WO2000012965A1 - Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface - Google Patents

Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface Download PDF

Info

Publication number
WO2000012965A1
WO2000012965A1 PCT/JP1998/003838 JP9803838W WO0012965A1 WO 2000012965 A1 WO2000012965 A1 WO 2000012965A1 JP 9803838 W JP9803838 W JP 9803838W WO 0012965 A1 WO0012965 A1 WO 0012965A1
Authority
WO
WIPO (PCT)
Prior art keywords
maintenance
measurement
information
coordinate
maintenance management
Prior art date
Application number
PCT/JP1998/003838
Other languages
English (en)
French (fr)
Inventor
Kazuo Yamazaki
Yuwu Zhang
Masayoshi Uneme
Yasushi Fukaya
Original Assignee
Mitutoyo Corporation
Mori Seiki Co., Ltd.
Okuma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corporation, Mori Seiki Co., Ltd., Okuma Corporation filed Critical Mitutoyo Corporation
Priority to JP2000567905A priority Critical patent/JP4038335B2/ja
Priority to US09/529,901 priority patent/US6708138B1/en
Priority to DE69839646T priority patent/DE69839646D1/de
Priority to EP98940600A priority patent/EP1028307B1/en
Priority to PCT/JP1998/003838 priority patent/WO2000012965A1/ja
Priority to CNB988107279A priority patent/CN1154837C/zh
Publication of WO2000012965A1 publication Critical patent/WO2000012965A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces

