WO2000012660A2 - Verfahren zur effizienzsteigerung von tensiden bei simultaner unterdrückung lamellarer mesophasen sowie tenside, welchen ein additiv beigefügt ist - Google Patents

Verfahren zur effizienzsteigerung von tensiden bei simultaner unterdrückung lamellarer mesophasen sowie tenside, welchen ein additiv beigefügt ist Download PDF

Info

Publication number
WO2000012660A2
WO2000012660A2 PCT/DE1999/002748 DE9902748W WO0012660A2 WO 2000012660 A2 WO2000012660 A2 WO 2000012660A2 DE 9902748 W DE9902748 W DE 9902748W WO 0012660 A2 WO0012660 A2 WO 0012660A2
Authority
WO
WIPO (PCT)
Prior art keywords
block
water
surfactant
block copolymer
soluble
Prior art date
Application number
PCT/DE1999/002748
Other languages
English (en)
French (fr)
Other versions
WO2000012660A3 (de
Inventor
Jürgen Allgaier
Lutz Willner
Dieter Richter
Britta Jakobs
Thomas Sottmann
Reinhard Strey
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7878952&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000012660(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to AT99953661T priority Critical patent/ATE280821T1/de
Priority to US09/763,413 priority patent/US6677293B1/en
Priority to EP99953661.8A priority patent/EP1109883B2/de
Priority to DE59910950T priority patent/DE59910950D1/de
Priority to JP2000571065A priority patent/JP4703852B2/ja
Publication of WO2000012660A2 publication Critical patent/WO2000012660A2/de
Publication of WO2000012660A3 publication Critical patent/WO2000012660A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the invention relates to a method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, in particular in microemulsions and emulsions, and to surfactants to which an additive is added.
  • emulsions and microemulsions are stabilized by nonionic, anionic or cationic surfactants.
  • the surfactants are able to solubilize a non-polar solvent (oil) in a polar solvent (eg water) or water in oil.
  • the efficiency of the surfactants is expressed in the amount of surfactant required to add a certain amount of oil in water or vice versa to solubilize.
  • water-oil-surfactant mixtures between emulsions and microemulsions. While microemulsions are thermodynamically stable, emulsions are thermodynamically unstable and disintegrate. In the microscopic range, this difference is reflected in the fact that the emulsified liquids in microemulsions are contained in smaller liquid volumes (e.g. 10 -15 ⁇ l) than in emulsions (e.g. 10-12).
  • Thermodynamically unstable emulsions therefore have larger structure sizes.
  • Lamellar mesophases can occur in microemulsion systems. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are e.g. undesirable for detergents because the lamellar mesophases cannot be washed out.
  • additives generally influence the temperature behavior of the emulsions and microemulsions. A shift in the single-phase areas for oil-water-surfactant mixtures to other temperature ranges can be observed in the phase diagram when an additive is added. The shifts can be on the order of 10 ° C. However, this has the consequence that e.g. Detergent formulations have to be changed in order to adapt them to the new temperature behavior of the single-phase area.
  • the temperature behavior of the emulsions and microemulsions should remain unaffected by the addition of the additive, that is to say the position of the single-phase region in the phase diagram should essentially not be influenced by the addition of the additives with respect to the temperature.
  • An additive is to be created which does not influence the position of the single-phase region with regard to the temperature.
  • the aim is also to provide an additive which has the advantages mentioned above and can be added to a detergent, for example, without having to change the formulation of the remaining detergent formulation.
  • a possibility is to be created to produce microemulsions whose size of the emulsified liquid particles corresponds to that of emulsions.
  • the position of the single-phase area in the phase diagram in the temperature area is not changed by adding the AB block copolymer to the water-oil-surfactant mixture, the efficiency of the surfactant mixture is increased considerably, lamellar mesophases are suppressed in microemulsions and the interface
  • the tension between water and oil is reduced more than by the tensides alone.
  • microemulsions retain their characteristic properties while increasing their structural size; the emulsified structures take on sizes of up to approx. 2000 angstroms.
  • a microemulsion is thus obtained which has the structure sizes of an emulsion but is thermodynamically stable.
  • the size of the emulsified liquid particles depends on the temperature and the amount of block copolymer added, and thus on the composition of the surfactant mixture.
  • Blocks A and B can assume molecular weights between 500 u and 60,000 u.
  • a polyethylene oxide (PEO) block is preferably used as block A.
  • all blocks A which are water-soluble can be used, so that they form an amphiphile in conjunction with block B.
  • PEO polyethylene oxide
  • block A polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid and their alkali metal salts, in which the acid function has been at least partially replaced by alkali metal cations, can also be mentioned as examples of polyvinylpyridine and polyvinyl alcohol, polymethylvinylyl ether, polyvinylpyrrolidine, polysaccharides and mixtures thereof.
  • Block B various water-insoluble components of the stated molecular weight are used.
  • Block B can be the product of an anionic 1,2-, 3,4-polymerization or 1,4-polymerization of dienes.
  • block B can also be the product of an at least partial hydrogenation of the polydienes.
  • Typical monomeric constituents are 1,3 butadiene, isoprene, all constituents of dimethyl butadiene, 1.3 pentadiene, 2.4 hexadienes, ⁇ methylstyrene, isobutylene, ethylene, propylene, styrene or alkyl acrylates and alkyl methacrylates, the alkyl group between 2 contains 20 carbon atoms.
  • Block B can also be polydimethylsiloxane. The polymer of a single monomer or a monomer mixture can be used as block B.
  • Block B can have methyl, ethyl, vinyl, phenyl or benzyl groups as side chains.
  • the double bonds in the polydiene chain as well as in the vinyl groups, which can exist as a side chain, can be either completely or partially hydrogenated.
  • any sufficiently amphiphilic block copolymer can be used in the present invention.
  • the AB block copolymers used according to the invention can preferably be obtained from an anionic polymerization. With lower molecular weights of blocks A and B in the order of about 500-5000 g / mol for blocks A and B, particularly advantageous properties of the AB block copolymers according to the invention are observed in application products. The polymers with these low molecular weights dissolve quickly and well. This applies, for example, to solutions in soaps and detergents.
  • Block A should be as polar as possible and block B as non-polar as possible. This increases the amphiphilic behavior.
  • Block A should be water-soluble and Block B should be soluble in non-polar media.
  • Block B is advantageously soluble in mineral oils or aliphatic hydrocarbons or in mineral oils and aliphatic hydrocarbons. This also applies at room temperature.
  • AB block copolymers of the ABA and BAB types which are referred to as triblock copolymers, can also be used.
  • Anionic surfactants e.g. AOT (sodium bis (2-ethylhexyl) sulfosuccinate)
  • C any surfactant, such as anionic, cationic, nonionic surfactant or sugar surfactant, and mixtures thereof which contain at least two surfactants.
  • total surfactant concentration at the crossing point where the single-phase meets the three-phase area in the phase diagram. For a given water / oil ratio, this corresponds minimally to the total surfactant concentration required for complete solubilization of water and oil.
  • PX / Y additive with a molecular weight in lOOOg / mol X of a hydrophobic alkyl chain (hydrogenated 1,4-polyisoprene) and a molecular weight in lOOOg / mol Y of polyethylene oxide.
  • the alkyl chain has a molecular weight of 22000 g / mol and the polyethylene oxide chain has a molecular weight of 15000 g / mol.
  • the additives shown in this way are AB block copolymers.
  • the compounds shown here as examples can be obtained by the production process from DE 196 34 477 AI.
  • Fig.l Typical temperature / surfactant concentration section through the phase prism at a constant water / oil ratio for the H 2 0-tetradecane-C 6 E 2 system for comparison.
  • Fig. 2 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 5 as a function of the addition P5 / 5 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 4 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 22 as a function of the addition P22 / 22 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 5 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 3 as a function of the addition of P5 / 3 ( ⁇ ) and P5 / 2 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 6 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 15 as a function of the addition P22 / 15 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 8 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 30 as a function of the addition P5 / 30 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 9 The single-phase areas for the mixture (water + NaCl) / n-decane-AOT-P5 / 5 as a function of the addition P5 / 5 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • CgG- L is a sugar amphiphile.
  • Fig. 11 Overview: ⁇ as a function of ⁇ for the different water / n-dean-C 10 E 4 -Px / y systems.
  • Fig. 13 single-phase areas for the systems H 2 0-n-dean C 10 E 4 - P22 / 22 (open circles) and H 2 0-n-dean-C 10 E 4 -Pl / l (black diamonds) depending from ⁇ .
  • PS1 polystyrene with molecular weight 10000g / mol
  • PEOl polyethylene oxide with molecular weight 10000g / mol; (AB block copolymer)) in one temperature / Surfactant concentration diagram.
  • the ratio H 2 0 / cyclohexane is 1: 1.
  • the H 2 ⁇ / n-dean ratios realized in FIGS. 1 to 9 and 11 to 13 are 1: 1.
  • FIG. 1 shows the type of phase diagram according to the prior art, which provides the basis for FIGS. 1 to 8.
  • the temperature T is plotted against the total surfactant concentration ⁇ for the water / n-tetradecane-C 3 E 2 system and a water / n-tetradecane ratio of 1: 1.
  • the single phase area 1 of the mixture is located. This area is followed in the direction of smaller surfactant concentrations.
  • NEN a closed three-phase area 3.
  • the T / ⁇ diagrams shown in FIGS. 2 to 9 relate to systems with a constant water / oil volume ratio of 1: 1 and are to be explained in general below.
  • Figure 2 shows how the efficiency of the total surfactant increases with the addition of the block copolymer.
  • the position of the effectiveness of the surfactant C with respect to its application temperature is essentially invariant.
  • no lamellar mesophases occur in the mixtures examined.
  • the efficiency of the total surfactant is also increased in the example shown in FIG. 4 and the temperature is essentially maintained. Lamellar phases are not observed.
  • FIGS. 7 and 8 A significant increase in efficiency can also be observed in FIGS. 7 and 8. Furthermore, no lamellar phases occur in the experiments shown in FIGS. 7 and 8. In Figure 7, the gray dots are PI5 / PE015 and the triangles P5 / 15. While the increase in efficiency of the nonionic surfactant C 10 E 4 was documented by the addition of block copolymers in FIGS. 2-8, the increase in efficiency in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown in FIG. 9 .
  • FIG. 11 documents in an overview the very strong increase in efficiency of the block copolymer admixtures according to the invention.
  • the total surfactant concentrations at the crossing point ⁇ are plotted as a function of the addition ⁇ of the block copolymer.
  • interfacial tension is shown as a function of temperature for the water / n-dean-C 10 E 4 -P5 / 5 system.
  • the value of the interfacial tension minimum drops by a factor of five even at a ⁇ of 0.05.
  • the interfacial tension of surfactants such as, for example, anionic, cationic and nonionic surfactants, sugar surfactants or technical surfactant mixtures, is reduced.
  • the appearance of lamellar mesophases is suppressed.
  • the temperature behavior of the microemulsions remains unchanged, ie the position of the single-phase area with respect to the temperature in the phase diagram is not influenced by the addition of the additives used according to the invention. Therefore, the formulation of a detergent does not have to be changed in order to bring about a constant position of the single-phase area with respect to the temperature in the single-phase diagram.
  • the AB block copolymers according to the invention can not only be used in detergents; they can also have the same effect, for example, as additives in foods and cosmetics and in all industrial or technical applications of microemulsions and emulsions, e.g. when used in crude oil production, in soil remediation and when used as e.g. Reaction medium can be used.
  • microemulsions produced by adding the AB block copolymers according to the invention have emulsified liquid volumes whose size corresponds to that of emulsions.
  • the effects according to the invention can be achieved by any use of a surfactant together with the AB block copolymer in a system to be emulsified.
  • a surfactant, to which an AB block copolymer according to the invention is added, and any system emulsified therewith, comprising additionally water and / or oil, are therefore included in the invention.
  • the effects according to the invention are not limited to emulsions and microemulsions, but rather influence sen the behavior of surfactants in general in the manner described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Effizienzsteigerung von Tensiden sowie ein Verfahren zur Unterdrückung lamellarer Mesophasen in Mikroemulsionen. Erfindungsgemäss werden den Tensiden Blockcopolymere mit einem wasserlöslichen Block A und einem wasserunlöslichen Teil B als Additiv zugegeben. Durch den Einsatz dieser Verbindungen als Additive kann die Effizienz der Tenside wesentlich erhöht werden. Weiterhin wird durch die Zugabe der Blockcopolymere die Bildung von unerwünschten lamellaren Mesophasen in Mikroemulsionen unterdrückt.

