WO2000029009A1 - Peptides presentant une activite anticancereuse et anti-inflammatoire - Google Patents

Peptides presentant une activite anticancereuse et anti-inflammatoire Download PDF

Info

Publication number
WO2000029009A1
WO2000029009A1 PCT/US1999/027289 US9927289W WO0029009A1 WO 2000029009 A1 WO2000029009 A1 WO 2000029009A1 US 9927289 W US9927289 W US 9927289W WO 0029009 A1 WO0029009 A1 WO 0029009A1
Authority
WO
WIPO (PCT)
Prior art keywords
undesired angiogenesis
angiogenesis occurs
occurs
undesired
peptide
Prior art date
Application number
PCT/US1999/027289
Other languages
English (en)
Other versions
WO2000029009A9 (fr
Inventor
Peter Donald Collin
Original Assignee
Coastside Bio Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coastside Bio Resources filed Critical Coastside Bio Resources
Priority to US09/856,243 priority Critical patent/US6767890B1/en
Priority to AU18213/00A priority patent/AU1821300A/en
Publication of WO2000029009A1 publication Critical patent/WO2000029009A1/fr
Publication of WO2000029009A9 publication Critical patent/WO2000029009A9/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to the fields of cancer treatment, inflammatory disease, and peptide chemistry.
  • Angiogenesis is the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometrium and placenta.
  • the control of angiogenesis is a highly regulated system of angiogenic stimulators and inhibitors. The control of angiogenesis has been found to be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to the uncontrolled angiogenesis.
  • Endothelial cells and pericytes surrounded by a basement membrane, form capillary blood vessels.
  • Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes.
  • the endothelial cells which line the lumen of blood vessels, then protrude through the basement membrane.
  • Angiogenic stimulants induce the endothelial cells to migrate through the eroded basement membrane.
  • the migrating cells form a "sprout" off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate.
  • the endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel.
  • angiogenesis In the disease state, prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system. Persistent, unregulated angiogenesis occurs in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and supports the pathological damage seen in these conditions. The diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
  • a disease mediated by angiogenesis is ocular neovascular disease. This disease is characterized by invasion of new blood vessels into the structures of the eye such as the retina or cornea.
  • Angiogenic damage is also associated with diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma and retrolental fibroplasia.
  • corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis,
  • Mycobacteria infections lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, mariginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's
  • Diseases associated with retinal/choroidal neovascularization include, but are not limited to, diabetic retinopathy, macular degeneration, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme ' s disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications.
  • Other diseases include, but are not limited to, diseases associated with rubeosis
  • angiogenesis Another disease in which angiogenesis is believed to be involved is rheumatoid arthritis.
  • the blood vessels in the synovial lining of the joints undergo angiogenesis.
  • the endothelial cells release factors and reactive oxygen species that lead to pannus growth and cartilage destruction.
  • the factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis .
  • Factors associated with angiogenesis may also have a role in osteoarthritis .
  • the activation of the chondrocytes by angiogenic-related factors contributes to the destruction of the joint. At a later stage, the angiogenic factors would promote new bone formation. Therapeutic intervention that prevents the bone destruction could halt the progress of the disease and provide relief for persons suffering with arthritis.
  • Chronic inflammation may also involve pathological angiogenesis.
  • pathological angiogenesis Such disease states as ulcerative colitis and Crohn ' s disease show histological changes with the ingrowth of new blood vessels into the inflamed tissues. Bartonellosis, a bacterial infection found in South America, can result in a chronic stage that is characterized by proliferation of vascular endothelial cells.
  • Another pathological role associated with angiogenesis is found in atherosclerosis. The plaques formed within the lumen of blood vessels have been shown to have angiogenic stimulatory activity.
  • hemangioma One of the most frequent angiogenic diseases of childhood is the hemangioma. In most cases, the tumors are benign and regress without intervention. In more severe cases, the tumors progress to large cavernous and infiltrative forms and create clinical complications. Systemic forms of hemangiomas, the hemangiomatoses, have a high mortality rate.
  • Angiogenesis is also responsible for damage found in hereditary diseases such as Osler-Weber-Rendu disease, or hereditary hemorrhagic telangiectasia. This is an inherited disease characterized by multiple small angiomas, tumors of blood or lymph vessels. The angiomas are found in the skin and mucous membranes, often accompanied by epistaxis (nosebleeds) or gastrointestinal bleeding and sometimes with pulmonary or hepatic arteriovenous fistula. Angiogenesis is prominent in solid tumor formation and metastasis.
  • Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastoma, Ewing sarcoma, neuroblastoma, and osteosarcoma.
  • a tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes.
  • Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas.
  • Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
  • angiogenesis has been associated with blood-born tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen. It is believed that angiogenesis plays a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
  • Angiogenesis is important in two stages of tumor metastasis.
  • the first stage where angiogenesis stimulation is important is in the vascularization of the tumor which allows minor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
  • angiogenesis is also involved in normal physiological processes such as reproduction and wound healing. Angiogenesis is an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the blastula.
  • Adhesions are a frequent complication of surgery and lead to problems such as small bowel obstruction.
  • Several kinds of compounds have been used to prevent angiogenesis.
  • Taylor et al . have used protamine to inhibit angiogenesis, see Taylor et al., Nature 297:307 (1982).
  • the toxicity of protamine limits its practical use as a therapeutic.
  • Folkman et al . have disclosed the use of heparin and steroids to control angiogenesis. See Folkman et al., Science 221:719 (1983) and U.S. Pat. Nos. 5,001,116 and 4,994,443.
  • Steroids such as tetrahydrocortisol, which lack gluco and mineral corticoid activity, have been found to be angiogenic inhibitors.
  • Interferon .alpha or human interferon .beta
  • Interferon .beta is also a potent inhibitor of angiogenesis induced by allogeneic spleen cells. See Sidky et al., Cancer Research 47:5155-5161 (1987).
  • a fungal product, fumagillin is a potent angiostatic agent in vitro.
  • the compound is toxic in vivo, but a synthetic derivative, AGM 12470, has been used in vivo to treat collagen II arthritis. Fumagillin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos. 0325199A2 and 0357061A 1.
  • the above compounds are either topical or injectable therapeutics. Therefore, there are drawbacks to their use as a general angiogenic inhibitor and lack adequate potency. For example, in prevention of excessive wound healing, surgery on internal body organs involves incisions in various structures contained within the body cavities. These wounds are not accessible to local applications of angiogenic inhibitors. Local delivery systems also involve frequent dressings which are impracticable for internal wounds, and increase the risk of infection or damage to delicate granulation tissue for surface wounds.
  • a method and composition are needed that are capable of inhibiting angiogenesis and which are easily administered.
  • a simple and efficacious method of treatment would be through the oral route. If an angiogenic inhibitor could be given by an oral route, the many kinds of diseases discussed above, and other angiogenic dependent pathologies, could be treated easily.
  • the optimal dosage could be distributed in a form that the patient could self-administer .
  • Inflammation is a major contributor to many diseases and as such, methods and compositions of matter have been sought to mitigate the detrimental effects of inappropriate activation.
  • Dermal inflammation is partially mediated via the conversion of phospholipids to either endoperoxides and consequently prostaglandins via cyclooxygenase and 5- HETE's, or consequently leukotrienes via lipoxygenase (Kraghball and Voorhees. 1985. Curr. Probl . Derm. 13:1- 10) . Inhibition of either or both of these pathways is the means by which non-steroidal anti-inflammatory agents prevent an inflammatory response.
