WO2000019770A1 - Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät - Google Patents

Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät Download PDF

Info

Publication number
WO2000019770A1
WO2000019770A1 PCT/EP1999/006916 EP9906916W WO0019770A1 WO 2000019770 A1 WO2000019770 A1 WO 2000019770A1 EP 9906916 W EP9906916 W EP 9906916W WO 0019770 A1 WO0019770 A1 WO 0019770A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mic2
microphone signals
micl
hearing aid
Prior art date
Application number
PCT/EP1999/006916
Other languages
English (en)
French (fr)
Inventor
Eghart Fischer
Original Assignee
Siemens Audiologische Technik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audiologische Technik Gmbh filed Critical Siemens Audiologische Technik Gmbh
Priority to DK99948785T priority Critical patent/DK1118248T3/da
Priority to EP99948785A priority patent/EP1118248B1/de
Priority to DE59911808T priority patent/DE59911808D1/de
Priority to US09/806,374 priority patent/US6751325B1/en
Publication of WO2000019770A1 publication Critical patent/WO2000019770A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the invention relates to a hearing aid with the features of the preamble of claim 1 and a method with the features of the preamble of claim 7.
  • the invention is intended for use with all types of hearing aids.
  • the invention is particularly suitable for highly developed hearing aids which, for example, have digital signal processing components.
  • a generic hearing aid is known from DE 43 27 901 Cl.
  • a signal processing unit serves to achieve a predetermined directional characteristic by a suitable mixture of signals from a plurality of microphones.
  • the properties of this directivity are fixed. Signal components from lateral signal sources are always damped and signal components from signal sources arranged in front of or behind the hearing aid wearer are amplified.
  • the object of the invention is to avoid the problems mentioned and to provide a hearing device and a method for processing microphone signals in a hearing device with high transmission quality and noise suppression in a large number of horse situations. According to the invention, this object is achieved by a hearing device with the features of claim 1 and a method with the features of claim 7.
  • the dependent claims relate to preferred embodiments of the invention.
  • the invention is based on the basic idea of varying the properties of an existing direction-dependent amplification / attenuation in accordance with the result of an additional signal analysis. This allows a particularly good adaptation of the hearing aid according to the invention to different horse situations. For example, the direction of a Storschall source can be taken into account in the direction-dependent amplification / damping, in order to offer good disturbance relief. If there is no significant noise, the attenuation can be switched off to minimize distortion.
  • the strengths of signal components of the microphone signals are determined in a plurality of predefined direction classes (W range) in the directional analysis. In this way, the rough direction of the main part of a Storschall source can be determined. Alternatively, provision can be made to determine the direction of one or more signal source (s) more precisely.
  • An adaptive LMS filter can be used for signal analysis, with which signal delays in particular are estimated by integer multiples of a sampling period.
  • the coefficients of the LMS filter determined by the adaptation process can influence or (completely) determine the result of the directional analysis or even represent this result.
  • different signal processing steps can be carried out in preferred embodiments.
  • the directional characteristic of a (directional microphone, formed by superimposing the microphone signals) can be suitably changed. Such a change can in particular be alignment of the directional microphone pole.
  • a suitable obstacle-free procedure can be selected.
  • Weighting signals are preferably generated during the evaluation of the signal analysis, which determine the weighting factors with which the results of different filtering, interference-free and / or straightening methods are received m the output signal.
  • the microphones for generating the microphone signals are arranged at a relatively small distance of at most 5 cm or at most 2.5 cm or approximately 1.6 cm from one another, the connecting line between the microphones being at an angle of at most 45 ° or at most Can extend 30 ° to the line of sight of the hearing aid wearer or can be approximately this line of sight.
  • a common housing can be provided for both microphones.
  • FIG. 2 shows a block diagram of a signal analysis unit in the circuit of FIG. 1, Fig. 3 em block diagram of an LMS filter m of the circuit of Fig. 2, and
  • Fig. 4 and Fig. 5 per em diagram of the change over time of coefficient signals or a microphone and an output signal m a signal example.
  • the hearing device circuit shown in FIG. 1 has a microphone unit 10 known per se, which contains two omnidirectional microphones 12, 12 'and a two-channel, equalizing preamplifier 14.
  • the two microphones 12, 12 ' are arranged at a distance of approximately 1.6 cm. This distance corresponds approximately to the distance that sound covers during a sampling period of the hearing aid circuit.
  • the connecting line between the two microphones 12, 12 ' runs approximately in the direction of view of the hearing aid wearer, the first microphone 12 being at the front and the second microphone 12' at the rear.
  • the microphone unit 10 generates first and second microphone signals MIC1, MIC2, which originate from the first and the second microphone 12, 12 ', respectively.
  • the two microphone signals MIC1 and MIC2 are fed to a signal analysis unit 16 and a signal processing unit 18.
  • the signal analysis unit 16 evaluates the microphone signals MIC1, MIC2 and generates three weighting signals G1, G2, G3 and e total weighting signal GG therefrom.
  • the signal processing unit 18 consists of a side signal reduction unit 20, a ratchet signal reduction unit 22 and a mixing unit 24.
  • the output signal OUT of the signal processing unit 18 is applied to a reproduction unit 26 and is there transmitted via an output amplifier 28 to a preferably electronic acoustic transducer 30, for example, a speaker.
  • the side signal reduction unit 20 receives the microphone signals MIC1, MIC2 and generates therefrom a first noise-reduced signal R1, in which signal components of the two microphone signals MIC1, MIC2, which originate from a sound source on the side of the hearing aid user, largely suppresses sm ⁇ .
  • the side signal reduction unit 20 has a subtractor 32, which forms the difference between the two microphone signals MIC1, MIC2.
  • the difference signal and the second microphone signal MIC2 are fed to a compensation unit 34 for generating the first noise-reduced signal R1.
  • the equalization unit 34 only forwards the difference signal received from the subtractor 32 as the first noise-reduced signal R1, the second microphone signal MIC2 not being taken into account.
  • the compensation unit 34 is designed as a predictor in order to achieve a better maintenance effect for signal components from lateral signal sources by suitable mixing of the difference signal and the second microphone signal MIC2.
  • a side signal reduction unit 20 with such a compensation unit 34 is described in the application of the same inventor with the title "Method for providing a directional microphone characteristic and hearing aid", the content of which is hereby incorporated into the present application.
  • the ratchet signal reduction unit 22 similar to the side signal reduction unit 20, has a subtractor 36 and a compensation unit 38, which generates a second noise-reduced signal R2. Those parts of the microphone signals MIC1, MIC2 that come from signal sources behind the hearing aid wearer are suppressed in the second noise-reduced signal R2.
  • the positive input of the subtractor 36 is connected to the first microphone signal MIC1, while the negative (to be subtracted) input is connected to the microphone signal MIC2 via the delay element 40, which causes a delay by one sampling period.
  • the signal reduction unit 22 can pass the compensation unit 38 unchanged on the difference signal of the subtractor 36 as a second noise-reduced signal R2.
  • the jerk signal reduction unit 22 can be provided with a compensation unit 38 designed as a predictor, as described in detail in the application mentioned in the preceding paragraph.
  • the mixing unit 24 has three weighting amplifiers 42, 44, 46, of which the first multiplies the first microphone signal MIC1 by the weighting signal G3, the second the first noise-reduced signal R1 by the weighting signal G2, and the third the second noise-reduced signal R2 by the weighting signal Eq.
  • the weighting signals G1, G2, G3 are thus used as gain values (gam values).
  • the output signals of the weighting amplifiers 42, 44, 46 are added by a summer 48.
  • the output signal of the summer 48 is multiplied by a further weighting amplifier 50 by the total weighting signal GG in order to obtain the output signal OUT of the mixing unit 24 (and the entire signal processing unit 18).
  • the more precise structure of the signal analysis unit 16 is shown in FIG. 2.
  • the filtered output signal Y of the LMS filter 52 is connected to the negative input of a subtractor 54.
  • the microphone signal MIC2 is present via the delay element 56, which provides a delay of three sampling periods, at the positive input of the subtractor 54, and the difference signal formed by the subtractor 54 is fed to the LMS filter 52 as an error signal E.
