EP2124482B1 - Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System - Google Patents

Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System Download PDF

Info

Publication number
EP2124482B1
EP2124482B1 EP09159399.6A EP09159399A EP2124482B1 EP 2124482 B1 EP2124482 B1 EP 2124482B1 EP 09159399 A EP09159399 A EP 09159399A EP 2124482 B1 EP2124482 B1 EP 2124482B1
Authority
EP
European Patent Office
Prior art keywords
filter bank
filter
equalization
channels
sfb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09159399.6A
Other languages
English (en)
French (fr)
Other versions
EP2124482A3 (de
EP2124482A2 (de
Inventor
Daniel Alfsmann
Robert BÄUML
Dr. Henning Puder
Wolfgang Sörgel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2124482A2 publication Critical patent/EP2124482A2/de
Publication of EP2124482A3 publication Critical patent/EP2124482A3/de
Application granted granted Critical
Publication of EP2124482B1 publication Critical patent/EP2124482B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers

Definitions

  • the present invention relates to a hearing aid with a filter bank system which has a multi-stage analysis filter bank and / or a multi-stage synthesis filter bank to split an input signal of the hearing device through a plurality of filter bank channels into a plurality of subband signals and / or to re-assemble subband signals of a plurality of filter bank channels.
  • the term "hearing device” is understood to mean any sound-emitting device which can be worn in or on the ear, in particular a hearing device, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • Sound signals recorded with one or more microphones of a hearing device and in particular of a hearing device are frequently split into K subband signals by means of one or more frequency-selective digital analysis filter banks (AFB).
  • the subband signals are then subjected to a subband-specific signal manipulation.
  • the manipulated subband signals are resynthesized by means of a digital synthesis filter bank (SFB).
  • the decomposition and resynthesis are performed by a filter bank composed of at least two cascaded stages or a partially at least two-stage (analysis) filter bank for decomposing the input signal into K subband signals with a reduced sampling rate.
  • the entire filter bank system thus consists of a multi-level AFB and a multi-level SFB.
  • the individual filter banks can each be conventional complex-modulated filter banks.
  • the filter bank outlined above for generating subband signals of different bandwidths B i effects a delay (group delay) of the K subband signals, which depends on the respective signal or channel bandwidth B i . This results in between the subband signals or subband signal groups of different bandwidths B i jumps in the total signal delay, which have a disturbing effect on the signal quality.
  • a hearing device is made US 2005/0185798 A1 known.
  • the hearing apparatus comprises a filter bank system having an analysis filter bank which decomposes an input signal through a plurality of filter bank channels into a plurality of subband signals, and a synthesis filter bank which reassembles the subband signals of the filter bank channels.
  • the hearing device further comprises a correction unit which is interposed between the filter banks and which frequency-dependently delays the subband signals in order to correct group delay times as a function of a deviation in the hearing of a hearing impaired person.
  • US 5 233 665 A is an audio equalizer system known.
  • the equalizer system has a high-pass filter followed by an N-band filter, the channels of which are then amplified separately. The individual resulting frequency bands are combined via a summer and output.
  • a low-noise noise reduction filter is known.
  • An analysis filter bank breaks an input signal into two output channels.
  • the first channel signal is an estimate of a periodic component of the input signal
  • the second channel signal is an estimate of a non-periodic component of the input signal.
  • the signal undergoes a delay while the signal in the second channel passes through a noise reduction filter.
  • a method is known with which a serial input signal can be transmitted via a data transmission connection.
  • the method comprises the decomposition of the input signal into a plurality of filter bank channels by means of a multi-stage analysis filter bank and the combining of the subband signals guided in the filter bank channels by means of a multi-stage synthesis filter bank.
  • the object of the present invention is therefore to improve the signal quality in the processing of signals in hearing devices using multi-stage filter banks.
  • this object is achieved by a hearing device with a filter bank system which has a multi-stage analysis filter bank and a multi-stage synthesis filter bank to split an input signal of the hearing device through several filter bank channels into a plurality of subband signals and / or to re-assemble subband signals of several filter bank channels where the filter bank system is equipped with at least one equalization filter to compensate for differences in frequency responses between filter bank channels.
  • equalization filter equalizer
  • both the analysis filter bank and the synthesis filter bank are multi-level, and the equalization filter is arranged between two hierarchical levels of filters of the filter bank system.
  • the equalization filter may be located at the bottom of the analysis filterbank or the synthesis filterbank. This only requires one or more equalizers that operate at the lowest sampling rate and thus require less processing power.