Description

B e s c h r e i b u n g
Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist.
Die Erfindung betrifft ein Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen insbesondere in Mikroemulsionen und Emulsionen, sowie Tenside, welchen ein Additiv beigemischt ist .
Emulsionen und Mikroemulsionen werden nach dem Stand der Technik durch nichtionische, anionische oder kationische Tenside stabilisiert. Die Tenside vermögen ein unpolares Lösungsmittel (Öl) in einem polaren Lösungsmittel ( z.B. Wasser) oder Wasser in Öl zu solubilisie- ren. Die Effizienz der Tenside wird in der Menge Tensid ausgedrückt, welche benötigt wird, um einen bestimmten Anteil Öl im Wasser oder umgekehrt zu solubilisieren. Man unterscheidet bei Wasser-Öl-Tensid-Mischungen zusätzlich zwischen Emulsionen und Mikroemulsionen. Während Mikroemulsionen thermodynamisch stabil sind, sind Emulsionen thermodynamisch instabil und zerfallen. Im mikroskopischen Bereich spiegelt sich dieser Unterschied darin wieder, daß die emulgierten Flüssigkeiten in Mikroemulsionen in kleinere Flüssigkeitsvolumina ( z.B. 10 -15 μl) gefaßt sind als in Emulsionen (z.B. 10-12
μl) . Thermodynamisch instabile Emulsionen weisen somit größere Strukturgrößen auf .
In Mikroemulsionssystemen können lamellare Mesophasen auftreten. Lamellare Mesophasen führen zu optischer Anisotropie und erhöhter Viskosität. Diese Eigenschaften sind z.B. für Waschmittel unerwünscht, da die la- mellaren Mesophasen nicht auswaschbar sind. Weiterhin beeinflussen Additive im Allgemeinen das Temperaturverhalten der Emulsionen und Mikroemulsionen. So ist im Phasendiagramm eine Verlagerung der Einphasengebiete für Öl-Wasser-Tensid-Mischungen in andere Temperaturbereiche zu beobachten, wenn ein Additiv zugegeben wird. Die Verschiebungen können in der Größenordnung von 10°C liegen. Dies hat jedoch zur Folge, daß z.B. Waschmittelrezepturen geändert werden müssen, um sie dem sich jeweils neu einstellenden Temperaturverhalten des Einphasengebietes anzupassen.
Zusätzlich besteht das Bedürfnis, unter Einsparung von Tensiden ein mindestens gleich gutes Emulgierungsver- halten zu erlangen und die Grenzflächenspannung zu verkleinern, das bedeutet, beispielsweise die Waschkraft von Waschmitteln zu verbessern.
Es ist daher die Aufgabe der Erfindung, die Effizienz von Tensiden zu steigern und die Grenzflächenspannung zwischen Wasser und Öl in Anwesenheit von Tensiden noch stärker zu verringern. Weiterhin soll das Auftreten von lamellaren Phasen in Mikroemulsionen bzw. Wasser-, Öl-, Tensidgemischen unterdrückt werden. Das Temperaturverhalten der Emulsionen und Mikroemulsionen soll durch Zugabe des Additivs unbeeinflußt bleiben, das heißt, die Lage des Einphasengebietes im Phasendiagramm soll durch Zugabe der Additive bezüglich der Temperatur im wesentlichen nicht beeinflußt werden. Es soll ein Additiv geschaffen werden, welches die Lage des Einphasengebietes bezüglich der Temperatur nicht beeinflußt . Es soll ebenfalls ein Additiv zur Verfügung gestellt werden, welches die oben genannten Vorteile hat und z.B. einem Waschmittel zugemischt werden kann ohne daß eine Rezepturänderung der verbleibenden Waschmittelrezeptur vorgenommen werden muß. Es soll eine Möglichkeit geschaffen werden, Mikroemulsionen herzustellen, deren Größe der emulgierten Flüssigkeitsteilchen denen von Emulsionen entsprechen.
Überraschenderweise werden ausgehend vom Oberbegriff des Anspruchs 1 alle Aufgaben erfindungsgemäß dadurch gelöst, daß als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B eingesetzt wird.
Erfindungsgemäß wird durch die Zugabe des AB- Blockcopolymers zur Wasser-Öl-Tensid-Mischung die Lage des einphasigen Gebietes im Phasendiagramm im Temperaturgebiet nicht verändert, die Effizienz der Tensidmi- schung wird erheblich gesteigert, lamellare Mesophasen werden in Mikroemulsionen unterdrückt und die Grenzflä- chenspannung zwischen Wasser und Öl wird stärker abgesenkt als durch die Tenside alleine. Außerdem behalten Mikroemulsionen ihre für sie charakteristischen Eigenschaften unter Vergrößerung ihrer Strukturgroße; so nehmen die emulgierten Strukturen Größen von bis zu ca. 2000 Angström an. Somit wird eine Mikroemulsion erhalten, die die Strukturgrößen einer Emulsion hat, aber thermodynamisch stabil ist . Die Größe der emulgierten Flüssigteilchen hängt von der Temperatur und der zugesetzten Menge Blockcopolymer, bzw. damit von der Zusammensetzung des Tensidgemisches, ab.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Die Blöcke A und B können dabei Molekulargewichte zwischen 500 u und 60000 u annehmen. Als Block A wird bevorzugt ein Polyethylenoxid (PEO) - Block eingesetzt. Jedoch können alle Blöcke A eingesetzt werden, die wasserlöslich sind, so daß sie in Verbindung mit Block B ein Amphiphil bilden. Weiterhin können für den Block A beispielhaft Polyacrylsäure, Polymethacrylsäure , Polystyrolsulfonsäure sowie deren Alkalimetallsalze, bei denen mindestens teilweise eine Substitution der Säurefunktion durch Alkalimetallkationen erfolgt ist, Po- lyvinylpyridin und Polyvinylalkohol, Polymethylvinyle- ther, Polyvinylpyrrolidin, Polysaccharide sowie deren Gemische genannt werden.
Für den Block B kommen verschiedene wasserunlösliche Komponenten des genannten Molekulargewichts zum Ein- satz. So kann Block B das Produkt einer anionischen 1,2-, 3,4- Polymerisation, bzw. 1,4 Polymerisation von Dienen sein. In Folge kann Block B weiterhin das Produkt einer mindestens teilweisen Hydrierung der Poly- diene sein. Als typische monomere Bestandteile kommen 1,3 Butadien, Isopren, alle Konstitumere des Dimethyl- butadien, 1,3 Pentadien, 2,4 Hexadiene, α Methylstyrol, Isobutylen, Ethylen, Propylen, Styrol oder Alkylacryla- te und Alkylmethacrylate wobei die Alkylgruppe zwischen 2 uns 20 Kohlenstoffatome enthält zum Einsatz. Block B kann auch Polydimethylsiloxan sein. Als Block B kann das Polymerisat eines einzigen Monomers oder eines Monomerengemisches verwendet werden.
Block B kann als Seitenketten Methyl-, Ethyl-, Vinyl- Phenyl- oder Benzylgruppen aufweisen.
