled out.
  • a track rail and a moving block movably provided on the track rail via a number of poles,
  • the moving block includes a moving block main body including a pole rolling groove corresponding to the load pole rolling groove provided on the track rail, and a pole return passage provided in parallel with the load pole rolling groove.
  • An infinite circulation path of a pole which is provided at both ends of the block body and communicates between the load pole rolling groove and the pole return path.
  • a linear motion guide device comprising: a direction change path component that forms a pole direction change path that forms
  • a pole chain which is provided between the poles and includes a pole holding portion that holds the poles by sandwiching each of the poles from the front and rear of the pole in the traveling direction, and a flexible connecting portion that connects the ball holding portions.
  • the pole holding portion of the ball chain is positioned in the corresponding load pole rolling groove of the track rail and the moving block, and the connecting portion is formed between the moving block provided with the load pole rolling groove and the opposing surface of the track rail. In this configuration, the opposing surfaces of the moving block and the track rail are brought closer to the connecting portion to increase the depth of the load pole rolling groove.
  • the poles are held from the front and rear by the pole holding portions between the poles, thereby preventing the poles from falling off. Since the pole holding portion is located in the load pole rolling groove, the size of the pole holding portion can be as large as the pole diameter regardless of the groove depth, and the pole can be reliably held.
  • the connecting surface which has nothing to do with holding the pole, only exists on the opposing surface of the moving block and the track rail, so the connecting portion may be thin, and by bringing the opposing surface of the moving block and the track rail closer to this connecting portion.
  • the depth of the loaded ball rolling groove was as deep as possible.
  • the pole By increasing the groove depth in this way, even when the ball contact is displaced in the groove width direction, the pole does not interfere with the upper and lower corners of the loaded ball rolling groove, and stress concentrates on the upper and lower corners of the groove. The occurrence of a so-called edge load is prevented. Therefore, the range in which the pole can make contact with the loaded ball rolling groove in the groove width direction can be expanded, and a wide contact angle can be selected.
  • the opposing surfaces of the moving block and the track rail are reversed in parallel to the groove width direction.
  • the pole contact point is displaced in the middle area between the deepest part of the loaded ball rolling groove and the highest corner on the groove even if a load is applied in the shifting direction, causing interference between the pole and the corner on the groove. Can be prevented.
  • a track rail having a substantially rectangular cross section; and a moving block having left and right support legs facing the left and right side surfaces of the track rail.
  • Load ball rolling grooves extending in a straight line are provided on the left and right side surfaces of the track rail, two in total, one for each.
  • the left and right support legs of the moving block have loads corresponding to the load ball rolling grooves of the track rail.
  • a ball rolling groove is provided,
  • a moving block main body comprising: a load pole rolling groove corresponding to the load pole rolling groove of the track rail; and a no-load pole return passage provided in parallel with the load ball rolling groove.
  • a direction change path forming member provided at both ends of the movable block main body and forming a pole direction change path that forms an infinite circulation path of the pole by communicating between the load pole rolling groove and the rolling element return path; In the linear motion guide device provided,
  • a ball chain comprising: a pole holding portion interposed between the poles to prevent the balls from falling off by sandwiching each ball from the front and rear of the ball in the traveling direction; and a flexible connecting portion connecting the pole holding portions.
  • the pole holding portion of the ball chain is positioned in the corresponding load pole rolling groove of the track rail and the moving block, and the connecting portion is a gap between the moving block provided with the load ball rolling groove and the facing surface of the track rail. It is also possible to increase the depth of the load pole rolling groove by bringing the opposing surfaces of the moving block and the track rail closer to the connecting portion.
  • the cross-sectional shape of the load pole rolling groove may be approximated to the outer peripheral shape of the pole. In this manner, by approximating the cross-sectional shape of the load ball rolling groove in the direction perpendicular to the groove to the outer peripheral shape of the pole, it is possible to prevent rattling of the pole in the groove width direction with respect to the load pole rolling groove.
  • the ball chain has an end band structure, the assembling work can be performed very easily.
  • the pole chain may have an endless structure.
  • the loaded ball rolling groove may be a circular arc-shaped groove having a single arc-shaped cross section.
  • Such a circular arc groove shape has a large play in the groove width direction of the pole. Therefore, it is particularly preferable to use a deep groove as in the present invention and to make the sectional shape approximate to the outer peripheral shape of the ball.
  • the cross-sectional shape of the load pole rolling groove may be a Gothic groove shape having two arc-shaped cross sections.
  • One of the load ball rolling grooves corresponding to the track rail and the moving block may be a circular arc-arc groove having a single arc-shaped cross section, and the other may be a Gothic arch groove having two arc-shaped cross-sections.
  • the ball contact structure becomes a three-point contact structure, has a higher misalignment absorption capacity than the four-point contact structure between Gothic arch grooves, and has a two-point contact structure between the circular gap and the arc groove. It has higher rigidity in the up and down direction and the rotation direction than the one with the intermediate characteristics between the two-point contact structure and the four-point contact structure.
  • the load pole rolling groove on the track rail side may be a circular arc groove shape, and the load pole rolling groove of the corresponding moving block may be a Gothic arch groove shape.
  • the load pole rolling groove on the track rail side may have a Gothic arch groove shape, and the load pole rolling groove of the corresponding moving block may have a circular arc groove shape.
  • the arc-shaped cross section of the loaded ball rolling groove may be set to be about 52% to 50.5% of the ball diameter.
  • the radius of curvature of the conventional arc groove is set to about 52% of the pole diameter.However, since the rattling is large, it is effective to set the radius to less than 52%. is there.
  • a chain guide portion having a jaw for engaging with the connection portion of the ball chain and restricting the ball chain from coming off the moving block is provided on a side adjacent to the load ball rolling groove of the moving block. Is also good.
  • the chain guide is provided with a jaw, it is possible to prevent the pole chain from hanging down when the track rail is removed from the moving block.
  • Ballche When the fin has an end band structure, it is possible to prevent the end of the ball chain from hanging down.
  • At least one of the ball return passage and the inner peripheral portion of the direction change path may be formed of a resin molded body integrally formed with the moving block main body.
  • At least one of the ball return passage, the inner peripheral portion of the direction change path, and the chain guide portion may be formed of a resin molded body integrally formed with the moving block main body.
  • the infinite circulation path is accurately formed, and the pole can be smoothly guided in conjunction with the circulation of the pole by the ball chain.
  • the chain guide portion can be accurately formed, and interference with the ball chain can be prevented.
  • the table transfer device of the present invention is provided with two sets of linear motion guide devices provided with the two right and left pole rows,
  • Each set of track rails was placed parallel to each other on the fixed bed at a predetermined interval, and a moment was applied to each set of moving blocks in a direction to rotate them in the opposite direction to each track rail. Fix the table in the state,
  • the contact angle line connecting the contact points of the left and right balls of each linear motion guide device with the load ball rolling grooves is inclined in the same direction at a predetermined inclination angle with respect to the horizontal line
  • the contact angle line that connects the contact points of the left and right poles of the other linear motion guide device with the load pole rolling grooves is in the same direction as the horizontal line at an inclination angle opposite to that of the one linear motion guide device. It is inclined.
  • the linear motion guide device itself is Although it has a structure with little backlash against directional loads and moment loads, it is possible to eliminate the backlash of the table transfer device by mounting the two sets of linear motion guide devices with tilting in advance.
  • a method of inclining the moving block various methods such as a method of inclining the mounting surface of the moving block and a method of sandwiching a shim or the like above the moving block can be adopted.
  • each set of track rails is simply arranged parallel to each other at a predetermined interval on the fixed bed, and each set of rails is moved.
  • the mounting block is tilted and fixed at the same time as the mounting error is absorbed, and the contact angle changes.
  • the linear motion guide device of the present invention when the loaded ball rolling groove is approximated to the ball diameter, the contact angle of the ball changes due to a slight mounting error, and the ball is mounted at an angle. The play of the transfer device can be eliminated.
  • FIG. 1 shows a linear motion guide device according to a first embodiment of the present invention
  • (A) is a front vertical sectional view
  • (b) is an enlarged sectional view of a contact state of a pole
  • (c) is a plan view showing a half section
  • (d) is a turning part.
  • (E) is an enlarged sectional view of another form of connection of the pole chain in a contact state with the pole;
  • Fig. 2 (a) is a front view showing the end plate part of the moving block of the linear motion guide device shown in Fig. 1 in a half cross section
  • Fig. 2 (b) is a side view
  • Fig. 2 (c) and (d) are pole chains. Partial front view and top view of;
  • Fig. 3 (a) is a front view of the table guide device with the linear motion guide device of Fig. 1 assembled, and Figs. (B) and (c) are the ball contact angles of the left and right linear motion guide devices of Fig. (A). Explanatory diagram showing the direction;
  • FIG. 4 shows a linear motion guide device according to a second embodiment of the present invention.
  • FIG. 4 (a) is a front vertical sectional view
  • FIG. 4 (b) is an enlarged sectional view of a contact state of a pole
  • 5 shows a linear motion guide device according to a third embodiment of the present invention, wherein FIG. 6 (a) is a front vertical sectional view, and FIG. 6 (b) is an enlarged sectional view of a contact state of a ball
  • (a) is a front view of the table guide device with the linear motion guide device of Fig. 5 assembled, and Figs. (b) and (c) show the ball contact angle directions of the left and right linear motion guide devices of Fig. 5 (a). Illustrated illustration;
  • FIG. 7 shows a linear motion guide device according to a fourth embodiment of the present invention, wherein FIG. 7 (a) is a front vertical sectional view, and FIG. 7 (b) is an enlarged sectional view of a contact state of a ball;
  • FIG. 8 shows a first example of a linear motion guide device according to a fifth embodiment of the present invention.
  • FIG. 8 (a) is a front vertical sectional view