Definitions

  • the present invention provides a maintenance and management support device for a coordinate and surface texture measuring device, in particular, analyzes a measurement part program and a measurement execution result output to extract operating information of the measuring device, and performs maintenance and management of the measuring device from the history of the operating information.
  • the present invention relates to a coordinate and surface texture measuring device maintenance management support device that generates support information for the device.
  • the three-dimensional coordinate measuring machine is a measuring device that mainly measures and evaluates the size and shape of a workpiece. By exchanging a measuring probe, it is possible to simultaneously measure and evaluate the surface roughness of a work bead.
  • three-dimensional coordinate measuring machines are widely used in various industrial fields because a variety of measuring probes such as evening trigger sensors, cameras, and laser beam sensors can be used.
  • the present invention has been made in view of such a conventional problem, and an object of the present invention is to analyze a part program of measurement and an output of a measurement execution result to extract operation information of a measuring instrument, and to measure from a history of the operation information.
  • DISCLOSURE OF THE INVENTION In generating support information for machine maintenance management SUMMARY OF THE INVENTION
  • the present invention has been made in view of the above-mentioned conventional problems, and has a measuring machine operation status analyzing means for inputting one or both of a measurement part program and a measurement execution result output and extracting the operation information of the measuring machine. And a storage means or step for storing the operation information.
  • the present invention provides a measuring machine operation status analysis means or step, which receives one or both of a measurement part program and a measurement execution result output and extracts operation information for each component of the measuring machine, and And a storage means or step for storing.
  • the present invention is characterized in that a measuring instrument maintenance management support information generating means or step for generating the maintenance management assistance information of the measuring instrument from the history of the operation information stored in the storage means is added.
  • the present invention provides a measuring machine operation status analysis means or step for extracting one or both of a measurement part program and a measurement execution result output and extracting operation information for each component of the measuring machine; And a database conversion unit or step for converting the operation information of each element into a database required for generating the measurement instrument maintenance management support information.
  • the operating program for each component of the measuring machine is extracted by analyzing the measurement part program and the measurement execution result output.
  • service personnel can grasp the detailed operating history of the measuring instrument and easily obtain support information to investigate the condition of the measuring instrument and the cause of functional deterioration.
  • a measurement machine operation history database which analyzes a measurement part program and a measurement execution result output to extract operation information for each component of the measurement machine and stores the information
  • Advanced maintenance management support such as monitoring and predicting the state of measuring instruments and analyzing the causes of functional deterioration and failures, is possible by organically utilizing the information base.
  • Figure 1 shows the general configuration of a general system for three-dimensional coordinate measurement.
  • FIG. 2 shows the overall configuration of a three-dimensional coordinate measurement system to which the maintenance management support device in three-dimensional coordinate measurement of the present invention is applied.
  • Figure 3 shows an example of a maintenance condition database.
  • Figure 4 shows an example of the maintenance history database.
  • Figure 5 shows an example of the operation history data base.
  • Figure 6 shows an example of maintenance management support information.
  • FIG. 7 shows the details of the measurement information analysis means.
  • FIG. 8 shows details of the maintenance support information creating means.
  • Figure 9 shows an example of a workpiece.
  • Figures 10A, 10B, 10C, 10D, 10E, and 10F show examples of part programs.
  • FIG. 11 shows a processing procedure of the operating time extraction unit.
  • FIG. 12 shows the processing procedure of the probe data extraction unit.
  • FIG. 13 shows the processing procedure of the axis movement data extraction unit.
  • FIG. 14 shows the processing procedure of the database creation means.
  • FIG. 15 shows the processing procedure of the latest maintenance information extraction unit.
  • FIG. 16 shows a processing procedure of the maintenance notice information extracting unit.
  • FIG. 17 shows a processing procedure of the maintenance time information extracting unit.
  • FIG. 18 shows a processing procedure of the maintenance support information creating unit.
  • the part program creation means 10 uses drawing information such as the position, shape, and roughness of the work bead, and measurement work instruction information such as which part of the work bead is to be measured and how. And a part program is created To create this part program, the operator must use the operation panel to create this part program.
  • a so-called online teaching method that controls 1 to teach the procedure of measurement, a piece of CAD data of a peak piece 1 2 using electronic drawing information such as a 3D coordinate measuring machine 1 1
  • the part program is created with reference to the measurement database 13 such as the specifications of the measuring machine and the probe, general tolerance conditions, and measurement experience.
  • the created part program is finally run on a 3D coordinate measuring machine 11 to confirm that there is no problem before actual measurement is performed.
  • the operation history of the three-dimensional coordinate measuring machine 11 is recorded in an operation log or the like every time an operator performs measurement, and the next maintenance date and time is determined from those records.
  • an actual three-dimensional coordinate measuring machine 11 is composed of elements such as a push-trigger probe, a slider for each axis, and a motor, and the structure is precise and complicated. For example, in the case of a DC motor that uses a brush, it is necessary to replace the brush every tens of thousands of hours of operation. Since it is difficult to grasp, the actual situation is that only a very rough maintenance, such as determining the maintenance date from the total operation time or performing regular maintenance once a year, can be performed.
  • the present invention can be applied to a surface texture measuring device such as a surface roughness measuring device, a contour shape measuring device, a roundness measuring device, and the like, but an embodiment in a three-dimensional coordinate measuring device will be described below.
  • FIG. 2 shows the overall configuration of a three-dimensional coordinate measurement system to which the maintenance management support device for three-dimensional coordinate measurement of the present invention is applied.
  • the contents of the created part program are analyzed with reference to the measurement database 13. Then, the maintenance information is extracted and the result is stored in the maintenance information database 14 to be used as the operation history of the measuring instrument. Since the maintenance management support information 103 is created based on the maintenance information database 14, it is possible to give an accurate maintenance notice, and to prevent the occurrence of failures and unnecessary increases in costs. be able to.
  • Maintenance information analysis means which is a measurement machine operation status analysis means for extracting the operation information of the measurement machine
  • Step 15 analyzes the part program to determine the number of probe measurements and the total travel distance for each axis.
  • the measurement start date and time and the measurement end date and time are input from the coordinate measuring machine 11.
  • the database creation means 16 which is a data base conversion means for converting the operation information of each component of the measurement equipment into a data base required for generating maintenance management support information of the measurement equipment is used to convert information inside the database. Check the consistency and add or update the maintenance information database by manually entering the maintenance conditions and maintenance execution information 102.
  • the maintenance support information creating means 17, which is a maintenance management support information generating means for generating the maintenance management support information 103 of the measuring device from the history of the operation information stored in the database 14, includes a maintenance information database 14. From this, information such as operation history, maintenance history, and maintenance notice is extracted, and printout, screen display, file creation, etc. are performed.
  • the maintenance information database 14 consists of a maintenance condition database, a maintenance history database, and an operation history database.
  • FIG. 3 shows an embodiment of the maintenance condition database included in the maintenance information database 14.
  • the maintenance condition database contains basic data such as the elements that require maintenance of the measuring machine, their maintenance intervals, and maintenance contents.
  • the maintenance condition database is
  • Maintenance intervals A notice interval that specifies whether to start notifying maintenance at once
  • the maintenance interval indicates that, for example, grease-up is performed every 100 km of the X-axis guide, and the advance notice interval is to start the advance notice of maintenance 90 km after the previous maintenance. Show.
  • the maintenance level for example, for the X-axis guide, there is a level 1 grease trap and a level 2 overhaul. This means that if an overhaul is performed, the grease will also be made (included) at that point.
  • FIG. 4 shows an embodiment of the maintenance history database included in the maintenance information database 14.
  • the maintenance history database keeps details of the maintenance that was performed as needed or periodically.
  • the maintenance history database is
  • the maintenance condition number (cl, c5) specifies to which item in the maintenance condition database the maintenance corresponds.
  • the cumulative total at the time of maintenance is the cumulative total at the time of maintenance, but in principle it is the total cumulative total since the start of operation of the measuring equipment.
  • the maintenance history database in Fig. 4 holds numbers that can refer to the maintenance condition database as maintenance conditions.