Die Doppelbindungen in der Polydienkette sowie in den Vinylgruppen, die als Seitenkette existieren können, können entweder ganz oder teiweise hydriert sein. Jedoch kann erfindungsgemäß jedes genügend amphiphile Blockcopolymer eingesetzt werden. Die erfindungsgemäß eingesetzten AB-Blockcopolymere können vorzugsweise aus einer anionischen Polymerisation erhalten werden. Bei geringeren Molekulargewichten der Blöcke A und B in einer Größenordnung von ca 500-5000 g/mol für die Blök- ke A und B werden besonders vorteilhafte Eigenschaften der erfindungsgemäßen AB-Blockcopolymere in Anwendungsprodukten beobachtet. So lösen sich die Polymere mit diesen niedrigen Molekulargewichten schnell und gut auf. Dies gilt zum Beispiel für Lösungen in Seifen und Waschmitteln. In den erfindungsgemäß eingesetzten AB-Blockcopolymeren sollen die beiden Blöcke A und B ein möglichst hohen Unterschied in ihrer Polarität aufweisen. Dabei soll Block A möglichst polar sein und Block B möglichst unpolar. Hierdurch wird das amphiphile Verhalten gesteigert . Block A soll wasserlöslich sein und Block B soll in unpolaren Medien löslich sein. Vorteilhafterweise ist Block B in Mineralölen oder aliphatischen Kohlenwasserstoffen bzw. in Mineralölen und aliphatischen Kohlenwasserstoffen löslich. Dies gilt auch bei Raumtemperatur .
Weiterhin können auch AB-Blockcopolymere des Typs ABA und BAB einegesetzt werden, die als Triblockcopolymere bezeichnet werden.
Beispielhaft können folgende Tenside (C) und deren Gemische mit den erfindungsgemäßen Additiven verwendet werden :
• nichtionische Tenside der Klasse Alkylpolyglycolether ( jE-j) mit i > 8 (C = C-Atome in der Alkylkette, E =
Ethylenoxideinheiten)
• nichtionische Tenside der Klasse Alkylpolyglucoside
(APG) „Zuckertensidew,CiGj mit i > 8) mit Cotensid Alkohol (Cx-OH, x > 6)
• anionische Tenside, z.B. AOT (Natrium bis (2- ethylhexyl) sulfosuccinat)
• kationische Tenside • Tensidgemische
• technische Tenside
Im Folgenden sollen einige Begriffe definiert werden: C = Ein beliebiges Tensid, wie anionisches, kationisches, nichtionisches Tensid oder Zuckertensid, sowie deren Gemische, die mindestens zwei Tenside enthalten.
D = Additiv, welches dem Tensid C erfindungsgemäß zugefügt wird .
γ Gesamttensidkonzentration (Massenbruch) aus C und
Figure imgf000009_0001
Hierin sind: = Masse in g.
γ = dimensionsloser Massenbruch mges = Gesamtmasse aus ^sser + möι + m(C) + m(E>)
γ= Gesamttensidkonzentration am Kreuzungspunkt, an dem im Phasendiagramm das einphasige auf das dreiphasige Gebiet trifft. Dies entspricht der bei gegebenen Wasser/Öl-Verhältnis minimal zur vollständigen Solubilie- rang von Wasser und Öl notwendigen Gesamttensidkonzentration.
δ = Massenbruch des Additivs D im Gemisch Tensid C + m (D)
Additiv D, entspricht δ= m (C) + m (D) mit m = Masse in g und
δ = Massenbruch (dimensionslos)
Im Folgenden soll die Erfindung beispielhaft erläutert werden .
PX/Y = Additiv mit einem Molekulargewicht in lOOOg/mol X an hydrophober Alkylkette (hydriertes 1,4- Polyisopren) und einem Molekulargewicht in lOOOg/mol Y an Polyethylenoxid.
Beispiel P5/5 : die Alkylkette hat ein Molekulargewicht von 5000 g/mol (= u) und die Polyethylenoxidkette hat ein Molekulargewicht von 5000 g/mol.
P22/15: die Alkylkette hat ein Molekulargewicht von 22000 g/mol und die Polyethylenoxidkette hat ein Molekulargewicht von 15000 g/mol.
Die auf diese Weise dargestellten Additive sind AB- Blockcopolymere .
Die hier beispielhaft dargestellten Verbindungen können nach dem Herstellungsverfahren aus der DE 196 34 477 AI erhalten werden.
Das Verhalten der erfindungsgemäßen Mikroemulsionen ist in den Figuren dargestellt : Fig.l: Typischer Temperatur/Tensidkonzentrationsschnitt durch das Phasenprisma bei konstantem Wasser/Öl- Verhältnis für das H20-Tetradekan-C6E2-System zum Vergleich.
Fig.2: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm .
Fig.3: Die Einphasengebiete für das Gemisch Wasser/n-
Dekan-C10E4-P10/I0 als Funktion der Zugabe P10/10 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
Fig.4: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P22/22 als Funktion der Zugabe P22/22 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
Fig.5: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/3 als Funktion der Zugabe P5/3 (δ) und P5/2 (δ) in einem Temperatur/Tensidkonzentrations- diagramm.
Fig.6: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P22/15 als Funktion der Zugabe P22/15 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm. Fig.7: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/15 und Wasser/n-Dekan-C10E4-PI5/PEO15 (PI5 = Polyisopren mit Molekulargewicht 5000g/mol, PE015 = Polyethylenoxyd mit Molekulargewicht 15000 g/mol (AB- Blockcopolymer) . ) als Funktion der Zugabe δ in einem Temperatur/Tensidkonzentrationsdiagramm.
Fig.8: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/30 als Funktion der Zugabe P5/30 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
Fig.9: Die Einphasengebiete für das Gemisch (Wasser+NaCl) /n-Dekan-AOT-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Tempera- tur/Tensidkonzentrationsdiagramm.
Fig.10: Die Einphasengebiete für das Gemisch Wasser/n- Oktan-Oktanol-CsGi-PS/S ( C^ = n-octyl-ß-D- Glucopyranosid, welches ein Zuckertensid ist) als Funk- tion der Zugabe P5/5 (δ) in einem Tetraederschnitt bei einem konstantem Wasser/Öl-Verhältnis und T=25°C. CgG-L ist hierbei ein Zuckeramphiphil .
Fig.11: Übersicht: γ als Funktion von δ für die ver- schiedenen Wasser/n-Dekan-C10E4-Px/y-Systeme . Fig.12: Öl/Wassergrenzflächenspannung als Funktion der Temperatur für das System Wasser/n-Dekan-C10E4-P5/5 für δ=0 und δ=0.05.
Fig.13 Einphasengebiete für die Systeme H20-n-Dekan- C10E4- P22/22 (leere Kreise) und H20-n-Dekan-C10E4-Pl/l (schwarze Rauten) in Abhängigkeit von δ.
Fig.14: Einphasengebiete für die Systeme H20- Cyclohexan-C8E4- PSl/PEOl (PS1 = Polystyrol mit Molekulargewicht lOOOg/mol, PEOl = Polyethylenoxid mit Molekulargewicht lOOOg/mol ; (AB-Blockcopolymer) ) in einem Temperatur/Tensidkonzentrationsdiagramm. Das Verhältnis H20/Cyclohexan ist 1:1.
Die in den Figuren 1 bis 9 und 11 bis 13 realisierten H2θ/n-Dekan-Verhältnisse sind 1:1.
Figur 1 stellt den Typ von Phasendiagramm nach dem Stand der Technik dar, der die Grundlage für die Figuren 1 bis 8 liefert.