  • FIG. 8 (b) is an enlarged view of a contact state of a ball. Sectional view;
  • FIG. 9 shows a second example of the linear motion guide device according to the fifth embodiment of the present invention.
  • FIG. 9 (a) is a front vertical sectional view, and FIG. Enlarged sectional view;
  • FIG. 10 (a) shows the structure of the table transfer device using the linear motion guide device of Fig. 8.
  • 9 (b) is a schematic diagram showing a configuration example of a table transfer device using the linear motion guide device of FIG. 9, and
  • FIGS. 9 (c) and (d) are three-point contact diagrams. Schematic diagram showing the change of contact state in case of
  • FIG. 11 is a view showing a structure for preventing a pole from falling off in a conventional linear motion guide device.
  • FIG. 1 and 2 show a linear motion guide device according to a first embodiment of the present invention.
  • reference numeral 1 denotes the entire linear motion guide device.
  • the linear motion guide device 1 is generally provided with a track rail 2 and a movable member provided on the track rail 2 via a plurality of poles 3a so as to be movable.
  • block 4 The track rail 2 is a long member having a substantially quadrangular cross section, and the moving block 4 is guided to the left and right sides through a row of poles 3 and 3 on the left and right sides.
  • a total of two load pole rolling grooves 5, 5 are provided, one for each pole row 3, 3, along the entire length.
  • the loaded ball rolling grooves 5 are formed on the left and right side surfaces of the track rail 1 extending vertically.
  • the moving block 4 includes a moving block main body 6 and end plates 7 provided at both ends of the moving block main body 6 as direction change path constituent members.
  • the moving block body 6 is a block body having a U-shaped cross section including a horizontal portion 8 facing the upper surface of the track rail 2 and a pair of support legs 9 facing the left and right side surfaces of the track rail 2.
  • Load ball rolling grooves 10, 10 corresponding to the load pole rolling grooves 5, 5 provided on the left and right side surfaces of the track rail 2 are provided on the inner side surfaces of the left and right support legs 9, 9.
  • two tunnel return poles 1 1, 1 1 1 are provided linearly in the solid portions of the support legs 9, 9 in parallel with the load pole rolling grooves 10, 10. Have been.
  • the end plate portion 7 also has a U-shape following the cross-sectional shape of the moving block main body 6, and is attached to both ends of the moving block main body 6, and the load pole rolling grooves 10 and 10 and the ball return passage 1 1 , 11 are connected to each other to form a pole turning path 14, 14 which forms an infinite circulation path.
  • the contact angle lines S 1, S 2 connecting the contacts with the corresponding pole rolling grooves 5, 5; 10, 10 of the two right and left ball rows 3, 3 should be basically horizontal. Is set to
  • the two right and left ball rows 3, 3 are held by two pole chains 20 and circulate in an infinite circulation path.
  • the pole chain 20 is inserted between the poles 3a constituting the pole row 3.
  • a flexible connecting portion 21 connecting the pole holding portions 22 to each other.
  • Each connecting portion 21 extends continuously in a thin band shape, and is an end-shaped band member that is cut without connecting both ends of the ball chain 20.
  • the pole chain 20 is provided with a crowning portion 24 at the front end and the rear end.
  • the structure of the ball chain may be endless by connecting both ends of the ball chain.
  • each ball holding portion 22 At both ends of each ball holding portion 22, there is provided a ball-shaped holding recess 23 as a ball holding portion into which the ball crown of the pole 3a is inserted. The ball is held by the ball holding portion 22.
  • the connecting portions 21 project from both side edges of the load ball rolling groove 10 and are interposed between the opposing surfaces of the moving block 4 and the track rail 2.
  • a chain guide 14 for guiding the pole chain 20 is provided on both side edges of the load pole rolling groove 10 of the moving block 4, and the chain guide 14 is connected to the ball chain 20.
  • a jaw part 15 is provided which engages with the part 21 and restricts the ball chain 20 from moving away from the moving block 4.
  • Pole 3a is the pole holding part of the pole chain 20. Since it is held by 23, the pole 3a is prevented from dropping from the moving block 4 via the pole chain 20.
  • the crowning portions 24 are provided at the front and rear ends of the pole chain 20, the tip of the ball chain 20 is guided to the chain guide portion 14 via the crowning portions 24 and circulated. Moving. In particular, it serves as a guide when inserting and inserting the ball chain.
  • the position of the connecting portion 21 is such that the thickness center 0 'is a predetermined amount more than the pole center O, and in the illustrated example, the movable block 4 is about half d / 2 of the thickness t.
  • the jaws 15 of the chain guides 14 are located on opposite sides of the pole center O.
  • the distance between the deepest portions of the load pole rolling grooves 5 and 10 is almost equal to the ball diameter D.
  • the track rail 2 and the moving block It is necessary to narrow the distance b from 4.
  • the jaw 15 of the chain guide 14 and the connecting part 21 of the ball chain 20 are interposed at this interval b in a state where the connecting part 21 of the ball chain 20 is superimposed, so that the thickness of the jaw 15 and the thickness of the connecting part 21 are reduced. It is best to position the pole center O at the added midpoint.
  • the thickness of the connecting portion 21 is substantially equal to the thickness of the connecting portion 21 because the thickness of the connecting portion 21 is substantially the same as that of the connecting portion 21. Approximately half of t is shifted to the moving block 4 side.
  • the load pole rolling grooves 5, 10 have a circular groove shape with a single arc-shaped cross section, and the radius of curvature is set to about 50.5 to 52% of the pole diameter. ing. In particular, it is preferable to set it to about 51%.
  • each pole 3a is held from the front and back by the ball holding portion 22 between the poles 3a, and the ball 3a Shedding is prevented. Since the pole holding portion 22 is located in the tunnel-like space in the load ball rolling grooves 5, 10, the size of the pole holding portion 22 is set to the full diameter of the pole regardless of the groove depth. The ball 3a can be reliably held.
  • the connecting portion 21 since the belt-shaped connecting portion 21 irrelevant to the holding of the pole 3 a is merely interposed on the opposing surface of the moving block 4 and the track rail 2, the connecting portion 21 may be thin, and the connecting portion 2 may be thin.
  • the pole 3a does not interfere with the upper edge corners of the load pole rolling grooves 5, 10 and the upper corner of the groove The occurrence of a so-called edge opening in which stress concentrates on the portion is prevented. Therefore, the range in which the ball 3a can contact the loaded ball rolling grooves 5, 10 in the groove width direction can be expanded, and a wide contact angle can be selected.
  • the width of engagement of the load pole rolling grooves 5 and 10 with the pole 3a in the depth direction increases, the opposing surfaces of the moving block 4 and the track rail 2 are shifted in opposite directions in the groove width direction in parallel with each other.
  • the contact point of pole 3a is displaced in the middle area between the deepest part and the highest corner of the loaded ball rolling groove 5, 10 and the highest point on the groove. Interference with the corner can be prevented.
  • the radius of curvature of the load pole rolling grooves 5, 10 is set to about 50.5 to 52%, which approximates the pole diameter, the direction perpendicular to the load pole rolling grooves 5, 10 is set. The backlash of the ball 3a can be prevented.
  • the groove depth of the load pole rolling grooves 5 and 10 is preferably set to about 25% or more of the ball diameter. Such a 25% position is a position where the contact angle of the pole is 30 degrees, and even if the contact angle of the pole is set to around 45 degrees, the contact point of the pole is still the ball rolling There is sufficient room to the upper edge corners of the grooves 5 and 10 so that the pole does not interfere with the upper edge corners of the loaded ball rolling grooves 5 and 10. Therefore, it is possible to select a contact angle of up to 45 degrees.
  • the radial load in the direction of pressing the moving block 4 toward the track rail 2 and the reverse radial load in the direction of lifting the moving block 4 from the track rail 2, or the direction in which the moving block 4 is rotated about the track rail 2 When a moment load is applied, the load ball rolling grooves 5, 10 sandwiching the ball 3a act in the shearing direction, which is displaced parallel to each other in opposite directions. Since the radius of curvature is set to about 50.5 to 52%, which approximates the diameter of the ball, the displacement of the ball 3a can be suppressed to a small extent, and the ball 3a is supported without play.
  • the ball return passage 11, the inner peripheral portion 12 a of the direction change passage 12, and the chain guide portion 14 are constituted by a resin molded body 16 integrally formed with the moving block body 6. These pole return path 1 1, turn direction 1 2 and the chain guide 14 are formed with reference to the load pole rolling groove 10.
  • guide portions 11 a and 12 c for guiding the connecting portion 21 of the ball chain 20 are provided on the inner peripheral portion 12 a of the ball return passage 11 and the direction change passage 12.
  • connection between the inner circumference 12a of the turning path 12 and the load pole rolling groove 10 and the connection between the pole return path 11 and the inner circumference 12a of the turning path 12 are basically connected integrally without any step, so that the pole 3a also circulates smoothly.
  • FIG. 3 shows a table transfer device using the linear motion guide device according to the first embodiment.
  • the table transfer device 30 supports the table 32 on the fixed bed 31 using two sets of linear motion guide devices 1 L and 1 R.
  • the two track rails 2L, 2R are fixed in parallel at a predetermined interval, and the table is mounted on the upper surface of the moving blocks 4L, 4R mounted on each track rail 2L, 2R. Is fixed.
  • two sets of linear motion guide devices 1 L and 1 R are installed between the fixed bed 31 and the table 32, and each moving block 4 It is configured so that the moments of orientation ML and MR are added.
  • the contact structure is such that the fixed bed 31 is gradually inclined toward the center of the table 32 (downward) at a predetermined inclination angle 0 with respect to the horizontal line H.
  • the mounting ports 33 on the upper surface of the moving blocks 4L, 4R are spaced apart in the width direction.
  • Various methods for inclining the moving blocks 4L and 4R can be adopted, such as a method of inclining the mounting surface of the moving blocks 4L and 4R and a method of sandwiching a shim or the like above the moving blocks 4L and 4R. .
  • the left and right moving blocks may be positively attached in this way, but if they are not positively inclined, they will usually be fixed by inclination due to mounting errors.
  • the contact angle of the ball 3 changes due to a slight mounting error. It will be installed at an angle.
  • the two sets of linear motion guide devices 1L and 1R allow not only lateral loads but also radial loads from above and lifting loads from below. It can be supported without any backlash and can support loads in all directions, up and down, left and right, and moment load without play.
  • FIG. 4 shows a second embodiment of the present invention.
  • the jaw of the chain guide 2 14 for holding 20 is not provided.
  • the gap between the moving block 4 and the track rail 2 can be made close to each other because there is no jaw of the chain guide portion 214 on the groove side edge of the load ball rolling groove 10.
  • the groove depth of the load pole rolling grooves 5, 10 can be increased.
  • the chain guide section 2 14 guides the position of the pole chain in the groove width direction.