  • the following therefore applies for each sampling time t:
  • e (t) m ⁇ c2 (t-3) - y (t), (1) where e (t) is the error value of the error signal E at time t, y (t) the output value of the LMS filter 52 at time t and m ⁇ c2 (t-3) the value of the second microphone signal MIC2 at time t-3 (three clock cycles before time t).
  • a coefficient vector signal of the LMS filter 52 is present at a demultiplexer 58.
  • the coefficient vector signal transmits a coefficient vector w (t) which contains five values k ⁇ (t), kl (t), k2 (t), k3 (t), k4 (t) for the filter coefficients (taps) .
  • w (t) which contains five values k ⁇ (t), kl (t), k2 (t), k3 (t), k4 (t) for the filter coefficients (taps) .
  • the demultiplexer 58 determines five coefficient signals K0, Kl, K2, K3, K4 from the coefficient vector signal W, which indicate the value curve of the respective corresponding coefficient.
  • the three “middle” coefficient signals K 1, K 2, K 3 contain information about the spatial arrangement of the signal sources relative to the hearing aid wearer.
  • This assignment of the filter coefficients is the result of the delay of the second microphone signal MIC2 by three time units by the delay element 56.
  • the transmission of the coefficient vectors and the filter coefficients m to the coefficient vector signal W is carried out serially in the exemplary embodiment described here by means of a suitable protocol to which the Demultiplexer 58 is tuned. In the embodiment variants, the coefficients are transmitted in a different way, in particular in parallel or in part in parallel and in part in series.
  • a standardization unit 60 normalizes the three coefficient signals K1, K2, K3 and generates the weighting signals G1, G2, G3 and the total weighting signal GG therefrom.
  • Fig. 3 illustrates the internal structure of the LMS filter 52.
  • the input signal X is present at a buffer 62, which em Input vector signal Ü generated.
  • the input vector signal ⁇ expresses an input vector ü (t) which contains the values of the input signal X at the five preceding sampling instants. So the following applies:
  • x (t) indicates the value of the input signal X at the sampling time t.
  • the input vectors ü (t) are multiplied by a vector multiplier 64 in a matrix operation with the respective current coefficient vector w (t) of the coefficient vector signal W in order to obtain the (scalar) output value y (t) of the output signal Y at the clock instant t .
  • a vector multiplier 64 in a matrix operation with the respective current coefficient vector w (t) of the coefficient vector signal W in order to obtain the (scalar) output value y (t) of the output signal Y at the clock instant t .
  • FIR finite impulse response
  • An element square 66 generates the element-by-square of the signal vectors u (t), and an element summer 68 serves to sum up the squared elements. A small positive is added to the sum thus obtained by means of an adder 70
  • Constant C (order of magnitude 10 "10 ) added, which comes from a constant generator 72.
  • the result is as (scalar) Divisor on a scalar divider 74.
  • the dividend is the scalar product of the current error value e (t) of the error signal E and an output vector of a scalar multiplier 76. This output vector is produced by scalar multiplication of the input vector ü (t) with an adaptation constant ⁇ .
  • the result vector of the scalar divider 74 is added by a vector adder 78 to the current coefficient vector w (t).
  • E delay element 80 outputs the result only one clock pulse later than the adapted coefficient vector w (t + l) of the coefficient vector signal W.
  • w (t + i) w (t; ( ⁇ * e (t) * ü (t) / (C + ü (t) - ü ⁇ (t)))) (6)
  • the circuit shown in FIG. 3 implements an LMS algorithm which, by means of a stochastic gradient method, approximates (adapts) the filter coefficients k ⁇ (t) - k4 (t) in such a way that the error signal E is minimized as far as possible.
  • LMS algorithm which, by means of a stochastic gradient method, approximates (adapts) the filter coefficients k ⁇ (t) - k4 (t) in such a way that the error signal E is minimized as far as possible.
  • the first microphone 12 is located in front of the second microphone 12 ′ by about 1.6 cm in the direction of view of the hearing aid wearer. At a sampling frequency of 20 kHz assumed in the exemplary embodiment described here, this corresponds approximately to that
  • a signal SO from a useful sound source which is located in the direction of view of the hearing aid wearer (angle 0 °), will arrive at the front microphone 12 and at the sampling time t + 1 at the rear microphone 12 ', for example, due to the microphone spacing.
  • a signal S2 from a Storschall source which is located behind the hearing aid wearer (angle 180 °)
  • a signal S1 from a lateral noise source hits approximately simultaneously with both microphones 12, 12 'em and therefore also has an effect simultaneously on the microphone signals MIC1, MIC2.
  • m ⁇ cl (t) denotes the value of the signal MICl at the sampling time t.
  • e (t) is minimized by the algorithm of the LMS filter 52.
  • k3 (t) the term of which is the only one having the summand s0 (t-4) increases with increasing intensity of the signal SO (angle 0 °).
  • the amount of the filter coefficient k2 (t) is an indicator for the portion of the signal Sl (angle 90 °) m the microphone signals MIC1, MIC2, and the amount of the filter coefficient kl (t) shows the signal portion of S2 (angle) 180 °). The values of all other filter coefficients tend towards zero.
  • the weighting signals Gl, G2, G3 always correspond to the coefficient signals Kl, K2, K3.
  • differences in the weighting signals G1, G2, G3 can be enlarged ("spread").
  • the coefficient signals K1, K2, K3 serve directly as weighting factors.
  • the normalization unit 60 and the weighting amplifier 50 can then be omitted.
  • a large weighting factor Gl has the result that the second noise-reduced signal R2, in which the interference signal component is largely reduced from 180 °, receives a large proportion of the output signal OUT. Accordingly, with a large weighting factor G2, the first noise-reduced signal R1 largely influences the output signal OUT. With a large weighting factor G3, the first microphone signal MIC1 finally has a large effect on the output signal OUT.
  • the signal analysis unit determines the intensities or strengths of signal components of the microphone signals MIC1, MIC2 in the angular areas in the viewing direction of the hearing aid wearer, transversely to the viewing direction and behind the hearing aid wearer.
  • the weighting factors G1, G2, G3 correspond to the determined intensity values. Depending on these values, either signals from 90 ° or 180 ° are Signals are classified and largely suppressed, or the first microphone signal MIC1 is "switched through” if the directional analysis has determined that no significant (interference) signal components are present from either 90 ° or 180 °.
  • Kl (line - * - * -), K2 (line - + - + -) and K3 (line) in a realistic experiment with a useful signal source from 0 ° and an interference signal source from 90 ° (each voice signal).
  • the axis of abscissas represents the range from 0 to 10 seconds.
  • the value of the coefficient signal K2 (90 ° indicator) is always significantly higher than the value of the coefficient signal K1 (180 ° indicator).
  • the first microphone signal MIC1 and the output signal OUT for the signal example used in this experiment are shown in FIG. 5.
  • the microphone signal MIC1 mainly contains interference signal components. It can be seen that these components are largely suppressed in the output signal OUT.
  • the function of the hearing device and method according to the invention has been described with reference to the circuit shown by way of example in FIGS. 1 to 3, other implementations are possible in the alternative embodiments.
  • the functions of the circuit can be implemented in whole or in part by program modules of a digital processor, for example a digital signal processor.
  • the circuit can also be constructed as a digital or analog circuit or m different mixed forms between these extremes.
  • the result of the directional analysis is evaluated in another way for signal processing.
  • K2, K3 also for controlling time variants, for example three fixed directional microphone characteristics with poles at 90 °, 135 ° and 180 ° can be used.
  • design variants are provided in which an "intelligent" determination of interference and useful signal components is carried out (for example by means of the standardization unit 60). While in the embodiment described above, the signal • share (0 °) was always regarded as a useful signal component in the viewing direction, may for example in the presence of the signal Sl of 90 ° and simultaneous absence of the signal SO from 0 °, the signal Sl is now as Payload signal viewed and can no longer be suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Ein Hörgerät weist eine Signalverarbeitungseinheit (18) auf, um Signalanteile von mindestens zwei Mikrofonsignalen (MIC1, MIC2) richtungsabhängig zu verstärken und/oder zu dämpfen. Das Hörgerät ist durch eine Signalanalyseeinheit (16) weitergebildet, die zumindest eine Eigenschaft der richtungsabhängigen Verstärkung und/oder Dämpfung zu verändern vermag. Ein Verfahren zum Verarbeiten von Mikrofonsignalen in einem Hörgerät weist entsprechende Merkmale auf. Durch die Erfindung wird ein Hörgerät mit hoher Übertragungsqualität und Störgeräuschunterdrückung in einer Vielzahl von Hörsituationen bereitgestellt.