  • the equalization filter may be located in the topmost stage of the synthesis filterbank.
  • the advantage of this is that the group delay / magnitude frequency response transition over the maximum frequency width, namely the entire signal bandwidth can be distributed.
  • the equalization filter is placed in the synthesis filterbank. It can also be used to equalize distortions that originate from the analysis filter bank.
  • At least two pairs of adjacent filter banks are present, which have different bandwidth in relation to each other, so that in each filter bank pair two filter bank channels of different width are adjacent to each other, and in the wider of the two filter bank channels is ever a equalization to Group runtime increase arranged. This makes it possible to easily achieve a steady transition of the group delay at the subband boundaries.
  • FIG. 2 is a filter bank cascade consisting of a multi-stage analysis filter bank (AFB) and a multi-stage synthesis filter bank (SFB) shown.
  • the exemplary filter bank is used for signal processing in a hearing device and in particular in a hearing aid.
  • the input side filter bank (FB1) the AFB splits the input signal into four channels.
  • the output-side filter banks FB2A, FB2B, FB2C and FB2D further divide the four channels into ultimately 24 channels.
  • the lowest channel of the FB1 is split by the FB2A into twelve channels, while the remaining three channels of the FB1 are divided into four channels using the output-side filter banks FB2B, FB2C and FB2D.
  • the input sampling rate of the FB1 is 4 kHz, for example.
  • the sampling rate between the two filter bank stages f Zw is 6 kHz in the example chosen.
  • the sampling rates in the subband channels at the output of the AFB are in the high frequency groups that is after the filter banks FB2B, FB2C and FB2D each 3kHz.
  • the sampling rate after the filter bank FB2A of the lower frequency group is 1.2 kHz. In this case, a downward scanning is advantageously carried out here.
  • a subband specific signal manipulation is performed, which in FIG. 2 but not shown.
  • the AFB in FIG. 2 directly the SFB for the resynthesis of the signal.
  • the SFB is constructed symmetrically to the AFB with regard to the filter banks in the individual stages. Accordingly, the filter banks FB3A, FB3B, FB3C and FB3D are located in the lowest stage of the SFB, which combine twelve or four subband signals into one signal.
  • the four resulting signals at a sampling rate of 6 kHz are fed to the higher synthesis stage FB4, which composes the signals into an output signal with a sampling rate of 24 kHz.
  • the wider filter banks FB2A and FB3A in the lower frequency group also lead here to an increased group delay ⁇ g compared to the next higher frequency group with the narrower filter banks FB2B and FB3B.
  • the effects of the filter banks FB3A, FB3B and FB3C of the synthesis filter bank are shown there.
  • a group delay jump which is indicated by dashed lines.
  • One however, such a jump would lead to disturbances in the output signal.
  • the filter bank FB3B is therefore followed by an equalization filter (equalizer EQ).
  • This equalization filter EQ increases the group delay of the filter bank FB3B at the upper (higher frequency) band edge to the value of the group delay of the filter bank FB3A at its lower band edge.
  • the results in FIG. 3 Solid, continuous curve between the two filter banks FB3A and FB3B. Disturbances in the output signal due to group delay differences of the filter banks can thus largely be avoided.
  • the equalization filter EQ can also be arranged at other locations in the AFB-SFB system. As a result, for example, the dotted transition of the group delay from the value of the filter bank FB3A to the value of the filter bank FB3C would be FIG. 3 possible (see below for details).
  • an AFB SFB system is generally provided with at least one equalizer (EQ) to reduce group delay differences and / or attenuation / gain differences between different bandwidth filter bank channels B i .
  • the equalization function should always refer to the case where the subband signals of the AFB-SFB filter bank are not subject to manipulation, ie a so-called "idle state" exists.
  • the aim of the equalization method is not to extend the absolute equalization of the properties of the filter bank channels of different bandwidths, but to extend the abrupt transitions of the transmission characteristics limited to a very narrow band of frequencies to a wider frequency band in order to avoid disturbing artifacts.
  • the equalization filter is used to increase group delays in certain subbands or to modify attenuations / amplifications in the desired manner.
  • this could also be based on the example of FIG. 3 the group delay of the filter bank FB3B at the upper band edge of the value of the group delay of the Filter bank FB3C be increased to the value of the group delay of the filter bank FB3A at the lower band edge.
  • an equalization filter could be provided at the lowest level of the subbands in the wider (3kHz) channel with the lowest center frequency.
  • the transition region is extended only over one channel (the 3 kHz bandwidth), while it may extend over 3 x 3 kHz when the equalization filter is arranged at a higher level.
  • one equalizing filter must be used in each of four adjacent 3 kHz channels. The advantage of using only one or two equalization filters at this lowest level is that they can work at the lowest sampling rate and thus generally require less computing power.