  • the center of the thickness of the connecting portion 21 coincides with the center O of the ball. If the center of the thickness of the connecting portion 21 is shifted, the distance between the moving block 4 and the track rail 2 must be increased accordingly, and the load pole rolling groove 5, 10 must be increased accordingly. Cannot be deepened.
  • FIG. 5 shows a third embodiment of the present invention.
  • the third embodiment is similar to the pole-loaded ball rolling groove of the first embodiment.
  • the cross-sectional shape of 305 and 310 is a Gothic arch shape combining two sets of arc surfaces C1 and C2 with the center of the groove width as the boundary.
  • each pole 3a makes contact with each load pole rolling groove 30.5, 310 at a total of four points, two points each, and two diagonal contact angle lines S for each pole 3a. It has a contact angle structure having S1, S2 and S1, S2. Therefore, it can support loads from all directions (up, down, left, right) can do.
  • the radius of curvature of the arc surfaces Cl, C2 of the load ball rolling grooves 305, 310 is 55% of the ball diameter. It is preferable to set to about a cent.
  • the groove depth of the load pole rolling grooves 305, 310 is preferably set to about 40% of the pole diameter.
  • FIG. 6 shows a table transfer device using the linear motion guide device of FIG.
  • the contact angle lines of the left and right poles 3a of the moving blocks 4L, 4R of the two sets of linear motion guide devices 1L, 1R are S1L1, S2L2; S1R1, S 2 R 2 has a contact structure that is gradually inclined toward the fixed bed 31 side (downward) toward the center of the table 32 with respect to the horizontal direction.
  • FIG. 7 shows a fourth embodiment of the present invention.
  • the load pole rolling grooves 305, 310 are formed in a Gothic arch shape combining two sets of arc surfaces C1, C2, and Similar to the second embodiment, this is an example in which the chain holding portion is not provided on the side edge of the load pole rolling groove 310 of the moving block 4.
  • the corresponding load pole rolling grooves have a two- point contact structure between the Sakura Euraake grooves or a four-point contact structure between the Gothic arch grooves.
  • one of the load ball rolling grooves is shaped like a circular arc, and the other is a load ball.
  • the rolling groove is a combination of a Gothic arch shape and the pole contact structure is a three-point contact structure.
  • the two-point contact structure has a higher misalignment absorption capacity than the four-point contact structure, and higher rigidity in the vertical and rotational directions of rotation than the two-point contact structure.
  • a linear motion guide device having intermediate characteristics of the point contact structure can be obtained.
  • the load pole rolling grooves 3 10 on both the left and right sides of the moving block 4 have a Gothic arch groove structure
  • the load ball rolling grooves 5 on both the left and right sides of the track rail 2 have a circular circular arc structure. It is a combination.
  • the load ball rolling grooves 10 on the left and right sides of the moving block 4 are combined with a circular arc groove structure, and the load pole rolling grooves 30 5 on the track rail 2 are combined with a Gothic arch groove structure. It was done.
  • the displacement in the groove width direction between the load pole rolling groove 10 on the moving block 4 and the ball 3 a in the groove width direction is between the load ball rolling groove 30 5 on the track rail 2 and the pole 3 a. Is larger than the displacement in the groove width direction.
  • Figure 10 (a) shows a table transfer device using the linear motion guide device of Fig. 8.
  • FIG. 10 (b) shows a configuration example of a table transfer device using the linear motion guide device of FIG.
  • the contact angle lines of the left and right poles 3a of the moving blocks 4L, 4R of the two sets of linear motion guide devices 1L, 1R are S1L1, S1L2 , S 1 L 0: S 2 L 0, S 2 L 1, S 2 L 2; S 1 R 0, S 1 R 1, SIR 2: S 2 R 0, S 2 R 1, S 2 R 2
  • the contact angle lines S 1 L 0, S 2 L 0, S 1 R 0, and S 2 R 0 corresponding to the sagittal pole groove gradually move toward the center of the table 32 with respect to the horizontal line H.
  • Fixed bed 3 The contact structure inclines toward the 1 side (downward).
  • the contact angle lines SILO, S 2 L 0, S 1 R 0, S 20 The contact structure gradually inclines toward the table 32 (upward) toward the center of 32.
  • the contact angle lines of the left and right poles 3a of the moving blocks 4L, 4R of the two sets of linear motion guide devices 1L, 1R are S1L0, S1L. 1, S1L2: S2L1, S2L2, S2L0; S1R0, S1R1, SIR2: S2R1, S2R2, S2R0 Contact angle lines S 1 L 0, S 2 L 0, S 1 R 0, S 2 R 0 corresponding to the circular groove in the circle are gradually fixed toward the center of the table 32 with respect to the horizontal line H
  • the bed 31 has a contact structure that inclines toward the 1 side (downward).
  • the contact structure is such that it gradually inclines toward the center of the table 32 with respect to the horizontal line H toward the table 32 side (upward).
  • the angle between the contact angle line S0 with the single arc surface C0 of the circular arc groove and the horizontal line H gradually increases from 0 ° to gothic.
  • the first and second arcs of the Gothic arch groove shall not exceed the predetermined angle 01 that reaches the extension line of one of the contact angle lines SI and S 2 with the first and second arc surfaces C l and C 2 of the arch groove.
  • the contact point with the planes C 1 and C 2 hardly changes, and the contact point with the single circular surface C 0 of the arc-shaped arc groove is displaced in the groove width direction.
  • the position of the contact on the single circular surface C0 side of this circular arc groove is determined mechanically by the balance of the contact reaction forces N1, N2 and N3 at the three contacts.
  • the left and right moving blocks 4 and 4 may be attached at an angle, but simply by arranging each set of track rails in parallel with each other on the fixed bed at a predetermined interval, Even in normal mounting where the table is fixed to each set of moving blocks, there is a slight mounting error, so the mounting block is tilted and fixed at the same time as the mounting error is absorbed, and the contact angle changes.
  • the linear motion guide device of the present invention since the load pole rolling groove approximates the pole, the contact angle of the pole changes due to a slight mounting error, and the pole is mounted in an inclined manner. You can eliminate the play.
  • the linear motion guide device has a four-point contact structure in which the pole is sandwiched between Gothic arch grooves, a two-point contact structure in which it is sandwiched between circular arc grooves, and the Gothic arch groove and Sakura Compare the case of a three-point contact structure sandwiched by one arc groove. In the case of a 4-point contact structure, there is almost no rattling On the other hand, its ability to absorb misalignment is low.
  • the misalignment absorption capacity is high, but the rattling is large, so it is effective to actively tilt the moving block as described above to remove the rattling.
  • the three-point contact structure has the misalignment absorption capacity and intermediate characteristics with less rattling than two-point contact and greater than four-point contact.
  • a linear motion guide device having either a load ball rolling groove having a circular arc shape or a load pole rolling groove having a Gothic arch shape is taken as an example.
  • the load pole rolling groove that guides the ball on one of the left and right sides of the track rail has a two-point contact structure in which the ball contacts two points by combining the circular groove and the arc groove, and the load that guides the other ball
  • the pole rolling groove may be a combination of Gothic arch grooves and a four-point contact structure where the pole contacts at four points. Further, a two-point contact structure and a three-point contact structure may be combined, or a three-point contact structure and a four-point contact structure may be combined.
  • the pole is held from the front and back by the pole holding portion located in the load pole rolling groove, and the drop of the pole is prevented. Since the pole holding portion is located in the loaded ball rolling groove, the size of the pole holding portion can be as large as the ball diameter regardless of the groove depth, and the pole can be reliably held.
  • the opposing surfaces of the moving block and the track rail were brought closer to the joint to increase the depth of the load ball rolling groove as much as possible.
  • the so-called edge load in which stress concentrates on the upper corner of the groove without interfering with the upper corner of the rolling groove, is prevented. Therefore, the range in which the pole can make contact with the loaded ball rolling groove in the groove width direction can be expanded, and a wide contact angle can be selected.
  • the engagement width of the loaded ball rolling groove with respect to the ball in the depth direction increases. Therefore, even if a load is applied in the direction that shifts the opposing surfaces of the moving block and the track rail in the direction opposite to each other in the groove width direction, the pole contacts will have the highest groove upper edge angle from the deepest part of the load pole rolling groove. It can be displaced in the middle area between the parts, and interference between the pole and the upper corner of the groove can be prevented.
  • the left and right sides of the track rail are provided with two linearly extending load pole rolling grooves, one for each.
  • the left and right support legs of the moving block have load poles corresponding to the load pole rolling grooves of the track rail. If a rolling groove is provided, the lateral load in the direction in which the support leg of the track rail is pressed against the side surface of the track rail will be applied to the ball between the track rail and the corresponding load ball rolling groove of the support leg. Acting in the direction of compression, the lateral load is supported by the pole without play.
  • the pole chain has an end-band structure, the assembling work can be performed very easily.
  • the load ball rolling groove has a single arc-shaped cross-sectional shape having a single arc-shaped cross-section, the backlash in the groove width direction is large, so the deep groove is used as in the present invention, and the cross-sectional shape is pole. It is preferable to approximate the outer peripheral shape. If the cross-sectional shape of the load pole rolling groove is a Gothic arch groove shape, the play in the groove width direction will be smaller than that of the Circular Yura-arc groove. By holding the pole with a ball chain, as in the circuit arc groove, the depth of the loaded ball rolling groove can be made as deep as possible. Can be prevented.
  • a chain guide is provided on the groove side edge of the load pole rolling groove of the moving block, which has a jaw that engages with the connection part of the ball chain and restricts the pole chain from coming off the moving block, the moving block
  • the ball chain can be prevented from sagging when the track rail is pulled out.
  • At least one of the pole return path forming part where the ball return path is formed and the turning path inner peripheral part where the turning path inner circumference is formed is made of a resin molded body integrally formed with the moving block main body.
  • the infinite circulation path of the pole is accurately formed, and the pole is smoothly guided in conjunction with the circulation guide of the pole by the ball chain.
  • the chain guide is also formed of a resin molded body integrally formed with the moving block main body, the chain guide can be accurately formed, and interference with the pole chain can be prevented.
  • each set of track rails are arranged parallel to each other at a predetermined interval on the fixed bed. Since the table is fixed with a moment applied in the direction to rotate each track rail in the direction opposite to each other, the linear motion guide device itself is able to handle vertical load, left and right lateral load and moment load. It has a small rattling structure, and the tilt of the table transfer device can be eliminated by mounting the moving blocks of the two sets of linear motion guide devices at an angle in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