  • Anti- inflammatory steroids act by inhibiting the release of arachidonic acid which can then be converted via either pathway to mediators of inflammation (Blackwell et al. 1980 Nature 287:147-149). It has been proposed that cytokines also mediate the inflammatory process and a better, or at least, equivalent inhibition of the inflammatory response may be achieved by inhibiting either cytokine production or the inhibition of the interaction of cytokines with their receptors on the cell surface of the inflammatory cell infiltrate. There have been several peptides isolated from sea cucumber of various species (Bizenheide, R. , Tamori, Motokawa, et al. "Peptides Controlling Stiffness of Connective Tissue in Sea Cucumbers.” Bio . Bull 194: 253-259.
  • the peptide of the present invention may exert its anti-inflammatory and anti-cancer effects by an up-regulation of the mammalian immune system that is then able to destroy cancer cells directly or competitively bind to Fc receptors, thus mitigating their biological effects.
  • the present invention relates to a peptide, defined by the generic formula A-A-A-B-C, wherein A is a non-polar amino acid, B is a polar amino acid and C is a charged amino acid.
  • a sub-group of these peptides can be described by the formula A-Pro-Pro-B-C, wherein A, B, & C have the meanings defined above.
  • a specific embodiment of the peptide comprises the sequence LEU- PRO-PRO-SER-ARG (SEQ. ID NO: 1), which and is a fragment of various immunogammaglobulins, and especially of IgG, and described in Patent number 4,683,221 by William Weigle, et al as a portion of the Fc region of IgG.
  • This peptide was initially isolated from the epidermis of the sea cucumber Cucumaria frondosa , and has both anti-cancer and potent anti- inflammatory activities.
  • the peptide comprises at least one D-amino acid.
  • Figure 1 shows the mass spectroscopy spectrum of the purified peptide.
  • Figure 2 shows the mass spectrum of a synthetic preparation of the peptide of SEQ. ID NO. 1.
  • Figure 3 shows an HPLC trace indicating the purity of the synthetic peptide preparation.
  • Figure 4 shows the anti-inflammatory response of the peptide Adjuvant Induced Arthritis Model.
  • the present invention relates in part to the anti- cancer activity of peptides and peptide derivatives related to defense mechanisms present on the epithelia of echinoderms and especially, of the sea cucumber, Cucumaria frondosa .
  • the invention includes both pharmaceutical compositions comprising said peptides, and methods for inhibiting tumor progression utilizing said peptides.
  • the invention is based in part on the discovery that the pentapeptide LEU-PRO-PRO-SER-ARG (SEQ.
  • TNF- tumor necrosis factor
  • IL-2 interleukin-2
  • the peptides of the present invention also may be used to inhibit inflammation in a tissue of a subject in need of such treatment suffering from a disease or disorder in which either acute or chronic inflammatory cell influx occurs. While not wishing to be bound by theory, this unexpected effect is believed to be due to the presence of one or more D-conformation amino acids in the sequence of the peptide isolated from sea cucumber, which alters the competitive binding of this peptide with receptor sites.
  • the subject may be a human or non-human subject.
  • the peptide used to inhibit inflammation is SEQ. NO. 1 (Leu, Pro, Pro, Ser, Arg) .
  • This embodiment of the invention is based in part on the discovery that the peptides have potent anti-inflammatory activity, as evidence by a number of in vivo and in vitro tests, as well as from the realization that the tissue of origin of this peptide contains potent anti-inflammatory activity (U.S. Pat. No. 5,770,205) .
  • the peptides of the invention include any peptide, peptide derivative or peptide analog which comprises either (i) as least three amino acid residues of SEQ. ID NO: 1, or (ii) a functionally equivalent sequence, or (iii) at least a 4 amino acid sequence which is at least 66% homologous to the corresponding portion of SEQ. ID NO. 1.
  • Analysis of preparations of the peptide purified from sea cucumber indicate the presence of at least one D-amino acid in the sequence.
  • Peptides of the present invention can be described generically by the formula A-A-A-B-C, wherein A is a non-polar amino acid, B is a polar amino acid and C is a charged amino acid.
  • the peptide of the present invention comprises the sequence leucine-proline-proline-serine- arginine .
  • the invention also refers to peptides in which certain residues are substituted by functionally equivalent amino acids resulting in a silent change. For example, one or more amino acids residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration.
  • Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs.
  • the nonpolar amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
  • the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • the positively charged (basic) amino acids include arginine, lysine and histidine.
  • the negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • the peptide comprises at least one D-amino acid.
  • the peptides of the present invention may be prepared by any method known in the art.
  • the peptides may be synthesized: (i) by cleavage from a large peptide; (ii) by recombinant DNA expression methods; and (iii) by chemical synthesis, including solid phase techniques as described by Barany and Merrifield (1980 in "The Peptides: Vol. 2.” Gross and Meienhofer, Eds., Academic Press, N. Y. ) .
  • the peptides of the invention may be administered by any suitable and accepted route of drug administration, including intravenous, subcutaneous, intradermal, intranasal, inhalation, intramuscular, intraocular, intraperitoneal injection, peritoneal lavage intranasal, inhalation, intramuscular, intraocular, intraperitoneal injection, peritoneal lavage, cardiac puncture, cardiac catheter injection, oral, intrathecal or intraventricular injection, spinal column or cranial cavity injection, vaginal or rectal dermal patch or topical ointment, and may be comprised in any suitable pharmaceutical carrier, including aqueous solution, microcapsules, liposomes, or via a sustained-release implant, including hydrophilic or hydrophobic carrier-based implants.
  • compositions of the invention may be presented in pharmaceutical dosage forms normally used, depending on whether the composition has to be swallowed, injected or applied to the skin or mucosae.
  • the composition may take the form of an aqueous or oily lotion or the form of a serum.
  • the composition may take the form of capsules, syrup granules or tablets, or it can be incorporated appropriately into food-stuffs as a supplement to the food composition.
  • the peptide can preferably be used in an amount ranging from 1% to 100% by weight relative to the total weight of the composition, and especially in an amount ranging from 1% to 20% by weight relative to the total weight of the composition.
  • the composition may take the form, in particular, of aqueous or oily solutions or of dispersions of the lotion or serum type, of emulsions, of liquid or semi-liquid consistency of the milk type, obtained by dispersing a fatty phase in an aqueous phase (O/W) or vice versa (W/O) , or of suspensions or emulsions of soft consistency of the cream or aqueous gel type or which are anhydrous, of microemulsions or alternatively of microcapsules or microparticles, or of vesicular dispersions of the ionic and or nonionic type.
  • These compositions are prepared according to the standard methods.
  • the pharmaceutical or dermatological composition of the invention can also contain adjuvants which are customary in the fields in question, such as hydrophilic or lipophilic gelling agents, preservatives, antioxidants, solvents, perfumes, filler, sunscreen agents, odor absorbers and coloring mater.
  • adjuvants which are customary in the fields in question, such as hydrophilic or lipophilic gelling agents, preservatives, antioxidants, solvents, perfumes, filler, sunscreen agents, odor absorbers and coloring mater.
  • the amounts of these different adjuvants are those traditionally used in the cosmetic and/or pharmaceutical field, and are, for example from 0.1% to 10% of the total weight of the composition.
  • the adjuvants may be introduced into the fatty phase, into the aqueous phase and/or into lipid spherules.
  • oils which can be used in the invention mineral oils, vegetable oils, animal oils, synthetic oils, silicone oils or waxes and fluorinated oils may be mentioned. Fatty alcohols and fatty acids may be added to these oils. Waxes such as beeswax and carnauba wax or paraffin may also be used.
  • glycerol stearate polysorbate 60 and the PEG-6/PEG- 32/glycol stearate, mixture sold under the name of Tefose 63 by the company Gattefosse may be mentioned as examples.
  • solvents which can be used in the invention lower alcohols, in particular ethanol and isopropanol, and propylene glycol may be mentioned.
  • hydrophilic gelling agents carboxyvinyl polymers (carbomer) , acrylic copolymers such as acrylate/alkylacrylate copolymers, polyacrylamides, polysaccharides such as hydroxypropylcellulose, clays and natural gums may be mentioned, and as lipophilic gelling agents, modified clays such as bentones, metal salts of fatty acids, such as aluminum stearates and hydrophobic silica may be mentioned.