  • the maintenance history database needs to store the same information as the maintenance condition database one by one. Data entry Not only will it be easier, but also the storage capacity will be reduced. In other words, this is an example of a configuration based on a so-called relational data base.
  • FIG. 5 shows an embodiment of the operation history database included in the maintenance information database 14.
  • the operation history database holds operation information of each element extracted by analyzing the part program.
  • the operation history database is
  • the probe allows for up to three types of exchange.
  • the type of probe must match the element registered in the maintenance condition database.
  • FIG. 6 shows an example of a print output of the maintenance management support information 103.
  • the printout is added to the contents of the maintenance condition database, adding the cumulative total of measuring machine operation up to now, the time to start the maintenance notice, and the next maintenance time.
  • the cumulative total is not the cumulative total from the previous maintenance but the total cumulative total since the start of use of the measuring instrument.
  • the maintenance notice time data of the record with the number c1 has two diagonal lines added. However, this indicates that the current cumulative operation has passed the maintenance notice time.
  • each database and the data in the database have been described and explained in fixed format, with emphasis on the ease of understanding. Good.
  • the maximum number of probe types is three, but if the format is free format, the number of columns can be increased or decreased according to the number of types of probes used, thus saving storage capacity. Although it is possible, it becomes complicated as a data base.
  • FIG. 7 shows the details of the maintenance information analysis means and the database creation means 16.
  • the storage device 200 stores the part program 200, workpiece drawing information 100 such as a coordinate system, measurement work instruction information 101 such as a probe to be used, and measurement device information such as a measurement start date and time.
  • workpiece drawing information 100 such as a coordinate system
  • measurement work instruction information 101 such as a probe to be used
  • measurement device information such as a measurement start date and time.
  • the operating time extraction unit 21 calculates the operating time of the measuring device.
  • the probe data extraction unit 22 analyzes the part program 200 to determine the total number of probe point measurements.
  • the axis movement data extraction unit 23 analyzes the part program 200 to determine the total travel distance for each axis.
  • the database creation means 16 checks whether or not the probe type of the operation history database 14a is registered as an element of the maintenance condition database 14b, and if it is not registered, the maintenance condition is registered. Or, confirm and correct the consistency of the information inside each database, such as interactively requesting the operator to correct the probe number, and maintain the maintenance information database by manually inputting the maintenance conditions and maintenance execution information. Add and update resources 14
  • FIG. 8 shows the details of the maintenance support information creating means 17.
  • the latest maintenance information extraction unit 24 stores the latest maintenance information for each element of the measuring instrument. Is extracted.
  • the maintenance notice information extraction unit 25 accumulates each record of the operation history database 14a to obtain the operation total. Extract information on whether or not.
  • the maintenance time information extraction unit 26 extracts information on whether or not each element of the measuring device has reached a stage requiring maintenance from the running total.
  • the maintenance support information creation unit 27 performs print output, screen display, file creation, and the like by summing up the above-mentioned operation totals, maintenance notice information, and maintenance information.
  • FIG. 9 shows a workpiece measured by the part program of FIG.
  • the part program measures a total of six holes and one pocket machined on two surfaces of the work bead.
  • Program No. 1 to No. 7 declare files and variables, and prepare the measuring instrument.
  • No.8 to No.30 define the circle measurement macro. As shown in No. 11, the measurement is performed at four points.
  • No.45 to No.117 define slot measurement macros.
  • the first semicircle of the slot is considered as a circle at No. 51 and three points are measured.
  • the parallel part at the center of the slot is No.73,
  • the actual axis movement for measurement starts from No. 118.
  • circle measurement macro measure the four circles at No. 119, No. 122, No. 125, and No. 128, and then use the macro at No. 130 to measure the slots. After switching the coordinate system in No. 131, measure two circles in No. 133 and No. 136 with the circle measurement macro.
  • the maintenance information analysis means shown in FIG. 7 starts the part program analysis, first, the part program 200 is read, and then, the workpiece drawing information 100 and the measurement work instruction information 101, Enter information that does not appear in the part program, such as the initial coordinate position of measurement start for each axis. These are stored internally by the storage device 20. Next, the operating time extraction unit 21 is activated, and the processing shown in FIG. 11 is executed.
  • 5 1 3 Obtain the operation time by subtracting the measurement start date and time from the measurement end date and time, and store it in the operation history database 14 a.
  • the probe data extraction unit is activated, and the processing shown in FIG. 12 is executed.
  • the probe data extracting unit executes the following processing.
  • S21 Searches for probe selection instruction and probe point measurement instruction from the beginning of the part program. At this time, care must be taken in searching for part programs that use macros. That is, when an argument is used in a macro or the like, it is necessary to use the value passed at the time of calling the macro instead of using the value defined on the macro side. Therefore, the search must be performed in the same order as the part program is executed on the CMM, and the arguments must be handled in the same way. The search order is used, and if different, this is indicated.) As a result, in the example of FIG. 10, the probe selection instruction is searched for No. 35, and it is found that the label of the probe is "1". In addition, the circle measurement macro is called in No. 119, and as a result, the first probe point measurement is searched in No. 16.
  • step S23 If not registered, newly register the probe type in the operation history database 14a.
  • the label “1” retrieved in step S 21 is stored in the probe type.
  • the axis movement data extraction unit 23 is activated, and the processing shown in FIG. 13 is executed.
  • the axis movement data extraction unit 23 performs the following processing.
  • S31 Searches for axis movement command and measurement command from the beginning of part program 200, finds travel distance, and temporarily stores it.
  • the circle measurement macro is called at No. 119, and as a result, the first movement command is searched at No. 12.
  • the database creation means 16 is started, and the processing shown in FIG. 14 is executed. Is done.
  • the database creation means 16 performs the following processing.
  • the report creation means 17 is activated, and first, the processing of the latest maintenance information extraction unit 24 shown in FIG. 15 is executed.
  • the latest maintenance information extraction unit 24 performs the following processing.
  • S51 Extract the latest record from the maintenance history database 14c under the same maintenance conditions and temporarily store it. Specifically, the record of the last maintenance performed for each element of the measuring machine is temporarily stored.
  • the maintenance notice information extraction unit 25 is activated, and the processing shown in FIG. 16 is executed.
  • the maintenance notice information extracting unit 25 performs the following processing.
  • the maintenance time information extraction unit 26 is activated, and the processing shown in FIG. 17 is executed.
  • the maintenance time information extraction unit 26 performs the following processing.
  • S70 Processing of maintenance time information extraction unit 26 started S71: Add the maintenance interval of the maintenance condition database 14b to the maintenance time of the latest record temporarily stored in steps S51 and S52 in Fig. Required c S 72: The maintenance time is compared with the cumulative operation obtained in step S 62 of FIG. 16. If the cumulative operation is larger, it is determined that maintenance is required.
  • the maintenance support information creation unit 27 is activated, and the processing shown in FIG. 18 is executed.
  • the maintenance support information creation unit 27 executes the following processing.
  • step S81 In the contents of the maintenance condition database 14b, the cumulative operation calculated in step S62 in Fig. 16, the maintenance notice time calculated in step S61, and the maintenance notice calculated in step S63 Judgment, the maintenance time calculated in step S71 of FIG. 17 and the maintenance judgment also calculated in step S72 are added, and a printout, screen display, file creation, etc. are performed.
  • the maintenance time is obtained from the total traveling distance.
  • the maintenance time can be obtained from the total distance X speed.
  • the necessary information was extracted mainly by analyzing the part program, but control information such as the execution of point measurement instructions and axis movement instructions from the 3D coordinate measuring machine was directly analyzed by the maintenance information analysis means. It is also possible to extract and accumulate maintenance information by inputting to Further, the maintenance support information generating means may be started by manual operation from the operation prompt or by an instruction from the measuring device as needed. For example, every time the measuring device is turned on or the part program is executed. If the configuration is such that the maintenance support information creation means is automatically started each time the maintenance is started and the maintenance information is displayed before the measurement starts, it is possible to prevent accidents due to forgetting to perform maintenance.
  • an independent rotating light The operability can be further improved by notifying the operator by a lamp, a puzzer, or a screen display.
  • the maintenance management support information can be fed back to the measuring device, and its contents can be displayed on the measuring device side. If necessary, the operation of the measuring device can be monitored.
  • an operation stop interval column may be provided in the maintenance condition database, and the same processing as the maintenance notice time or maintenance time may be performed to generate operation stop time information.
  • the maintenance management support device is described as a device or a method independent of the measuring device. Maintenance management support information can be generated in real time, and the size of the entire device can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