明細書 直線運動案内装置およびテーブル移送装置 技術分野
本発明は、 ポールを介して直線運動を案内する直線運動案内装置に関す る。 背景技術
従来のこの種の直線運動案内装置は、 一般的に軌道レールと、 この軌道 レールに多数のポールを介して移動自在に設けられる移動プロックと、 を 備えた構成となっている。 移動ブロックは、 軌道レールの負荷ボール転走 溝に対応する負荷ポール転走溝と並行して設けられた無負荷ボール戻し通 路とを備えた移動ブロック本体と、 この移動ブロック本体の両端部に設け られ前記負荷ポール転走溝と転動体戻し通路間を連通してポールの無限循 環路を形成するポール方向転換路を構成するェンドブレートとを備えてい る。
そして、 図 1 1に部分的に示すように、 移動ブロック 1 0 0の負荷ボー ル転走溝 1 0 1の左右両側にはリテーナ 1 0 2が設けられ、 この左右のリ テーナ 1 0 2の開口幅をポール径よりも小さくすることにより、 移動プロ ック 1 0 0から軌道レール 1 0 3を抜き取った際のボール 1 0 4の脱落を 防止していた。
しかしながら上記した従来技術の場合には、 負荷ポール転走溝 1 0 1, 1 0 5両側の軌道レールと移動ブロックの対向面間にリテーナ 1 0 2が設 けられているので、リテーナ 1 0 2の高さ分だけ負荷ポール転走溝 1 0 1 , 1 0 5の溝深さが制限され比較的浅溝となっていた。 そのため、 負荷ポール転走溝 1 0 1, 1 0 5内のボール 1 0 4の接点が 溝最深部から溝幅方向にずれると、 ポール 1 0 4が負荷ボール転走溝 1 0 1 , 1 0 5の上縁角部に接触して応力が集中するエッジロードが発生する 可能性がある。
たとえば、 ポール転走溝 1 0 1, 1 0 5が形成される移動ブロック 1 0 0と軌道レール 1 0 3の対向面を互いに平行に逆向きにずらすような 「せ ん断方向」 の荷重が作用した場合には、 各負荷ポール転走溝 1 0 1, 1 0 5内のポール 1 0 4の接触点が溝幅方向に変位してエッジロードが発生す るおそれがある。
そこで、 負荷ポール転走溝 1 0 1 , 1 0 5を深溝にしてエッジロードの 発生を防止することが考えられる。 負荷ボール転走溝 1 0 1, 1 0 5を深 溝とするためにはリテーナ 1 0 2を省略すればよいが、 そうすると軌道レ —ル 1 0 3を抜いた際にポール 1 0 4が脱落してしまう。 発明の開示
本発明は上記した従来技術の問題点を解決するためになされたもので、 その目的とするところは、 負荷ボール転走溝を深溝としてエッジロードの 発生を防止でき、 しかも軌道レールを移動ブロックから抜いた際のボール の脱落を防止し得る直線運動案内装置を提供することにある。
上記目的を達成するために、 本発明にあっては、 軌道レールと、 該軌道 レールに多数のポールを介して移動自在に設けられる移動プロックと、 を 備え、
移動プロックは、 軌道レールに設けられた負荷ポール転走溝に対応する ポール転走溝と該負荷ポール転走溝と並行して設けられたポール戻し通路 とを備えた移動ブロック本体と、 該移動ブロック本体の両端部に設けられ 前記負荷ポール転走溝とポール戻し通路間を連通してポールの無限循環路 を形成するポール方向転換路を構成する方向転換路構成部材とを備えた直 線運動案内装置において、
前記各ポール間に介在されポールの進行方向前後から各ポールを挟み込 んでポールを保持するポール保持部と、 該ボール保持部間を連結する可撓 性の連結部と、 を備えたポールチェインを設け、
該ボールチエインのポール保持部を軌道レールと移動ブロックの対応す る負荷ポール転走溝内に位置させ、 連結部を負荷ポール転走溝が設けられ る移動プロックと軌道レールの対向面間の隙間に張り出すように構成し、 移動プロックと軌道レールの対向面を連結部に近づけて負荷ポール転走溝 の溝深さを深くしたものである。
上記構成の直線運動案内装置にあっては、 移動ブロックから軌道レール を抜き出しても、 各ポールは各ポール間のポール保持部によって前後から 保持されポールの脱落が防止される。 このポール保持部は負荷ポール転走 溝内に位置しているので、 ポール保持部の大きさを溝深さに拘らずポール 径一杯までとることができ、 確実にポールを保持することができる。
一方、 移動ブロックと軌道レールの対向面にはポールの保持とは無関係 の連結部が介在するだけなので、 連結部は薄肉でよく、 この連結部に移動 ブロックと軌道レールの対向面を近づけることによって負荷ボール転走溝 の溝深さを可及的に深くしたものである。
このように溝深さを深くすることによって、 ボール接点を溝幅方向に変 位させてもポールが負荷ボール転走溝の上緣角部と干渉せず、 溝上緣角部 に応力が集中するいわゆるエッジロードの発生が防止される。したがって、 負荷ボール転走溝に対するポールの溝幅方向の接触可能範囲を広げること ができ、 幅広い接触角を選択することができる。
また、 ボールに対する負荷ポール転走溝の深さ方向の係合幅が増大する ので、 移動ブロックと軌道レールの対向面を溝幅方向に互いに平行に逆向 きにずらす方向の荷重が作用しても、 ポールの接点は、 負荷ボール転走溝 の最深部から最も高い溝上緣角部の間の中間領域で変位し、 ポールと溝上 緣角部との干渉を防止することができる。
また、 略断面四角形状の軌道レールと、 該軌道レールの左右両側面と対 向する左右支持脚部を備えた移動ブロックと、 を備え、
軌道レールの左右側面には直線方向に延びる負荷ボール転走溝を 1条づ つ計 2条設け、 移動ブロックの左右支持脚部には前記軌道レールの負荷ボ 一ル転走溝に対応する負荷ボール転走溝を設け、
前記移動ブロックは、 前記軌道レールの負荷ポール転走溝と対応する負 荷ポール転走溝と該負荷ボール転走溝と並行して設けられた無負荷ポール 戻し通路とを備えた移動プロック本体と、 該移動プロック本体の両端部に 設けられ前記負荷ポール転走溝と転動体戻し通路間を連通してポールの無 限循環路を形成するポール方向転換路を構成する方向転換路構成部材とを 備えた直線運動案内装置において、
各ポール間に介在されボールの進行方向前後から各ボールを挟み込んで ボールの脱落を防止するポール保持部と、 該ポール保持部間を連結する可 撓性の連結部と、 を備えたボールチェインを設け、
該ボールチエインのポール保持部を軌道レールと移動プロックの対応す る負荷ポール転走溝内に位置させ、 連結部を負荷ボール転走溝が設けられ る移動プロックと軌道レールの対向面間の隙間に張り出すように構成し、 移動プロックと軌道レールの対向面を連結部に近づけて負荷ポール転走溝 の溝深さを深くしてもよい。
このようにすれば、 軌道レールの左お側面に 1条づつのポール列が配置 される場合、 軌道レールの支持脚部を軌道レールの側面に押し付ける方向 の横方向荷重は、 軌道レールと支持脚部の対応する負荷ポール転走溝間の ポールを圧縮する方向に作用するので、 横方向荷重はボールによってがた つきなく支持される。
一方、 移動ブロックを軌道レールに向かって押さえ方向のラジアル荷重 および移動ブロックを軌道レールから浮き上がらせる方向の逆ラジアル荷 重、 あるいは移動ブロックを軌道レールを中心に回転させる方向のモーメ ント荷重が作用した場合には、 ボールを挟む負荷ポール転走溝を互いに逆 向きに平行にずらすせん断方向に作用するが、 負荷ポール転走溝が深溝と なっているので、 溝側縁にエッジロードが作用することなく支持すること ができる。
負荷ポール転走溝の断面形状をポールの外周形状に近似させてもよい。 このように負荷ボール転走溝の溝直角方向の断面形状をポールの外周形 状に近似させることにより、 負荷ポール転走溝に対するポールの溝幅方向 のがたつきを防止できる。
ボールチェインを有端帯状構造とすれば、 組み付け作業が非常に簡単に 行える。 もちろん、 ポールチェインを無端状構造としてもよい。
負荷ボール転走溝は単一の円弧状断面よりなるサーキユラ一アーク溝形 状としてもよい。
このようなサ一キユラ一アーク溝形状は、 ポールの溝幅方向のがたつき が大きいので、 特に本発明のように深溝とし、 また断面形状をボールの外 周形状に近似させることが好ましい。
負荷ポール転走溝の断面形状を、 2つの円弧状断面を有するゴシックァ —チ溝形状としてもよい。
ゴシックアーチ溝形状とすれば、 サーキユラ一アーク溝に比べて溝幅方 向のがたつきは小さくなる。 そして、 サーキユラ一アーク溝と同様に、 ポ —ルチエインによってボールを保持することにより、 負荷ポール転走溝の 溝深さを可及的に深くすることができ、 エッジロードの発生を防止するこ とができる。 軌道レールと移動プロックの対応する負荷ボール転走溝の一方を単一の 円弧状断面よりなるサーキユラ一アーク溝形状とし、 他方を 2つの円弧状 断面を有するゴシックアーチ溝形状としてもよい。
このようにすれば、 ボールの接触構造を 3点接触構造となり、 ゴシック アーチ溝同士の 4点接触構造のものよりもミスァライメント吸収能力が高 く、 サーキユラ一アーク溝同士の 2点接触構造のものよりも回転方向の上 下方向および回転方向の剛性が高い、 2点接触構造と 4点接触構造の中間 的な特性を有することになる。
軌道レール側の負荷ポール転走溝をサーキユラ一アーク溝形状とし、 対 応する移動プロックの負荷ポール転走溝をゴシックアーチ溝形状としても よい。
軌道レール側の負荷ポール転走溝をゴシックアーチ溝形状とし、 対応す る移動ブロックの負荷ポール転走溝をサーキユラ一アーク溝形状としても よい。
負荷ボール転走溝の円弧状断面は、ボール径の 5 2パーセントから 5 0 . 5パーセント程度に設定してもよい。
従来のサ一キユラ一アーク溝の曲率半径はポ一ル径の 5 2パーセント程 度に設定しているが、 これではがたつきが大きいので、 5 2パーセントよ り小さく設定することが有効である。
また、 あまり小さいとポ一ルの作動すべりが急激に大きくなるので、 5 0 . 5パーセント程度までとすることが実用上好ましい。
移動プロックの負荷ボール転走溝の側方隣接部には、 ボールチエインの 連結部と係合してボールチェインの移動ブロックからの離脱を規制する顎 部を備えたチエイン案内部が設けられていてもよい。
このチェィン案内部に顎部を設ければ、 移動ブロックから軌道レールを 抜いた際のポールチェインの垂れ下がりを防止できる。 特に、 ボールチェ ィンが有端帯状構造の場合に、 ボールチエインの端の垂れ下がりを防止す ることができる。
ボール戻し通路および方向転換路の内周部の少なくともいずれかが、 移 動ブロック本体と一体成形された樹脂成形体によって構成されていてもよ い。
このようにすれば、 無限循環路が正確に成形され、 ポールチェインによ るボールの循環案内と相挨つてボールがスムースに案内される。
ボール戻し通路, 方向転換路の内周部およびチェイン案内部の少なくと もいずれか一つが、 移動ブロック本体と一体成形された樹脂成形体によつ て構成されていてもよい。
この場合にも無限循環路が正確に成形され、 ボールチエインによるポー ルの循環案内と相挨つてポールがスムースに案内することができる。また、 チエイン案内部についても正確に成形することができ、 ボールチエインと の干渉を防止することができる。
また、 本発明のテーブル移送装置は、 上記左右 2条のポール列が設けら れた直線運動案内装置を 2組設け、