  • hydrophilic active agents such as proteins or protein hydrolysates, amino acids, polyols, urea, sugars, and sugar derivatives, vitamins, starch, plant extracts such as aloe vera and hydroxy acids such as lactic acid or tartaric acid.
  • lipophilic active agents such as retinol and its derivatives, retinoids such as 13-cis- or all-trans-retinoic acid, tocopherol and its derivatives, essential fatty acids, ceramides, essential oils and salicylic acid and its derivatives.
  • Salicylic, lactic, acetic and the like, acids act, in particular as antiseptics.
  • Pentapeptides isolated using the isolation method from the sea cucumber detailed below, or produced from direct peptide synthesis can be combined with pharmaceutical carriers to make novel dosage forms. These peptide based drugs trigger T-cell activation resulting in tumor inhibition. Effective dosages for the treatment of cancer include from 1 milligram per kilogram to 5000 milligrams per kilogram body weight of the individual in need of treatment.
  • the peptides of the invention also may be administered at a dose effective in inhibiting inflammation in the subject as determined using standard techniques.
  • “Inhibiting inflammation” should be construed to refer to a significant decrease in the signs and symptoms of inflammation. For example, but not by way of limitation, symptomatic relief, in which a patient is rendered subjectively relieved of discomfort, would be considered as satisfactory results of therapy.
  • the amount of inflammation may be decreased by about 50%, the ED50 has been estimated to be a dose between about 1 and 40 mg/kg.
  • the peptide may be administered to a human patient at a dose of about 2.5 mg/kg to about 500 mg/kg.
  • the dose, administered topically to a human patient may be either about 5 mg/kg, ro 100 mg/kg, depending upon whether the inflammation to be treated is mild, moderate, or severe/persistent.
  • the dose may be administered at appropriate intervals, e.g. but not limited to, daily, or once, twice, or three times a week.
  • soft or hard gelatin capsules containing approximately 500 milligrams of the peptide are administered at approximately 30 mg/kg of body weight of an animal.
  • Angiogenesis related pathology in Rheumatoid Arthritis The development of an extensive network of new blood vessels is essential to the development of the synovitis present in rheumatoid arthritis (Harris, 1990; Folkman et al., 1989; Sano et al., 1990).
  • Several local mediators such as platelet derived growth factor (PDGF), TGF-.beta., and fibroblast growth factor (FGF) are likely responsible for the induction and perpetuation of neovascularization within the synovium.
  • Pannus tissue composed of new capillaries and synovial connective tissue invades and destroys the articular cartilage.
  • the migrating angiogenic vessels themselves produce and secrete increased levels of metalloproteinases such as collagenase and stromelysin capable of degrading the cartilage matrix (Case et al., 1989) .
  • the newly formed vessels are also quite "leaky” with gaps present between the microvascular endothelial cells. This facilitates the exudation of plasma proteins into the synovium (which increases swelling) , enhances WBCs movement from the circulation into the pannus tissue (which increases inflammation) , and leads to the perivascular accumulation of mononuclear inflammatory cells (Wilder et al., 1991).
  • the endothelial tissue plays an important role in the development of this disease by expressing the necessary surface receptors to allow inflammatory cells to leave the circulation and enter the developing pannus, secreting proteolytic enzymes capable of degrading the cartilage matrix, and proliferating to form the new vessels (angiogenesis) required for the pannus tissue to increase in size and invade adjacent tissues.
  • InflaStatin is contemplated to be injected into the synovium or articular spaces of joints of Rheumatoid arthritis patients whereby its anti-angiogenic effects will ameliorate the pathological angiogenesis activity therein.
  • inhibition of new blood vessel formation may be readily determined in a variety of asays, including the CAM assay described above.
  • NEOVASCULAR DISEASES OF THE EYE As noted above, the present invention also provides methods for treating neovascular diseases of the eye, including for example, corneal neovascularization, neovascular glaucoma, proliferative diabetic retinopathy, retrolental fibroblasia and macular degeneration.
  • corneal neovascularization as a result of injury to the anterior segment is a significant cause of decreased visual acuity and blindness, and a major risk factor for rejection of corneal allografts.
  • corneal angiogenesis involves three phases: a pre-vascular latent period, active neovascularization, and vascular maturation and regression.
  • the identity and mechanism of various angiogenic factors, including elements of the inflammatory response, such as leukocytes, platelets, cytokines, and eicosanoids, or unidentified plasma constituents have yet to be revealed.
  • Topical corticosteroids appear to have some clinical utility, presumably by limiting stromal inflammation.
  • neovascular diseases of the eye such as corneal neovascularization (including corneal graft neovascularization)
  • corneal neovascularization including corneal graft neovascularization
  • an anti-angiogenic composition as described above
  • the cornea is a tissue which normally lacks blood vessels.
  • capillaries may extend into the cornea from the pericorneal vascular plexus of the limbus.
  • the cornea becomes vascularized, it also becomes clouded, resulting in a decline in the patient's visual acuity. Visual loss may become complete if the cornea completely opacitates.
  • Blood vessels can enter the cornea in a variety of patterns and depths, depending upon the process which incites the neovascularization. These patterns have been traditionally defined by ophthalmologists in the following types: pannus trachomatosus, pannus leprosus, pannus phylctenulosus, pannus degenerativus, and glaucomatous pannus.
  • the corneal stroma may also be invaded by branches of the anterior ciliary artery (called interstitial vascularization) which causes several distinct clinical lesions: terminal loops, a "brush-like" pattern, an umbel form, a lattice form, interstitial arcades (from episcleral vessels), and aberrant irregular vessels.
  • corneal neovascularization e.g., corneal infections (e.g., trachoma, herpes simplex keratitis, leishmaniasis and onchocerciasis) , immunological processes (e.g., graft rejection and Stevens-Johnson ' s syndrome), alkali burns, trauma, inflammation (of any cause) , toxic and nutritional deficiency states, and as a complication of wearing contact lenses.
  • corneal infections e.g., trachoma, herpes simplex keratitis, leishmaniasis and onchocerciasis
  • immunological processes e.g., graft rejection and Stevens-Johnson ' s syndrome
  • alkali burns trauma, inflammation (of any cause)
  • toxic and nutritional deficiency states e.g., as a complication of wearing contact lenses.
  • the cause of corneal neovascularization may vary, the response of the cornea to the insult and the subsequent vascular ingrowth is similar regardless of the cause. Briefly, the location of the injury appears to be of importance as only those lesions situated within a critical distance of the limbus will incite an angiogenic response. This is likely due to the fact that the angiogenic factors responsible for eliciting the vascular invasion are created at the site of the lesion, and must diffuse to the site of the nearest blood vessels (the limbus) in order to exert their effect. Past a certain distance from the limbus, this would no longer be possible and the limbic endothelium would not be induced to grow into the cornea.
  • neovascularization of the cornea appears to only occur in association with an inflammatory cell infiltrate, and the degree of angiogenesis is proportional to the extent of the inflammatory reaction.
  • Corneal edema further facilitates blood vessel ingrowth by loosening the corneal stromal framework and providing a pathway of "least resistance" through which the capillaries can grow.
  • capillary growth into the cornea proceeds in the same manner as it occurs in other tissues.
  • the normally quiescent endothelial cells of the limbic capillaries and venules are stimulated to divide and migrate.
  • the endothelial cells project away from their vessels of origin, digest the surrounding basement membrane and the tissue through which they will travel, and migrate towards the source of the angiogenic stimulus .
  • the blind ended sprouts acquire a lumen and then anastomose together to form capillary loops.
  • the end result is the establishment of a vascular plexus within the corneal stroma.
  • Anti-angiogenic factors and compositions of the present invention are useful by blocking the stimulatory effects of angiogenesis promoters, reducing endothelial cell division, decreasing endothelial cell migration, and impairing the activity of the proteolytic enzymes secreted by the endothelium.