Dabei ist die Temperatur T gegen die Gesamttensidkonzentration γ für das System Wasser/n-Tetradecan-C3E2 und ein Wasser/n-Tetradekan-Verhältnis von 1:1 aufgetragen. Bei höheren Tensidkonzentrationen befindet sich das Einphasengebiet 1 des Gemisches . An diesen Gebiet schließt sich in Richtung kleinerer Tensidkonzentratio- nen ein geschlossenes Dreiphasengebiet 3 an. Oberhalb und unterhalb der Phasengrenzlinien befinden sich Zwei- phasengebiete 2. Der Punkt, an dem alle Phasengebiete zusamnmentreffen, wird durch die Tensidkonzentration γ und die Temperatur T definiert . Je mehr γ zu kleinen Werten verschoben ist, desto größer ist die Strukturgröße der Mikroemulsionen.
Die in den Figuren 2 bis 9 dargestellten T/γ -Diagramme beziehen sich auf Systeme auf ein konstantes Wasser/Öl- Volumenverhältnis von 1:1 und sollen im Folgenden allgemein erläutert werden.
In diesen Diagrammen sind Kurven zu jeweils einem δ - Wert eingezeichnet, welche die Begrenzung des jeweiligen zu einem δ-Wert gehörigen Einphasengebiet charakterisiert. Die Spitze der jeweiligen Kurve ist derjenige Punkt, an dem verschiedene Mehrphasengebiete zusammentreffen. Je weiter die Spitze einer Kurve bei niedrige- ren Tensidkonzentrationen, d.h. γ - Werten, angesiedelt ist, desto größer ist die Effizienz des Tensids C durch die Zugabe des Blockcopoymeren D.
Figur 2 zeigt, wie sich die Effizienz des Gesamttensids mit der Zugabe des Blockcopolymeren vergrößert. Zusätzlich ist keine wesentliche Verschiebung des Einphasengebietes auf der Temperaturachse zu verzeichnen. Dieses ist gleichbedeutend damit, daß das Blockcopolymer D die Lage der Wirksamkeit des Tensids C bezüglich seiner An- wendungstemperatur im wesentlichen invariant läßt. Au- sserdem treten in den untersuchten Mischungen keine lamellaren Mesophasen auf .
In Figur 3 treten sowohl in Bezug auf die Effizienz als auch auf das Temperaturverhalten die selben Charakteri- stika auf.
Die Effizienz des Gesamttensids wird auch in dem in Figur 4 gezeigten Beispiel gesteigert und die Temperaturlage bleibt im wesentlichen erhalten. Lamellare Phasen werden nicht beobachtet .
In Figur 5 verschieben sich die Kurven isotherm unter Effizienzsteigerung und Vermeidung von lamellaren Phasen. Die Rauten geben das System mit P5/3 wieder. Durch die grauen Kreise wird das System mit P5/2 dargestellt.
In Figur 6 ist das gleiche Verhalten zu beobachten wie in Figur 5.
In Figur 7 und 8 ist ebenfalls eine wesentliche Effizienzsteigerung zu beobachten. Weiterhin treten bei den in den Figuren 7 und 8 dargestellten Versuchen keine lamellaren Phasen auf. In Figur 7 sind die grauen Punkte PI5/PE015 und die Dreiecke P5/15. Während in den Figuren 2-8 die Effizienzsteigerung des nichtionischen Tensides C10E4 durch die Zugabe von Blockcopolymeren dokumentiert wurde, ist in Figur 9 die Effizienzsteigerung in einem anionischen Tensidsystem (Wasser+NaCl) /n-Dekan-AOT-P5/5 gezeigt.
Um die Effizienzsteigerung der Blockcopolymere für eine weitere Tensidklasse zu dokumentieren, ist in Fig 10 ein Schnitt durch einen Phasentetraeder im System Was- ser/n-Oktan-Oktanol-CgG-L-Pδ/S, bei dem das Verhältnis
Wasser/n-Oktan 1:1 ist, gezeigt. Dabei wird das Phasenverhalten hier nicht durch die Temperatur sondern durch die Zugabe eines Cotensides (Oktanol) bestimmt. Auch hier verschiebt sich das Einphasengebiet durch die Zu- gäbe von Blockcopolymeren zu wesentlich kleineren Ten- sidkonzentrationen und außerdem auch zu kleineren Co- tensid-Konzentrationen .
Figur 11 dokumentiert in einer Übersicht die erfin- dungsgemäß sehr starke Effizienzsteigerung der Blockco- polymer-Zumischungen. Aufgetragen sind die Gesamtten- sidkonzentrationen am Kreuzungspunkt γ als Funktion der Zugabe δ des Blockcopolymers .
Im Gegensatz zu konventionellen Tensidmischungen führt bei den Blockcopolymeren schon eine sehr geringe Zugabe δ zu einem stärkeren Absinken von γ , und damit zu starker Effizienzsteigerung. Der Wert des Wasser/Öl-Grenzflächenspannungsminimums korreliert mit der Effizienz der Tensidmischung, wobei z.B. für den Waschprozeß eine möglichst niedrige Grenzflächenspannung erwünscht ist .
In Figur 12 ist Grenzflächenspannung als Funktion der Temperatur für das System Wasser/n-Dekan-C10E4-P5/5 dargestellt . Durch die Zugabe des Blockcopolymers sinkt schon bei einem δ von 0.05 der Wert des Grenzflächenspannungsminimums um Faktor fünf ab.
In Figur 13 ist ebenfalls eine Effizienzsteigerung zu beobachten. Weiterhin treten bei diesen Versuchen keine lamellaren Phasen auf .
Die Messungen in Figur 14 wurden in Cyclohexan vorgenommen, da die Cycloalkane die besten Voraussetzungen für die Löslichkeit von Polystyrol innerhalb der Gruppe der Alkane liefern. Außerdem wurde als Tensidkomponente C8E4 verwendet, um trotz der veränderten unpolaren Kom- ponente Cyclohexan eine ähnliche Ausgangseffizienz zu erhalten. Auch hier werden lamellare Phasen unterbunden.
Mit den erfindungsgemäß eingesetzten AB Blockcopolyme- ren wird die Grenzflächenspannung von Tensiden, wie beispielsweise anionischen, kationischen und nichtionischen Tensiden, Zuckertensiden oder technischen Tensid- gemischen gesenkt . Das Auftreten lammelarer Mesophasen wird unterdrückt. Das Temperaturverhalten der Mikroemulsionen bleibt unverändert, das heißt die Lage des Einphasengebietes bezüglich der Temperatur im Phasendiagramm wird durch die Zugabe der erfindungsgemäß ein- gesetzten Additive nicht beeinflußt. Daher muß die Rezeptur eines Waschmittels nicht verändert werden um eine gleichbleibende Lage des Einphasengebietes bezüglich der Temperatur im Einphasendiagramm zu bewirken.
Die erfindungsgemäßen AB-Blockcopolymere können nicht nur in Waschmitteln eingesetzt werden; sie können mit derselben Wirkung auch beispielsweise als Zusätze in Lebensmitteln und Kosmetika sowie in allen industriellen oder technischen Anwendungen von Mikroemulsionen und Emulsionen, z.B. beim Einsatz in der Erdölförde- rung, in der Bodensanierung sowie bei der Anwendung als z.B. Reaktionsmedium verwendet werden .
Die mittels der erfindungsgemäßen Zugabe der AB Blockcopolymere hergestellten Mikroemulsionen weisen emul- gierte Flüssigkeitsvolumina auf, deren Größe denen von Emulsionen entsprechen.
Die erfindungsgemäßen Wirkungen können durch jeden gemeinsamen Einsatz eines Tensids mit dem AB- Blockcopolymer in einem zu emulgierenden System erreicht werden. Ein Tensid, welchem ein erfindungsgemä- ßes AB-Blockcopolymer beigefügt ist, sowie jedes damit emulgierte System umfassend zusätzlich Wasser und/oder Öl sind daher von der Erfindung umfaßt.