各組の軌道レールを固定べッド上に所定の間隔を隔てて互いに平行に配 置し、 各組の移動ブロックに、 各軌道レールに対して互いに逆向きに回転 させる方向にモーメントを加えた状態でテーブルを固定し、
一方の直線運動案内装置の左右のボールの各負荷ボール転走溝との接点 を結ぶ線である接触角線を水平線に対して所定の傾斜角でもって同一方向 に傾け、
他方の直線運動案内装置の左右のポールの各負荷ポール転走溝との接点 を結ぶ線である接触角線を水平線に対して前記一方の直線運動案内装置と は逆の傾斜角でもって同一方向に傾けたものである。
上記したように、 直線運動案内装置自体が、 上下方向荷重、 左右の横方 向荷重およびモーメント荷重に対してがたつきの小さい構造となっている が、 2組の直線運動案内装置の移動プロックを予め傾けて取付けることに よって、 テーブル移送装置のがたをなくすことができる。
移動プロックを傾斜させる方法としては、 移動ブロックの取付面を傾斜 させたり、 移動ブロック上部にシム等を挾む方法等、 種々の方法を採用し 得る。
このように積極的に左右の移動ブロックを傾斜させて取り付けてもよい が、 単に各組の軌道レールを固定べッド上に所定の間隔を隔てて互いに平 行に配置し、 各組の移動ブロックにテーブルを固定する通常の取付におい ても、 若干の取付誤差があるので、 取付誤差吸収と同時に移動ブロックが 傾斜して固定され接触角も変化することになる。 特に、 本発明の直線運動 案内装置にあっては、 負荷ボール転走溝をボール径と近似させている場合 には、 若干の取付誤差によってボールの接触角が変化し傾斜して取り付け られ、 テーブル移送装置のがたをなくすことができる。
ここで、 直線運動案内装置のボールがゴシックアーチ溝同士に挟まれた
4点接触構造の場合と、 サーキユラ一アーク溝同士に挟まれた 2点接触構 造の場合とゴシックアーチ溝とサーキユラ一アーク溝に挟まれた 3点接触 構造の場合を比較する。 4点接触構造の場合には、 がたつきがほとんど無 い反面、 ミスァライメント吸収能力が低い。 2点接触構造の場合には、 ミ スァライメント吸収能力が高い反面、 がたつきが大きいので、 上記したよ うに移動ブロックを積極的に傾けてがたつきをとることが効果的である。 一方、 3点接触構造の場合には、 ミスァライメント吸収能力と、 がたつき が 2点接触よりも小さく 4点接触よりも大きい中間的な特性を有する。 図面の簡単な説明
図 1は本発明の第 1の実施の形態に係る直線運動案内装置を示すもので、 同図 (a) は正面縦断面図、 同図 (b) はポールの接触状態の拡大断面図、 同図 (c) は半分を断面にして示す平面図、 同図 (d) は方向転換部の拡 大断面図、 同図 (e) はポールチェインの連結部の他の形態のポール接触 状態の拡大断面図;
図 2 (a) は図 1の直線運動案内装置の移動ブロックのエンドプレート 部を半分断面にして示す正面図、 同図 (b) は側面図、 同図 (c), (d) はポールチェインの部分正面図および上面図;
図 3 (a) は図 1の直線運動案内装置を組み付けたテーブル案内装置の 正面図、 同図 (b), (c) は同図 (a) の左右の直線運動案内装置のボー ル接触角方向を示す説明図;
図 4は本発明の第 2の実施の形態に係る直線運動案内装置を示すもので、 同図 (a) は正面縦断面図、 同図 (b) はポールの接触状態の拡大断面図; 図 5は本発明の第 3の実施の形態に係る直線運動案内装置を示すもので、 同図 (a) は正面縦断面図、 同図 (b) はボールの接触状態の拡大断面図; 図 6 (a) は図 5の直線運動案内装置を組み付けたテーブル案内装置の 正面図、 同図 (b), (c) は同図 (a) の左右の直線運動案内装置のボー ル接触角方向を示す説明図;
図 7は本発明の第 4の実施の形態に係る直線運動案内装置を示すもので、 同図 (a) は正面縦断面図、 同図 (b) はボールの接触状態の拡大断面図; 図 8は本発明の第 5の実施の形態の係る直線運動案内装置の第 1例を示 すもので、 同図 (a) は正面縦断面図、 同図 (b) はボールの接触状態の 拡大断面図;
図 9は本発明の第 5の実施の形態に係る直線運動案内装置の第 2例を示 すもので、 同図 (a) は正面縦断面図、 同図 (b) はポールの接触状態の 拡大断面図;
図 1 0 (a) は図 8の直線運動案内装置を用いたテーブル移送装置の構 成例を示す概略図、 同図 (b ) は図 9の直線運動案内装置を用いたテ一ブ ル移送装置の構成例を示す概略図、 同図 (c ) , ( d ) は 3点接触の場合の 接触状態の変化を示す概略図;
図 1 1は従来の直線運動案内装置のポールの脱落防止構造を示す図。 発明を実施するための最良の形態
第 1の実施の形態
図 1及び図 2は本発明の第 1の実施の形態に係る直線運動案内装置を示 している。
図 1において、 1は直線運動案内装置全体を示すもので、 この直線運動 案内装置 1は、 概略、 軌道レール 2と、 この軌道レール 2に多数のポール 3 aを介して移動自在に設けられる移動ブロック 4と、 を備えている。 軌道レール 2は断面略四角形状の長尺部材で、 その左右側面に 1列づっ のポール列 3, 3を介して移動ブロック 4を案内するようになっており、 左右側面には、 2列のポール列 3, 3に対応して 1条づっ計 2条の負荷ポ 一ル転走溝 5, 5が全長にわたって設けられている。 この負荷ボール転走 溝 5, 5は、 軌道レール 1の垂直に延びる左右側面に形成されている。 移動ブロック 4は、 移動ブロック本体 6と、 この移動ブロック本体 6の 両端に設けられる方向転換路構成部材としてのェンドブレート部 7と、 か ら構成されている。 移動ブロック本体 6は、 軌道レール 2の上面と対向す る水平部 8と、 軌道レール 2の左右側面と対向する一対の支持脚部 9, 9 とを備えた断面コ字形状のブロック体で、 左右の支持脚部 9 , 9の内側面 に軌道レール 2の左右側面に設けられた負荷ポール転走溝 5 , 5に対応す る負荷ボール転走溝 1 0 , 1 0が設けられている。 また、 各支持脚部 9, 9の中実部には、 各負荷ポール転走溝 1 0 , 1 0と並行に、 トンネル状の 2本のポール戻し通路 1 1 , 1 1が直線的に設けられている。 一方、 エンドプレート部 7も移動ブロック本体 6の断面形状に倣ったコ 字形状で、 移動ブロック本体 6の両端部に取り付けられ前記各負荷ポール 転走溝 1 0, 1 0とボール戻し通路 1 1 , 1 1間を連通して無限循環路を 構成するポール方向転換路 1 4, 1 4を構成している。
左右各 2列のボール列 3, 3の対応するポール転走溝 5 , 5 ; 1 0, 1 0との接点を結ぶ接触角線 S 1, S 2は、 基本的には水平方向となるよう に設定されている。
左右 2列のボール列 3, 3は 2つのポールチェイン 2 0によって保持さ れて無限循環路を循環するもので、 ポールチェイン 2 0は、 ポール列 3を 構成する各ポール 3 a間に挿入されるポール保持部 2 2と、 各ポール保持 部 2 2を連結する可撓性の連結部 2 1とを備えた構成となっている。 各連 結部 2 1は薄肉帯状で連続的に延びており、 ボールチエイン 2 0の両端は つながらずに切れた有端帯状部材となっている。 このポールチェイン 2 0 の先端部および後端部にはクラウニング部 2 4が設けられている。
もっとも、 ボールチエインの両端を接続してボールチエインの構造を無 端状としてもよい。
各ボール保持部 2 2の両端にはポール 3 aの球冠部が挿入されるボール 保持部としての球冠状の保持凹部 2 3が設けられており、 ポール 3 aの進 行方向前後に位置するボール保持部 2 2によって挟持されている。
連結部 2 1は負荷ボール転走溝 1 0の両側縁に張り出しており、 移動ブ ロック 4および軌道レール 2の対向面間に介装されている。
また、 移動ブロック 4の負荷ポール転走溝 1 0の両側縁にはポールチェ イン 2 0を案内するチェイン案内部 1 4が設けられており、 このチェイン 案内部 1 4にはボールチェイン 2 0の連結部 2 1に係合してボールチエイ ン 2 0が移動ブロック 4から離間することを規制する顎部 1 5が設けられ ている。 ポール 3 aはポールチェイン 2 0のポール保持部 2 2の保持凹部 2 3によって保持されているので、 ポール 3 aはポールチェイン 2 0を介 して移動ブロック 4から脱落することが防止されることになる。 また、 ポ ールチェイン 2 0の前後両端にはクラウニング部 2 4が設けられているの で、 このクラウニング部 2 4を介してボールチェイン 2 0の先端部がチェ イン案内部 1 4に案内されて循環移動する。 特に、 ボールチェイン組立挿 入時のガイドとなる。
この連結部 2 1の位置は、 図 1 ( b ) に示すように、 その肉厚中心 0 ' がポール中心 Oよりも所定量、 図示例では肉厚 tの半分 d / 2程度移動ブ ロック 4側に偏移しており、 チェイン案内部 1 4の顎部 1 5がポール中心 Oに対して互いに反対側に位置している。
負荷ポール転走溝 5, 1 0の最深部間の間隔はボール径 Dとほぼ等しく、 各負荷ポール転走溝 5, 1 0の溝深さ dを深くするには、 軌道レール 2と 移動ブロック 4との間隔 bを狭くする必要がある。 この間隔 bにチェイン 案内部 1 4の顎部 1 5とボールチェイン 2 0の連結部 2 1が重ね合わされ た状態で介装されるので、 顎部 1 5の厚みと連結部 2 1の厚みを足し合わ せた中間点にポール中心 Oを位置させることが最適である。 この実施の形 態の場合には、 顎部 1 5と連結部 2 1の厚みがほぼ同一なので、 連結部 2 1の肉厚中心 O 'をポール中心 Oに対して連結部 2 1の肉厚 tの半分程度 移動ブロック 4側に偏移させている。
図 1 ( e ) に示すように、 連結部 2 1の肉厚中心 O 'をポール中心〇と 一致させた場合には、 連結部 2 1の肉厚 tの半分 d Z 2がボール中心 0に 対して軌道レール 2側にはみ出し、 このはみ出した分だけ顎部 1 5を軌道 レール 2側に寄せなければならず、 その分だけ負荷ポール転走溝 5の溝深 さが浅くなつてしまう。 したがって、 顎部 1 5がある場合には、 図 1 ( b ) のように連結部 2 1の肉厚中心をポール中心に対して偏移させることが有 利である。 負荷ポール転走溝 5, 1 0は単一の円弧状断面を有するサーキユラ一ァ —ク溝形状となっており、 その曲率半径はポール径の 5 0 . 5〜5 2パー セント程度に設定されている。 特に、 5 1パーセント程度に設定すること が好適である。
上記直線運動案内装置にあつては、 移動ブロック 4から軌道レール 2を 抜き出しても、 各ポール 3 aは各ポール 3 a間のボール保持部 2 2によつ て前後から保持されボール 3 aの脱落が防止される。 このポール保持部 2 2は負荷ボール転走溝 5, 1 0内のトンネル状の空間に位置しているので、 ポール保持部 2 2の大きさを溝深さに拘らずポ一ル径一杯までとることが でき、 確実にボール 3 aを保持することができる。
一方、 移動プロック 4と軌道レール 2の対向面にはポール 3 aの保持と は無関係のベルト状の連結部 2 1が介在するだけなので、 連結部 2 1は薄 肉でよく、 この連結部 2 1に移動ブロック 4と軌道レール 2の対向面を近 づけることによって負荷ボール転走溝 5 , 1 0の溝深さを可及的に深くし たものである。