  • an anti-angiogenic factor may be prepared for topical administration in saline (combined with any of the preservatives and antimicrobial agents commonly used in ocular preparations) , and administered in eyedrop form.
  • the anti-angiogenic factor solution or suspension may be prepared in its pure form and administered several times daily.
  • anti-angiogenic compositions, prepared as described above may also be administered directly to the cornea,
  • the anti-angiogenic composition is prepared with a muco-adhesive polymer which binds to cornea.
  • the anti-angiogenic factors or anti-angiogenic compositions may be utilized as an adjunct to conventional steroid therapy.
  • Topical therapy may also be useful prophylactically in corneal lesions which are known to have a high probability of inducing an angiogenic response (such as chemical bums) .
  • the treatment likely in combination with steroids, may be instituted immediately to help prevent subsequent complications .
  • the anti-angiogenic compositions described above may be injected directly into the corneal stroma by an ophthalmologist under microscopic guidance. The preferred site of injection may vary with the morphology of the individual lesion, but the goal of the administration would be to place the composition at the advancing front of the vasculature (i.e., interspersed between the blood vessels and the normal cornea) .
  • perilimbic corneal injection to "protect” the cornea from the advancing blood vessels.
  • This method may also be utilized shortly after a corneal insult in order to prophylactically prevent corneal neovascularization.
  • the material could be injected in the perilimbic cornea interspersed between the corneal lesion and its undesired potential limbic blood supply.
  • Such methods may also be utilized in a similar fashion to prevent capillary invasion of transplanted corneas. In a sustained-release form injections might only be required 2-3 times per year. Asteroid could also be added to the injection solution to reduce inflammation resulting from the injection itself.
  • methods for treating neovascular glaucoma, comprising the step of administering to a patient a therapeutically effective amount of an anti-angiogenic composition to the eye, such that the formation of blood vessels is inhibited.
  • neovascular glaucoma is a pathological condition wherein new capillaries develop in the iris of the eye.
  • the angiogenesis usually originates from vessels located at the pupillary margin, and progresses across the root of the iris and into the trabecular meshwork.
  • Fibroblasts and other connective tissue elements are associated with the capillary growth and a fibrovascular membrane develops which spreads across the anterior surface of the iris. Eventually this tissue reaches the anterior chamber angle where it forms synechiae. These synechiae in turn coalesce, scar, and contract to ultimately close off the anterior chamber angle.
  • Neovascular glaucoma generally occurs as a complication of diseases in which retinal ischemia is predominant. In particular, about one third of the patients with this disorder have diabetic retinopathy and 28% have central retinal vein occlusion.
  • Other causes include chronic retinal detachment, end-stage glaucoma, carotid artery obstructive disease, retrolental fibroplasia, sickle-cell anemia, intraocular tumors, and carotid cavernous fistulas.
  • neovascular glaucoma may be diagnosed by high magnification slitlamp biomicroscopy, where it reveals small, dilated, disorganized capillaries (which leak fluorescein) on the surface of the iris. Later gonioscopy demonstrates progressive obliteration of the anterior chamber angle by fibrovascular bands. While the anterior chamber angle is still open, conservative therapies may be of assistance. However, once the angle closes surgical intervention is required in order to alleviate the pressure.
  • anti-angiogenic factors may be administered topically to the eye in order to treat early forms of neovascular glaucoma.
  • anti-angiogenic compositions may be implanted by injection of the composition into the region of the anterior chamber angle. This provides a sustained localized increase of anti-angiogenic factor, and prevents blood vessel growth into the area. Implanted or injected anti-angiogenic compositions which are placed between the advancing capillaries of the iris and the anterior chamber angle can "defend" the open angle from neovascularization.
  • the anti-angiogenic composition may also be placed in any location such that the anti-angiogenic factor is continuously released into the aqueous humor. This would increase the anti-angiogenic factor concentration within the humor, which in turn bathes the surface of the iris and its abnormal capillaries, thereby providing another mechanism by which to deliver the medication.
  • These therapeutic modalities may also be useful prophylactically and in combination with existing treatments .
  • methods for treating proliferative diabetic retinopathy comprising the step of administering to a patient a therapeutically effective amount of an anti-angiogenic composition to the eyes, such that the formation of blood vessels is inhibited.
  • the pathology of diabetic retinopathy is thought to be similar to that described above for neovascular glaucoma.
  • background diabetic retinopathy is believed to convert to proliferative diabetic retinopathy under the influence of retinal hypoxia.
  • neovascular tissue sprouts from the optic nerve (usually within 10 mm of the edge) , and from the surface of the retina in regions where tissue perfusion is poor.
  • the capillaries grow between the inner limiting membrane of the retina and the posterior surface of the vitreous .
  • the vessels grow into the vitreous and through the inner limiting membrane.
  • traction is applied to the vessels, often resulting in shearing of the vessels and blinding of the vitreous due to hemorrhage. Fibrous traction from scarring in the retina may also produce retinal detachment.
  • the conventional therapy of choice is panretinal photocoagulation to decrease retinal tissue, and thereby decrease retinal oxygen demands .
  • Complications of this therapy include a decrease in peripheral vision of up to 50% of patients, mechanical abrasions of the cornea, laser-induced cataract formation, acute glaucoma, and stimulation of subretinal neovascular growth (which can result in loss of vision) .
  • this procedure is performed only when several risk factors are present, and the risk-benefit ratio is clearly in favor of intervention.
  • proliferative diabetic retinopathy may be treated by injection of an anti-angiogenic factor (s) (or anti-angiogenic composition) into the aqueous humor or the vitreous, in order to increase the local concentration of anti-angiogenic factor in the retina.
  • an anti-angiogenic factor s
  • this treatment should be initiated prior to the acquisition of severe disease requiring photocoagulation.
  • arteries which feed the neovascular lesions may be embolized (utilizing anti-angiogenic compositions, as described above)
  • retrolental fibroblasia is a condition occurring in premature infants who receive oxygen therapy.
  • the peripheral retinal vasculature particularly on the temporal side, does not become fully formed until the end of fetal life. Excessive oxygen (even levels which would be physiologic at term) and the formation of oxygen free radicals are thought to be important by causing damage to the blood vessels of the immature retina.
  • Neovascular angle-closure glaucoma is also a complication of this condition.
  • topical administration of anti-angiogenic factors may be accomplished in infants which are at high risk for developing this condition in an attempt to cut down on the incidence of progression of retrolental fibroplasia.
  • intravitreous injections and/or intraocular implants of an anti-angiogenic composition may be utilized. Such methods are particularly preferred in cases of established disease, in order to reduce the need for surgery.
  • Anti-angiogenic factors and compositions of the present invention may be utilized in a variety of additional methods in order to therapeutically treat a cancer or tumor.
  • anti-angiogenic factors or compositions described herein may be formulated for topical delivery, in order to treat cancers such as skin cancer, head and neck tumors, breast tumors, and Kaposi's sarcoma.
  • the anti-angiogenic factors or compositions provided herein may be utilized to treat superficial forms of bladder cancer by, for example, intravesical administration.
  • numerous other non-tumorigenic angiogenesis-dependent diseases which are characterized by the abnormal growth of blood vessels may also be treated with the anti-angiogenic factors or compositions of the present invention.
  • non-tumorigenic angiogenesis-dependent diseases include hypertrophic scars and keloids, proliferative diabetic retinopathy (discussed above) , rheumatoid arthritis (discussed above) , arteriovenous malformations (discussed above) , atherosclerotic plaques, delayed wound healing, hemophilic joints, nonunion fractures, Osier-Weber syndrome, psoriasis, pyogenic granuloma, scleroderma, tracoma, menorrhagia (discussed above) and vascular adhesions.