Description

Beschreibung
Hörgerät und Verfahren zum Verarbeiten von Mikrofonsignalen m einem Hörgerät
Die Erfindung betrifft ein Hörgerät mit den Merkmalen des Oberbegriffs von Anspruch 1 sowie em Verfahren mit den Merkmalen des Oberbegriffs von Anspruch 7. Die Erfindung ist zum Einsatz bei allen Arten von Hörgeräten vorgesehen. Besonders eignet sich die Erfindung jedoch für hochentwickelte Hörgeräte, die beispielsweise digitale Signalverarbeitungskomponen- ten aufweisen.
Ein gattungsgemaßes Hörgerät ist aus der DE 43 27 901 Cl be- kannt . Hier dient eine Signalverarbeitungsemheit dazu, durch eine geeignete Mischung von Signalen mehrerer Mikrofone eine vorbestimmte Richtcharakteristik zu erzielen. Die Eigenschaften dieser Richtwirkung sind jedoch fest vorgegeben. Es werden stets Signalanteile von seitlichen Signalquellen gedampft und Signalanteile von vor oder hinter dem Horgeratetrager angeordneten Signalquellen verstärkt.
Bei diesem Hörgerät ist daher nur eine geringe Flexibilität bei wechselnden Horsituationen gegeben. Störgeräusche von Si- gnalquellen hinter dem Horgeratetrager werden nicht gedampft. Der Dampfungsmechanismus, der notwendigerweise auch die Nutz- schallwiedergabe beeinträchtigt, ist standig aktiv. Somit ist die Wiedergabequalltat des Hörgeräts nicht optimal, wenn m einer Horsituation keine Storschalldampfung erforderlich ist.
Die Erfindung hat demgemäß die Aufgabe, die genannten Probleme zu vermeiden und ein Hörgerät sowie em Verfahren zum Verarbeiten von Mikrofonsignalen m einem Hörgerät mit hoher Ubertragungsqualitat und Storgerauschunterdruckung in einer Vielzahl von Horsituationen bereitzustellen. Erfmdungsgemaß wird diese Aufgabe durch e Hörgerät mit den Merkmalen des Anspruchs 1 und em Verfahren mit den Merkmalen des Anspruchs 7 gelost. Die abhangigen Ansprüche betreffen bevorzugte Ausgestaltungen der Erfindung.
Die Erfindung geht von der Grundidee aus, die Eigenschaften einer bestehenden richtungsabhangigen Verstärkung/Dämpfung entsprechend dem Ergebnis einer zusatzlichen Signalanalyse zu variieren. Damit laßt sich eine besonders gute Anpassung des erfmdungsgemaßen Hörgeräts an unterschiedliche Horsituationen verwirklichen. Beispielsweise kann die Richtung einer Storschallquelle bei der richtungsabhangigen Verstärkung/ Dampfung berücksichtigt werden, um eine gute Storungsbefrei- ung zu bieten. Falls kein nennenswerter Storschall vorliegt, kann dagegen die Storungsdampfung ausgeschaltet werden, um Verzerrungen zu minimieren.
Im Sinne der Ansprüche setzt das Verandern einer Eigenschaft der richtungsabhangigen Verstärkung/Dämpfung eine auch ohne diese Veränderung bestehende Richtungsabhangigkeit der Verstärkung/Dämpfung voraus.
In bevorzugten Ausfuhrungsformen der Erfindung werden bei der Richtungsanalyse die Starken von Signalanteilen der Mikrofon- Signale m mehreren vorgegebenen Richtungsklassen (W kelbe- reichen) bestimmt. Dadurch kann die grobe Richtung des Hauptanteils einer Storschallquelle ermittelt werden. Alternativ kann vorgesehen sein, die Richtung einer oder mehrerer Signalquelle (n) genauer zu bestimmen.
Zur Signalanalyse kann em adaptives LMS-Filter verwendet werden, mit dem insbesondere Signalverzogerungen um ganzzah- lige Vielfache einer Abtastperiode geschätzt werden. Die durch den Adaptionsvorgang ermittelten Koeffizienten des LMS- Filters können das Ergebnis der Richtungsanalyse beeinflussen oder (vollständig) bestimmen oder selbst dieses Ergebnis darstellen . In Abhängigkeit von dem Ergebnis der Signalanalyse können in bevorzugten Ausfuhrungsformen unterschiedliche Signalverar- beitungsschritte durchgeführt werden. Beispielsweise kann die Richtcharakteristik eines (virtuellen, durch Überlagerung der Mikrofonsignale gebildeten) Richtmikrofons geeignet verändert werden. Eine solche Veränderung kann insbesondere em Ausrichten des Richtmikrofonpols sein. Alternativ und/oder zusatzlich kann em geeignetes Storbefreiungsverfahren ausge- wählt werden.
Bevorzugt werden bei der Auswertung der Signalanalyse Gewich- tungssignale erzeugt, die bestimmen, mit welchen Gewichtungsfaktoren die Ergebnisse unterschiedlicher Filter-, Storbe- freiungs- und/oder Richtverfahren m das Ausgangssignal eingehen.
Die Mikrofone zum Erzeugen der Mikrofonsignale sind m bevorzugten Ausfuhrungsformen in einem relativ geringen Abstand von höchstens 5 cm oder höchstens 2,5 cm oder ungefähr 1,6 cm voneinander angeordnet, wobei sich die Verbindungslinie zwischen den Mikrofonen mit einem Winkel von höchstens 45° oder höchstens 30° zur Blickrichtung des Horgeratetragers erstrecken kann oder ungefähr dieser Blickrichtung liegen kann. Insbesondere kann em gemeinsames Gehäuse für beide Mikrofone vorgesehen sein.
Em Ausfunrungsbeispiel und mehrere Ausfuhrungsalternativen der Erfindung werden nun unter Hinweis auf die schematischen Zeichnungen genauer beschrieben. Es stellen dar:
Fig. 1 em Blockschaltbild eines erfmdungsgemaßen Hörgerätes,
Fig. 2 em Blockschaltbild einer Signalanalyseeinheit in der Schaltung von Fig. 1, Fig. 3 em Blockschaltbild eines LMS-Filters m der Schaltung von Fig. 2, und
Fig. 4 und Fig. 5 je em Diagramm der zeitlichen Veränderung von Koeffizientensignalen beziehungsweise eines Mikrofon- und eines Ausgangssignals m einem Signalbeispiel .
Die Fig. 1 dargestellte Horgeratescnaltung weist eine an sich bekannte Mikrofoneinheit 10 auf, die zwei omnidirektio- nale Mikrofone 12, 12' und einen zweikanaligen, entzerrenden Vorverstärker 14 enthalt. Die beiden Mikrofone 12, 12' sind mit einem Abstand von ungefähr 1,6 cm angeordnet. Diese Entfernung entspricht ungefähr der Strecke, die Schall wahrend einer Abtastperiode der Horgerateschaltung zurücklegt. Wenn das Hörgerät getragen wird, verlauft die Verbindungslinie zwischen den beiden Mikrofonen 12, 12' ungefähr m Blickrichtung des Horgeratetragers, wobei sich das erste Mikrofon 12 vorne und das zweite Mikrofon 12' hinten befindet. Die Mikrofoneinheit 10 erzeugt e erstes und em zweites Mikrofonsi- gnal MICl, MIC2, die von dem ersten bzw. dem zweiten Mikrofon 12, 12' stammen.