このように溝深さを深くすることによって、 ポール接点を溝幅方向に変 位させてもポール 3 aが負荷ポール転走溝 5 , 1 0の上縁角部と干渉せず、 溝上緣角部に応力が集中するいわゆるエッジ口一ドの発生が防止される。 したがって、 負荷ボール転走溝 5, 1 0に対するボール 3 aの溝幅方向の 接触可能範囲を広げることかでき、幅広い接触角を選択することができる。 また、 ポール 3 aに対する負荷ポール転走溝 5, 1 0の深さ方向の係合 幅が増大するので、 移動ブロック 4と軌道レール 2の対向面を溝幅方向に 互いに平行に逆向きにずらす方向の荷重が作用しても、 ポール 3 aの接点 は、 負荷ボール転走溝 5 , 1 0の最深部から最も高い溝上緣角部の間の中 間領域で変位し、 ポール 3 aと溝上縁角部との干渉を防止することができ る。 特に、負荷ポール転走溝 5, 1 0の曲率半径をポール径に近似する 5 0 . 5〜 5 2パーセント程度に設定しているので、 負荷ポール転走溝 5, 1 0 に対して直角方向のボール 3 aのがたつきが防止できる。
負荷ポール転走溝 5 , 1 0の溝深さは、 ボール径の 2 5パーセント程度 以上に設定することが好ましい。 このような 2 5パーセントの位置はポー ルの接触角にして 3 0度の位置であり、 ポールの接触角を 4 5度付近に設 定しても、 ポールの接接触点は負荷ボール転走溝 5, 1 0の上縁角部まで は十分余裕がありポールが負荷ボール転走溝 5 , 1 0の上縁角部と干渉す ることはない。 したがって、 4 5度の接触角まで選択することが可能であ る。
また、 軌道レール 2の左右側面の垂直壁に 1条づつのボール列が配置さ れているので、 軌道レール 2の支持脚部 9, 9を軌道レール 2の一方側面 に押し付ける方向の横方向荷重は、 軌道レール 2と支持脚部 9の対応する 負荷ボール転走溝 5, 1 0間のボール 3 aを圧縮する方向に作用するので、 横方向荷重はポール 3 aによつてがたつきなく支持される。
一方、 移動ブロック 4を軌道レール 2に向かって押さえる方向のラジア ル荷重および移動プロック 4を軌道レール 2から浮き上がらせる方向の逆 ラジアル荷重、 あるいは移動プロック 4を軌道レール 2を中心に回転させ る方向のモーメント荷重が作用した場合には、 ボール 3 aを挟む負荷ポー ル転走溝 5, 1 0を互いに逆向きに平行にずらすせん断方向に作用するが、 負荷ボール転走溝 5, 1 0の曲率半径をボール径に近似する 5 0 . 5〜5 2パーセン卜程度に設定しているので、 ボール 3 aの変位を僅少に抑える ことができ、 がたつきなく支持される。
また、 上記ボール戻し通路 1 1, 方向転換路 1 2の内周部 1 2 aおよび チェイン案内部 1 4は、 移動ブロック本体 6と一体成形された樹脂成形体 1 6によって構成されている。 これらポール戻し通路 1 1 , 方向転換路 1 2およびチェイン案内部 1 4は負荷ポール転走溝 1 0を基準にして形成さ れている。
そして、 ボール戻し通路 1 1および方向転換路 1 2の内周部 1 2 aには ボールチェイン 2 0の連結部 2 1を案内する案内部 1 1 a, 1 2 cが設け られている。 これらを樹脂成形体 1 6によって一体成形することにより、 案内溝 1 1 a, 1 2 cおよびチェイン案内部 1 4間が段差無く連続して一 体的に成形されているので、 ポールチェイン 2 0はスムースに循環案内さ れる。 また、 顎部 1 5付きのチェイン案内部 1 4についても、 負荷ポール 転走溝 1 0を基準にして正確に位置決めされるので、 ポールチェイン 2 0 の連結部 2 1とチェイン案内部 1 4との間に適切な隙間を形成することが でき、 ポール循環時にポールチェイン 2 0の連結部 2 1が過度に干渉する ことを避けることができる。
もちろん、 方向転換路 1 2の内周部 1 2 aと負荷ポール転走溝 1 0との 接続部、 ポール戻し通路 1 1と方向転換路 1 2の内周部 1 2 aとの接続部 についても基本的に段差無く一体的に接続されるので、 ポール 3 aも円滑 に循環する。
テーブル移送装置
図 3には、 第 1の実施の形態に係る直線運動案内装置を用いたテーブル 移送装置が示されている。
このテーブル移送装置 3 0は、 2組の直線運動案内装置 1 L, 1 Rを用 いて固定べッド 3 1上にテ一ブル 3 2を支持するもので、 固定べッド 3 1 上に 2本の軌道レール 2 L, 2 Rを所定間隔を隔てて平行に固定し、 各軌 道レ一ル 2 L, 2 Rに組み付けられた移動ブロック 4 L, 4 R上面にテ一 ブル 3 2が固定されるようになっている。
この実施の形態では、 2組の直線運動案内装置 1 L, 1 Rを固定ベッド 3 1とテーブル 3 2間に組み付けた状態で、 各移動ブロック 4に互いに逆 向きのモーメント ML, MRが加わるように構成されている。
これにより、 2組の直線運動案内装置 1 L, 1 Rの各移動ブロック 4L, 4 Rの左右のポール 3 aの接触角線 S 1 L, S 2 L ; S 1 R, S 2 Rは、 水平線 Hに対して所定の傾斜角 0でもってテーブル 32の中心に向かって 徐々に固定ベッド 3 1側 (下向き) に傾斜するような接触構造となってい る。
モーメントの方向を逆向きにすれば、 図 3中点線で示すように、 接触角 線 S 1 L, S 2 L ; S 1 R, S 2 Rの方向は、 水平方向 Hに対してテープ ル 32の中心に向かって徐々にテーブル 32側 (上向き) に傾斜するよう な接触構造となる。
モーメントが作用するので、 移動ブロック 4 L, 4 R上面の取付ポルト 33, 33は幅方向に離して設けている。
移動ブロック 4 L, 4 Rを傾斜させる方法としては、移動ブロック 4 L, 4Rの取付面を傾斜させたり、 移動ブロック 4L, 4R上部にシム等を挟 む方法等、 種々の方法を採用し得る。
ただ、 このように積極的に左右の移動プロックを傾斜させて取り付けて もよいが、 積極的に傾斜させなくても、 通常は取付誤差によって傾斜して 固定されることになる。 特に、 本発明の直線運動案内装置にあっては、 負 荷ボール転走溝 5, 10の断面形状をポール 3 aと近似させているので、 若干の取付誤差によってボール 3の接触角が変化し傾斜して取り付けられ ることになる。
このようにしてテーブル移送装置を組み立てれば、 この 2組の直線運動 案内装置 1 L, 1 Rによって、 横方向荷重だけでなく、 上からのラジアル 荷重および下からの浮き上がり荷重に対してもがたつき無く支承すること ができ、 上下左右およびモーメント荷重のあらゆる方向の荷重をがたつき 無く支持することができる 次に、 本発明の他の実施の形態について説明する。 以下の実施の形態は 基本的な構成は第 1の実施の形態と同様なので、 第 1の実施の形態と異な る点のみを説明するものとし、 同一の構成部分については同一の符号を付 して説明を省略するものとする。
第 2の実施の形態
図 4は本発明の第 2の実施の形態が示されている。
この第 2の実施の形態は、 第 1の実施の形態と異なり、 ボールチェイン
2 0を保持するチェイン案内部 2 1 4の顎部が設けられていない。
本実施の形態によれば、 負荷ボール転走溝 1 0の溝側縁にチェイン案内 部 2 1 4の顎部が無い分、 移動ブロック 4と軌道レール 2間の間隔を近接 させることができ、 負荷ポール転走溝 5 , 1 0の溝深さを深くすることが できる。 この場合、 チェイン案内部 2 1 4はポールチェインの溝幅方向の 位置を案内するものである
この場合には、 連結部 2 1の肉厚中心をボール中心 Oと一致させること が好ましい。 連結部 2 1の肉厚中心を偏移させると、 その分だけ移動プロ ック 4と軌道レール 2間の間隔を広くしなければならなくなり、 その分だ け負荷ポール転走溝 5, 1 0を深くすることができなくなる。
第 3の実施の形態
図 5は本発明の第 3の実施の形態が示されている。
この第 3の実施の形態は、 第 1の実施の形態のポール負荷ボール転走溝
3 0 5 , 3 1 0の断面形状を、 溝幅の中心を境にして 2組の円弧面 C 1, C 2を組み合わせたゴシックアーチ形状にしたものである。
この場合、 各ポール 3 aは各負荷ポール転走溝 3 0 5, 3 1 0に対して 2点づっ計 4点で接触し、 各ポール 3 aについてそれぞれ対角線状に 2つ の接触角線 S 1 1, S 1 2 ; S 2 1 , S 2 2を有する接触角構造となって いる。 したがって、 上下左右あらゆる方向からの荷重をがたつきなく支持 することができる。
このように負荷ボール転走溝 305, 3 1 0をゴシックアーチ溝形状と した場合、 各負荷ボール転走溝 305, 3 10の円弧面 C l, C 2の曲率 半径はボール径の 55パ一セント程度に設定することが好ましい。
負荷ポール転走溝 305, 3 1 0の溝深さは、 ポール径の 40パ一セン ト程度に設定することが好ましい。
図 6には図 5の直線運動案内装置を用いたテーブル移送装置を示してい る。
この場合も、 図 3に示すテーブル移送装置と同様に、 2組の直線運動案 内装置 1 L, 1 Rを固定べッド 3 1とテーブル 32間に組み付けた状態で、 各移動ブロック 4に互いに逆向きのモーメント ML, MRが加わるように 構成している。
これにより、 2組の直線運動案内装置 1 L, 1 Rの各移動ブロック 4 L, 4 Rの左右のポール 3 aの接触角線は S 1 L 1, S 2 L 2 ; S 1 R 1, S 2 R 2は、 水平方向に対してテーブル 32の中心に向かって徐々に固定べ ッド 3 1側 (下向き) に傾斜するような接触構造となっている。
モーメントの方向を逆向きにすれば、 図 6中点線で示すように、 接触角 線 S 1 L 2, S 2 L 1 ; S 1 R 2 , S 2 R 1の方向は、 水平方向 Hに対し てテーブル 32の中心に向かって徐々にテーブル 32側 (上向き) に傾斜 するような接触構造となる。
第 4の実施の形態
図 7は本発明の第 4の実施の形態が示されている。
この第 4の実施の形態は、 上記第 3の実施の形態と同様に負荷ポール転 走溝 305, 3 10を 2組の円弧面 C 1, C 2を組み合わせたゴシックァ —チ形状にし、 かつ、 第 2の実施の形態と同様に、 移動ブロック 4の負荷 ポール転走溝 3 1 0の側縁にチェイン保持部を設けていない例である。 第 5の実施の形態
図 8, 図 9は本発明の第 5の実施の形態が示されている。
上記第 1〜第 4の実施の形態では、 対応する負荷ポール転走溝はサ一キ ユラ—ァーケ溝同士の 2点接触、 あるいはゴシックアーチ溝同士の 4点接 触構造となっているが、 この第 5の実施の形態では、 移動ブロック 4と軌 道レール 2の対応する一対の負荷ボール転走溝において、 一方の負荷ポ一 ル転走溝をサ一キユラ一アーク形状、 他方の負荷ボール転走溝をゴシック アーチ形状の組み合わせとして、 ポールの接触構造を 3点接触構造とした ものである。