  • methods for treating hypertrophic scars and keloids comprising the step of administering one of the above-described anti-angiogenic compositions to a hypertrophic scar or keloid.
  • inflammation occurs in response to an injury which is severe enough to break the skin.
  • blood and tissue fluid form an adhesive coagulum and fibrinous network which serves to bind the wound surfaces together.
  • proliferative phase in which there is ingrowth of capillaries and connective tissue from the wound edges, and closure of the skin defect.
  • capillary and fibroblastic proliferation begins wherein the scar contracts and becomes less cellular, less vascular, and appears flat and white. This final phase may take between 6 and 12 months.
  • the scar may become red and raised. If the scar remains within the boundaries of the original wound it is referred to as a hypertrophic scar, but if it extends beyond the original scar and into the surrounding tissue, the lesion is referred to as a keloid. Hypertrophic scars and keloids are produced during the second and third phases of scar formation. Several wounds are particularly prone to excessive endothelial and fibroblastic proliferation, including bums, open wounds, and infected wounds. With hypertrophic scars, some degree of maturation occurs and gradual improvement occurs. In the case of keloids however, an actual tumor is produced which can become quite large. Spontaneous improvement in such cases rarely occurs.
  • anti-angiogenic factors alone, or anti-angiogenic compositions as described above are directly injected into a hypertrophic scar or keloid, in order to prevent the progression of these lesions.
  • the frequency of injections will depend upon the release kinetics of the polymer used (if present), and the clinical response.
  • This therapy is of particular value in the prophylactic treatment of conditions which are known to result in the development of hypertrophic scars and keloids (e.g., burns), and is preferably initiated after the proliferative phase has had time to progress (approximately 14 days after the initial injury) , but before hypertrophic scar or keloid development .
  • vascular grafts comprising a synthetic tube, the surface of which is coated with an anti-angiogenic composition as described above.
  • vascular grafts are synthetic tubes, usually made of Dacron or Gotrex, inserted surgically to bypass arterial blockages, most frequently from the aorta to the femoral, or the femoral to the popliteal artery.
  • a major problem which particularly complicates femoral-popliteal bypass grafts is the formation of a subendothelial scar-like reaction in the blood vessel wall called neointimal hyperplasia, which narrows the lumen within and adjacent to either end of the graft, and which can be progressive.
  • a graft coated with or containing anti-angiogenic factors may be utilized to limit the formation of neointimal hyperplasia at either end of the graft.
  • the graft may then be surgically placed by conventional bypass techniques.
  • Anti-angiogenic compositions of the present invention may also be utilized in a variety of other manners. For example, they may be incorporated into surgical sutures in order to prevent stitch granulomas, implanted in the uterus (in the same manner as an IUD) for the treatment of menorrhagia or as a form of female birth control, administered as either a peritoneal lavage fluid or for peritoneal implantation in the treatment of endometriosis, attached to a monoclonal antibody directed against activated endothelial cells as a form of systemic chemotherapy, or utilized in diagnostic imaging when attached to a radioactively labeled monoclonal antibody which recognizes activated endothelial cells.
  • the pentapeptide of the present invention is also thought to be an inhibitor of various gram negative and gram positive bacteria and certain viruses, and as such, is suitable at various dosages as a medical therapeutic in the amelioration of mammalian diseases in which bacteria or viruses contribute to the pathological condition.
  • the peptide of the present invention was first isolated from the epithelia of a sea cucumber body wall, and can be derived from any species or subphyla of sea cucumber.
  • the peptide can be isolated from the epithelial layer of any sea cucumber, prepared as described in U.S. patent number 5,770,205 by Collin (incorporated herein by reference). It is an object of the present invention to further elucidate the anti-cancer activity of sea cucumber tissues.
  • the methods to prepare isolated sea cucumber epithelial layer are as follows:
  • the anterior, posterior, viscera and muscles were removed from sea cucumber of the species Cucumaria frondosa to obtain an isolated body wall.
  • Body wall portions thus obtained were heated from about 30 minutes in fresh 170 degree F. water, then cooled on wire racks to room temperature.
  • the body wall portions were passed through an industrial machine known to those in the food processing arts as a deboner or mincer (Paoli Machine, III) .
  • the deboner was adjusted to separate the softer outer epithelial layer from the harder collagenous portion of the body wall.
  • the black viscous layer of the epithelium so separated was dried by conventional means using a 40 hp "heat pump" dryer (SouthWind, Nova Scotia, CN) to approximately 5 percent moisture content and finely divided to obtain a powder.
  • any method whereby the softer epithelial layer is separable from the inner collagenous layer is suitable to produce the raw material from which the peptide of the present invention is derived.
  • the epithelial layer can also be kept frozen and not dried after separation from the skin of any sea cucumber. It is also possible to produce the peptide of the present invention from sea cucumber body wall which has not had epithelia separated from it, but the percentage of recovery via that method is extremely low and can be contaminated by different and non-active peptides of the same or similar length.
  • the frozen or dried epithelial layer (1 kg) was ground up and extracted with one liter of hexane.
  • the hexane was removed and residue then extracted with one liter of acetone.
  • the acetone and hexane extracts were combined and the solvents were removed by distillation.
  • the remainder of the material (pulp) was mixed with liter of water and the pH was adjusted to 9.0 using sodium hydroxide (100 ml, 5N) , stirred and then extracted with one liter of ethyl acetate followed by one liter of normal butanol.
  • the solvent fractions were combined and taken to dryness at 45 degrees C with a rotary evaporation with a partial vacuum. This fraction contained the peptide of the present invention.
  • the residue was dissolved in normal butanol, treated with norite and filtered to remove a pigment.
  • the material was recrystallized by solvent removal.
  • the yield of peptide is 60 milligrams from a starting material weight of 1 kilogram.
  • the resulting material is a white crystalline material.
  • a mass spectroscopy spectrum of the purified peptide is shown in Fig. 1.
  • the peptides of the present invention can also be prepared using standard peptide synthesis techniques known in the art.
  • a mass spectrum of a synthetic preparation of the peptide of SEQ. ID NO. 1 is shown in Fig. 2.
  • An HPLC trace indicating the purity of the preparation appears in Fig. 3.
  • Kaposi's sarcoma It is another object of the present invention to provide a method and composition for the treatment of
  • EXAMPLE 1 Peptide Production
  • the peptide of the present invention was first isolated from the epithelia of a sea cucumber body wall, and can be derived from any species or subphyla of sea cucumber.
  • the peptide can be isolated from the epithelial layer of any sea cucumber, prepared as described in U.S. patent number 5,770,205 by Collin (incorporated herein by reference) .
  • the methods to prepare isolated sea cucumber epithelial layer are as follows :
  • the anterior, posterior, viscera and muscles were removed from seq cucumber of the species Cucumaria frondosa to obtain an isolated body wall.
  • Body wall portions thus obtained were heated from about 30 minutes in fresh 170 degree F. Water, then cooled on wire racks to room temperature.
  • the body wall portions were passed through an industrial machine known to those in the food processing arts as a deboner or mincer (Paoli Machine, III).
  • the deboner was adjusted to separate the softer outer epithelial layer from the harder collagenous portion of the body wall.
  • the black viscous layer of the epithelium so separated was dried by conventional means using a 40 hp "heat pump" dryer (SouthWind, Nova Scotia, CN) to approximately 5 percent moisture content and finely divided to obtain a powder.
  • any method whereby the softer epithelial layer is separable from the inner collagenous layer is suitable to produce the raw material from which the peptide of the present invention is derived.
  • the epithelial layer can also be kept frozen and not dried after separation from the skin of any sea cucumber. It is also possible to produce the peptide of the present invention from sea cucumber body wall which has not had epithelia separated from it, but the percentage of recovery via that method is extremely low and can be contaminated by different and non-active peptides of the same or similar length.