  • the equalization filter EQ in the highest level of the cascaded filter bank system is arranged here at the output of the filter bank FB4.
  • the group delay or magnitude frequency response transition can be distributed over the maximum frequency width, ie the entire signal bandwidth (see dotted line in FIG. 3 )
  • the filter bank system has more than two different bandwidths.
  • an equalization filter EQ is provided at each Transition between adjacent channels of different bandwidth.
  • the equalization filter is to be arranged in each case in the channel with the larger bandwidth, since there it must increase the group delay.
  • the amplifying or attenuating equalizing filter EQ may also be arranged in the other channel.
  • equalizers or equalization filters EQ in individual filter bank channels at a different hierarchical level avoids abrupt transitions of the attenuation / amplification and / or the group delay.
  • Particular advantages arise when the smallest possible number of equalization filters EQ is used, in which they are placed at those points where they are most effective. But they can also be located where they cause the least amount of computation.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Networks Using Active Elements (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Hörvorrichtung mit einem Filterbank-System, das eine mehrstufige Analysefilterbank und/oder eine mehrstufige Synthesefilterbank aufweist, um ein Eingangssignal der Hörvorrichtung durch mehrere Filterbankkanäle in mehrere Teilbandsignale zu zerlegen und/oder um Teilbandsignale mehrerer Filterbankkanäle wieder zusammenzufügen. Unter dem Begriff "Hörvorrichtung" wird jedes im oder am Ohr tragbare, schallausgebende Gerät, insbesondere ein Hörgerät, ein Headset, Kopfhörer und dergleichen, verstanden.
  • Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.
  • Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.
  • Schallsignale, die mit einem oder mehreren Mikrofonen einer Hörvorrichtung und insbesondere eines Hörgeräts aufgenommen werden, werden häufig mittels einer oder mehrer frequenzselektiver digitaler Analyse-Filterbänke (AFB) in K Teilbandsignale zerlegt. Die Teilbandsignale werden dann einer teilbandspezifischen Signalmanipulation unterzogen. Schließlich werden die manipulierten Teilbandsignale mittels einer digitalen Synthese-Filterbank (SFB) resynthetisiert. Dabei erfolgt die Zerlegung und Resynthese durch eine aus mindestens zwei kaskadierten Stufen zusammengesetzte Filterbank bzw. eine partiell mindestens zweistufige (Analyse) Filterbank zur Zerlegung des Eingangssignals in K Teilbandsignale mit verminderter Abtastrate. Das Filterbanksystem ist hierbei so konzipiert, dass die zu manipulierenden K Teilbandsignale unterschiedliche Bandbreite Bi mit i=1, ... I aufweisen, wobei 2≤I<K ist.
  • Das gesamte Filterbank-System besteht also aus einer mehrstufigen AFB und einer mehrstufigen SFB. Bei den einzelnen Filterbänken kann es sich jeweils um herkömmliche komplex modulierte Filterbänke handeln.
  • Die oben skizzierte Filterbank zur Erzeugung von Teilbandsignalen unterschiedlicher Bandbreiten Bi, mit i=l, ..., I und 2≤I<K bewirkt eine Verzögerung (Gruppenlaufzeit) der K Teilbandsignale, die abhängig ist von der jeweiligen Signal- bzw. Kanalbandbreit Bi. Dadurch ergeben sich zwischen den Teilbandsignalen bzw. Teilbandsignalgruppen unterschiedlicher Bandbreite Bi Sprünge in der Gesamtsignalverzögerung, die sich störend auf die Signalqualität auswirken.
  • Eine Hörvorrichtung nach dem Oberbegriff des Anspruchs 1 ist aus US 2005/0185798 A1 bekannt. Die Hörvorrichtung umfasst ein Filterbanksystem mit einer Analysefilterbank, die ein Eingangssignal durch mehrere Filterbankkanäle in mehrere Teilbandsignale zerlegt, sowie mit einer Synthesefilterbank, die die Teilbandsignale der Filterbankkanäle wieder zusammenfügt. Die Hörvorrichtung umfasst weiterhin eine den Filterbänken zwischengeschaltete Korrektureinheit, die die Teilbandsignale frequenzabhängig verzögert, um Gruppenlaufzeiten frequenzabhängig entsprechend einer Abweichung im Gehör eines Gehörgeschädigten zu korrigieren.
  • Aus US 5 233 665 A ist ein Audio-Equalizer-System bekannt. Das Equalizer-System weist einen Hochpassfilter mit anschließendem N-Band-Filter auf, dessen Kanäle anschließend getrennt verstärkt werden. Die einzelnen resultierenden Frequenzbänder werden über ein Summierglied zusammengefasst und ausgegeben.
  • Aus der Druckschrift WO 98/02983 ist ein Geräuschreduktionsfilter mit geringer Verzögerung bekannt. Eine Analysefilterbank zerlegt ein Eingangssignal in zwei Ausgangskanäle. Das Signal des ersten Kanals ist eine Schätzung einer periodischen Komponente des Eingangssignals und das Signal des zweiten Kanals ist eine Schätzung einer nichtperiodischen Komponente des Eingangssignals. Im ersten Kanal wird das Signal einer Verzögerung unterzogen, während das Signal im zweiten Kanal ein Geräuschreduktionsfilter passiert.
  • Weiterhin ist in Göckler, Heinz G.; Groth Alexandra: Multiratensysteme Abtastratenumsetzung und digitale Filterbänke, Wildburgstetten, Schlemmbachverlag 2004, S. 397 bis 399, eine maximaldezimierende M-Kanal-Analyse-Filterbank in Baumstruktur offenbart. Die Filterbank weist drei Stufen auf.
  • Aus US 5 995 539 A ist außerdem ein Verfahren bekannt, mit dem ein serielles Eingangssignal über eine Datenübertragungsverbindung übertragen werden kann. Das Verfahren umfasst die Zerlegung des Eingangssignals mittels einer mehrstufigen Analysefilterbank in mehrere Filterbankkanäle und die Zusammenfügung der in der Filterbankkanälen geführten Teilbandsignale mittels einer mehrstufigen Synthesefilterbank.