Die beiden Mikrofonsignale MICl und MIC2 werden einer Signal- analyseemheit 16 und einer Signalverarbeitungse heit 18 zu- gefuhrt. Die Signalanalyseemheit 16 wertet die Mikrofonsignale MICl, MIC2 aus und erzeugt daraus drei Gewichtungssignale Gl, G2, G3 und e Gesamtgewichtungssignal GG. Die Signalverarbeitungsemheit 18 besteht im hier beschriebenen Ausfuhrungsbeispiel aus einer Seitensignal-Reduktionsemheit 20, einer Rucksignal-Reduktionsemheit 22 und einer Mischem- heit 24. Em Ausgangssignal OUT der Signalverarbeitungsemheit 18 liegt an einer Wiedergabeeinheit 26 an und wird dort über einen Ausgangsverstärker 28 einem vorzugsweise elektro- akustischen Wandler 30, zum Beispiel einem Lautsprecher, zugeführt. Die Seitensignal-Reduktionsemheit 20 erhalt die Mikrofonsignale MICl, MIC2 und erzeugt daraus em erstes gerauschreduziertes Signal Rl, bei dem Signalanteile der beiden Mikrofonsignale MICl, MIC2, die von einer zum Horgeratebenutzer seitlichen Schallquelle stammen, weitgehend unterdruckt smα. Zu diesem Zweck weist die Seitensignal-Reduktionsemheit 20 einen Subtrahierer 32 auf, der die Differenz zwischen den beiden Mikrofonsignalen MICl, MIC2 bildet. Das Differenzsignal und das zweite Mikrofonsignal MIC2 werden einer Aus- gleichsemheit 34 zum Erzeugen des ersten gerauschreduzierten Signals Rl zugeleitet.
Im einfachsten Fall leitet die Ausgleichsemheit 34 lediglich das vom Subtrahierer 32 erhaltene Differenzsignal als erstes gerauschreduziertes Signal Rl weiter, wobei das zweite Mikrofonsignal MIC2 nicht berücksichtigt wird. In Ausfuhrungsalternativen ist die Ausgleichsemheit 34 als Pradiktor ausgestaltet, um durch geeignete Mischung des Differenzsignals und des zweiten Mikrofonsignals MIC2 eine bessere Da pfungswir- kung für Signalanteile von seitlichen Signalquellen zu erreichen. Eine Seitensignal-Reduktionsemheit 20 mit einer derartigen Ausgleichsemheit 34 ist m der Anmeldung desselben Erfinders mit dem Titel "Verfahren zum Bereitstellen einer Richtmikrofoncharakteristik und Hörgerät" beschrieben, deren Inhalt hiermit m die vorliegende Anmeldung aufgenommen wird.
Die Rucksignal-Reduktionsemheit 22 weist ähnlich wie die Seitensignal-Reduktionsemheit 20 einen Subtrahierer 36 und eine Ausgleichsemheit 38 auf, die em zweites gerauschredu- ziertes Signal R2 erzeugt. In dem zweiten gerauschreduzierten Signal R2 sind diejenigen Anteile der Mikrofonsignale MICl, MIC2 unterdruckt, die von Signalquellen hinter dem Horgeratetrager stammen. Der positive Eingang des Subtrahierers 36 ist an das erste Mikrofonsignal MICl angeschlossen, wahrend der negative (zu subtrahierende) Eingang über em Verzogerungs- glied 40, das eine Verzögerung um eine Abtastperiode bewirkt, mit dem Mikrofonsignal MIC2 verbunden ist. Auch bei der Ruck- signal-Reduktionsemheit 22 kann die Ausgleichsemheit 38 im einfachsten Fall das Differenzsignal des Subtrahierers 36 als zweites gerauschreduziertes Signal R2 unverändert weiterleiten. Alternativ kann die Rucksignal-Reduktionsemheit 22 mit einer als Pradiktor ausgestalteten Ausgleichsemheit 38 versehen sein, wie sie der im vorhergehenden Absatz erwähnten Anmeldung detailliert beschrieben ist.
Die Mischeinheit 24 weist drei Gewichtungsverstarker 42, 44, 46 auf, von denen der erste das erste Mikrofonsignal MICl mit dem Gewichtungssignal G3 multipliziert, der zweite das erste gerauschreduzierte Signal Rl mit dem Gewichtungssignal G2, und der dritte das zweite gerauschreduzierte Signal R2 mit dem Gewichtungssignal Gl. Die Gewichtungssignale Gl, G2, G3 werden somit als Verstarkungswerte (gam-Werte) verwendet.
Die Ausgangssignale der Gewichtungsverstarker 42, 44, 46 werden von einem Summierer 48 addiert. Das Ausgangssignal des Summierers 48 wird von einem weiteren Gewichtungsverstarker 50 mit dem Gesamtgewichtungssignal GG multipliziert, um das Ausgangssignal OUT der Mischeinheit 24 (und der gesamten Signalverarbeitungsemheit 18) zu erhalten.
Der genauere Aufbau der Signalanalyseemheit 16 ist m Fig. 2 dargestellt. Das erste Mikrofonsignal MICl liegt als Em- gangssignal X an einem LMS-Filter 52 (LMS = least ean
Square) an. Das gefilterte Ausgangssignal Y des LMS-Filters 52 ist mit dem negativen Eingang eines Subtrahierers 54 verbunden. Das Mikrofonsignal MIC2 liegt über em Verzogerungs- glied 56, das eine Verzögerung von drei Abtastperioden be- reitstellt, an dem positiven Eingang des Subtrahierers 54 an, und das von dem Subtrahierer 54 gebildete Differenzsignal wird dem LMS-Filter 52 als Fehlersignal E zugeführt. In For- melschreibweise gilt somit für jeden Abtastzeitpunkt t:
e(t) = mιc2 (t-3) - y(t) , (1) wobei e(t) der Fehlerwert des Fehlersignals E zum Zeitpunkt t ist, y(t) der Ausgangswert des LMS-Filters 52 zum Zeitpunkt t und mιc2(t-3) der Wert des zweiten Mikrofonsignals MIC2 zum Zeitpunkt t-3 (drei Zeittakte vor dem Zeitpunkt t) .
E Koeffizientenvektor-Signal des LMS-Filters 52 liegt an einem Demultiplexer 58 an. Das Koeffizientenvektor-Signal übertragt für jeden Abtastzeitpunkt t einen Koeffizientenvektor w(t), der fünf Werte kθ(t), kl(t), k2(t), k3(t), k4(t) für die Filterkoeffizienten (Taps) enthalt. In Formelschreibweise gilt damit:
w(t) = (kθ(t), kl(t), k2(t), k3(t), k4(t)). (2)