  • the frozen epithelial layer (1 kg) was ground up and extracted with one liter of hexane.
  • the hexane was removed and residue then extracted with one liter of acetone.
  • the acetone and hexane extracts were combined and the solvents were removed by distillation.
  • the remainder of the material (pulp) was mixed with liter of water and the pH was adjusted to 9.0 using sodium hydroxide (100 ml, 5N) , stirred and then extracted with one liter of ethyl acetate followed by one liter of normal butanol.
  • the solvent fractions were combined and taken to dryness at 45°C with a rotary evaporation with a partial vacuum. This fraction contained the peptide of the present invention.
  • the residue was dissolved in normal butanol, treated with norite and filtered to remove pigment.
  • the material was recrystallized by solvent removal.
  • the yield of peptide was 60 milligrams from a starting material weight of 1 kilogram.
  • the resulting material is a white crystalline material.
  • Amino acid analysis shows the peptide to be made up of leucine, proline arginine, and serine.
  • a mass spectroscopy spectrum of the purified peptide is shown in Fig. 1.
  • the peptides of the present invention can also be prepared using standard peptide synthesis techniques known in the art.
  • a mass spectrum of a synthetic preparation of the peptide of SEQ. ID NO. 1 is shown in Fig. 2.
  • An HPLC trace indicating the purity of the preparation appears in Fig. 3. Additional information on HPLC analytical methods and molecular weight is shown in Attachment A.
  • EXAMPLE 2 In Vivo Anti-Inflammatory Activity The anti-inflammatory activity of the isolated peptide of Example 1 was tested by oral administration to rats in an Adjuvant Induced Arthritis assay and by a Mouse Ear Edema assay, as are known in the arts.
  • Adj uvant Induced Arthri tis Model Male Sprague- Dawley rats (160-180g) were sensitized by injecting
  • Fruend's Complete Adjuvant (0.5% suspension of killed mycobacterium tuberculosis (H37RA, Difco in mineral oil)). 0.05 ml was administered intradermally at a plantar site on the right hind leg of each rat.
  • the test materials were given orally (by gavage) in 0.5% methylcelluose, at a dose level of 20 milligrams per kilo body weight, and given once per day for 14 days. The administration was started the day after sensitization.
  • the left hind paw was measured just before sensitization and on Day 14, and the plantar edema inhibitory rate and the body weight gain rate were determined in comparison with the nonsensitized rat groups.
  • the paw weights for each group in each test run were averaged. Activity was calculated as follows:
  • Mean paw weights of controls-Mean paw weights of test group x 100 % anti-inflammatory response Mean paw weights of test group
  • the Anti-inflammatory response is the difference in the mean foot volume. This is also calculated as a "percent inhibition.” Phenylbutazone and hydrocortisone assayed concurrently with InflaStatin and the same 20 mg per KG body weight gave responses of 112.2% and 132.6% respectively while the peptide of the present invention gave an anti-inflammatory response of 116.3%. Fig. 4.
  • Croton-oil which contains a variety of phorbol esters, and arachidonic acid (AA) are standard inducers of inflammation in mouse ears when applied topically.
  • Phorbol esters especially phorbol myristyl acetate (PMA)
  • PMA phorbol myristyl acetate
  • PKC protein kinase C
  • PLC protein kinase C
  • Inhibition of such inflammation by a putative bioactive agent is considered a generalized indicator of potential pharmacologic activity.
  • Peptide was prepared according to the methods set out in Example 1.
  • the vehicle of distilled water was used for in vitro assays, working solution of peptide was added to the 10 ml tissue bath.
  • distilled water and saline was used as vehicle in oral and intraperitoneal administration, respectively.
  • Dosing volume was 20 ml/kg for mice or 10 ml/kg for rats.
  • peptide was dissolved in a vehicle of Acetone/Ethanol (1:1) and applied in a dosing volume 20 ⁇ l/ear.
  • Dyer model micrometer gauge (Peacock, Japan), EKG: Cardionec (NEC San-ei, Japan) , Isotonic transducer # 50-6360 (Harvard, U.S.A.), 2-pen recorder SS-250F (Sekonic, Japan), Micropipet # P20, P200 and P1000 (Gilson, U.S.A.), Mouse scale Z-40 (Taconic) , Pen oscillograph Type 8K (NEC San-ei, Japan) , Pressure transducer # P23 x L (Viggo-Spectramed, U.S.A.), Pneumatic pulse transducer (Narco, U.S.A.), Rodent ventilator # 683 (Harvard, U.S.A.), Recorder # SS-250 (Sekonic, Japan) , Transducer amplifier # 50-7970 (Harvard, U.S.A. ) .
  • mice Male/female Wistar derived rats, male Sprague-Dawley derived rats, male/female Duncan Hartley derived guinea pigs and male ICR derived mice provided by MDS Panlabs Taiwan, Ltd. were used. Space allocation for animals was as follows: 45 x 23 x 15 cm for 10 mice, 45 x 23 x 15 cm for 6 rats and 43 x 21 x 20 cm for 3 guinea pigs. The animals were housed in APEC R (Allentown Gaging, Allentown, NJ 08501, U.S.A.) cages. Free access to standard lab chow (Fwusow Industry Limited Co., Taiwan) and tap water was granted.
  • APEC R Allentown Gaging, Allentown, NJ 08501, U.S.A.
  • a segment of rat leum was placed under 1 g tension m a 10 ml bath Krebs solution pH 7.4 at 32°C.
  • Test substance-induced isotonically recorded contraction within 5 minutes indicated agonist activity.
  • the ability to reduce the 0.1 ⁇ M galamn-mduced contractile response indicated antagonist activity.
  • ND Not determined because agonist activity was significant.
  • a segment of ileum obtained from Duncan Hartley derived male or female guinea pigs weighing 325 ⁇ 25 gms and sacrificed by C0 2 overexposure were used.
  • the tissue was placed under 0.5 g tension in a 10 ml bath containing Kreb's solution pH 7.4 and pyrilamine (0.3 ⁇ M) at 32°C and subjected to field stimulation (70% of maximum voltage, 0.1 Hz, 0.5 millisecond).
  • mice Groups of 5 ICR derived male mice weighing 22 + 1 gms were used. The preshaved abdominal surface was sensitized by application of oxazolone 0.1 ml of 5% solution. Test substance of peptide at dose of 100 mg/kg and vehicle (saline) were administered into the mice intra peritoneally after one hour and daily for five consecutive doses. After additional four days, the animals were challenged by secondary application of oxazolone ;0.025 ml of 5% solution) to the right ear.
  • Thickness (x 0.1 mm)
  • Vehicle-control IP 20 ml/kg x 5 1 52 20 32
  • Test cor-pound was administered IP in groups of 5 mice one hour after sensitization and daily for five consecutive doses. The challenge of oxazolone was applied on day 8 and the ear thickness was recorded 24 hours later. One animal out of 5 tested an rals died on day 8 before oxazolone application.
  • Example 6 Inflammation, Inflammatory Bowel Disease Groups of 3 Sprague-Dawley derived male rats weighing 150 ⁇ 20 gms and fasted for 24 hours were used. Distal colitis was induced by intra-colonic instillation of DNBS (2, 4-dinitrobenzene sulfonic acid, 30 mg in 0.5 ml ethanol 30%) after which air (2 ml) was gently injected through the cannula to ensure that the solution remains in the colon. Test substance was administered PO (30 mg/kg) at 24 and 2 hours before DNBS instillation. Then, the animals received test compound every 24 hours for 5 consecutive days. The control group was given vehicle alone as compound dosing pattern.
  • DNBS 4-dinitrobenzene sulfonic acid
  • Test substance was administered PO (30 mg/kg) at 24 and 2 hours before DNBS instillation and then daily for 5 days. Groups of 3 tested rats were sacrificed 24 hours after the final compound administration. The colon-to-body weight ratio was recorded. Ratio: Colon (g) /8 th B.W. x 100%. One out of 7 tested animals died on day 7 after daily compound administration.
  • PAF Platelet Activating Factor
  • Antagonism Groups of 5 male ICR mice weighing 22 + 2 gms were employed. At dose of 100 mg/kg test substance dissolved in a vehicle of distilled water were administered orally. The control group received vehicle alone. At 60 minutes after dosing, the animals were injected intravenously PAF-acether (100 ⁇ g/kg IV, dissolved in 0.25% BSA) . One hour later, the survival animals were recorded. The prevention of PAF-induced mortality in 50 percent or more (> 50%) of mice indicated significant activity. The results are set forth in Table 5, below.
  • Test compoun ⁇ was administered PO (100 mg/kg) to a group of 5 mice at one hour before injection of PAF-acether (100 ⁇ g/kg IV) , then the number of survival was recorded.
  • a group of Duncan Hartley derived male or female guinea pigs weighing 250 + 50 gms were anesthetized with pentobarbital sodium (50 mg/kg IP plus an additional 15 mg/kg IP if required) and succinylcholine chloride (2 mg/animal IP) was subsequently administered to prevent spontaneous respiration.
  • Body temperature was maintained at 37° to 38°C.
  • the trachea was cannulated and the guinea pig ventilated with a Harvard rodent respirator in a closed system.
  • Tracheal pressure (TP) was recorded through a side-arm of the cannula connected to a P23ID Statham transducer.