  • Die Aufgabe der vorliegenden Erfindung besteht somit darin, die Signalqualität bei der Verarbeitung von Signalen in Hörvorrichtungen mit Hilfe mehrstufiger Filterbänke zu verbessern.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch eine Hörvorrichtung mit einem Filterbank-System, das eine mehrstufige Analysefilterbank und eine mehrstufige Synthesefilterbank aufweist, um ein Eingangssignal der Hörvorrichtung durch mehrere Filterbank-Kanäle in mehrere Teilbandsignale zu zerlegen und/oder um Teilbandsignale mehrerer Filterbank-Kanäle wieder zusammenzufügen, wobei das Filterbank-System mit mindestens einem Entzerrungsfilter ausgestattet ist, um Unterschiede der Frequenzgänge zwischen Filterbank-Kanälen auszugleichen.
  • In vorteilhafter Weise ist es mit dem Entzerrungsfilter (Equalizer) möglich, die unterschiedlichen Gruppenlaufzeiten und gegebenenfalls unterschiedliche Betragsverläufe der Frequenzgänge der Filterbank-Kanäle auszugleichen bzw. Laufzeitsprünge zu verschleifen oder zu glätten.
  • Somit können Unstetigkeitsstellen im Frequenzgang des Filterbank-Systems beseitigt und damit zusammenhängende Störungen unterdrückt werden.
  • Vorzugsweise ist sowohl die Analyse-Filterbank als auch die Synthese-Filterbank mehrstufig aufgebaut, und das Entzerrungsfilter ist zwischen zwei hierarchischen Ebenen von Filtern des Filterbank-Systems angeordnet. Alternativ kann das Entzerrungsfilter in der untersten Stufe der Analyse-Filterbank oder der Synthese-Filterbank angeordnet sein. Damit sind nur ein oder mehrere Equalizer notwendig, die bei der niedrigsten Abtastrate arbeiten und somit weniger Rechenleistung erfordern.
  • Weiterhin alternativ kann das Entzerrungsfilter in der obersten Stufe der Synthese-Filterbank angeordnet sein. Vorteilhaft daran ist, dass der Gruppenlaufzeit-/Betragsfrequenzgang-Übergang über die maximale Frequenzbreite, nämlich die gesamte Signalbandbreite verteilt werden kann.
  • Vorzugsweise wird das Entzerrungsfilter in der Synthese-Filterbank angeordnet. Hiermit lassen sich auch Verzerrungen, die von der Analyse-Filterbank herstammen, entzerren.
  • Vorzugsweise sind in dem Filterbank-System mindestens zwei Paare nebeneinander liegender Filterbänke vorhanden, die im Verhältnis zueinander unterschiedliche Bandbreite besitzen, so dass bei jedem Filterbankpaar jeweils zwei Filterbank-Kanäle verschiedener Breite nebeneinander liegen, und im breiteren der jeweils zwei Filterbankkanäle ist je ein Entzerrungsfilter zur Gruppenlaufzeiterhöhung angeordnet. Damit lässt sich ohne weiteres ein stetiger Übergang der Gruppenlaufzeit an den Teilbandgrenzen erreichen.
  • Die vorliegende Erfindung wird anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
  • FIG 1
    den prinzipiellen Aufbau eines Hörgeräts gemäß dem Stand der Technik;
    FIG 2
    die Struktur einer gesamten Filterbank-Kaskade aus AFB und SFB mit Equalizer;
    FIG 3
    ein Gruppenlaufzeitdiagramm über mehrere Teilbänder der Filterbänke von FIG 2;
    FIG 4
    die Struktur eines Entzerrungsfilters realisiert als Kaskade von rekursiven Strukturen zweiter Ordnung;
    FIG 5
    eine Allpassstruktur mit minimaler Multipliziereranzahl;
    FIG 6
    einen Signalflussgrafen eines Allpasses ersten Grades;
    FIG 7
    einen Signalflussgrafen eines Allpasses zweiten Grades;
    FIG 8
    ein Gruppenlaufzeitdiagramm mit Sprungkompensation;
    FIG 9
    die Spezifikation eines komplexen Entzerrungsfilters und
    FIG 10
    die Spezifikation eines reellen Entzerrungsfilters.
  • Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
  • In FIG 2 ist eine Filterbank-Kaskade bestehend aus einer mehrstufigen Analyse-Filterbank (AFB) und einer mehrstufigen Synthese-Filterbank (SFB) dargestellt. Die beispielhafte Filterbank dient zur Signalverarbeitung in einer Hörvorrichtung und insbesondere in einem Hörgerät. Die eingangsseitige Filterbank (FB1) der AFB zerlegt das Eingangssignal in vier Kanäle. Die ausgangsseitigen Filterbänke FB2A, FB2B, FB2C und FB2D zerlegen die vier Kanäle weiter in letztlich 24 Kanäle. Der unterste Kanal der FB1 wird dabei durch die FB2A in zwölf Kanäle zerlegt, während die übrigen drei Kanäle der FB1 mit Hilfe der ausgangsseitigen Filterbänke FB2B, FB2C und FB2D jeweils in vier Kanäle zerlegt werden. Die Eingangsabtastrate der FB1 beträgt beispielsweise 4 kHz. Die Abtastrate zwischen den beiden Filterbankstufen fZw beträgt im gewählten Beispiel 6 kHz. Die Abtastraten in den Teilbandkanälen am Ausgang der AFB beträgt in den hohen Frequenzgruppen also nach den Filterbänken FB2B, FB2C und FB2D jeweils 3kHz. Die Abtastrate nach der Filterbank FB2A der unteren Frequenzgruppe beträgt 1,2 kHz. Es erfolgt hier also in vorteilhafter Weise eine Abwärtstastung.
  • Nach der AFB wird eine teilbandspezifische SignalManipulation durchgeführt, die in FIG 2 jedoch nicht dargestellt ist. Der Übersicht halber schließt sich an die AFB in FIG 2 unmittelbar die SFB zur Resynthese des Signals an. Die SFB ist hinsichtlich der Filterbänke in den einzelnen Stufen symmetrisch zu der AFB aufgebaut. Demnach befinden sich in der untersten Stufe der SFB die Filterbänke FB3A, FB3B, FB3C und FB3D, die jeweils zwölf bzw. vier Teilbandsignale zu einem Signal zusammenfügen. Die vier resultierenden Signale mit einer Abtastrate von 6 kHz werden der höheren Synthesestufe FB4 zugeführt, die die Signale zu einem Ausgangssignal mit einer Abtastrate von 24 kHz zusammensetzt.