Der Demultiplexer 58 ermittelt aus dem Koefflzientenvektor- Signal W fünf Koeffizientensignale K0, Kl, K2, K3, K4, die den Werteverlauf des jeweils entsprechenden Koeffizienten angeben. Die drei "mittleren" Koefflzientensignale Kl, K2, K3 enthalten, wie unten noch genauer beschrieben wird, Infor a- tionen über die räumliche Anordnung der Signalquellen relativ zum Horgeratetrager. Diese Zuordnung der Filterkoeffizienten ist das Ergebnis der Verzögerung des zweiten Mikrofonsignals MIC2 um drei Zeiteinheiten durch das Verzogerungsglied 56. Die Übertragung der Koeffizientenvektoren und der Filter- koeffizienten m dem Koeffizientenvektor-Signal W erfolgt im hier beschriebenen Ausfuhrungsbeispiel seriell mittels eines geeigneten Protokolls, auf das der Demultiplexer 58 abgestimmt ist. In Ausfuhrungsvarianten werden die Koeffizienten auf andere Weise, insbesondere parallel oder teils parallel und teils seriell, übertragen.
Eine Normierungsemheit 60 normiert die drei Koefflzienten- signale Kl, K2 , K3 und erzeugt daraus die Gewichtungssignale Gl, G2, G3 sowie das Gesamtgewichtungssignal GG.
Fig. 3 veranschaulicht den inneren Aufbau des LMS-Filters 52 Das Eingangssignal X liegt an einem Puffer 62 an, der em Eingangsvektor-Signal Ü erzeugt. Für jeden Abtastzeitpunkt t wird durch das Eingangsvektor-Signal Ö ein Eingangsvektor ü(t) ausgedrückt, der die Werte des Eingangssignals X an den jeweils fünf vorhergehenden Abtastzeitpunkten enthält. Es gilt also:
ü(t) = (x(t-l), x(t-2), x(t-3), x(t-4), x(t-5)), (3)
wobei x(t) den Wert des Eingangssignals X zum Abtastzeitpunkt t angibt.
Die Eingangsvektoren ü(t) werden von einem Vektormultiplizie- rer 64 in einer Matrixoperation mit dem jeweils aktuellen Koeffizientenvektor w(t) des Koeffizientenvektor-Signals W multipliziert, um den (skalaren) Ausgangswert y(t) des Ausgangssignals Y zum Taktzeitpunkt t zu erhalten. In Formelschreibweise gilt somit:
y (t : ( t ; üτ( t ; ( 4 :
wobei _τ den Transpositionsoperator darstellt. Mit anderen
Worten bildet das in Fig. 3 gezeigte LMS-Filter 52, das sich als FIR-Filter (FIR = finite impulse response) mit fünf Koeffizienten klassifizieren läßt, als Ausgangswert y(t) eine Li- nearkombination aus den mit den Koeffizienten kθ(t) - k4 (t) gewichteten Werten des Eingangssignals X zu den letzten fünf AbtastZeitpunkten:
y(t) = 0(t)*x(t-l) + kl(t)*x(t-2) + k2 (t) *x (t-3) + k3(t)*x(t-4) + k4 (t)*x(t-5) . (5)
Ein Elementquadrierer 66 erzeugt das elementweise Quadrat der Signalvektoren ü (t) , und ein Elementsummierer 68 dient zum Aufsummieren der quadrierten Elemente. Zu der so erhaltenen Summe wird mittels eines Addierers 70 eine kleine positive
Konstante C (Größenordnung 10"10) addiert, die von einem Konstantenerzeuger 72 stammt. Das Ergebnis liegt als (skalarer) Divisor an einem Skalardividierer 74 an. Der Dividend ist das Skalarprodukt aus dem aktuellen Fehlerwert e(t) des Fehlersignals E und einem Ausgangsvektor eines Skalarmultiplizierers 76. Dieser Ausgangsvektor entsteht durch Skalarmultiplikation des Eingangsvektors ü(t) mit einer Adaptionskonstante μ.
Der Ergebnisvektor des Skalardividierers 74 wird von einem Vektoraddierer 78 zu dem aktuellen Koeffizientenvektor w(t) hinzugezahlt. E Verzogerungsglied 80 gibt das Ergebnis erst einen Taktzeitpunkt spater als adaptierter Koeffizientenvektor w(t+l) des Koefflzientenvektor-Signals W aus. Insgesamt erhalt man somit:
w (t + i) = w (t; (μ*e(t)*ü(t) / (C + ü(t)- üτ(t)) ) (6)
Durch die m Fig. 3 gezeigte Schaltung wird em LMS-Algorith- mus implementiert, der durch em stochastisches Gradientenverfahren die Filterkoeffizienten kθ(t) - k4(t) so annähert (adaptiert) , daß das Fehlersignal E möglichst weitgehend minimiert wird. Eine genauere Erklärung zu diesem Algorithmus ist m Kapitel 9 (Seiten 365-372) des Buches "Adaptive Filter Theory" von Simon Haykm, 3. Auflage, Prentice-Hall, 1996, enthalten, dessen Inhalt hiermit m die vorliegende Beschreibung aufgenommen wird.
Beim Betrieb des Hörgerätes befindet sich, wie bereits erwähnt, das erste Mikrofon 12 um etwa 1,6 cm in Blickrichtung des Horgeratetragers vor dem zweiten Mikrofon 12'. Bei einer m dem hier beschriebenen Ausfuhrungsbeispiel angenommenen Abtastfrequenz von 20 kHz entspricht dies ungefähr der
Strecke, die Schall in einer Abtastpeπode (50 μs) zurücklegt. In Ausfuhrungsalternativen sind andere Abtastfrequenzen und entsprechend andere Abstände vorgesehen, oder es werden die theoretisch optimalen Abstände nicht exakt eingehalten. In Experimenten sind auch bei Abweichungen von bis zu 25 % relativ gute Ergebnisse erzielt worden. Em Signal SO von einer Nutzschallquelle, die sich in Blickrichtung des Horgeratetragers befindet (Winkel 0°), wird wegen des Mikrofonabstands beispielsweise zum Abtastzeitpunkt t beim vorderen Mikrofon 12 und zum Abtastzeitpunkt t+1 beim hinteren Mikrofon 12' eintreffen. Bei einem Signal S2 von einer Storschallquelle, die sich hinter dem Horgeratetrager befindet (Winkel 180°), sind die Verhaltnisse umgekehrt. Em Signal Sl von einer seitlichen Storschallquelle (Winkel 90°) trifft ungefähr gleichzeitig bei beiden Mikrofonen 12, 12' em und wirkt sich daher auch gleichzeitig auf die Mikrofonsignale MICl, MIC2 aus. Insgesamt gilt:
mιcl(t) = sθ(t) + sl(t) + s2(t-l), und (7) mιc2(t) = sθ(t-l) + sl(t) + s2(t). (8)
Bei den obigen Formeln bezeichnet mιcl(t) den Wert des Signals MICl zum Abtastzeitpunkt t. Entsprechendes gilt für die Signale MIC2, SO, Sl, S2.
Durch Einsetzen der Formel (8) m die Formel (1) erhalt man:
e(t) = s0(t-4) + sl(t-3) + s2(t-3) - y(t), (9)
und weiteres Einsetzen der Formel (5) m Formel (9) ergibt:
e(t) = s0(t-4) + sl(t-3) + s2(t-3)
- ( k0(t)*x(t-l) + kl(t)*x(t-2) + k2(t)*x(t-3) + k3(t)*x(t-4) + k4(t)*x(t-5) ). (10)
Da, wie aus Fig. 2 ersichtlich, x(t) = mιcl(t) für alle Abtastzeitpunkte t gilt, erhalt man aus Formel (10) durch fünfmaliges Einsetzen von Formel (7) schließlich:
e(t) = s0(t-4) + sl(t-3) + s2(t-3) - ( k0(t)*(s0(t-l) + sl(t-l) + s2(t-2))
+ kl(t)*(s0(t-2) + sl(t-2) + s2(t-3))
+ k2(t)*(s0(t-3) + sl(t-3) + s2(t-4)) + k3 (t) * (sO (t-4) + sl(t-4) + s2(t-5) ) + k4(t)*(s0(t-5) + sl(t-5) + s2(t-6) ) ) . (11)
Durch den Algorithmus des LMS-Filters 52 wird der Wert e(t) minimiert. Bei diesem Mmimierungsvorgang steigt k3(t), dessen Term als einziger den Summanden s0(t-4) aufweist, mit zunehmender Intensität des Signals SO (Winkel 0°) an. Entsprechend ist der Betrag des Filterkoeffizienten k2(t) em Indikator für den Anteil des Signals Sl (Winkel 90°) m den Mi- krofonsignalen MICl, MIC2, und der Betrag des Filterkoeffi- zienten kl (t) zeigt den Signalanteil von S2 (Winkel 180°) an. Die Werte aller anderer Filterkoeffizienten streben gegen Null.
Wenn beispielsweise nur Signale aus 0° und aus 90° zur Blickrichtung des Horgeratebenutzers eintreffen, gilt s2(t) = 0 für alle Abtastzeitpunkte t. Aus Formel (11) ergibt sich somit :
e(t) = s0(t-4) + sl (t-3)
- ( kO (t) * (sθ(t-l) + sl(t-l) )
+ kl (t)* (sO (t-2) + sl (t-2) )
+ k2 (t) * (s0(t-3) + sl (t-3) )
+ k3(t)* (sO (t-4) + sl (t-4) ) + k4(t)*(s0(t-5) + sl(t-5))). (12)
In diesem Fall ist zu erwarten, daß durch die Adaption die Koeffizienten k2(t) (entsprechend dem Anteil sl(t-3)) und k3(t) (entsprechend dem Anteil s0(k-4)) anwachsen, wahrend die anderen Koeffizienten gegen Null streben. Bei Signalen aus 0° und 180° ergibt sich aus entsprechenden Gründen em relativ hoher Pegel der Koefflzientensignale Kl und K3 und em geringer Pegel des Koefflzientensignals K2. Die folgende Tabelle faßt die Ergebnisse für unterschiedliche Horsituatio- nen nochmals zusammen:
Figure imgf000014_0001
Wie aus der Tabelle ebenfalls ersichtlich ist, entsprechen die Gewichtungssignale Gl, G2, G3 stets den Koeffizientensignalen Kl, K2, K3. Der Unterschied ist nur, daß die Gewich- tungssignale Gl, G2, G3 durch die Normierungseinheit 60 auf eine gewünschte Summe (beispielsweise Gl + G2 + G3 = 1) normiert wurden, wobei der Normierungsfaktor m das Gesamtgewichtungssignal GG eingeht. Ferner können Unterschiede der Gewichtungssignale Gl, G2 , G3 vergrößert ("gespreizt") werden. In Ausfuhrungsalternativen dienen dagegen die Koeffi- zientensignale Kl, K2, K3 unmittelbar als Gewichtungsfakto- ren . Die Normierungseinheit 60 und der Gewichtungsverstarker 50 können dann entfallen.
Em großer Gewichtungsfaktor Gl hat zur Folge, daß das zweite gerauschreduzierte Signal R2 , bei dem em Storsignalanteil aus 180° weitgehend reduziert ist, einen großen Anteil an dem Ausgangssignal OUT erhalt. Entsprechend beeinflußt bei einem großen Gewichtungsfaktor G2 das erste gerauschreduzierte Si- gnal Rl weitgehend das Ausgangssignal OUT. Bei einem großen Gewichtungsfaktor G3 wirkt sich schließlich das erste Mikrofonsignal MICl hohem Maße auf das Ausgangssignal OUT aus.
Insgesamt ermittelt somit die Signalanalyseemheit die Inten- sitaten oder Starken von Signalanteilen der Mikrofonsignale MICl, MIC2 in den Winkelbereichen in Blickrichtung des Horge- ratetragers, quer zur Blickrichtung und hinter dem Horgeratetrager. Die Gewichtungsfaktoren Gl, G2, G3 entsprechen den ermittelten Intensitatswerten . In Abhängigkeit von diesen Werten werden entweder Signale aus 90° bzw. 180° als Stör- Signale klassifiziert und weitgehend unterdruckt, oder das erste Mikrofonsignal MICl wird "durchgeschaltet", wenn durch die Richtungsanalyse ermittelt wurde, daß weder aus 90° noch aus 180° nennenswerte (Stör-) signalanteile vorliegen.
Fig. 4 zeigt den zeitlichen Verlauf der Koeffizientensignale
Kl (Linie -*—*-) , K2 (Linie -+—+-) und K3 (Linie ) in einem realistischen Experiment mit einer Nutzsignalquelle aus 0° und einer Storsignalquelle aus 90° (je em Sprachsignal). Die Abszissenachse stellt den Bereich von 0 bis 10 Sekunden dar. Der Wert des Koeffizientensignals K2 ( 90°-Indιkator) ist erwartungsgemäß stets deutlich hoher als der Wert des Koeffizientensignals Kl (180°-Indιkator) .
Das erste Mikrofonsignal MICl und das Ausgangssignal OUT für das m diesem Experiment verwendete Signalbeispiel sind m Fig. 5 gezeigt. Insbesondere im Zeitabschnitt zwischen 7,3 bis 8,1 Sekunden enthalt das Mikrofonsignal MICl hauptsächlich Storsignalanteile. Es ist ersichtlich, daß diese Anteile im Ausgangssignal OUT weitgehend unterdruckt sind.
Wahrend bisher die Funktion des erfmdungsgemaßen Hörgeräts und Verfahrens anhand der m Fig. 1 bis Fig. 3 beispielhaft dargestellten Schaltung beschrieben wurde, sind m Ausfuh- rungsalternativen andere Implementierungen möglich. Insbesondere können die Funktionen der Schaltung ganz oder teilweise durch Programmodule eines Digitalprozessors, zum Beispiel eines digitalen Signalprozessors, realisiert werden. Die Schaltung kann ferner als digitale oder analoge Schaltung oder m unterschiedlichen Mischformen zwischen diesen Extremen aufgebaut sein.
In weiteren AusfUhrungsalternativen wird das Ergebnis der Richtungsanalyse auf andere Weise zur Signalverarbeitung aus- gewertet. Zum Beispiel können die Koeffizientensignale Kl,
K2, K3 auch zur Zeitvarianten Ansteuerung von beispielsweise drei fest vorgegebenen Richtmikrofoncharakteristiken mit Polen bei 90°, 135° und 180° verwendet werden.
Ferner sind Ausführungsvarianten vorgesehen, in denen eine "intelligente" Bestimmung von Stör- und Nutzsignalanteilen vorgenommen wird (etwa mittels der Normierungseinheit 60) . Während im oben beschriebenen Ausführungsbeispiel der Signal- anteil in Blickrichtung (0°) stets als Nutzsignalanteil angesehen wurde, kann beispielsweise bei Vorhandensein des Si- gnals Sl aus 90° und gleichzeitigem Nicht-Vorhandensein des Signals SO aus 0° das Signal Sl nun als Nutzsignal angesehen und nicht mehr unterdrückt werden.