  • Respiratory rate set at 50 strokes/minute with a stroke volume (approximately 1 ml/100 g) sufficient to produce a baseline tracheal pressure of 6 cm H 2 0.
  • Mean arterial pressure was monitored from a cannulated carotid artery, and heart rate was obtained from chest electrodes arranged for lead II.
  • the jugular vein was cannulated for IV vehicle or drug administration in a volume of 1 ml/kg.
  • Guinea pigs were sensitized with IP injections of ovalbumin 0.5 ⁇ g + Al(OH) 3 1 mg (0.5 ml/animal) on days 1, and boosted with same dosage of ovalbumin and Al(OH) 3 vaccine on day 8; and the animals were ready to be challenged between days 19 and 23 to get a submaximal ovalbumin (50 ⁇ g/kg IV) -induced bronchoconstriction, reflected as an increase in tracheal pressure (cm H 2 0) .
  • the animals were pretreated 5 minutes before test substance administration with IV indomethacin (10 mg/kg) , mepyramine (2 mg/kg) , and propranolol (0.1 mg/kg): a "cocktail" designed to inhibit the generation of cyclooxygenase products (thromboxanes, etc.) as well as antagonize histamine and ⁇ -adrenergic receptors.
  • Test substances were administered PO (10 mg/kg) at 60 minutes before ovalbumin (50 ⁇ g/kg IV) challenge in 3 guinea pigs. Tracheal pressure, blood pressure and heart rate were measured immediately before and after ovalbumin challenge. A 50 percent or more (> 50%) inhibition of the induced bronchoconstriction relative to vehicle treated control animals was considered significant.
  • Tables 6-1 and 6-2 below.
  • a group of 3 guinea pigs were sensitized with IP injections of ovalbumin 0.5 ⁇ g +Al(OH) 3 1 mg (0.5 ml/animal) on days 1 and day 8 and ready to be challenged between days 19 and 23.
  • the animals were anesthetized with pentobarbital sodium and body temperature was maintained at 37° to 38°C.
  • Test substances were administered PO (10 mg/kg) at 60 minutes before ovalbumin (50 ⁇ g/kg IV) challenge. Tracheal pressure, blood pressure and heart rate were measured immediately before and after ovalbumin challenge. A 50 percent or more ( ⁇ 50%) inhibition of the induced bronchoconstriction relative to vehicle treated control animals was considered significant.
  • a group of 3 guinea pigs were sensitized with IP injections of ovalbumin 0.5 ⁇ g + A1(0H) 3 1 mg (0.5 ml/animal) on days 1 and day 8 and ready to be challenged between days 19 and 23.
  • the animals were anesthetized with pentobarbital sodium and body temperature was maintained at 37° TO 38°C.
  • Test substances were administered PO (10 mg/kg) at 60 minutes before ovalbumin (50 ⁇ g/kg IV challenge. Tracheal pressure, blood pressure and heart rate were measured immediately before and after ovalbumin challenge. A 50 percent or more ( ⁇ 50%) inhibition of the induced bronchoconstriction relative to vehicle treated control animals was considered significant.
  • Example 9 In Vitro Screening of Peptide Activities The peptide was further screened in vitro in a variety of enzyme and biochemical assays. Methods employed were adapted from the scientific literature to maximize reliability and reproducibility . The primary literature reference for each assay is listed in Table
  • Radioiigand binding assays were performed under conditions described in Table 8, "Experimental Conditions.” Radioligands employed in this study are given in Table 8, and commercial sources and catalog numbers of the radioligands are provided in Table 7, "Material Sources.” Unlabeled, blocking ligands employed in this study are listed in Table 8, “Experimental Conditions,” along with the commercial sources and catalog number of the unlabeled ligand.
  • the concurrent reference compound (control) employed in each assay is listed in Table 9, "Reference Compound Data, " along with the commercial supplier and catalog number of the compound.
  • Sources of receptors or membrane preparations, whether from animal tissue or from recombinant expression, are provided in Table 7 as well. Where receptors have been obtained through recombinant expression techniques, the species from which the cDNA was obtained, and the type of expression system employed (mammalian, insect, bacterial) is also given Table 7. Maximum total binding and nonspecific binding were determined each time each assay was run. Nonspecific binding was defined as the proportion of total binding not displaced by unlabeled ligand specific for the receptor. Specific binding was defined as the proportion of total binding that was displaced by unlabeled ligand. The unlabeled ligand and concentration employed are given Table 8, "Experimental Conditions . "
  • IC 50 values (defined as the concentration of test compound or competing ligand capable of displacing 50% of the specific binding of the radioligand) were determined by a non-linear, least squares regression analysis using GraphPad Prism Software (GraphPad, San Diego, CA, USA) .
  • inhibition constants K are presented, the K values were calculated using the equation of Cheng and Prusoff (Cheng, Y., Prusoff, W.H., Biochem. Pharmacol. 22:3099- 3108, 1973) using the observed IC 50 of the tested compound, the concentration of radioligand employed in the assay, and the historical values for the K d of the ligand (obtained experimentally) .
  • Protein Kmase C Protein Kmase C, rat brain Sigma, Cat #H-5505 1% DMSO Non-Select .
  • Enzyme with dual lipoxygenase activities catalyzes leukotriene A, synthetase from arachidonic acid. Proc. Natl . Acad. Sci. USA 81:689-693.
  • PLA 2 Por 300.0 ⁇ M -11 Katsumata, M. , Gupta, C. , Pancreatic Goldman, A.S. (1986) A rapid assay for activity of phospholipase A 2 using radioactive substrate . Anal . Biochem. 154:676-681.
  • Interleukm-6 Hum 10.0 ⁇ M 13 Taga, T., Hibi, M. , Hirata, Y. , Yamasaki, K. , Yasukawa, K. Matsuda, . , Hirano , T . , Kishimoto, T. (1989) Interleukm-6 triggers the association of its receptor with a possible signal transducer, gp 130. Cell 58:573-581.
  • Leukotriene B Hum 10.0 ⁇ M Wmkler, J.D. , Sarau, H.M. Foley, J.J. Mong, S. Crooke, S.T. (1988) Leukotriene B,-induced homologous desensitization of calcium mobilization and phosphoinositide metabolism in U-937 cells. J. Pharmacol. Exp. Ther. 246:204- 210.
  • EXAMPLE 10 In Vivo Anticancer Activity The peptide was assayed in a mouse model of the tumor Sarcoma 180. This model has been used extensively as indicative of neovascularization in mammals inasmuch as the tumor so implanted is quickly vascularizing.
  • mice All mice were weighed at test initiation and test termination. The animals were divided into three groups.
  • the Sarcoma 180 tumor was made up from a passage mouse to furnish 2 x 1 viable cells per 0. liriL inoculum. The cells were injected into the left leg hamstring muscle mass. The was delivered to the mice by I. P. injections, or gavage on days 1-5.
  • the mice were weighed and the left rear leg was amputated at the thigh. The skin was removed from the leg to expose the site at which the tumor was located. The net tumor weight was determined by subtracting the mean value obtained from 10 normal legs. The results are shown below in Table 11.
  • EXAMPLE 11 CAM Assay The peptide was assayed in the CAM assay, so called, and inhibited proliferation of vacularization in that model by approximately 95%.
  • Method The method used was that described in D. Knighton, D. Ausprunk, D. Tapper, and J. Folkman, "Avascular and Vascular Phases of Tumour Growth in the Chick Embryo.” J. Cancer 35:347-355 (1977) Procedure: The test compounds were suspended in sterile saline and then applied to methylcellulose discs, 1/4 inch diameter with a micropipette and allowed to air dry at a concentration of 10 ⁇ g/disc. The test was graded as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un pentapeptide de formule générique A-A-A-B-C, dans lequel A représente un acide aminé non polaire, B représente un acide aminé polaire, et C représente un acide aminé chargé. Dans une des formes d'exécution proposées, ce peptide a la séquence A-Pro-Pro-B-C, et dans une autre de ces formes proposées il a la séquence leucine-proline-proline-sérine-argénine. Dans sa forme préférée, le peptide comprend au moins un acide aminé-D. Ce peptide peut être extrait de l'épiderme des holothuries. Les peptides décrits permettent d'inhiber la progression des tumeurs et/ou l'inflammation chez les mammifères lorsqu'ils sont administrés à raison d'une dose comprise entre 1 milligramme par kilogramme de poids corporel et 5000 milligrammes par kilogramme de poids corporel. Ce peptide peut être administré conjointement à n'importe quels substrats ou excipients adéquats connus des spécialistes, dans des formes d'administration orale, par exemple des capsules, des boissons, des poudres, ou rectale telle que des suppositoires, ou par d'autres moyens adéquats.
PCT/US1999/027289 1998-11-18 1999-11-18 Peptides presentant une activite anticancereuse et anti-inflammatoire WO2000029009A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/856,243 US6767890B1 (en) 1998-11-18 1999-11-18 Peptides having anti-cancer and anti-inflammatory activity
AU18213/00A AU1821300A (en) 1998-11-18 1999-11-18 Peptides having anti-cancer and anti-inflammatory activity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10913998P 1998-11-18 1998-11-18
US60/109,139 1998-11-18
US15707899P 1999-10-01 1999-10-01
US60/157,078 1999-10-01