  • Die breiteren Filterbänke FB2A und FB3A in der unteren Frequenzgruppe führen hier auch zu einer erhöhten Gruppenlaufzeit τg gegenüber der nächst höheren Frequenzgruppe mit den schmäleren Filterbänken FB2B und FB3B. Dies kann FIG 3 anschaulich entnommen werden. Der Übersicht halber sind dort lediglich die Wirkungen der Filterbänke FB3A, FB3B und FB3C der Synthese-Filterbank eingezeichnet. An der Grenze zwischen den beiden Filterbänken FB3A und FB3B ergäbe sich ein Gruppenlaufzeitsprung, der gestrichelt eingezeichnet ist. Ein derartiger Sprung würde jedoch zu Störungen im Ausgangssignal führen.
  • Erfindungsgemäß wird daher der Filterbank FB3B ein Entzerrungsfilter (Equalizer EQ) nachgeschaltet. Dieses Entzerrungsfilter EQ erhöht die Gruppenlaufzeit der Filterbank FB3B an der oberen (höherfrequenten) Bandkante auf den Wert der Gruppenlaufzeit der Filterbank FB3A an deren unterer Bandkante. Somit ergibt sich der in FIG 3 durchgezogene, stetige Verlauf zwischen den beiden Filterbänken FB3A und FB3B. Störungen im Ausgangssignal aufgrund von Gruppenlaufzeitunterschieden der Filterbänke können so größtenteils vermieden werden. Das Entzerrungsfilter EQ kann aber auch an anderen Stellen in dem AFB-SFB-System angeordnet sein. Dadurch wäre beispielsweise der gepunktete Übergang der Gruppenlaufzeit von dem Wert der Filterbank FB3A zum Wert der Filterbank FB3C in FIG 3 möglich (näheres siehe unten).
  • Entsprechend dem Grundgedanken der vorliegenden Erfindung wird ein AFB-SFB-System generell mit mindestens einem Entzerrer (Equalizer EQ) ausgestattet, um Gruppenlaufzeitunterschiede und/oder Dämpfungs-/Verstärkungsunterschiede zwischen Filterbank-Kanälen unterschiedlicher Bandbreite Bi zu vermindern. Dabei sollte sich die Entzerrungsfunktion stets auf den Fall beziehen, dass die Teilbandsignale der AFB-SFB-Filterbank keiner Manipulation unterworfen sind, also ein so genannter "Ruhezustand" vorliegt. Ziel des Angleichungsverfahrens ist dabei nicht die absolute Angleichung der Eigenschaften der Filterbank-Kanäle unterschiedlicher Bandbreite, sondern die abrupten, auf einen sehr schmalbandigen Frequenzbereich beschränkten Übergänge der Übertragungseigenschaften auf ein breiteres Frequenzband auszudehnen, um damit störende Artefakte zu vermeiden. Allgemein sollen also mit dem Entzerrungsfilter Gruppenlaufzeiten in gewissen Teilbändern erhöht bzw. Dämpfungen/Verstärkungen in gewünschter Weise verändert werden. In einem Spezialfall könnte so auch in Anlehnung an das Beispiel von FIG 3 die Gruppenlaufzeit der Filterbank FB3B an der oberen Bandkante vom Wert der Gruppenlaufzeit der Filterbank FB3C auf den Wert der Gruppenlaufzeit der Filterbank FB3A an der unteren Bandkante erhöht werden.
  • Nachfolgend werden weitere Ausführungsbeispiele für eine Anordnung von einem oder mehreren Entzerrungsfiltern EQ in dem Filterbanksystem dargestellt:
    • Beispielsweise kann ein Entzerrungsfilter EQ auch in die AFB integriert werden. Insbesondere könnte es analog zu dem Beispiel von FIG 2 zwischen den Ausgang der Filterbank FB1 und den Eingang der Filterbank FB2B geschaltet sein. Bei mehreren Mikrofonen, die auch mehrere AFB erfordern, würde dies zu einem erhöhten Aufwand führen.
  • Entsprechend einem weiteren Ausführungsbeispiel könnte ein Entzerrungsfilter auf der untersten Ebene der Teilbänder im breiteren (3kHz) Kanal mit der niedrigsten Mittenfrequenz vorgesehen sein. In diesem Fall wird der Übergangsbereich nur über einen Kanal (der Bandbreite 3 kHz) ausgedehnt, während er sich bei einer Anordnung des Entzerrungsfilters in einer höheren Ebene beispielsweise über 3 x 3 kHz erstrecken kann. Alternativ muss in vier benachbarten 3 kHz-Kanälen jeweils ein Entzerrungsfilter eingesetzt werden. Vorteil beim Einsatz nur eines oder zweier Entzerrungsfilter auf dieser untersten Ebene ist, dass sie bei niedrigster Abtastrate arbeiten können und somit in der Regel weniger Rechenleistung erfordern.
  • Bei einem weiteren Ausführungsbeispiel wird das Entzerrungsfilter EQ in der höchsten Ebene des kaskadierten Filterbank-Systems hier am Ausgang der Filterbank FB4, angeordnet. Zwar erfordert dies eine höhere Abtastrate und damit einen höheren Aufwand, aber der Gruppenlaufzeit - bzw. Betragsfrequenzgang -Übergang kann über die maximale Frequenzbreite, d.h. die gesamte Signalbandbreite verteilt werden (vgl. gepunktete Linie in FIG 3)
  • In einem weiteren Ausführungsbeispiel besitzt das Filterbank-System mehr als zwei unterschiedliche Bandbreiten. An jedem Übergang zwischen benachbarten Kanälen unterschiedlicher Bandbreite ist ein Entzerrungsfilter EQ vorgesehen. Dabei ist das Entzerrungsfilter jeweils in dem Kanal mit der größeren Bandbreite anzuordnen, da es dort die Gruppenlaufzeit erhöhen muss. Im Fall einer Betragsfrequenzgangsentzerrung kann das verstärkende oder abschwächende Entzerrungsfilter EQ auch in dem jeweils anderen Kanal angeordnet sein.
  • Wie die oben dargestellten Ausführungsbeispiele zeigen, bringt die erfindungsgemäße Einführung von Entzerrern bzw. Entzerrungsfiltern EQ in einzelnen Filterbank-Kanälen auf unterschiedlicher hierarchischer Ebene eine Vermeidung abrupter Übergänge der Dämpfung/Verstärkung und/oder der Gruppenlaufzeit. Besondere Vorteile ergeben sich, wenn eine möglichst kleine Anzahl von Entzerrungsfiltern EQ eingesetzt wird, in-dem sie an denjenigen Stellen angeordnet werden, wo sie am wirksamsten sind. Sie können aber auch dort angeordnet werden, wo sie am wenigsten Rechenaufwand verursachen.
  • Das Entzerrungsfilter EQ, mit dem auf einem sehr schmalbandigen Frequenzbereich beschränkte Übergänge der Übertragungseigenschaften auf ein breiteres Frequenzband ausgedehnt werden können, kann auf vielfältige Art und Weise realisiert werden. Nachfolgend sind einige konkreten Realisierungsformen aufgezählt:
    1. 1. Rekursive (IIR) Realisierung des Entzerrers EQ mit einer der beiden Direktformen (= 1. und 2. kanonische Form aus Karl-Dirk Kammeyer, Kristian Kroschel: "Digitale Signalverarbeitung, Filterung und Spektralanalyse mit MATLAB-Übungen", 6. Auflage, Teubner Verlag 2006, Kapitel 4.1, Seiten 78 ff.) mit hoher Koeffizientenempfindlichkeit. Eine weitere Realisierungsmöglichkeit besteht in der Kaskadenform (= 3. kanonische Form; hierzu ebenso K-D Kammeyer et al. a.a.O.) mit geringer Koeffizientenempfindlichkeit. FIG 4 zeigt eine derartige Struktur des Entzerrungsfilters EQ. Es verhält sich beispielsweise wie ein Allpass und stellt eine herkömmliche Kaskade aus rekursiven Filtern zweiter Ordnung dar. Die Filterkoeffizienten von EQ sind beispielsweise mit der MATLAP-Funktion tf2sos in diese Form umzurechnen. Aus dem Allpass sechster Ordnung ergeben sich so drei Sektionen (γ = 2, 3) zweiter Ordnung mit dem Verstärkungsfaktor gγ, dem Koeffizienten des FIR-Teils b0, γ, b1, γ, b2, γ und den Koeffizienten des IIR-Teils a1, γ, a2, γ. Schließlich lässt sich der Entzerrer EQ auch mit einer Parallelform (= 4. kanonische Form; vgl. ebenso K-D Kammeyer et al. a.a.O.) mit geringer Koeffizientenempfindlichkeit realisieren.
    2. 2. Nichtrekursive (FIR) Realisierung des Entzerrers EQ mit einer der beiden Direktformen (= 1. und 2. kanonische Form) mit in diesem Fall geringer
      Koeffizientenempfindlichkeit, aber auch mit der Kaskadenform (= 3. kanonische Form) mit geringer
      Koeffizientenempfindlichkeit (vgl. hierzu ebenso K-D Kammeyer et al. a.a.O.).
    3. 3. Ausführung des Entzerrers zur kombinierten Entzerrung von Betragsfrequenzgang und Gruppenlaufzeit: Realisierung als IIR-System oder als FIR-System mit nicht symmetrischer Impulsantwort (Koeffizienten) gemäß obiger Punkte 1 bzw. 2.
    4. 4. Ausführung des Entzerrers zur ausschließlichen Entzerrung von Betragsfrequenzgängen von Filterbankkanälen: Realisierung als IIR-System oder als linearphasiges FIR-System mit symmetrischer Impulsantwort (Koeffizienten) gemäß obiger Punkte 1 bzw. 2.
    5. 5. Ausführung des Entzerrers zur ausschließlichen Entzerrung der Gruppenlaufzeit von Filterbankkanälen: Realisierung als IIR-Allpass gemäß obigem Punkt 1. Außerdem kann der Entzerrer gemäß FIG 5 als sehr effizienter Allpass realisiert werden (vgl. K-D Kammeyer et al., Kapitel 4.3 "Allpässe"). Die Allpassstruktur von FIG 5 ist zwar bezüglich der Speicher nicht kanonisch, da 2n Speicherelemente für ein System n-ter Ordnung benötigt werden, sie kommt dafür aber mit der Minimalzahl von Multiplizierern, nämlich n+1, aus. Vom Standpunkt des Realisierungsaufwandes bietet diese Struktur gegenüber der kanonischen Form daher Vorteile.
      Der Entzerrer kann auch hier in Kaskadenform realisiert sein, wobei jeder Block erster oder zweiter Ordnung ein bzw. zwei Verzögerungsglieder und einen (zwei) Mulizplizierer benötigt. Ein entsprechender kanonischer Allpass erster Ordnung mit einem einzigen Multiplizierer ist in FIG 6 wiedergegeben, während ein kanonischer Allpass zweiter Ordnung mit zwei Multiplizierern in FIG 7 dargestellt ist.
    6. 6. Die Angleichung der Gruppenlaufzeit kann stetig durch einen Allpass in dem Entzerrungsfilter EQ erfolgen. In FIG 8 ist der Gruppenlaufzeitsprung 10 dargestellt, der ohne das Laufzeitfilter EQ auftritt. Damit die Gruppenlaufzeit möglichst monoton verändert wird, sind die einzelnen Übergangsbereiche 11, 12, 13 und 14 der Filterübertragungsfunktionen H0, H1, H2 der Filterbänke FB3A, FB3B und FB3C zu beachten. Soll die Gruppenlaufzeit anstelle des Sprungs 10 monoton verlaufen, so kann durch das Entzerrungsfilter EQ beispielsweise die Gruppenlaufzeit addiert werden, die sich in FIG 8 unter der gestrichelten Linie 15 ergibt, welche die Übergangsbereiche 12 und 13 verbindet (vgl. auch FIG 3). Möchte man des Weiteren die Gruppenlaufzeit für höhere Frequenzen möglichst niedrig halten, so kann der Übergangsbereich für die Gruppenlaufzeit weiter eingeschränkt werden. Der Verlauf der Gruppenlaufzeit kann dann entsprechend der durchgezogenen Linie 16 etwas steiler gehalten werden.
      Das Entzerrungsfilter EQ kann weiter dadurch optimiert werden, dass ein möglichst einfacher Allpass entworfen wird, der die Spezifikation nach FIG 8 näherungsweise enthält. Dazu ist in FIG 9 zunächst die komplexwertige Spezifikation (resultierend aus der Verarbeitung der Signale durch beispielsweise komplex modulierte Filterbank)eines Allpasses normiert auf die Abtastrate fzw im Teilband aufgetragen. Dabei beschreibt die gestrichelte Linie 17 einen Abfall der zusätzlich eingeführten Gruppenlaufzeit, der technisch für eine einwandfreie Überlagerung mindestens der Teilbänder nötig ist, und die durchgezogene Linie 18 einen steileren Abfall im Sinne einer möglichst niedrigen Gruppenlaufzeit für höhere Frequenzen. Anstelle eines komplexen Entzerrers gemäß FIG 9 kann aber gegebenenfalls auch ein reeller Entzerrer entsprechend FIG 10 verwendet werden. Die durch die symmetrischen Anteile entstehenden Artefakte stören hier nicht. Der Aufbau eines reellen Filters ist jedoch deutlich einfacher als der eines komplexen Filters, so dass hier das reelle Filter zu bevorzugen ist.
  • Die oben geschilderten Realisierungsformen ermöglichen einzeln oder in Kombination miteinander in einer oder mehreren hierarchischen Ebenen einen Entzerrer in einzelnen Filterbankkanälen zu verwirklichen, um abrupte Übergänge der Dämpfung/Verstärkung und/oder der Gruppenlaufzeit zu vermeiden.