Die erfindungsgemäßen Wirkungen beschränken sich nicht auf Emulsionen und Mikroemulsionen, sondern beeinflus- sen das Verhalten von Tensiden im allgemeinen in der beschriebenen Weise.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Steigerung der Effizienz von Tensiden durch Zugabe von Additiven mit einem wasserlöslichen und einem wasserunlöslichen Anteil, dadurch gekennzeichnet, daß als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.
2. Verfahren zur Verhinderung lammelarer Phasen in Wasser-, Öl-, Tensidgemisehen dadurch gekennzeichnet, daß dem Wasser-, Öl-, Tensidgemisch daß als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.
3. Verfahren zur Stabilisierung der Temperaturlage des Einphasengebietes für Öl-, Wasser-, Tensidmischun- gen, denen ein Additiv zugegeben wird, bei dem den Öl-, Wasser-, Tensid ischungen als Additiv ein AB- Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.
4. Verfahren zur Vergrößerung der Strukturgröße von emulgierten Flüssigkeitsteilchen in Mikroemulsionen, dadurch gekennzeichnet, daß den Mikroemulsionen als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.
5. Verfahren zur Verminderung der Grenzflächenspannung von Öl-, Wassergemischen, die Tenside enthalten, dadurch gekennzeichnet, daß den Öl-, Wasser-, Tensidgemischen als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.
6. Verfahren nach einem der Anspruch 1 bis 5, dadurch gekennzeichnet, daß als Blockcopolymer eine Verbindung mit der Struktur nach dem Muster AB, ABA oder BAB zugegeben wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein öllöslicher und in aliphatischen Kohlenwasserstoffen löslicher Block B eingesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Block A ein Molekulargewicht zwischen 500 u und 60000 u hat.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Block B ein Molekulargewicht zwischen 500 u und 60000 u hat.
10.Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Block A ein Polyethylenoxid (PEO) eingesetzt wird.
11.Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien eingesetzt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus den Gruppe von Methyl-, Ethyl-, Phenyl-, und Vinyl- umfaßt.
13. Tensid, enthaltend ein Additiv, dadurch gekennzeichnet, daß das Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B ist, welcher in aliphatischen Kohlenwasserstoffen und Mineralölen löslich ist.
14. Tensid nach Anspruch 13, dadurch gekennzeichnet, daß als Additiv ein AB-Blockcopolymer mit der Struktur nach dem Muster ABA oder BAB enthält .
15. Tensid nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß Block A ein Molekulargewicht zwischen 500 u und 60000 u hat.
16. Tensid nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet ,
Block B ein Molekulargewicht zwischen 500 u und 60000 u hat.
17. Tensid nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß Block A ein Polyethylenoxid ist.
18. Tensid nach einem der Ansprüche 13 bis 17 , dadurch gekennzeichnet, daß Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien ist .
19. Tensid nach Anspruch 18, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus der Gruppe von Methyl- Ethyl-, Benzyl- und Vinyl- umfaßt.
20. Tensid nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, daß es eine Beimischung in einem Stoff ist .
21.Verwendung eines AB-Blockcopolymers mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B, welcher in aliphatischen Kohlenwasserstoffen und Mineralölen löslich ist, als Additiv für ein Tensid, Waschmittel, Kosmetika oder Lebensmittel.
22.Verwendung eines AB-Blockcopolymers nach Anspruch 21, dadurch gekennzeichnet, daß ein AB-Blockcopolymers mit einem wasserlöslichen Block A mit einem Molekulargewicht zwischen 500 u und 60000 u eingesetzt wird.
23.Verwendung eines AB-Blockcopolymers nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß ein AB-Blockcopolymers mit einem wasserunlöslichen Block B mit einem Molekulargewicht zwischen 500 u und 60000 u eingesetzt wird.
24.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, daß das AB-Blockcopolymer als Block A ein Polyethylenoxid (PEO) aufweist.
25.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß als Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien eingesetzt wird.
26.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus der Gruppe von Methyl-, Ethyl-, Benzyl- und Vinyl- umfaßt.
27.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, daß das AB-Blockcopolymer eine Verbindung mit der Struktur nach dem Muster AB, ABA oder BAB ist.
PCT/DE1999/002748 1998-08-28 1999-08-26 Verfahren zur effizienzsteigerung von tensiden bei simultaner unterdrückung lamellarer mesophasen sowie tenside, welchen ein additiv beigefügt ist WO2000012660A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT99953661T ATE280821T1 (de) 1998-08-28 1999-08-26 Verfahren zur effizienzsteigerung von tensiden und verfahren zur unterdrückung lamellarer mesophasen in mikroemulsionen sowie ein tensid, welchem ein additiv beigefügt ist
US09/763,413 US6677293B1 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto
EP99953661.8A EP1109883B2 (de) 1998-08-28 1999-08-26 Verfahren zur effizienzsteigerung von tensiden und verfahren zur unterdrückung lamellarer mesophasen in mikroemulsionen sowie ein tensid, welchem ein additiv beigefügt ist
DE59910950T DE59910950D1 (de) 1998-08-28 1999-08-26 Verfahren zur effizienzsteigerung von tensiden und verfahren zur unterdrückung lamellarer mesophasen in mikroemulsionen sowie ein tensid, welchem ein additiv beigefügt ist
JP2000571065A JP4703852B2 (ja) 1998-08-28 1999-08-26 界面活性剤の性能を向上させる方法および微小エマルジョン中の層状中間層を抑制する方法並びにそれに添加される添加物を含有する界面活性剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19839054A DE19839054A1 (de) 1998-08-28 1998-08-28 Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist
DE19839054.8 1998-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/763,413 A-371-Of-International US6677293B1 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto
US10/643,491 Division US7468349B2 (en) 1998-08-28 2003-08-19 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Publications (2)