このようにすれば、 4点接触構造のものよりもミスァライメント吸収能 力が高く、 2点接触構造のものよりも回転方向の上下方向および回転方向 の剛性が高い、 2点接触構造と 4点接触構造の中間的な特性を有する直線 運動案内装置を得ることができる。
図 8に示す例は、 移動ブロック 4の左右両側の負荷ポール転走溝 3 1 0 を共にゴシックアーチ溝構造、 軌道レール 2の左右両側の負荷ボール転走 溝 5を共にサーキユラ一アーク溝構造の組み合わせとしたものである。
このようにすれば、 軌道レール 2側の負荷ポール転走溝 5とボール 3 a 間の溝幅方向の変位が移動ブロック 4側の負荷ポール転走溝 3 1 0とポー ル 3 a間の溝幅方向の変位よりも大きい。
図 9に示す例は、 移動ブロック 4側の左右両側の負荷ボール転走溝 1 0 をサーキユラ一アーク溝構造、 軌道レール 2側の負荷ポール転走溝 3 0 5 をゴシックアーチ溝構造の組み合わせとしたものである。
このようにすれば、 移動ブロック 4側の負荷ポール転走溝 1 0とボール 3 a間の溝幅方向の変位が軌道レール 2側の負荷ボール転走溝 3 0 5とポ ール 3 a間の溝幅方向の変位よりも大きい。
図 1 0 ( a ) には、 図 8の直線運動案内装置を使用したテーブル移送装 置の構成例が、 図 1 0 (b) には、 図 9の直線運動案内装置を使用したテ —ブル移送装置の構成例が示されている。
この場合も、 図 3に示すテーブル移送装置と同様に、 2組の直線運動案 内装置 1 L, 1 Rを固定べッド 3 1とテーブル 32間に組み付けた状態で、 各移動ブロック 4に互いに逆向きのモーメント ML, MR (図中実線で記 載するように外側に傾斜する方向) が加わるように構成されている。
図 10 (a) の構成では、 2組の直線運動案内装置 1 L, 1 Rの各移動 ブロック 4 L, 4 Rの左右のポール 3 aの接触角線は S 1 L 1, S 1 L 2, S 1 L 0 : S 2 L 0, S 2 L 1 , S 2 L 2 ; S 1 R 0 , S 1 R 1 , S I R 2 : S 2 R 0 , S 2 R 1 , S 2 R 2の内の、 サ一キユラ一ポール溝に対応 する接触角線 S 1 L 0, S 2 L 0, S 1 R 0, S 2 R 0が、 水平線 Hに対 してテーブル 32の中心に向かって徐々に固定ベッド 3 1側 (下向き) に 傾斜するような接触構造となる。
モーメント ML, MRの方向を点線で示す内側に傾斜させる方向に加え ると、 図示しないが、 接触角線 S I L O, S 2 L 0 , S 1 R 0 , S 2 0 が、 水平線 Hに対してテーブル 32の中心に向かって徐々にテーブル 32 側 (上向き) に傾斜するような接触構造となる。
図 1 0 (b) の構成では、 2組の直線運動案内装置 1 L, 1 Rの各移動 ブロック 4 L, 4 Rの左右のポール 3 aの接触角線は S 1 L 0, S 1 L 1 , S 1 L 2 : S 2 L 1, S 2 L 2 , S 2 L 0 ; S 1 R 0, S 1 R 1, S I R 2 : S 2 R 1 , S 2 R 2, S 2 R 0の内の、 サーキユラ一ポール溝に対応 する接触角線 S 1 L 0, S 2 L 0, S 1 R 0 , S 2 R 0が、 水平線 Hに対 してテーブル 32の中心に向かって徐々に固定ベッド 3 1側 (下向き) に 傾斜するような接触構造となる。
モーメント ML, MRの方向を点線で示す内側に傾斜させる方向に加え ると、 図示しないが、 接触角線 S 1 L 0, S 2 L 0, S 1 R 0, S 2 R 0 が、 水平線 Hに対してテーブル 3 2の中心に向かって徐々にテーブル 3 2 側 (上向き) に傾斜するような接触構造となる。
ここで、 図 1 0 ( c ) に示すように、 サ一キユラ一アーク溝の単一円弧 面 C 0との接触角線 S 0と水平線 Hとのなす角が 0 ° から次第に増大して ゴシックアーチ溝の第 1, 第 2円弧面 C l, C 2との接触角線 S I , S 2 のうちの一方の延長線上に達する所定角度 0 1までは、 ゴシックアーチ溝 の第 1, 第 2円弧面 C l, C 2との接点はほとんど変化せず、 サ一キユラ 一アーク溝の単一円弧面 C 0との接点が溝幅方向に変位する。 このサーキ ユラ一アーク溝の単一円弧面 C 0側の接点位置は、 3接点での接触反力 N 1, N 2 , N 3のバランスによって力学的的に定まる。
一方、 所定角度 0 1を越えると、 図 1 0 ( d ) に示すように、 サ一キュ ラ一アーク溝の単一円弧面 C 0との接点とボール中心 Oと対称的なゴシッ クアーチ溝の第 1円弧面 C 1との接点間の 2点接触となり、 ゴシック了一 チ溝の他方の第 2円弧面 C 2の接点は非接触となる。
このように積極的に左右の移動プロック 4, 4を傾斜させて取り付けて もよいが、 単に各組の軌道レールを固定べッド上に所定の間隔を隔てて互 いに平行に配置し、 各組の移動ブロックにテーブルを固定する通常の取付 においても、 若干の取付誤差があるので、 取付誤差吸収と同時に移動プロ ックが傾斜して固定され接触角も変化することになる。
特に、 本発明の直線運動案内装置にあっては、 負荷ポール転走溝がポー ルと近似させているので、 若干の取付誤差によってポールの接触角が変化 し傾斜して取り付けられ、テーブル移送装置のがたをなくすことができる。 ここで、 直線運動案内装置のポールがゴシックアーチ溝同士に挟まれた 4点接触構造の場合と、 サーキユラ一アーク溝同士に挟まれた 2点接触構 造の場合とゴシックアーチ溝とサ一キユラ一アーク溝に挟まれた 3点接触 構造の場合を比較する。 4点接触構造の場合には、 がたつきがほとんど無 い反面、 ミスァライメント吸収能力が低い。 2点接触構造の場合には、 ミ スァライメント吸収能力が高い反面、 がたつきが大きいので、 上記したよ うに移動プロックを積極的に傾けてがたつきをとることが効果的である。 一方、 3点接触構造の場合には、 ミスァライメント吸収能力と、 がたつき が 2点接触よりも小さく 4点接触よりも大きい中間的な特性を有する。 上記第 1〜第 5の実施の形態では、 サ一キユラ一アーク形状の負荷ボー ル転走溝かゴシックアーチ形状の負荷ポール転走溝のいずれかを備えた直 線運動案内装置を例にとつて説明したが、 軌道レールの左右一方側のボー ルを案内する負荷ポール転走溝をサーキユラ一アーク溝同士の組み合わせ としてボールが 2点接触する 2点接触構造とし、 他方のボールを案内する 負荷ポール転走溝をゴシックアーチ溝同士の組み合わせとしてポールが 4 点で接触する 4点接触構造としてもよい。 また、 2点接触構造と 3点接触 構造を組み合わせてもよいし、 3点接触構造と 4点接触構造を組み合わせ てもよい。
以上説明したように、 本発明によれば、 負荷ポール転走溝内に位置する ポール保持部によって前後から保持されポールの脱落が防止される。 この ポール保持部は負荷ボール転走溝内に位置しているので、 ポール保持部の 大きさを溝深さに拘らずボール径一杯までとることができ、 確実にポール を保持することができる。
一方、 移動プロックと軌道レールの対向面を連結部に近付けて負荷ボー ル転走溝の溝深さを可及的に深くしたので、 ボール接点を溝幅方向に変位 させてもポールが負荷ボール転走溝の上緣角部と干渉せず、 溝上縁角部に 応力が集中するいわゆるエッジロードの発生が防止される。 したがって、 負荷ボール転走溝に対するポールの溝幅方向の接触可能範囲を広げること ができ、 幅広い接触角を選択することができる。
また、 ボールに対する負荷ボール転走溝の深さ方向の係合幅が増大する ので、 移動ブロックと軌道レールの対向面を溝幅方向に互いに平行に逆向 きにずらす方向の荷重が作用しても、 ポールの接点は、 負荷ポール転走溝 の最深部から最も高い溝上縁角部の問の中間領域で変位し、 ポールと溝上 縁角部との干渉を防止することができる。
また、 軌道レールの左右側面には直線方向に延びる負荷ポール転走溝を 1条づっ計 2条設け、 移動ブロックの左右支持脚部には前記軌道レールの 負荷ポール転走溝に対応する負荷ポール転走溝を設けた構成とすれば、 軌 道レールの支持脚部を軌道レールの側面に押し付ける方向の横方向荷重は、 軌道レールと支持脚部の対応する負荷ボール転走溝間のボールを圧縮する 方向に作用するので、 横方向荷重はポールによってがたつきなく支持され る。
一方、 移動ブロックを軌道レールに向かって押さえる方向のラジアル荷 重および移動ブロックを軌道レールから浮き上がらせる方向の逆ラジアル 荷重、 あるいは移動ブロックを軌道レールを中心に回転させる方向のモー メント荷重が作用した場合には、 ポールを挟む負荷ポール転走溝を互いに 逆向きに平行にずらすせん最方向に作用するが、 負荷ポール転走溝が深溝 となっているので、 ボールの変位を僅少に抑えることができ、 がたつきな く支持することができる。
また、 負荷ポール転走溝の断面形状をボールの外周形状に近似させるこ とにより、 負荷ボール転走溝に対するポールの溝幅方向のがたつきを防止 できる。
また、 ポールチェインを有端帯状構造とすれば、 組み付け作業が非常に 簡単に行える。
負荷ボール転走溝が単一の円弧状断面よりなるサ一キユラ一アーク溝形 状の場合には溝幅方向のがたつきが大きいので、本発明のように深溝とし、 また断面形状をポールの外周形状に近似させることが好ましい。 負荷ポール転走溝の断面形状をゴシックアーチ溝形状とすれば、 サーキ ユラ一アーク溝に比べて溝幅方向のがたつきは小さくなる。 そして、 サー キユラ一アーク溝と同様に、 ボールチエインによってポールを保持するこ とにより、 負荷ボール転走溝の溝深さを可及的に深くすることができ、 ェ ッジ口一ドの発生を防止することができる。
移動プロックの負荷ポール転走溝の溝側縁に、 ボールチエインの連結部 と係合してポールチェインの移動ブロックからの離脱を規制する顎部を備 えたチェィン案内部を設ければ、 移動ブロックから軌道レールを抜いた際 のボールチェインの垂れ下がりを防止できる。 特に、 有端帯状構造の場合 に、 ボールチエインの端の垂れ下がりを防止することができる。
ボール戻し通路が形成されるポール戻し通路構成部および方向転換路内 周が形成される方向転換路内周構成部の少なくともいずれかを移動ブロッ ク本体と一体成形された樹脂成形体によって構成すれば、 ポールの無限循 環路が正確に成形され、 ボールチエインによるポールの循環案内と相挨っ てポールがスムースに案内される。
さらに、 チェイン案内部についても、 移動ブロック本体と一体成形され た樹脂成形体によって構成すれば、 チエイン案内部についても正確に成形 することができ、 ポールチェインとの干渉を防止することができる。
本発明のテーブル移送装置によれば、 直線運動案内装置を 2組設け、 各 組の軌道レールを固定べッド上に所定の間隔を隔てて互いに平行に配置し、 各組の移動ブロックに、 各軌道レールに対して互いに逆向きに回転させる 方向にモーメントを加えた状態でテーブルを固定しているので、 直線運動 案内装置自体が、 上下方向荷重、 左右の横方向荷重およびモーメント荷重 に対してがたつきの小さい構造となっていると共に、 2組の直線運動案内 装置の移動プロックを予め傾けて取付けることによつてテーブル移送装置 のがたをなくすことができる。