Claims (7)

  1. Hörvorrichtung mit einem Filterbank-System, das eine Analysefilterbank (AFB) und eine Synthesefilterbank (SFB) aufweist, um ein Eingangssignal der Hörvorrichtung durch mehrere Filterbankkanäle in mehrere Teilbandsignale zu zerlegen beziehungsweise um Teilbandsignale mehrerer Filterbankkanäle wieder zusammenzufügen, wobei das Filterbank-System mit mindestens einem Entzerrungsfilter (EQ) ausgestattet ist, um Unterschiede der komplexen Frequenzgänge zwischen Filterbankkanälen auszugleichen,
    dadurch gekennzeichnet, dass die Analysefilterbank (AFB) und die Synthesefilterbank (SFB) mehrstufig ausgebildet sind, und dass das mindestens eine Entzerrungsfilter (EQ) in der Analysefilterbank (AFB) oder in der Synthesefilterbank (SFB) angeordnet ist.
  2. Hörvorrichtung nach Anspruch 1, wobei mit dem mindestens einen Entzerrungsfilter (EQ) Gruppenlaufzeitunterschiede zwischen den Filterbankkanälen ausgleichbar sind.
  3. Hörvorrichtung nach Anspruch 1 oder 2, wobei mit dem mindestens einen Entzerrungsfilter (EQ) Dämpfungs- oder Verstärkungsunterschiede zwischen den Filterbankkanälen ausgleichbar sind.
  4. Hörvorrichtung nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Entzerrungsfilter (EQ) zwischen zwei hierarchischen Ebenen von Filtern des Filterbank-Systems angeordnet ist.
  5. Hörvorrichtung nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Entzerrungsfilter (EQ) in der untersten Stufe der Analysefilterbank (AFB) oder der Synthesefilterbank (SFB) angeordnet ist.
  6. Hörvorrichtung nach einem der Ansprüche 1 bis 4, wobei das mindestens eine Entzerrungsfilter (EQ) in der obersten Stufe der Synthesefilterbank (SFB) angeordnet ist.
  7. Hörvorrichtung nach einem der Ansprüche 1 bis 6, wobei in dem Filterbanksystem mindestens zwei Paare nebeneinander liegender Filterbänke vorhanden sind, dabei die jeweils nebeneinander liegenden Filterbänke im Verhältnis zueinander Kanäle unterschiedlicher Bandbreite besitzen, so dass bei jedem Filterbankpaar jeweils zwei Filterbankkanäle verschiedener Breite nebeneinander liegen, und im breiteren der jeweils zwei Filterbankkanäle je ein Entzerrungsfilter (EQ) zur Gruppenlaufzeiterhöhung angeordnet ist.
EP09159399.6A 2008-05-21 2009-05-05 Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System Active EP2124482B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008024534A DE102008024534A1 (de) 2008-05-21 2008-05-21 Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System