Publication Number Publication Date
WO2000012660A2 true WO2000012660A2 (de) 2000-03-09
WO2000012660A3 WO2000012660A3 (de) 2000-06-22

Family

ID=7878952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002748 WO2000012660A2 (de) 1998-08-28 1999-08-26 Verfahren zur effizienzsteigerung von tensiden bei simultaner unterdrückung lamellarer mesophasen sowie tenside, welchen ein additiv beigefügt ist

Country Status (6)

Country Link
US (2) US6677293B1 (de)
EP (1) EP1109883B2 (de)
JP (1) JP4703852B2 (de)
AT (1) ATE280821T1 (de)
DE (2) DE19839054A1 (de)
WO (1) WO2000012660A2 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302545A (ja) * 2001-04-06 2002-10-18 Takashi Sawaguchi スチレンオリゴマー−ポリエチレンオキシド共重合体及びその製造方法
WO2003068827A1 (en) * 2002-02-11 2003-08-21 Rhodia Chimie Method for controlling the stability of emulsions and stabilized emulsions
FR2845930A1 (fr) * 2002-10-21 2004-04-23 Oreal Procede de solubilisation de composes lipophiles en solution aqueuse par des copolymeres blocs amphiphiles et composition cosmetique
WO2004035013A2 (en) * 2002-10-21 2004-04-29 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
WO2007045198A2 (de) 2005-10-18 2007-04-26 Forschungszentrum Jülich GmbH Verfahren zur effizienzsteigerung von tensiden, zur aufweitung des temperaturfensters, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
DE102007030406A1 (de) 2007-06-29 2009-01-08 Henkel Ag & Co. Kgaa Verminderung der Adhäsion von biologischem Material durch Algenextrakte
DE102007058342A1 (de) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Verminderung der Biofilmbildung durch multifunktionelle Copolymere
DE102007058343A1 (de) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Verminderung der Adhäsion von Schmutz, Staub und biologischem Material durch Polyesteramide
WO2010019172A1 (en) 2008-08-13 2010-02-18 Rhodia Inc. Demulsifiers in solvent base for separating emulsions and methods of use
DE102008063070A1 (de) 2008-12-23 2010-07-01 Henkel Ag & Co. Kgaa Verwendung sternförmiger Polymere mit peripheren negativ geladenen Gruppen und/oder peripheren Silyl-Gruppen zur Ausrüstung von Oberflächen
US7910647B2 (en) 2003-12-13 2011-03-22 Henkel Ag & Co. Kgaa Adhesion inhibition of microorganisms by non-ionic surfactants
US8133924B2 (en) 2007-08-13 2012-03-13 Rhodia Operations Demulsifiers and methods for use in pharmaceutical applications
US8192552B2 (en) 2002-02-11 2012-06-05 Rhodia Chimie Detergent composition comprising a block copolymer
US8338493B2 (en) 2005-05-19 2012-12-25 Forschungszentrum Juelich Gmbh Method for improving efficacy of surfactants prevention of lamellar mesophases temperature stabilization of the single phase region and a method for reducing boundary surface tension in micro-emulsions containing silicone oils by means of additives and surfactant/oil mixtures
US8821908B2 (en) 2004-11-22 2014-09-02 Henkel Ag & Co. Kgaa Mold-resistant construction materials