Claims

Patentansprüche
1. Hörgerät mit: einer Mikrofoneinheit (10), die zum Erzeugen von mindestens zwei Mikrofonsignalen (MICl, MIC2) mindestens zwei Mikrofone (12, 12') aufweist, einer Signalverarbeitungsemheit (18), um mindestens ein Ausgangssignal (OUT) zu erzeugen, bei dem Signalanteile der Mikrofonsignale (MICl, MIC2) richtungsabhangig verstärkt und/ oder gedampft sind, und einer Wiedergabeeinheit (26) zum Ausgeben des mindestens einen Ausgangssignals (OUT) , d a d u r c h g e k e n n z e i c h n e t , daß eine Signalanalyseeinheit (16) vorgesehen ist, um eine Richtungsanalyse der Mikrofonsignale (MICl, MIC2) vorzunehmen, und daß die Signalverarbeitungseinheit (18) dazu eingerichtet ist, zumindest eine Eigenschaft der richtungsabhangigen Verstärkung und/oder Dampfung in Abhängigkeit von der durch die Signalanalyseeinheit (16) vorgenommenen Richtungsanalyse zu verandern.
2. Hörgerat nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Signalanalyseeinheit (16) dazu eingerichtet ist, bei der Richtungsanalyse der Mikrofonsignale (MICl, MIC2) die Starken von Signalanteilen der Mikrofonsignale (MICl, MIC2) in mehre- ren Richtungsklassen (0°, 90°, 180°) zu bestimmen.
3. Hörgerät nach Anspruch 1 oder Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Signalanalyseeinheit (16) ein adaptives Filter, insbesondere ein LMS-Filter (52) , aufweist, dessen Filterkoeffizienten (kθ(t), kl(t), k2(t), k3(t), k4 (t) ) das Ergebnis der Richtungsanalyse zumindest beeinflussen.
4. Hörgerät nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Signalverarbeitungsemheit (18) mindestens eine Reduktions- einheit (20, 22) aufweist, um aus den Mikrofonsignalen (MICl, MIC2) je ein gerauschreduziertes Signal (Rl, R2 ) zu bestimmen, in dem Signalanteile je einer vorbestimmten Richtung gedämpft sind.
5. Hörgerät nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Signalverarbeitungseinheit (18) eine Mischeinheit (24) aufweist, um das mindestens eine gerauschreduzierte Signal (Rl, R2) und gegebenenfalls mindestens ein weiteres Signal (MICl) in Abhängigkeit von durch die Signalanalyseeinheit (16) vorgegebenen Gewichtungssignalen (Gl, G2, G3, GG) zu mischen.
6. Hörgerät nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Mikrofoneinheit (10) zwei Mikrofone (12, 12') aufweist, deren Abstand höchstens 5 cm und vorzugsweise höchstens 2,5 cm betragt .
7. Verfahren zum Verarbeiten von Mikrofonsignalen (MICl, MIC2) mehrerer Mikrofone (12, 12') in einem Hörgerät, mit den Schritten: - Verarbeiten der Mikrofonsignale (MICl, MIC2), wobei
Signalanteile der Mikrofonsignale (MICl, MIC2) richtungs- abhangig verstärkt und/oder gedampft werden, um mindestens ein Ausgangssignal (OUT) zu erzeugen, und
Ausgeben des mindestens einen Ausgangssignals (OUT) , d a d u r c h g e k e n n z e i c h n e t , daß ferner eine Richtungsanalyse der Mikrofonsignale (MICl, MIC2) vorgenommen wird, und daß zumindest eine Eigenschaft der richtungsabhangigen Verstärkung und/oder Dampfung in Abhängigkeit von der Richtungsanalyse verändert wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß bei der Richtungsanalyse der Mikrofonsignale (MICl, MIC2) die Starken von Signalanteilen der Mikrofonsignale (MICl, MIC2) in mehreren Richtungsklassen (0°, 90°, 180°) bestimmt werden.
9. Verfahren nach Anspruch 7 oder Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß zur Richtungsanalyse der Mikrofonsignale (MICl, MIC2) em adaptives Filter, insbesondere em LMS-Filter, (52) verwendet wird, und daß die Filterkoeffizienten (kθ(t), kl (t) , k2(t), k3(t), k4(t)) das Ergebnis der Richtungsanalyse zumindest beeinflussen.
10. Verfahren nach einem der Ansprüche 7 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß der Schritt des Verarbeitens der Mikrofonsignale (MICl, MIC2) den folgenden Teilschritt aufweist: - Bestimmen mindestens eines gerauschreduzierten Signals (Rl, R2 ) , m dem Signalanteile je einer vorbestimmten Richtung gedampft sind, aus den Mikrofonsignalen (MICl, MIC2) .
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß der Schritt des Verarbeitens der Mikrofonsignale (MICl, MIC2) den weiteren Teilschritt aufweist:
Mischen des mindestens einen gerauschreduzierten Signals (Rl, R2) und gegebenenfalls mindestens eines weiteren Signals (MICl) in Abhängigkeit von bei der bei der Richtungsanalyse der Mikrofonsignale (MICl, MIC2) ermittelten Gewichtungssignalen (Gl, G2, G3, GG) .
PCT/EP1999/006916 1998-09-29 1999-09-17 Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät WO2000019770A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK99948785T DK1118248T3 (da) 1998-09-29 1999-09-17 Höreapparat og fremgangsmåde til bearbejdning af mikrofonsignaler i et höreapparat
EP99948785A EP1118248B1 (de) 1998-09-29 1999-09-17 Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät
DE59911808T DE59911808D1 (de) 1998-09-29 1999-09-17 Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät
US09/806,374 US6751325B1 (en) 1998-09-29 1999-09-17 Hearing aid and method for processing microphone signals in a hearing aid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19844761.2 1998-09-29
DE19844761 1998-09-29

Publications (1)

Publication Number Publication Date
WO2000019770A1 true WO2000019770A1 (de) 2000-04-06

Family

ID=7882730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006916 WO2000019770A1 (de) 1998-09-29 1999-09-17 Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät

Country Status (4)

Country Link
US (1) US6751325B1 (de)
EP (1) EP1118248B1 (de)
DE (1) DE59911808D1 (de)
WO (1) WO2000019770A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473967A2 (de) * 2003-03-25 2004-11-03 Siemens Audiologische Technik GmbH Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
DE10356093B3 (de) * 2003-12-01 2005-06-02 Siemens Audiologische Technik Gmbh Hörervorrichtung mit richtungsabhängiger Signalverarbeitung und entsprechendes Verfahren
DE102005009892B3 (de) * 2005-03-01 2006-10-26 Siemens Audiologische Technik Gmbh Messverfahren sowie Messanordnung für adaptive Richtmikrofone
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
EP1912473A1 (de) * 2006-10-10 2008-04-16 Siemens Audiologische Technik GmbH Verarbeitung eines Eingangssignals in einem Hörgerät
EP2317779A2 (de) 2009-10-29 2011-05-04 Siemens Medical Instruments Pte. Ltd. Hörgerät und Verfahren zur Rückkopplungsunterdrückung mit einem Richtmikrofon
DE102009060094A1 (de) 2009-12-22 2011-06-30 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Rückkopplungserkennung und -unterdrückung mit einem Richtmikrofon
EP3567874A1 (de) * 2018-05-11 2019-11-13 Sivantos Pte. Ltd. Verfahren zum betrieb eines hörgeräts sowie hörgerät