明 細 書 座標及び表面性状測定機の保守管理支援装置及び方法 技術分野
本発明は座標及び表面性状測定機の保守管理支援装置、 特に測定のパートプロ グラムや測定実行結果出力を分析して測定機の稼動情報を抽出し、 この稼動情報 の履歴から測定機の保守管理に関する支援情報を生成する座標及び表面性状測定 機の保守管理支援装置に関するものである。 背景技術
三次元座標測定機は、 主にワークピースの寸法や形状を測定評価する測定装置 であるが、 測定プローブを交換することにより、 ワークビースの表面粗さを同時 に測定評価することができる。 また、 三次元座標測定機は、 夕ツチトリガ一セン サ、 カメラ、 レーザビームセンサなど多彩の測定プローブが利用可能なため、 各 種の産業分野に広範に利用されている。
≡次元座標測定機はメカトロ二クスを集大成した精密機器であるため、 測定精 度や測定能率を維持するには、 効果的な保守管理が不可欠である。
三次元座標測定機の保守管理の方法として、 一般的に、 サービスマンによる定 期的な点検と機能劣化時の修理が用いられている。 従来においては、 点検や修理 を行う時に、 サービスマンは測定機の詳細な稼動履歴を把握できないため、 測定 機の状態や性能劣化の原因を調べるには、 各種検査機器を利用しなければならず、 保守管理に掛かる費用の増大につながつている。
本発明はこのような従来の課題に鑑みなされたものであり、 その目的は、 測定 のパートプログラムや測定実行結果出力を分析して測定機の稼動情報を抽出し、 この稼動情報の履歴から測定機の保守管理に関する支援情報を生成することにあ る 発明の開示 本発明は、 上記従来の課題に鑑みなされたものであり、 測定のパートプログラ ムと測定実行結果出力のいずれか又は両方が入力され測定機の稼動情報を抽出す る測定機稼動状況分析手段又はステップと、 前記稼動情報を記憶する記憶手段又 はステップと、 を有することを特徴とする。
また、 本発明は、 測定のパートプログラムと測定実行結果出力のいずれか又は 両方が入力され測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析 手段又はステップと、 前記稼動情報を記憶する記憶手段又はステップと、 を有す ることを特徴とする。
更に本発明は、 前記記憶手段に記憶されている前記稼動情報の履歴から測定機 の保守管理支援情報を生成する測定機保守管理支援情報生成手段又はステップが 付加されたことを特徴とする。
更に本発明は、 測定のパートプログラムと測定実行結果出力のいずれか又は両 方が入力され測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析手 段又はステップと、 前記各構成要素毎の稼動情報を、 前記測定機保守管理支援情 報生成に必要なデータベースに変換するデータベース変換手段又はステップと、 を有することを特徴とする。
以上説明したように、 本発明に係る三次元座標測定システムによれば、 測定の パ一トプログラムと測定実行結果出力を分析して測定機の各構成要素毎の稼動情 報を抽出し、 これを記録して測定機稼動履歴データベースを構築することにより、 サービスマンは測定機の詳細な稼動履歴を把握でき、 測定機の状態や機能劣化の 原因を調べるための支援情報を簡単に手に入れられる。
また、 本発明によれば、 測定のパートプログラムと測定実行結果出力を分析し て測定機の各構成要素毎の稼動情報を抽出し蓄積された測定機稼動履歴データべ ースと、 測定機保守情報デ一夕ベースとを有機的に利用して、 測定機の状態監視 や状態予測、 機能劣化や故障の原因解析といった高度な保守管理支援が可能とな る
この結果、 三次元座標測定機の効率的 ·経済的な保守管理は可能になるばかり でなく、 蓄積されてきた測定機稼動履歴データと測定機保守情報データは測定機 の設計部門にフィードバックされることにより、 設計支援情報としても利用でき る。 図面の簡単な説明
図 1は、 三次元座標測定における一般的なシステムの全体構成を示す。
図 2は本発明の三次元座標測定における保守管理支援装置が適用された三次元 座標測定システムの全体構成を示す。
図 3は、 保守条件データベースの一例を示す。
図 4は、 保守履歴データベースの一例を示す。
図 5は、 稼動履歴デ一夕ベースの一例を示す。
図 6は、 保守管理支援情報の一例を示す。
図 7は、 測定情報分析手段の詳細を示す。
図 8は、 保守支援情報作成手段の詳細を示す。
図 9は、 ワークピースの例を示す。
図 10A, 10 B, 10 C, 10D, 10 E, 10 Fは、 パートプログラムの 例を示す。
図 1 1は、 稼動時間抽出部の処理手順を示す。
図 12は、 プローブデータ抽出部の処理手順を示す。
図 13は、 軸移動データ抽出部の処理手順を示す。
図 14は、 データベース作成手段の処理手順を示す。
図 15は、 最新保守情報抽出部の処理手順を示す。
図 16は、 保守予告情報抽出部の処理手順を示す。
図 17は、 保守時期情報抽出部の処理手順を示す。
図 18は、 保守支援情報作成部の処理手順を示す。 発明を実施するための最良の形態
1. 一般システムの構成
図 1に示すように、 パートプログラム作成手段 10によってワークビースに関 する位置、 形状、 粗さ等の図面情報と、 ワークビースのどの個所をどのように測 定するかといった測定作業指示情報を元にして、 パ一トプログラムが作成される このパートプログラムの作成方法には、 オペレータが操作盤で三次元座標測定機
1 1を制御して測定の手順を教示するいわゆるオンラインティ一チングゃ、 ヮー クピース 1 2の CADデ一夕など電子的図面情報を利用して三次元座標測定機 1 1を 動かさずに測定の手順を教示するいわゆるオフラインティーチング等がある。 い ずれにしても、 測定機やプローブの仕様、 一般的な公差条件、 測定上の経験等の 測定データベース 1 3を参照しながらパートプログラムが作成される。
作成されたパートプログラムは、 最終的に三次元座標測定機 1 1上でテストラ ンして、 問題のないことを確認した上で、 実際の測定が行われる。
三次元座標測定機 1 1の稼動履歴は、 オペレータが測定を行う毎に運転日誌等 に記録しておき、 それらの記録から、 次回の保守日時を決定する方法が一般的で ある。 ところが、 実際の三次元座標測定機 1 1は夕ツチトリガプローブや各軸の スライダ、 モ一夕等の各要素から構成されており、 その構造は、 精密、 複雑であ る。 たとえば、 ブラシを使用した直流モー夕の場合には、 稼動数万時間毎にブラ シを交換する必要があるが、 前述のような運転日誌の記録からは、 実際の各軸の 正味稼動時間を把握するのは難しいので、 延べ稼動時間から保守日を決定するか、 あるいは、 年に 1回の定期保守を行う、 といった極めて大雑把な保守しか行えな いのが、 実状である。
従って、 測定機の稼動状況によっては、 保守期限を超えて無保守のまま稼動さ せたり、 必要のない保守を行うという状況が生じ、 その結果、 測定機の故障、 無 駄な経費の発生といった、 問題が発生している。
2 . 全体構成の説明
本発明は、 表面粗さ測定機、 輪郭形状測定機、 真円度測定機等の表面性状測定 機にも適用可能であるが、 以下は、 三次元座標測定機における実施形態について 説明する。
図 2に本発明の三次元座標測定における保守管理支援装置が適用された三次元 座標測定システムの全体構成を示す。
本構成では、 ワークビース図面情報 1 0 0と、 測定作業指示情報 1 0 1に加え、 測定データベース 1 3を参照しながら作成されたパートプログラムの内容を分析 して保守情報を抽出し、 その結果を保守情報データべ一ス 1 4に貯えて、 測定機 の稼動履歴とする。 保守管理支援情報 1 0 3は、 この保守情報データべ一ス 1 4 を基にして作成されるので、 的確な保守予告を行うことができ、 故障の発生や無 駄な経費の増大を防止することができる。
測定機の稼動情報を抽出する測定機稼動状況分析手段である保守情報分析手段
1 5は、 パートプログラムの分析を行って、 プローブの測定回数や、 各軸毎の延 ベ移動距離を求める。 測定開始日時や測定終了日時は三次元座標測定機 1 1から 入力する。
測定機の各構成要素毎の稼動情報を、 測定機の保守管理支援情報生成に必要な デ一夕ベースに変換するデ一夕ベース変換手段であるデータベース作成手段 1 6 は、 データベース内部の情報の整合性の確認と、 保守条件や保守実施情報 1 0 2 の手動データ入力による保守情報データベースの追加、 更新を行う。
前記データベース 1 4に記憶されている稼動情報の履歴から測定機の保守管理 支援情報 1 0 3を生成する保守管理支援情報生成手段である保守支援情報作成手 段 1 7は、 保守情報データベース 1 4から、 稼動履歴、 保守履歴、 保守予告等の 情報を抽出して、 プリント出力、 画面表示、 ファイル作成等を行う。 保守情報デ 一夕ベース 1 4は、 保守条件データベース、 保守履歴デ一夕ベース、 稼動履歴デ —夕ベースから構成される。