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839054A1 (de) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist
US20050004864A1 (en) * 2000-06-15 2005-01-06 Nextcard Inc. Implementing a counter offer for an on line credit card application
DE10323180A1 (de) 2003-05-22 2004-12-09 Basf Ag Mischung, umfassend ein Tensid und ein Cotensid
DE10323178A1 (de) 2003-05-22 2004-12-09 Basf Ag Mischung, umfassend ein Tensid und ein Cotensid
DE102004007501A1 (de) * 2004-02-13 2005-09-01 Basf Ag Amphiphile Blockcopolymere enthaltende wässrige Polymerdispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102004007473A1 (de) 2004-02-13 2005-09-01 Basf Ag Mischung, umfassend ein Tensid und ein Cotensid
DE102004058956A1 (de) * 2004-12-08 2006-06-14 Forschungszentrum Jülich GmbH Verfahren zur Effizienzsteigerung von Tensiden und Emulgatoren mittels Additiven
DE102005026716A1 (de) 2005-06-09 2006-12-28 Basf Ag Tensidmischungen für die tertiäre Erdölförderung
CN101233187A (zh) * 2005-08-04 2008-07-30 巴斯福股份公司 水分散体及其用途
EP2152843A2 (de) * 2007-04-27 2010-02-17 Bernd Schwegmann Gmbh&co. Kg Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
DE102007020426A1 (de) 2007-04-27 2008-10-30 Bernd Schwegmann Gmbh & Co. Kg Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
RU2476254C2 (ru) * 2007-08-13 2013-02-27 Родиа Инк. Способ разделения эмульсий сырой нефти
ATE554743T1 (de) 2007-09-19 2012-05-15 Bubbles & Beyond Gmbh Reinigungsmittel zur entfernung von farbschichten von oberflächen, verfahren zur herstellung des mittels und verfahren zur reinigung
FR2934154B1 (fr) * 2008-07-23 2010-08-13 Rhodia Operations Emulsions thermosensibles
US20110277376A1 (en) * 2009-02-04 2011-11-17 Archer-Daniels-Midland Company Incorporation of biologically derived carbon into petroleum products
DE102012204378A1 (de) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Reinigungsmittel auf Mikroemulsionsbasis
DE102015011694A1 (de) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis
EP4011996A1 (de) 2020-12-11 2022-06-15 Henkel AG & Co. KGaA Verfahren zum ablösen von verklebten substraten
EP4140679A1 (de) 2021-08-24 2023-03-01 Henkel AG & Co. KGaA Verfahren zum ablösen von durch polyurethankleber verbundenen substraten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018085B1 (de) 1979-04-02 1982-12-29 C.I.L. Inc. Auf in der Zeit stabile Kolloidal-Dispersionen basierte explosive Zusammensetzungen und Verfahren zu deren Herstellung
US5162378A (en) 1990-04-20 1992-11-10 Revlon Consumer Products Corporation Silicone containing water-in-oil microemulsions having increased salt content
DE19634477A1 (de) 1996-06-05 1997-12-11 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von hydrophob-hydrophilen AB-Blockcopolymeren

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1103201A (en) * 1963-07-23 1968-02-14 Union Carbide Corp Organosilicon compositions
JPS5536237A (en) * 1978-09-06 1980-03-13 Kureha Chem Ind Co Ltd Antistatic resin composition
US4266610A (en) * 1978-11-28 1981-05-12 Phillips Petroleum Company Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations
US4384974A (en) * 1979-07-27 1983-05-24 Revlon, Inc. Stable water-in-oil emulsions
DE3436177A1 (de) 1984-10-03 1986-04-03 Goldschmidt Ag Th Verwendung von polyoxyalkylen-polysiloxan-copolymerisaten mit an siliciumatomen gebundenen langkettigen alkylresten als emulgatoren zur herstellung von w/o-emulsionen
GB8822374D0 (en) 1988-09-23 1988-10-26 Abster Co Ltd Detergent composition
GB8914905D0 (en) 1989-06-29 1989-08-23 Unilever Plc Cosmetic composition
US5077040A (en) 1990-04-30 1991-12-31 Helene Curtis, Inc. Hair-treating microemulsion composition and method of preparing and using the same
CA2053147A1 (en) 1990-10-15 1992-04-16 Charles F. Cooper Esterified polyoxyalkylene block copolymers as reduced calorie fat substitutes
DE4100119A1 (de) * 1991-01-04 1992-07-09 Bayer Ag Verwendung von polyether-polycarbonat-blockcopolymeren als beschichtungen fuer kunststofformkoerper
DE4141942A1 (de) 1991-12-19 1993-06-24 Huels Chemische Werke Ag Verfahren zur herstellung grossteiliger, waessriger kunststoffdispersionen
US5292795A (en) * 1992-05-08 1994-03-08 Shell Oil Company Very fine stable dispersions of block copolymers
JPH08508265A (ja) 1993-04-05 1996-09-03 クエスト・インターナショナル・ビー・ブイ シリコーン系スキンケア生成物
US5985979A (en) * 1993-07-20 1999-11-16 Shell Oil Company Process for making stable latexes of block copolymers
US5741760A (en) 1993-08-04 1998-04-21 Colgate-Palmolive Company Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide-polydimethyl siloxane
US5461104A (en) * 1994-01-21 1995-10-24 Shell Oil Company Process for making water-based latexes of block copolymers
DE4418156A1 (de) * 1994-05-25 1995-11-30 Basf Ag Verfahren zur Herstellung von stabilen Wasser-in-Öl-Emulsionen von hydrolysierten Polymerisaten von N-Vinylamiden und ihre Verwendung
US5518648A (en) 1994-06-14 1996-05-21 Basf Corporation Solid dishwashing composition comprising a two-component blend of alkoxylated nonionic surfactants
DE19509079A1 (de) 1995-03-15 1996-09-19 Beiersdorf Ag Kosmetische oder dermatologische Mikroemulsionen
CA2257313C (en) * 1996-06-05 2006-03-14 Forschungszentrum Julich Gmbh Process for the preparation of hydrophobic/ hydrophile ab block copolymers
DE19641672A1 (de) 1996-10-10 1998-04-16 Beiersdorf Ag Kosmetische oder dermatologische Zubereitungen auf der Basis von ethylenoxidfreien und propylenoxidfreien Emulgatoren zur Herstellung von Mikroemulsionsgelen
US5908707A (en) * 1996-12-05 1999-06-01 The Procter & Gamble Company Cleaning articles comprising a high internal phase inverse emulsion and a carrier with controlled absorbency
DE19654168A1 (de) * 1996-12-23 1998-06-25 Basf Ag Verfahren zur Herstellung wäßriger Polymerisatdispersionen durch radikalische, wäßrige Emulsionspolymerisation
DE19714714A1 (de) * 1997-04-09 1998-10-15 Basf Ag Blockcopolymere und deren Verwendung als polymere Tenside
US5962003A (en) * 1998-03-30 1999-10-05 Council Of Scientific & Industrial Research Process for the preparation of polyurethane microcapsules containing monocrotophos
DE19839054A1 (de) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018085B1 (de) 1979-04-02 1982-12-29 C.I.L. Inc. Auf in der Zeit stabile Kolloidal-Dispersionen basierte explosive Zusammensetzungen und Verfahren zu deren Herstellung
US5162378A (en) 1990-04-20 1992-11-10 Revlon Consumer Products Corporation Silicone containing water-in-oil microemulsions having increased salt content
DE19634477A1 (de) 1996-06-05 1997-12-11 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von hydrophob-hydrophilen AB-Blockcopolymeren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Microemulsions in amphilpilic and polymer-surfactant systmes", COLLOID POLYM. SCI., vol. 274, 1996, pages 297 - 308