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035549A1 (en) * 1999-11-29 2003-02-20 Bizjak Karl M. Signal processing system and method
CA2420989C (en) * 2002-03-08 2006-12-05 Gennum Corporation Low-noise directional microphone system
WO2004025826A1 (en) * 2002-09-16 2004-03-25 Nokia Corporation Direct conversion receiver and receiving method
US7076072B2 (en) * 2003-04-09 2006-07-11 Board Of Trustees For The University Of Illinois Systems and methods for interference-suppression with directional sensing patterns
US8331582B2 (en) * 2003-12-01 2012-12-11 Wolfson Dynamic Hearing Pty Ltd Method and apparatus for producing adaptive directional signals
US7280943B2 (en) * 2004-03-24 2007-10-09 National University Of Ireland Maynooth Systems and methods for separating multiple sources using directional filtering
DE102005008316B4 (de) * 2005-02-23 2008-11-13 Siemens Audiologische Technik Gmbh Hörvorrichtung und Verfahren zum Überwachen des Hörvermögens eines Minderhörenden
US7957548B2 (en) 2006-05-16 2011-06-07 Phonak Ag Hearing device with transfer function adjusted according to predetermined acoustic environments
US7706549B2 (en) * 2006-09-14 2010-04-27 Fortemedia, Inc. Broadside small array microphone beamforming apparatus
DE102008046040B4 (de) * 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
JP2009288555A (ja) * 2008-05-29 2009-12-10 Toshiba Corp 音響特性測定装置、音響特性補正装置および音響特性測定方法
US8654990B2 (en) * 2009-02-09 2014-02-18 Waves Audio Ltd. Multiple microphone based directional sound filter
DE102009012166B4 (de) 2009-03-06 2010-12-16 Siemens Medical Instruments Pte. Ltd. Hörvorrichtung und Verfahren zum Reduzieren eines Störgeräuschs für eine Hörvorrichtung
DK2629551T3 (en) 2009-12-29 2015-03-02 Gn Resound As Binaural hearing aid system
DE102013207161B4 (de) * 2013-04-19 2019-03-21 Sivantos Pte. Ltd. Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
DE102013219636A1 (de) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur überlagerung eines schallsignals
GB2542961B (en) 2014-05-29 2021-08-11 Cirrus Logic Int Semiconductor Ltd Microphone mixing for wind noise reduction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229230A1 (de) * 1985-10-16 1987-07-22 Siemens Aktiengesellschaft Richtmikrofonanordnung
GB2274372A (en) * 1992-12-02 1994-07-20 Ibm Adaptive noise cancellation device
WO1997002559A1 (en) * 1995-07-03 1997-01-23 National Research Council Of Canada Digital feed-forward active noise control system
JPH0993088A (ja) * 1995-09-26 1997-04-04 Fujitsu Ltd 適応フィルタ係数の推定制御方法および装置
EP0802699A2 (de) * 1997-07-16 1997-10-22 Phonak Ag Verfahren zum Elektronischerweitern des Abstands zwischen zwei akustischen/elektrischen Wandlern und einem Hörhilfegerät
DE19635229A1 (de) * 1996-08-30 1998-03-12 Siemens Audiologische Technik Richtungsempfindliche Hörhilfe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134740A (en) 1981-02-13 1982-08-20 Toshiba Corp Keyboard input device
US4622440A (en) 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
US4751738A (en) 1984-11-29 1988-06-14 The Board Of Trustees Of The Leland Stanford Junior University Directional hearing aid
US4956867A (en) * 1989-04-20 1990-09-11 Massachusetts Institute Of Technology Adaptive beamforming for noise reduction
DK164349C (da) 1989-08-22 1992-11-02 Oticon As Hoereapparat med tilbagekoblingskompensation
AT407815B (de) 1990-07-13 2001-06-25 Viennatone Gmbh Hörgerät
CH681411A5 (de) 1991-02-20 1993-03-15 Phonak Ag
US5402496A (en) 1992-07-13 1995-03-28 Minnesota Mining And Manufacturing Company Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering
US5524056A (en) 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
US5757933A (en) 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229230A1 (de) * 1985-10-16 1987-07-22 Siemens Aktiengesellschaft Richtmikrofonanordnung
GB2274372A (en) * 1992-12-02 1994-07-20 Ibm Adaptive noise cancellation device
WO1997002559A1 (en) * 1995-07-03 1997-01-23 National Research Council Of Canada Digital feed-forward active noise control system
JPH0993088A (ja) * 1995-09-26 1997-04-04 Fujitsu Ltd 適応フィルタ係数の推定制御方法および装置
DE19635229A1 (de) * 1996-08-30 1998-03-12 Siemens Audiologische Technik Richtungsempfindliche Hörhilfe
EP0802699A2 (de) * 1997-07-16 1997-10-22 Phonak Ag Verfahren zum Elektronischerweitern des Abstands zwischen zwei akustischen/elektrischen Wandlern und einem Hörhilfegerät

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 8 29 August 1997 (1997-08-29) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
EP1473967A3 (de) * 2003-03-25 2011-06-08 Siemens Audiologische Technik GmbH Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
EP1473967A2 (de) * 2003-03-25 2004-11-03 Siemens Audiologische Technik GmbH Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
DE10356093B3 (de) * 2003-12-01 2005-06-02 Siemens Audiologische Technik Gmbh Hörervorrichtung mit richtungsabhängiger Signalverarbeitung und entsprechendes Verfahren
DE102005009892B3 (de) * 2005-03-01 2006-10-26 Siemens Audiologische Technik Gmbh Messverfahren sowie Messanordnung für adaptive Richtmikrofone
US8325954B2 (en) 2006-10-10 2012-12-04 Siemens Audiologische Technik Gmbh Processing an input signal in a hearing aid
EP1912473A1 (de) * 2006-10-10 2008-04-16 Siemens Audiologische Technik GmbH Verarbeitung eines Eingangssignals in einem Hörgerät
EP2317779A2 (de) 2009-10-29 2011-05-04 Siemens Medical Instruments Pte. Ltd. Hörgerät und Verfahren zur Rückkopplungsunterdrückung mit einem Richtmikrofon
DE102009051200A1 (de) 2009-10-29 2011-05-05 Siemens Medical Instruments Pte. Ltd. Hörgerät und Verfahren zur Rückkopplungsunterdrückung mit einem Richtmikrofon
DE102009051200B4 (de) * 2009-10-29 2014-06-18 Siemens Medical Instruments Pte. Ltd. Hörgerät und Verfahren zur Rückkopplungsunterdrückung mit einem Richtmikrofon
DE102009060094A1 (de) 2009-12-22 2011-06-30 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Rückkopplungserkennung und -unterdrückung mit einem Richtmikrofon
DE102009060094B4 (de) * 2009-12-22 2013-03-14 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Rückkopplungserkennung und -unterdrückung mit einem Richtmikrofon
US8588444B2 (en) 2009-12-22 2013-11-19 Siemens Medical Instruments Pte. Ltd. Method and hearing device for feedback recognition and suppression with a directional microphone
EP2357850A2 (de) 2009-12-22 2011-08-17 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Rückkopplungserkennung und -unterdrückung mit einem Richtmikrofon
EP3567874A1 (de) * 2018-05-11 2019-11-13 Sivantos Pte. Ltd. Verfahren zum betrieb eines hörgeräts sowie hörgerät
US10856089B2 (en) 2018-05-11 2020-12-01 Sivantos Pte. Ltd. Method for operating a hearing aid, and hearing aid

Also Published As

Publication number Publication date
DE59911808D1 (de) 2005-04-28
EP1118248B1 (de) 2005-03-23
US6751325B1 (en) 2004-06-15
EP1118248A1 (de) 2001-07-25

Similar Documents

Publication Publication Date Title
WO2000019770A1 (de) Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät
DE60108752T2 (de) Verfahren zur rauschunterdrückung in einem adaptiven strahlformer
DE60310725T2 (de) Verfahren und vorrichtung zur verarbeitung von subbandsignalen mittels adaptiver filter
DE3144052C2 (de)
DE69737235T2 (de) Digitales hörhilfegerät unter verwendung von differenzsignaldarstellungen
DE69530961T2 (de) Signalverstärkersystem mit verbesserter echounterdrückung
EP1251493A2 (de) Verfahren zur Geräuschreduktion mit selbststeuernder Störfrequenz
EP1771034A2 (de) Mikrofonkalibrierung bei einem RGSC-Beamformer
DE60029436T2 (de) Akustischer Echokompensator
EP2645743B1 (de) Hörvorrichtung für eine binaurale Versorgung und Verfahren zum Bereitstellen einer binauralen Versorgung
DE102017215823B3 (de) Verfahren zum Betrieb eines Hörgerätes
DE60004863T2 (de) EINE METHODE ZUR REGELUNG DER RICHTWIRKUNG DER SCHALLEMPFANGSCHARAkTERISTIK EINES HÖRGERÄTES UND EIN HÖRGERÄT ZUR AUSFÜHRUNG DER METHODE
DE102006047986A1 (de) Verarbeitung eines Eingangssignals in einer Hörhilfe
EP3065417B1 (de) Verfahren zur unterdrückung eines störgeräusches in einem akustischen system
DE102018117557B4 (de) Adaptives nachfiltern
EP1406469B1 (de) Rückkopplungskompensator in einem akustischen Verstärkungssystem, Hörhilfsgerät, Verfahren zur Rückkopplungskompensation und Anwendung des Verfahrens in einem Hörhilfsgerät
DE102018117558A1 (de) Adaptives nachfiltern
DE10334396B3 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP1542500A2 (de) Hörgerät mit Störgeräuschunterdrückung und entsprechendes Störgeräuschunterdrückungsverfahren
EP2124482B1 (de) Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System
EP1945000B1 (de) Verfahren zur Reduktion von Störleistungen und entsprechendes Akustiksystem
EP4367900A1 (de) Computergestütztes verfahren zur stabilen verarbeitung eines audiosignals unter verwendung eines adaptierten lms-algorithmus
EP1453355A1 (de) Signalverarbeitung in einem Hörgerät
DE102019105458B4 (de) System und Verfahren zur Zeitverzögerungsschätzung
EP3697107B1 (de) Verfahren zum betrieb eines hörsystems und hörsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999948785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09806374

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999948785

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999948785

Country of ref document: EP