3 . 保守条件デ一夕ベース 1 0 2の説明
図 3は、 保守情報データベース 1 4に含まれる保守条件データベースの一実施 例を示す。
保守条件デ一夕べ一スは、 測定機の保守を要する各要素とその保守間隔、 保守 内容等の基本デ一夕を保持する。
保守条件データベースは、
重複しないデータの番号、
ガイ ドゃプローブ等の要素、
その要素の名称、
保守間隔、 いっから保守を予告しはじめるかを指定する予告間隔、
各要素の保守項目、
各要素毎の保守レベル、
から構成されている。
保守間隔は、 例えば X軸ガイ ドについて、 1 0 0 k m移動毎にグリスアップを 行うことを示し、 予告間隔は、 前回の保守から 9 0 k mを経過した時点で保守の 予告を開始することを示す。
保守レベルについては、 例えば、 X軸ガイ ドについては、 レベル 1のグリスァ ヅプとレベル 2のオーバ一ホールがある。 これは、 オーバ一ホールを実施すれば、 その時点でグリスアップも行われる (包含される) ことを意味する。
4 . 保守履歴デ一夕ベースの説明
図 4は、 保守情報デ一夕べ一ス 1 4に含まれる保守履歴データベースの一実施 例を示す。
保守履歴データベースは、 随時又は、 定期的に実施した保守の明細デ一夕を保 持する。
保守履歴データベースは、
重複しないデータの番号、
保守条件デ一夕ベースの番号、
保守を実施した日時、
保守時累計、
から構成されている。
保守条件番号 (c l , c 5 ) は、 その保守が、 保守条件データベース中のどの 項目に該当する内容であるかを指定する。
保守時累計は、 保守実施時点での稼動累計であるが、 原則として、 測定機稼動 開始からの総累計で示す。
図 4の保守履歴データベースは保守条件として、 保守条件データベースを参照 できる番号を保持しているが、 このようにすると、 保守履歴デ一夕ベースでは、 保守条件データベースと同一の情報を一々保持する必要がなくなり、 データ入力 が容易になるばかりか、 記憶容量の削減が可能になる。 つまりこれは、 いわゆる リレ一ショナルデ一夕ベースとして構成した例である。
5 . 稼動履歴データベースの説明
図 5は、 保守情報データベース 1 4に含まれる稼動履歴データベースの一実施 例を示す。
稼動履歴データベースは、 パートプログラムを分析して抽出した各要素の稼動 情報を保持する。
稼動履歴データベースは、
重複しないデ一夕の番号、
三次元座標測定機から入力した測定開始日時、
三次元座標測定機から入力した測定終了日時、
測定終了日時から測定開始日時を差し引いた稼動時間、
X, Y , Z軸の各軸の走行距離、
プローブの種類と測定回数、
から構成されている。
このデ一夕べ一ス例では、 1本のパートプログラムから稼動情報を分析すると、
1個のレコ一ドが作成される。
この例では、 プローブは最大 3種類の交換を考慮している。
プローブの種類は、 保守条件データベースに登録された要素と一致する必要が ある。
6 . 保守支援情報の説明
図 6は、 保守管理支援情報 1 0 3のプリント出力の一実施例を示す。
この例では、 保守条件データベースの内容に、 現在までの測定機稼動累計、 保 守予告を開始する時期、 次回保守時期を追加してプリント出力している。
ここで、 稼動累計は、 前回保守時点からの累計ではなく、 その測定機を使用開 始してからの総稼動累計を示している。
番号 c 1のレコードの保守予告時期データには、 2本の斜線が追加されている が、 これは、 現在の稼動累計が保守予告時期を過ぎていることを示している。 以上の説明においては、 理解のしゃすさに重点をおいて、 各データベース及び データベース内のデ—夕は、 固定フォーマッ トとして記述、 説明を行ったが、 こ れは、 フリーフォーマッ トであってもよい。 例えば、 稼動履歴データベースは、 プローブ最大種類を 3種類にしているが、 フリーフォーマッ トであれば、 プロ一 ブの使用種類数に応じて、 欄の増減をはかることが出来て、 記憶容量の節約が可 能であるが、 デ一夕ベースの構造としては、 複雑になる。
7 . 保守情報分析手段 1 5の説明
図 7は保守情報分析手段の詳細とデータベース作成手段 1 6を示す。
ここで、 記憶装置 2 0は、 パートプログラム 2 0 0、 座標系等のワークピース図 面情報 1 0 0、 使用プローブ等の測定作業指示情報 1 0 1、 測定開始日時等の測 定機情報を記憶する。
稼動時間抽出部 2 1は、 測定機の稼動時間を算出する。
プローブデ一夕抽出部 2 2は、 パートプログラム 2 0 0を分析してプローブの 点測定回数の総計を求める。
軸移動データ抽出部 2 3は、 パートプログラム 2 0 0を分析して各軸毎の総走 行距離を求める。
データベース作成手段 1 6は、 稼動履歴データベース 1 4 aのプローブ種類が 保守条件データベース 1 4 bの要素として登録されているかどうかのチヱックを 行って、 登録されていない場合は、 保守条件の登録か、 又は、 プローブ番号の修 正を対話式にオペレータに要求する等の、 各データベース内部の情報の整合性の 確認修正を行うと共に、 保守条件や保守実施情報の手動データ入力による保守情 報データべ—ス 1 4の追加、 更新を行う。
8 . 保守支援情報作成手段の説明
図 8は保守支援情報作成手段 1 7の詳細を示す。
ここで、 最新保守情報抽出部 2 4は、 測定機の各要素毎の最も新しい保守情報 を抽出する。
保守予告情報抽出部 2 5は、 稼動履歴データベース 1 4 aの各レコ一ドを累計 して、 稼動累計を求め、 測定機の各要素が、 既に保守予告を必要とする段階に達 しているかどうかの情報を抽出する。
保守時期情報抽出部 2 6は、 稼動累計から、 測定機の各要素が、 既に保守を必 要とする段階に達しているかどうかの情報を抽出する。
保守支援情報作成部 2 7は、 前記の稼動累計、 保守予告情報、 保守情報をまと めて、 プリン ト出力や画面表示、 ファイル作成等を行う。
9 . パ一トプログラムの説明
次に、 具体的な処理の流れを説明する。
図 9は、 図 1 0のパートプログラムによって測定されるワークピースを示す。 パ一トプログラムは、 ワークビースの 2面に加工された計 6個所の穴と 1個所 のポケッ トを測定する。
以下パートプログラムの内容を簡単に説明する。
プログラム No. (以下、 No.と略記する) 1から No.7は、 ファイルや変数の宣言を行 つて、 測定機の準備を行っている。
No.8から No.30は円測定マクロ定義している。 No. 11にあるように、 測定は 4点測 定を行う。
No.34で、 プローブの定義を行ない、 No.35でプローブ選択を行う。
No. 37は公差定義を行う。
No.41と No.42で速度指定を行う。
No.45から No. 117は、 スロッ ト測定マクロを定義している。 スロッ トの第 1の半円 部は、 No.51で円と見做して 3点測定を行う。 スロッ ト中央部の平行部は、 No.73、
No.81、 No.89、 No. 96で各 1点づつ、 計 4点の点測定を行う。 スロッ トの第 2の半 円部は、 No. 99で円と見做して 3点測定を行う。
測定のための、 実際の軸移動動作は、 No. 118から開始する。
円測定マクロを使用して、 No. 119、 No. 122、 No. 125、 No. 128で 4個所の円測定を 行った後、 No. 130でマクロによるスロット測定を行う。 No. 131で、 座標系切り替えを行った後、 No.133と No.136で 2つの円を円測定マクロ で測定する。
No.138では、 最初に測定した、 4個所の円について、 公差照合を行う。
1 0 . 稼動時間抽出部の説明
図 7に示す保守情報分析手段はパートプログラム解析を開始すると、 まず、 パ —トプログラム 2 0 0が読み込まれ、 ついで、 ワークピース図面情報 1 0 0と測 定作業指示情報 1 0 1の内、 各軸の測定開始初期座標位置等のパートプログラム に現れない情報を入力する。 これらは、 記憶装置 2 0によって内部記憶される。 次いで、 稼動時間抽出部 2 1が起動し、 図 1 1に示す処理が実行される。
以下、 この処理内容を詳棚に説明する。
S 1 0 :稼動時間抽出部 2 1の処理開始
S 1 1 :稼動履歴デ一夕べ一ス 1 4 aへ新規レコ一ドを追加して、 そのレコード 内容を全て消去する。
S 1 2 :測定機から入力した測定開始日時と測定終了日時を稼動履歴データべ一 ス 1 4 aの前ステップで追加した新規レコードの該当欄へ格納する。
5 1 3 :測定終了日時から測定開始日時を差し引いて稼動時間を求め、 稼動履歴 データベース 1 4 aへ格納する。
5 1 4 :稼動時間抽出部 2 1の処理終了
1 1 . プロ一ブデ一夕抽出部の説明
次いで、 プローブデ一夕抽出部が起動し、 図 1 2に示す処理が実行される。 プローブデ一夕抽出部は次のような処理を実行する。
S 2 0 : プローブデ一夕抽出部 2 2の処理開始