Publications (2)

Publication Number Publication Date
WO2000029009A1 true WO2000029009A1 (fr) 2000-05-25
WO2000029009A9 WO2000029009A9 (fr) 2001-12-13

Family

ID=26806657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/027289 WO2000029009A1 (fr) 1998-11-18 1999-11-18 Peptides presentant une activite anticancereuse et anti-inflammatoire

Country Status (2)

Country Link
AU (1) AU1821300A (fr)
WO (1) WO2000029009A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411828B1 (ko) * 2001-04-21 2003-12-24 김수열 항 염증 효과가 있는 새로운 합성 펩타이드
FR2866567A1 (fr) * 2004-02-20 2005-08-26 Galderma Res & Dev Utilisation d'un antagoniste du recepteur beta-adrenergique, at1, 5-ht2, 5-ht5 et/ou de la galanine, pour le traitement de la rosacee
EP1904078A1 (fr) * 2005-05-12 2008-04-02 Attenuon, LLC Traitement d une affection intestinale inflammatoire avec des composes anti-angiogeniques
CN108066741A (zh) * 2016-11-14 2018-05-25 大连豪翔生物酶工程有限公司 一种辽刺参低聚肽对小鼠抗疲劳作用的研究方法
WO2018147663A1 (fr) * 2017-02-09 2018-08-16 (주)알트리젠 Composition comprenant un extrait composite de ginseng/ginseng rouge et de concombre de mer à titre de principe actif pour prévenir ou traiter une maladie liée à l'hypofonction de la membrane de bruch
KR20180092884A (ko) * 2017-02-09 2018-08-20 (주)알트리젠 인삼/홍삼 및 해삼 복합 추출물을 유효성분으로 하는 브루크막 기능 저하 관련 질병 예방 또는 치료용 조성물
WO2021143157A1 (fr) * 2020-01-14 2021-07-22 大连深蓝肽科技研发有限公司 Fragments peptidiques, anticorps monoclonal, bandelette d'essai à l'or colloïdal et procédé de détection pour la détection d'oligopeptides d'apostichopus japonicus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683221A (en) * 1986-01-09 1987-07-28 Scripps Clinic And Research Foundation Lymphocyte-activating polypeptides
US4691006A (en) * 1983-03-04 1987-09-01 Ohio State University Antigenic modification of polypeptides
US5674853A (en) * 1994-02-25 1997-10-07 Beth Israel Deaconess Medical Center, Inc. Enternal formulations for treatment of inflammation and infection
US5770205A (en) * 1996-08-05 1998-06-23 Coastside Bio Resources Tissue fractions of sea cucumber for the treatment of inflammation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691006A (en) * 1983-03-04 1987-09-01 Ohio State University Antigenic modification of polypeptides
US4683221A (en) * 1986-01-09 1987-07-28 Scripps Clinic And Research Foundation Lymphocyte-activating polypeptides
US5674853A (en) * 1994-02-25 1997-10-07 Beth Israel Deaconess Medical Center, Inc. Enternal formulations for treatment of inflammation and infection
US5770205A (en) * 1996-08-05 1998-06-23 Coastside Bio Resources Tissue fractions of sea cucumber for the treatment of inflammation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411828B1 (ko) * 2001-04-21 2003-12-24 김수열 항 염증 효과가 있는 새로운 합성 펩타이드
FR2866567A1 (fr) * 2004-02-20 2005-08-26 Galderma Res & Dev Utilisation d'un antagoniste du recepteur beta-adrenergique, at1, 5-ht2, 5-ht5 et/ou de la galanine, pour le traitement de la rosacee
WO2005089871A1 (fr) * 2004-02-20 2005-09-29 Galderma Research & Development, S.N.C. Utilisation d’un compose antagoniste d’au moins un recepteur choisi dans le groupe comprenant les recepteurs beta-adrenergiques, le recepteur at1, 5-ht5 et de la galanine, pour la preparation d’une composition pharmaceutique destinee a traiter la rosacee
EP1904078A1 (fr) * 2005-05-12 2008-04-02 Attenuon, LLC Traitement d une affection intestinale inflammatoire avec des composes anti-angiogeniques
EP1904078A4 (fr) * 2005-05-12 2009-09-02 Attenuon Llc Traitement d une affection intestinale inflammatoire avec des composes anti-angiogeniques
CN108066741A (zh) * 2016-11-14 2018-05-25 大连豪翔生物酶工程有限公司 一种辽刺参低聚肽对小鼠抗疲劳作用的研究方法
WO2018147663A1 (fr) * 2017-02-09 2018-08-16 (주)알트리젠 Composition comprenant un extrait composite de ginseng/ginseng rouge et de concombre de mer à titre de principe actif pour prévenir ou traiter une maladie liée à l'hypofonction de la membrane de bruch
KR20180092884A (ko) * 2017-02-09 2018-08-20 (주)알트리젠 인삼/홍삼 및 해삼 복합 추출물을 유효성분으로 하는 브루크막 기능 저하 관련 질병 예방 또는 치료용 조성물
KR101893576B1 (ko) * 2017-02-09 2018-08-30 (주)알트리젠 인삼/홍삼 및 해삼 복합 추출물을 유효성분으로 하는 브루크막 기능 저하 관련 질병 예방 또는 치료용 조성물
CN110494148A (zh) * 2017-02-09 2019-11-22 安特瑞珍有限公司 将人参/红参及海参复合提取物作为有效成分的布鲁赫膜功能下降相关疾病预防或治疗用组合物
US10940168B2 (en) 2017-02-09 2021-03-09 Altregen Co., Ltd. Method of treating Bruch's membrane hypofunction disease
CN110494148B (zh) * 2017-02-09 2023-10-27 安特瑞珍有限公司 人参/红参及海参复合提取物作为有效成分的布鲁赫膜功能下降相关疾病预防或治疗用组合物
WO2021143157A1 (fr) * 2020-01-14 2021-07-22 大连深蓝肽科技研发有限公司 Fragments peptidiques, anticorps monoclonal, bandelette d'essai à l'or colloïdal et procédé de détection pour la détection d'oligopeptides d'apostichopus japonicus

Also Published As

Publication number Publication date
AU1821300A (en) 2000-06-05
WO2000029009A9 (fr) 2001-12-13

Similar Documents

Publication Publication Date Title
KR100506043B1 (ko) 맥관형성을억제하기위한조성물
DE60218179T2 (de) Peptide zur behandlung von tumoren und anderen bedingungen, die die entfernung oder zerstörung von zellen erfordern
JPH01311030A (ja) 脈管形成阻止性コラーゲン代謝調節剤
EP1397105B1 (fr) Composees destinees a l'inhibition de l'angiogenese
HU220599B1 (hu) Eljárás komplementer inhibitorokat tartalmazó, nekrotizáló véredénylézió kezelésére alkalmas gyógyászati készítmények előállítására
EP2221089A1 (fr) Analogues de lipoxine en tant que nouveaux inhibiteurs de resténose
JPH09500087A (ja) カルパイン活性の増大に関連した健康障害の抑制及び処置におけるカルパイン阻害剤の使用法
JPH05509294A (ja) 血栓症治療のための方法および組成物
DE60217326T2 (de) Von neurofilamentproteinen abgeleitete peptide und deren medizinische verwendung
Perttilä et al. Immune response after laparoscopic and conventional Nissen fundoplication
US6767890B1 (en) Peptides having anti-cancer and anti-inflammatory activity
JPH11512733A (ja) 金属プロテイナーゼとtnfの放出に対するインヒビターとしてのチオ置換ペプチド
EP1235567A2 (fr) Inhibiteurs d'agregation plaquettaire induite par le collagene
CA2490129A1 (fr) Compositions et procedes comprenant des antagonistes des recepteurs actives de proteines
US8420658B2 (en) Use of Carboxyamidotriazole (CAI) orotate in macular degeneration
WO2000029009A1 (fr) Peptides presentant une activite anticancereuse et anti-inflammatoire
Kaliszewski et al. Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II
WO2005086578A2 (fr) Peptides anti-inflammatoires et methodes d'utilisation
JPH11509830A (ja) 再狭窄を処置する薬剤を製造するためのレチノイドの使用
Ercan et al. A comparison between the prostaglandin releasing effects of angiotensin II and angiotensin III
MX2008006440A (es) Usos terapeuticos de compuestos esteroideos.
KR100450578B1 (ko) 엔엠23 단백질을 유효성분으로 하는, 매트릭스메탈로프로테아제 활성 억제 및 혈관신생 억제용 조성물
Nalbandian et al. A proposed comprehensive pathophysiology of thrombotic thrombocytopenic purpura with implicit novel tests and therapies
JPH10218792A (ja) アンギオテンシン変換酵素阻害薬を有効成分とする涙液分泌促進および角結膜障害治療剤
MXPA97007808A (en) A pharmaceutical composition containing n-chlorophenyl carbamates and n-chlorofinyl carbamates to inhibit the growth of viruses and cance

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 18213

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09856243

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 45-48, 50, 53 AND 58-60, DESCRIPTION, REPLACED BY NEW PAGES 45-48, 50, 50A, 53, 53A AND 58-60; PAGES 1/4-4/4, DRAWINGS, REPLACED BY NEW PAGES 1/4-4/4; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

122 Ep: pct application non-entry in european phase