Publications (3)

Publication Number Publication Date
EP2124482A2 EP2124482A2 (de) 2009-11-25
EP2124482A3 EP2124482A3 (de) 2014-06-25
EP2124482B1 true EP2124482B1 (de) 2017-12-06

Family

ID=41009844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09159399.6A Active EP2124482B1 (de) 2008-05-21 2009-05-05 Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System

Country Status (4)

Country Link
US (1) US8908893B2 (de)
EP (1) EP2124482B1 (de)
DE (1) DE102008024534A1 (de)
DK (1) DK2124482T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter
DE102010026884B4 (de) 2010-07-12 2013-11-07 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betreiben einer Hörvorrichtung mit zweistufiger Transformation
DE102010039589A1 (de) 2010-08-20 2012-02-23 Siemens Medical Instruments Pte. Ltd. Hörhilfe- und/oder Tinnitus-Therapie-Gerät
EP2605549B1 (de) * 2011-12-16 2019-11-13 Harman Becker Automotive Systems GmbH Digitale Entzerrungsfilter mit festem Phasengang
DE102021205251B4 (de) * 2021-05-21 2024-08-08 Sivantos Pte. Ltd. Verfahren und Vorrichtung zur frequenzselektiven Verarbeitung eines Audiosignals mit geringer Latenz

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995539A (en) * 1993-03-17 1999-11-30 Miller; William J. Method and apparatus for signal transmission and reception

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016280A (en) * 1988-03-23 1991-05-14 Central Institute For The Deaf Electronic filters, hearing aids and methods
JPH06506555A (ja) * 1991-02-04 1994-07-21 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション オーバーサンプリングによる情報復元のための記憶媒体、装置、及び方法
US5233665A (en) * 1991-12-17 1993-08-03 Gary L. Vaughn Phonetic equalizer system
DE59509450D1 (de) * 1995-08-12 2001-08-30 Micronas Gmbh Equalizer für digitalisierte Signale
US5742694A (en) * 1996-07-12 1998-04-21 Eatwell; Graham P. Noise reduction filter
JP4035867B2 (ja) * 1997-09-11 2008-01-23 株式会社セガ 画像処理装置及び画像処理方法並びに媒体
US7003120B1 (en) * 1998-10-29 2006-02-21 Paul Reed Smith Guitars, Inc. Method of modifying harmonic content of a complex waveform
US6996198B2 (en) * 2000-10-27 2006-02-07 At&T Corp. Nonuniform oversampled filter banks for audio signal processing
CA2357200C (en) * 2001-09-07 2010-05-04 Dspfactory Ltd. Listening device
EP1448022A1 (de) * 2003-02-14 2004-08-18 GN ReSound A/S Dynamische Kompression in einem Hörhilfegerät
US7428313B2 (en) * 2004-02-20 2008-09-23 Syracuse University Method for correcting sound for the hearing-impaired

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995539A (en) * 1993-03-17 1999-11-30 Miller; William J. Method and apparatus for signal transmission and reception

Also Published As

Publication number Publication date
EP2124482A3 (de) 2014-06-25
US20090290734A1 (en) 2009-11-26
US8908893B2 (en) 2014-12-09
DE102008024534A1 (de) 2009-12-03
DK2124482T3 (da) 2018-03-05
EP2124482A2 (de) 2009-11-25

Similar Documents

Publication Publication Date Title
EP2124334B1 (de) Filterbanksystem für Hörgeräte
EP2684188B1 (de) Regelsystem für aktive geräuschunterdrückung sowie verfahren zur aktiven geräuschunterdrückung
DE102010026884B4 (de) Verfahren zum Betreiben einer Hörvorrichtung mit zweistufiger Transformation
EP2645743B1 (de) Hörvorrichtung für eine binaurale Versorgung und Verfahren zum Bereitstellen einer binauralen Versorgung
EP1653768A2 (de) Verfahren zur Reduktion von Störleistungen bei einem Richtmikrophon und entsprechendes Akustiksystem
EP2124482B1 (de) Hörvorrichtung mit einem Entzerrungsfilter im Filterbank-System
EP2124335B1 (de) Verfahren zum Optimieren einer mehrstufigen Filterbank sowie entsprechende Filterbank und Hörvorrichtung
DE102009036610B4 (de) Filterbankanordnung für eine Hörvorrichtung
EP1118248A1 (de) Hörgerät und verfahren zum verarbeiten von mikrofonsignalen in einem hörgerät
EP2797344B1 (de) Verfahren zur Steuerung einer Adaptionsschrittweite und Hörvorrichtung
EP1406469B1 (de) Rückkopplungskompensator in einem akustischen Verstärkungssystem, Hörhilfsgerät, Verfahren zur Rückkopplungskompensation und Anwendung des Verfahrens in einem Hörhilfsgerät
DE102007018121B4 (de) Hörvorrichtung mit störarmer Höreransteuerung und entsprechendes Verfahren sowie Hörsystem
EP1945000B1 (de) Verfahren zur Reduktion von Störleistungen und entsprechendes Akustiksystem
DE102014218672B3 (de) Verfahren und Vorrichtung zur Rückkopplungsunterdrückung
EP2629550B1 (de) Hörvorrichtung mit einem adaptiven Filter und Verfahren zum Filtern eines Audiosignals
EP2437521B1 (de) Verfahren zur Frequenzkompression mit harmonischer Korrektur und entsprechende Vorrichtung
EP2190218B1 (de) Filterbanksystem mit spezifischen Sperrdämpfungsanteilen für eine Hörvorrichtung
EP2373065B2 (de) Hörvorrichtung und Verfahren zum Erzeugen einer omnidirektionalen Richtcharakteristik
DE102006046699B3 (de) Hörvorrichtung mit unsymmetrischer Klangwaage und entsprechendes Einstellverfahren
EP3048813A1 (de) Verfahren und vorrichtung zur rauschunterdrückung basierend auf inter-subband-korrelation
EP2418876A1 (de) Verfahren zum Reduzieren von Interferenzen und Hörvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: HEARING DEVICE WITH EQUALISATION FILTER IN A FILTERBANK SYSTEM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20140519BHEP

17P Request for examination filed

Effective date: 20141219

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 953382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014575

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIVANTOS PTE. LTD.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180301

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014575

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 953382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 16