S 2 1 :パートプログラムの先頭から、 プローブ選択命令とプローブ点測定命令 を探す。 この時、 マクロ等が使用されているパートプログラムでは、 検索に注意 を要する。 すなわち、 マクロ等で、 引数が用いられている場合には、 マクロ側で 定義された値を使用するのではなく、 マクロ呼び出し時に渡された値を使用する ことが必要である。 従って、 三次元測定機においてパートプログラムが実行されるのと同様の順序 で検索される必要があり、 引数についても同様に扱われる必要がある (以下の説 明中の検索順序についても、 同様の検索順序とし、 異なる場合は、 その旨を示す) 。 その結果、 図 1 0の例では、 No.35において、 プローブ選択命令が検索されて、 そのプローブのラベルは " 1 " であることが分かる。 更に No.119において円測 定マクロが呼び出され、 その結果、 No.16において、 最初のプローブ点測定が検索 される。
S 2 2 :前ステップで検索されたプローブのラベルが稼動履歴データベース 1 4 aのプローブ種類に登録済かどうかをチェックする。
S 2 3 :未登録であれば、 稼動履歴データベース 1 4 aのプローブ種類に新規登 録する。 図 1 0の例では、 ステップ S 2 1で検索されたラベル " 1 " をプローブ 種類に格納する。
S 2 4 :該当プローブの測定回数をインクリメント ( 1を加算) する。
S 2 5 :以上の様に、 パートプログラムの末尾まで検索して、 処理を繰り返す。
S 2 6 : プローブデ一夕抽出部 2 2の処理終了
1 2 . 軸移動デ一夕抽出部の説明
次いで、 軸移動データ抽出部 2 3が起動し、 図 1 3に示す処理が実行される。 軸移動データ抽出部 2 3は次のような処理を実行する。
S 3 0 :軸移動データ抽出部 2 3の処理開始
S 3 1 :パートプログラム 2 0 0の先頭から、 軸移動命令と測定命令を探し、 走 行距離を求めて一時記憶する。
その結果、 図 1 0の例では、 No.119において円測定マクロが呼び出され、 その 結果、 No.12において、 最初の移動命令が検索される。 この例では、 座標 XI、 Yl、 Z1への移動命令であるが、 座標 XI、 Yl、 Z1の値そのものは、 マクロ呼び出し時に 引数として与えられた値、 すなわち No.119で指定された値 (Xl = 70.0、 Yl=— 50. 0、 Zl= - 12.5) が使用される。
S 3 2 :測定機の現在座標位置と、 前ステップで求められた移動目標位置との差 から走行距離を算出し、 稼動履歴データべ一ス 1 4 aの該当軸の走行距離に加算 する。
S 3 3 :以上の様に、 パートプログラムの末尾まで検索して、 処理を繰り返す。 S 3 4 :軸移動デ一夕抽出部 2 3の処理終了
1 3 . デ一夕べ一ス作成手段の説明
保守情報分析手段 1 5の処理が終了されるか、 あるいは、 保守実施情報 1 0 2 の手動入力等が指示されると、 データベース作成手段 1 6が起動し、 図 1 4に示 す処理が実行される。
データベース作成手段 1 6は次のような処理を実行する。
S 4 0 :デ一夕ベース作成手段 1 6の処理開始
S 4 1 :図 1 1のステップ S 1 1において稼動履歴データべ一ス 1 4 aに追加さ れた新規レコ一ドのプローブ種類が保守条件デ一夕ベース 1 4 bの要素として存 在するかどうかをチェックする。
S 4 2 :存在しない場合は、 ォペレ一夕に問い合せて、 新規プローブが使用され ている場合は、 保守条件データベース 1 4 bに新規プローブの保守条件を入力し、 新規プロ一ブではない場合は、 稼動履歴デ一夕べ一ス 1 4 aのプローブ種類を保 守条件データベース 1 4 bの要素に一致するよう修正する。
S 4 3 :保守条件デ一夕べ一ス 1 4 bの手動による追加、 更新を指示されている かどうかをチェックする。
S 4 4 :保守条件データベース 1 4 bをオペレータとの対話により追加、 更新す る。
S 4 5 :保守履歴デ一夕べ一ス 1 4 cの手動による追加、 更新を指示されている かどうかをチェックする。
S 4 6 :保守実施情報 1 0 2に関するオペレー夕との対話により保守履歴データ ベース 1 4 cを追加、 更新する。
S 4 7 :データベース作成手段 1 6の処理終了
1 4 . 最新保守情報抽出部の説明
図 8に示すように、 保守管理支援情報の作成を指示された場合は、 保守支援情 報作成手段 1 7が起動し、 まず、 図 1 5に示す最新保守情報抽出部 2 4の処理が 実行される。
最新保守情報抽出部 2 4は次のような処理を実行する。
S 5 0 :最新保守情報抽出部 2 4の処理開始
S 5 1 :保守履歴データベース 1 4 cから同一保守条件の内、 最新レコードを抽 出して一時記憶する。 具体的には、 測定機の各要素について最後に行った保守の レコ一ドを一時記憶する。
S 5 2 :前ステップで一時記憶したレコードの保守曰について、 同一要素の保守 レベルの高い方が後日の保守になっている場合は、 高レベルの保守時累計を低レ ベルの保守時累計にコピーする。
S 5 3 :最新保守情報抽出部 2 4の処理終了
1 5 . 保守予告情報抽出部の説明
次いで、 保守予告情報抽出部 2 5が起動し、 図 1 6に示す処理が実行される。 保守予告情報抽出部 2 5は次のような処理を実行する。
S 6 0 :保守予告情報抽出部 2 5の処理開始
S 6 1 :図 1 5のステップ S 5 1と S 5 2で一時記憶した最新レコードの保守時 累計に、 保守条件データベース 1 4 bの予告間隔を加算して、 保守予告時期を求 める。
S 6 2 :稼動履歴デ一夕べ一ス 1 4 aの全レコ一ドについて、 各要素のデ一夕を 集計して稼動累計を求める。
S 6 3 :保守予告時期と稼動累計を比較して、 稼動累計の方が大きければ、 保守 予告を要すると判断する。
S 6 4 :保守予告情報抽出部 2 5の処理終了
1 6 . 保守時期情報抽出部の説明
次いで、 保守時期情報抽出部 2 6が起動し、 図 1 7に示す処理が実行される。 保守時期情報抽出部 2 6は次のような処理を実行する。
S 7 0 :保守時期情報抽出部 2 6の処理開始 S 7 1 :図 1 5のステップ S 5 1 と S 5 2で一時記憶した最新レコ一ドの保守時 累計に、 保守条件データべ一ス 1 4 bの保守間隔を加算して、 保守時期を求める c S 7 2 :保守時期と図 1 6のステップ S 6 2で求めた稼動累計を比較して、 稼動 累計の方が大きければ、 保守を要すると判断する。
S 7 3 :保守時期情報抽出部 2 6の処理終了
1 7 . 保守支援情報作成部の説明
次いで、 保守支援情報作成部 2 7が起動し、 図 1 8に示す処理が実行される。 保守支援情報作成部 2 7は次のような処理を実行する。
S 8 0 :保守支援情報作成部 2 7の処理開始
S 8 1 :保守条件データベース 1 4 bの内容に、 図 1 6のステップ S 6 2で求め た稼動累計、 同じくステップ S 6 1で求めた保守予告時期、 ステップ S 6 3で求 めた保守予告判断、 図 1 7のステップ S 7 1で求めた保守時期、 同じくステップ S 7 2で求めた保守判断を加えて作表し、 プリント出力や画面表示、 ファイル作 成等を行う。
S 8 2 :保守支援情報作成部 2 7の処理終了
1 8 . その他の実施例
以上の実施例においては、 走行距離累計から保守時期を求めたが、 その他の方 法として、 距離 X速度の累計から保守時期を求めることも出来る。
又、 保守情報は、 主にパートプログラムを分析して必要な情報を抽出したが、 直接的に三次元座標測定機から、 点測定命令実行や軸移動命令実行等の制御情報 を保守情報分析手段へ入力して、 保守情報を抽出、 積算することも可能である。 更に、 保守支援情報作成手段起動は、 ォペレ一夕からの手動操作による他に、 必要に応じて測定機からの指示によって起動されても良く、 例えば、 測定機の電 源投入毎やパートプログラム実行開始毎に、 自動的に保守支援情報作成手段が起 動して、 測定開始前に保守情報が表示される構成にしておけば、 保守忘れによる 事故防止をはかることが出来る。
又、 保守予告状態あるいは既に保守が必要な段階にあることを、 独立の回転灯、 ランプ、 プザ一、 あるいは、 画面表示によってオペレータへ通知することによつ て、 より一層の操作性向上をはかることもできる。
又、 保守管理支援情報を、 測定機へフィードバックし、 その内容を測定機側で 表示させたり、 必要に応じて測定機の動作にィン夕一口ックをかけることも出来 る。 この目的の為に、 保守条件データベースに稼動停止間隔欄を設けて、 保守予 告時期や保守時期と同様な処理を行って、 稼動停止時期情報を生成することも出 来る。
更に、 本実施例では、 保守管理支援装置は、 測定機とは独立の装置又は方法と して説明したが、 これらの装置又は方法を測定機の制御装置内部に組込むことに よって、 測定途中における保守管理支援情報の生成をリアルタイムで行うことが 出来る上、 装置全体の小型化をはかることが出来る。