Claims

請求の範囲
1 . 軌道レールと、 該軌道レールに多数のポールを介して移動自在に 設けられる移動ブロックと、 を備え、
移動ブロックは、 軌道レールに設けられた負荷ボール転走溝に対応する ポール転走溝と該負荷ボール転走溝と並行して設けられたポール戻し通路 とを備えた移動ブロック本体と、 該移動ブロック本体の両端部に設けられ 前記負荷ポール転走溝とポール戻し通路間を連通してポールの無限循環路 を形成するポール方向転換を構成する方向転換路構成部材とを備えた直線 運動案内装置において、
前記各ポール間に介在されボールの進行方向前後から各ポールを挟み込 んでポールを保持するポール保持部と、 該ポール保持部間を連結する可撓 性の連結部と、 を備えたポールチェインを設け、
該ボールチエインのポール保持部を軌道レールと移動プロックの対応す る負荷ボール転走溝内に位置させ、 連結部を負荷ポール転走溝が設けられ る移動プロックと軌道レールの対向面間の隙間に張り出すように構成し、 移動ブロックと軌道レールの対向面を連結部に近づけて負荷ポール転走溝 の溝深さを深くしたことを特徴とする直線運動案内装置。
2 . 略断面四角形状の軌道レールと、 該軌道レールの左右両側面と対 向する左右支持脚部を備えた移動ブロックと、 を備え、
軌道レールの左右側面には直線方向に延びる負荷ポール転走溝を 1条づ つ計 2条設け、 移動プロックの左右支持脚部には前記軌道レールの負荷ポ 一ル転走溝に対応する負荷ボール転走溝を設け、
前記移動ブロックは、 前記軌道レールの負荷ポール転走溝と対応する負 荷ポール転走溝と該負荷ボール転走溝と並行して設けられた無負荷ポール 戻し通路とを備えた移動ブロック本体と、 該移動ブロック本体の両端部に 設けられ前記負荷ポール転走溝と転動体戻し通路間を連通してポールの無 限循環路を形成するポール方向転換路を構成する方向転換路構成部材とを 備えた直線運動案内装置において、
各ポール間に介在されポールの進行方向前後から各ポールを挟み込んで ボールの脱落を防止するポール保持部と、 該ポール保持部間を連結する可 撓性の連結部と、 を備えたボールチェインを設け、
該ボールチエインのポール保持部を軌道レールと移動ブロックの対応す る負荷ボール転走溝内に位置させ、 連結部を負荷ボール転走溝が設けられ る移動プロックと軌道レールの対向面間の隙間に張り出すように構成し、 移動ブロックと軌道レールの対向面を連結部に近づけて負荷ポール転走溝 の溝深さを深くしたことを特徴とする直線運動案内装置。
3 . 負荷ポール転走溝の断面形状をポールの外周形状に近似させたこ とを特徴とする請求項 1または 2に記載の直線運動案内装置。
4 . ポールチェインは有端帯状構造である請求項 1, 2または 3に記 載の直線運動案内装置。
5 . 負荷ポール転走溝は単一の円弧状断面よりなるサーキユラーァー ク溝形状としたことを特徴とする請求項 1乃至 4のいずれか一の請求項に 記載の直線運動案内装置。
6 . 負荷ポール転走溝の断面形状を、 2つの円弧状断面を有するゴシ ックアーチ溝形状としたことを特徴とする請求項 1乃至 4のいずれか一の 請求項に記載の直線運動案内装置。
7 . 軌道レールと移動ブロックの対応する負荷ポール転走溝の一方を 単一の円弧状断面よりなるサーキユラ一アーク溝形状とし、 他方を 2つの 円弧状断面を有するゴシックアーチ溝形状としたことを特徴とする請求項 1乃至 4のいずれか一の請求項に記載の直線運動案内装置。
8 . 軌道レール側の負荷ボール転走溝をサーキユラ一アーク溝形状と し、 対応する移動プロックの負荷ポール転走溝をゴシックアーチ溝形状と したことを特徴とする請求項 7に記載の直線運動案内装置。
9 . 軌道レール側の負荷ポール転走溝をゴシックアーチ溝形状とし、 対応する移動ブロックの負荷ポール転走溝をサーキユラ一アーク溝形状と したことを特徴とする請求項 7に記載の直線運動案内装置。
1 0 . 負荷ポール転走溝の円弧状断面は、 ポール径の 5 2パーセント から 5 0 . 5パーセント程度に設定したことを特徴とする請求項 5, 6 , 7, 8または 9に記載の直線運動案内装置。
1 1 . 移動ブロックの負荷ポール転走溝の側方隣接部には、 ボールチ ェインの連結部と係合してポールチェインの移動ブロックからの離脱を規 制する顎部を備えたチエイン案内部が設けられている請求項 1乃至 1 0の いずれか一の請求項に記載の直線運動案内装置。
1 2 . ボール戻し通路および方向転換路の内周部の少なくともいずれ かが、 移動ブロック本体と一体成形された樹脂成形体によって構成されて いることを特徴とする請求項 1, 2 , 3 , 4, 5, 6または 1 0に記載の 直線運動案内装置。
1 3 . ボール戻し通路, 方向転換路の内周部およびチェイン案内部の 少なくともいずれか一つが、 移動ブロック本体と一体成形された樹脂成形 体によって構成されていることを特徴とする請求項 1 1に記載の直線運動 案内装置。
1 4 . 請求項 2乃至 1 3の内のいずれか一の請求項に記載の直線運動 案内装置を 2組設け、
各組の軌道レールを固定べッド上に所定の間隔を隔てて互いに平行に配 置し、 各組の移動ブロックに、 各軌道レールに対して互いに逆向きに回転 させる方向にモーメントを加えた状態でテーブルを固定し、
一方の直線運動案内装置の左右のボールの各負荷ボール転走溝との接点 を結ぶ線である接触角線を前記固定べッドを水平に置いたとした場合に軌 道レールの中心軸線を通る水平面に対して所定の傾斜角でもって同一方向 に傾け、
他方の直線運動案内装置の左右のボールの各負荷ボール転走溝との接点 を結ぶ線である接触角線を水平線に対して前記一方の直線運動案内装置と は逆の傾斜角でもって同一方向に傾けたことを特徴とするテーブル移送装
1 5 . 請求項 2乃至 1 3の内のいずれか一の請求項に記載の直線運動 案内装置を 2組設け、
各組の軌道レールを固定べッド上に所定の間隔を隔てて互いに平行に配 置し、 各組の移動ブロックにテーブルを固定したことを特徵とするテープ ル移送装置。
PCT/JP1998/005162 1996-09-12 1998-11-17 Dispositif de guidage de mouvement lineaire et dispositif de transfert de table WO2000029756A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9140884A JPH10141370A (ja) 1996-09-12 1997-05-15 直線運動案内装置およびテ−ブル移送装置
KR1020007003500A KR20010030842A (ko) 1998-11-17 1998-11-17 직선 운동 안내 장치 및 테이블 이송 장치
EP98953074A EP1055834A4 (en) 1998-11-17 1998-11-17 LINEAR GUIDE AND TRANSFER BOARD
PCT/JP1998/005162 WO2000029756A1 (fr) 1997-05-15 1998-11-17 Dispositif de guidage de mouvement lineaire et dispositif de transfert de table

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9140884A JPH10141370A (ja) 1996-09-12 1997-05-15 直線運動案内装置およびテ−ブル移送装置
PCT/JP1998/005162 WO2000029756A1 (fr) 1997-05-15 1998-11-17 Dispositif de guidage de mouvement lineaire et dispositif de transfert de table

Publications (1)

Publication Number Publication Date
WO2000029756A1 true WO2000029756A1 (fr) 2000-05-25

Family

ID=14209401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005162 WO2000029756A1 (fr) 1996-09-12 1998-11-17 Dispositif de guidage de mouvement lineaire et dispositif de transfert de table

Country Status (3)

Country Link
EP (1) EP1055834A4 (ja)
KR (1) KR20010030842A (ja)
WO (1) WO2000029756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780055A (zh) * 2017-11-15 2019-05-21 锕玛科技股份有限公司 移动导引装置用的链带保持器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454192B2 (ja) * 2001-08-07 2010-04-21 Thk株式会社 案内装置の転動体干渉防止具
JP5031957B2 (ja) * 2001-08-30 2012-09-26 Thk株式会社 リニアアクチュエータ
DE10237278B4 (de) * 2002-08-14 2008-03-13 Bosch Rexroth Mechatronics Gmbh Linearführungseinrichtung Kettenkörper Verfahren zur Herstellung eines Kettenkörpers
KR20230041652A (ko) * 2020-07-24 2023-03-24 엘지전자 주식회사 플렉서블 디스플레이 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253517U (ja) * 1988-10-11 1990-04-18
JPH06323331A (ja) * 1993-05-11 1994-11-25 T H K Kk ラック付き直線摺動用装置及びこれを用いたテーブル装置
JPH1068417A (ja) * 1997-07-31 1998-03-10 Thk Kk 転がり案内装置
JPH1089359A (ja) * 1996-09-12 1998-04-07 Thk Kk 直線運動案内装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253517U (ja) * 1988-10-11 1990-04-18
JPH06323331A (ja) * 1993-05-11 1994-11-25 T H K Kk ラック付き直線摺動用装置及びこれを用いたテーブル装置
JPH1089359A (ja) * 1996-09-12 1998-04-07 Thk Kk 直線運動案内装置
JPH1068417A (ja) * 1997-07-31 1998-03-10 Thk Kk 転がり案内装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1055834A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780055A (zh) * 2017-11-15 2019-05-21 锕玛科技股份有限公司 移动导引装置用的链带保持器

Also Published As

Publication number Publication date
KR20010030842A (ko) 2001-04-16
EP1055834A4 (en) 2002-01-23
EP1055834A1 (en) 2000-11-29

Similar Documents

Publication Publication Date Title
KR870000418B1 (ko) 직선 슬라이드 베어링과 직선슬라이드 테이블유닛
JPH102332A (ja) 複列ボールチェインを備えた直線運動案内装置
JPH0672610B2 (ja) 複列ボ−ルチェイン
JPH03199710A (ja) 直動案内ユニット
WO2000029756A1 (fr) Dispositif de guidage de mouvement lineaire et dispositif de transfert de table
JPH0672612B2 (ja) ボ−ルチェイン
JPH1089359A (ja) 直線運動案内装置
US4974971A (en) Small-sized linear motion guide assembly
JPS62204013A (ja) 無限直線運動用コロ軸受
JP2555058Y2 (ja) リニアガイド装置のボール転動溝構造
US4797012A (en) Linear motion rolling guide unit
JP2689291B2 (ja) 4方向等荷重用ガイド及び往復運動テーブル機構
JPH10141370A (ja) 直線運動案内装置およびテ−ブル移送装置
US5344237A (en) Linear motion rolling contact guide unit having opposite roller and ball contacts
US7329047B2 (en) Rolling member connection belt and motion guide device provided with same
KR20230011973A (ko) 운동 안내 장치
JP2697795B2 (ja) 小形直動案内ユニット
JP2520797B2 (ja) 直線運動案内装置
JP3463162B2 (ja) ローラ案内装置およびテーブル案内装置
JP3454044B2 (ja) リニアガイド装置
JPS6133296Y2 (ja)
JP2649743B2 (ja) 直線運動案内装置及びその組立て方法
JP2568139B2 (ja) ボールチェイン及び直線運動案内装置
JPH04102714A (ja) 直動形ガイド装置
JPH06200935A (ja) 直動ボール軸受装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998953074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09508837

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007003500

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998953074

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003500

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007003500

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998953074

Country of ref document: EP