Claims

請求の範囲
1 . 測定のパートプログラムと測定実行結果出力のいずれか又は両方が入力され 測定機の稼動情報を抽出する測定機稼動状況分析手段と、 前記稼動情報を記憶す る記憶手段と、 を有する座標及び表面性状測定機の保守管理支援装置。
2 . 測定のパートプログラムと測定実行結果出力のいずれか又は両方が入力され 測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析手段と、 前記稼 動情報を記憶する記憶手段と、 を有する座標及び表面性状測定機の保守管理支援
3 . 請求項 1、 2のいずれかに記載の保守管理支援装置において、 前記記憶手段 に記憶されている前記稼動情報の履歴から測定機の保守管理支援情報を生成する 保守支援情報生成手段が付加された座標及び表面性状測定機の保守管理支援装置 c
4 . 測定のパートプログラムと測定実行結果出力の 、ずれか又は両方が入力され 測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析手段と、 前記各 構成要素毎の稼動情報を、 前記測定機保守管理支援情報生成に必要なデ一夕べ一 スに変換するデ一夕ベース変換手段と、 を有する座標及び表面性状測定機の保守
5 . 請求項 4に記載の保守管理支援装置において、 データベースはリレーショナ ルデ一夕ベースであることを特徴とする座標及び表面性状測定における保守管理
6 . 請求項 1乃至 5のいずれかに記載の保守管理支援装置を内蔵する座標及び表 面性状測定装置。
7 . 測定のパートプログラムと測定実行結果出力のいずれか又は両方が入力され 測定機の稼動情報を抽出する測定機稼動状況分析ステツプと、 前記稼動情報を記 憶する記憶ステップと、 を有する座標及び表面性状測定三次元座標測定機の保守 管理支援方法。
8 . 測定のパートプログラムと測定実行結果出力のいずれか又は両方が入力され 測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析ステップと、 前 記稼動情報を記憶する記憶ステップと、 を有する座標及び表面性状測定三次元座 標測定機の保守管理支援方法。
9 . 請求項 7、 8のいずれかに記載の保守管理支援方法において、 前記記憶手段 に記憶されている前記稼動情報の履歴から測定機の保守管理支援情報を生成する 保守支援情報生成ステツプが付加された座標及び表面性状測定三次元座標測定機 の保守管理支援方法。
1 0 . 測定のパートプログラムと測定実行結果出力のいずれか又は両方が入力さ れ測定機の各構成要素毎の稼動情報を抽出する測定機稼動状況分析ステップと、 前記各構成要素毎の稼動情報を、 前記測定機保守管理支援情報生成に必要なデー 夕ベースに変換するデータベース変換ステップと、 を有する座標及び表面性状測 定機の保守管理支援方法。
1 1 . 請求項 1 0に記載の保守管理支援方法において、 デ一夕ベースはリレーシ ョナルデ一夕ベースであることを特徴とする座標及び表面性状測定における保守 管理支援方法。
1 2 . 請求項 7乃至 1 1のいずれかに記載の保守管理支援方法を含む座標及び表 面性状測定三次元座標測定方法。
1 3 . コンピュータに、 パートプログラムを解析して保守情報を抽出する測定方 法分析手順と、 前記測定条件を書き換え可能に記憶する記憶手順とを実行させる ためのプログラムを記憶した媒体。
PCT/JP1998/003838 1998-08-28 1998-08-28 Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface WO2000012965A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000567905A JP4038335B2 (ja) 1998-08-28 1998-08-28 座標及び表面性状測定機の保守管理支援装置及び方法
US09/529,901 US6708138B1 (en) 1998-08-28 1998-08-28 Maintenance-and-control apparatus and method for coordinate and surface texture measuring device
DE69839646T DE69839646D1 (de) 1998-08-28 1998-08-28 Ines messinstrumentes für koordinaten- und oberflächenmessungen
EP98940600A EP1028307B1 (en) 1998-08-28 1998-08-28 Apparatus and method for maintenance of instrument for measuring coordinates and surface properties
PCT/JP1998/003838 WO2000012965A1 (fr) 1998-08-28 1998-08-28 Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface
CNB988107279A CN1154837C (zh) 1998-08-28 1998-08-28 坐标及表面特性测量仪的维修管理支援装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003838 WO2000012965A1 (fr) 1998-08-28 1998-08-28 Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface

Publications (1)

Publication Number Publication Date
WO2000012965A1 true WO2000012965A1 (fr) 2000-03-09

Family

ID=14208875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003838 WO2000012965A1 (fr) 1998-08-28 1998-08-28 Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface

Country Status (6)

Country Link
US (1) US6708138B1 (ja)
EP (1) EP1028307B1 (ja)
JP (1) JP4038335B2 (ja)
CN (1) CN1154837C (ja)
DE (1) DE69839646D1 (ja)
WO (1) WO2000012965A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365052A (ja) * 2001-06-05 2002-12-18 Topcon Corp 測量機の表示装置
JP2004144681A (ja) * 2002-10-25 2004-05-20 Topcon Corp メンテナンス予告検出手段内蔵型測量機及びデータ通信回線を用いてメンテナンスデータに基づき測量機を整備・修理する方法
JP2009139386A (ja) * 2009-01-15 2009-06-25 Topcon Corp 測量機のメンテナンスシステム
JP2011169616A (ja) * 2010-02-16 2011-09-01 Mitsutoyo Corp 表面性状測定機
JP2019090821A (ja) * 2019-01-18 2019-06-13 株式会社東京精密 3次元測定機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023634B4 (de) * 2004-05-10 2007-09-27 Siemens Ag Verfahren zur Vollständigkeits- und Konsistenzprüfung einer Informationsbibliothek
CN100377151C (zh) * 2005-03-11 2008-03-26 鸿富锦精密工业(深圳)有限公司 量测设备离线编程系统及方法
CN100483342C (zh) * 2005-09-26 2009-04-29 鸿富锦精密工业(深圳)有限公司 量测程序智能生成系统及方法
CN103890766B (zh) * 2011-07-29 2017-10-10 海克斯康测量技术有限公司 坐标测量系统数据缩减
CN103049627A (zh) * 2011-10-13 2013-04-17 鸿富锦精密工业(深圳)有限公司 量测数据上下偏差生成系统及方法
JP2017154419A (ja) * 2016-03-03 2017-09-07 セイコーエプソン株式会社 記録装置、記録システムおよび記録装置のメンテナンス方法
RU186997U1 (ru) * 2017-06-01 2019-02-12 Лунгулло Денис Андреевич Подогревающее устройство
JP7005419B2 (ja) * 2018-04-20 2022-01-21 株式会社日立製作所 状態識別装置、状態識別方法、及び機械装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118336A (ja) * 1983-11-30 1985-06-25 Fanuc Ltd 数値制御装置付パンチプレス機
JPS6174738A (ja) * 1984-09-19 1986-04-17 Amada Metoretsukusu:Kk タレツトパンチプレスの金型研磨時期検出方法
JPS61134279A (ja) * 1984-12-05 1986-06-21 Nec Corp ラインプリンタの印字制御装置
JPH0814876A (ja) * 1994-06-28 1996-01-19 Mitsutoyo Corp ワーク寸法自動測定システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819195A (en) * 1987-01-20 1989-04-04 The Warner & Swasey Company Method for calibrating a coordinate measuring machine and the like and system therefor
US5224047A (en) * 1989-10-03 1993-06-29 Murata Kikai Kabushiki Kaisha Maintenance monitoring apparatus for automatic winder
US5198990A (en) * 1990-04-23 1993-03-30 Fanamation, Inc. Coordinate measurement and inspection methods and apparatus
JPH0651910U (ja) * 1992-12-21 1994-07-15 株式会社ミツトヨ 測定子の使用頻度測定装置
US5581482A (en) * 1994-04-26 1996-12-03 Unisys Corporation Performance monitor for digital computer system
US5629871A (en) * 1995-06-07 1997-05-13 Cobe Laboratories, Inc. Wear trend analysis technique for components of a dialysis machine
US5970437A (en) * 1996-10-03 1999-10-19 Gorman; Alexander J. Computerized management of plant maintenance and program therefor
DE69637808D1 (de) * 1996-11-07 2009-02-26 Mori Seiki Seisakusho Yamatoko Verfahren und vorrichtung zur analyse eines nc-programmes für nc-bearbeitung
US20020022899A1 (en) * 1997-03-12 2002-02-21 Total Plant Control Australasia Pty. Limited Control method and system for a computerized logging of data for maintenance of plant facilities and other functions
US5970431A (en) * 1997-04-21 1999-10-19 International Metrology Systems, Inc. Iconized DMIS
JP3335106B2 (ja) * 1997-07-16 2002-10-15 株式会社小松製作所 機械のメンテナンス時期判定方法および装置
US6006171A (en) * 1997-07-28 1999-12-21 Vines; Caroline J. Dynamic maintenance management system
US6161079A (en) * 1997-08-18 2000-12-12 Giddings & Lewis, Llc Method and apparatus for determining tolerance and nominal measurement values for a coordinate measuring machine
US5953687A (en) * 1997-08-18 1999-09-14 Giddings & Lewis, Inc. Method and apparatus for displaying active probe tip status of a coordinate measuring machine
US6505145B1 (en) * 1999-02-22 2003-01-07 Northeast Equipment Inc. Apparatus and method for monitoring and maintaining plant equipment
US6223137B1 (en) * 1999-03-25 2001-04-24 The University Of Tennessee Research Corporation Method for marking, tracking, and managing hospital instruments
US6490543B1 (en) * 1999-07-13 2002-12-03 Scientific Monitoring Inc Lifeometer for measuring and displaying life systems/parts
US6401056B1 (en) * 1999-12-27 2002-06-04 General Electric Company Methods and apparatus for evaluating tool performance
US6370454B1 (en) * 2000-02-25 2002-04-09 Edwin S. Moore Iii Apparatus and method for monitoring and maintaining mechanized equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118336A (ja) * 1983-11-30 1985-06-25 Fanuc Ltd 数値制御装置付パンチプレス機
JPS6174738A (ja) * 1984-09-19 1986-04-17 Amada Metoretsukusu:Kk タレツトパンチプレスの金型研磨時期検出方法
JPS61134279A (ja) * 1984-12-05 1986-06-21 Nec Corp ラインプリンタの印字制御装置
JPH0814876A (ja) * 1994-06-28 1996-01-19 Mitsutoyo Corp ワーク寸法自動測定システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1028307A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365052A (ja) * 2001-06-05 2002-12-18 Topcon Corp 測量機の表示装置
JP2004144681A (ja) * 2002-10-25 2004-05-20 Topcon Corp メンテナンス予告検出手段内蔵型測量機及びデータ通信回線を用いてメンテナンスデータに基づき測量機を整備・修理する方法
JP2009139386A (ja) * 2009-01-15 2009-06-25 Topcon Corp 測量機のメンテナンスシステム
JP2011169616A (ja) * 2010-02-16 2011-09-01 Mitsutoyo Corp 表面性状測定機
JP2019090821A (ja) * 2019-01-18 2019-06-13 株式会社東京精密 3次元測定機

Also Published As

Publication number Publication date
CN1154837C (zh) 2004-06-23
JP4038335B2 (ja) 2008-01-23
EP1028307A1 (en) 2000-08-16
US6708138B1 (en) 2004-03-16
DE69839646D1 (de) 2008-08-07
EP1028307B1 (en) 2008-06-25
CN1278327A (zh) 2000-12-27
EP1028307A4 (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP6073452B2 (ja) 自動的な技術監督操作を実行して製造システムの性能を向上するための、半自動製造構成における各運転者特有のトライバルナレッジの特定、取込
WO2000012965A1 (fr) Dispositif et procede d'aide a la gestion de l'entretien d'instrument de mesures de coordonnees et de proprietes de surface
US6973358B2 (en) Defect influence degree evaluation method and design support system
JP4038334B2 (ja) 座標及び表面性状測定におけるパートプログラムの解析及びパートプログラムの作成に関する装置及び方法
WO2007013466A1 (ja) 機器管理方法、それに用いる分析システム、保守点検支援方法、及び、それに用いる保守点検支援装置
KR102419234B1 (ko) 제품 품질 분석 지원 시스템
Rodriguez-Toro et al. Complexity metrics for design (simplicity+ simplicity= complexity)
Jourdan et al. Machine learning for intelligent maintenance and quality control: A review of existing datasets and corresponding use cases
CN114818361A (zh) 一种基于应用场景的数字孪生模型构建方法
KR100604501B1 (ko) 자동 시각화 및 측정 시스템과, 사용자 지시 및 자동 입력 획득 방법
CN117961646A (zh) 一种重载加工用数控刀片剩余使用寿命预测方法及系统
Sierra-Fontalvo et al. Diagnosing remanufacture potential at product-component level: A disassemblability and integrity approach
CN117436769A (zh) 一种结构件焊接质量监测方法、系统、存储介质及设备
JP2001005507A (ja) 加工条件評価・検証方法及びその装置
Nair et al. Statistics in advanced manufacturing
JP4772613B2 (ja) 品質解析方法、品質解析装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2954613B2 (ja) プラント寿命診断支援装置
Huang et al. The DFX shell: A generic framework for applying ‘Design for X’(DFX) tools
Emadi An Assembly Approach for Determining the Maintainability index for Engineered Products
JP2021071910A (ja) 設計支援装置、設計支援方法及び設計支援プログラム
WO2016163008A1 (ja) 異常診断装置および異常診断方法
Engel et al. Re-engineering of Rotary Draw Bending Machines: A Survey of Manufacturers and Users
JP2000122712A (ja) プラント保守管理装置
Tokucoglu et al. Sensor based cost modelling for a knowledge support system development
Savolainen Data-Driven Predictive Maintenance Strategies for Light Rail Vehicles: Applying Machine Learning and IoT Technologies to Enhance Operational Efficiency and Reliability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810727.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09529901

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998940600

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998940600

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998940600

Country of ref document: EP