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302545A (ja) * 2001-04-06 2002-10-18 Takashi Sawaguchi スチレンオリゴマー−ポリエチレンオキシド共重合体及びその製造方法
WO2003068827A1 (en) * 2002-02-11 2003-08-21 Rhodia Chimie Method for controlling the stability of emulsions and stabilized emulsions
US8192552B2 (en) 2002-02-11 2012-06-05 Rhodia Chimie Detergent composition comprising a block copolymer
FR2845930A1 (fr) * 2002-10-21 2004-04-23 Oreal Procede de solubilisation de composes lipophiles en solution aqueuse par des copolymeres blocs amphiphiles et composition cosmetique
WO2004035013A2 (en) * 2002-10-21 2004-04-29 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
WO2004035013A3 (en) * 2002-10-21 2004-06-17 Oreal Process for dissolving lipophilic compounds, and cosmetic composition
US7910647B2 (en) 2003-12-13 2011-03-22 Henkel Ag & Co. Kgaa Adhesion inhibition of microorganisms by non-ionic surfactants
US8821908B2 (en) 2004-11-22 2014-09-02 Henkel Ag & Co. Kgaa Mold-resistant construction materials
US8338493B2 (en) 2005-05-19 2012-12-25 Forschungszentrum Juelich Gmbh Method for improving efficacy of surfactants prevention of lamellar mesophases temperature stabilization of the single phase region and a method for reducing boundary surface tension in micro-emulsions containing silicone oils by means of additives and surfactant/oil mixtures
WO2007045198A2 (de) 2005-10-18 2007-04-26 Forschungszentrum Jülich GmbH Verfahren zur effizienzsteigerung von tensiden, zur aufweitung des temperaturfensters, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
EP2196530A1 (de) * 2005-10-18 2010-06-16 Forschungszentrum Jülich Gmbh Mikroemulsion
EP2253698A1 (de) * 2005-10-18 2010-11-24 Forschungszentrum Jülich GmbH Mikroemulsion
EP2253697A1 (de) * 2005-10-18 2010-11-24 Forschungszentrum Jülich Gmbh (FJZ) Verfahren zur Aufweitung des Temperaturfensters in Mikroemulsionen mittels Additiven
WO2007045198A3 (de) * 2005-10-18 2007-07-12 Forschungszentrum Juelich Gmbh Verfahren zur effizienzsteigerung von tensiden, zur aufweitung des temperaturfensters, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
DE102007030406A1 (de) 2007-06-29 2009-01-08 Henkel Ag & Co. Kgaa Verminderung der Adhäsion von biologischem Material durch Algenextrakte
US8133924B2 (en) 2007-08-13 2012-03-13 Rhodia Operations Demulsifiers and methods for use in pharmaceutical applications
DE102007058343A1 (de) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Verminderung der Adhäsion von Schmutz, Staub und biologischem Material durch Polyesteramide
DE102007058342A1 (de) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Verminderung der Biofilmbildung durch multifunktionelle Copolymere
WO2010019172A1 (en) 2008-08-13 2010-02-18 Rhodia Inc. Demulsifiers in solvent base for separating emulsions and methods of use
DE102008063070A1 (de) 2008-12-23 2010-07-01 Henkel Ag & Co. Kgaa Verwendung sternförmiger Polymere mit peripheren negativ geladenen Gruppen und/oder peripheren Silyl-Gruppen zur Ausrüstung von Oberflächen

Also Published As

Publication number Publication date
DE19839054A1 (de) 2000-03-02
JP2002525392A (ja) 2002-08-13
JP4703852B2 (ja) 2011-06-15
ATE280821T1 (de) 2004-11-15
EP1109883A2 (de) 2001-06-27
EP1109883B1 (de) 2004-10-27
DE59910950D1 (de) 2004-12-02
US7468349B2 (en) 2008-12-23
EP1109883B2 (de) 2014-09-03
US6677293B1 (en) 2004-01-13
WO2000012660A3 (de) 2000-06-22
US20040054064A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
EP1109883B1 (de) Verfahren zur effizienzsteigerung von tensiden und verfahren zur unterdrückung lamellarer mesophasen in mikroemulsionen sowie ein tensid, welchem ein additiv beigefügt ist
EP0563079B1 (de) Verfahren zur herstellung von reinigungs- und pflegemitteln
EP0680313A1 (de) Schäumende Emulsionen.
DE19615271A1 (de) Tensidhaltige Reinigungsmittel in Form einer Mikroemulsion
EP1937795B1 (de) Verfahren zur effizienzsteigerung von tensiden, zur unterdrückung lamellarer mesophasen in mikroemulsionen mittels additiven sowie mikroemulsion
EP1715944B1 (de) Mischung, umfassend ein tensid und ein cotensid
DE10323178A1 (de) Mischung, umfassend ein Tensid und ein Cotensid
EP2123350B1 (de) Wässrige Tensid-Zusammensetzungen mit niedrigem Pourpoint
DE19922824A1 (de) Saures wäßriges mehrphasiges Reinigungsmittel
DE19945506A1 (de) Antimikrobielles wäßriges mehrphasiges Reinigungsmittel
DE3929071A1 (de) Universalschmiermittel auf der basis einer syntheseoelloesung
WO2006060993A1 (de) Verfahren zur effizienzsteigerung von tensiden und emulgatoren mittels additiven
DE19709490A1 (de) Polymerisate mit mehr als einem Hohlraum
EP1882003B1 (de) Verfahren zur effizienzsteigerung von tensiden, zur unterdrückung lamellarer mesophasen, zu temperaturstabilisierung des einphasengebietes sowie ein verfahren zur verminderung der grenzflächenspannung in mikroemulsionen, welche siliconöle enthalten, mittels additiven sowie tensid-ölgemisch
DE60101689T3 (de) Verdickungsmittel für wässrige Systeme
DE10323180A1 (de) Mischung, umfassend ein Tensid und ein Cotensid
WO2006094707A2 (de) Wasserfreie, augenblicklich vermischbare trenn- und schmiermittelmischungen
DE2036395C3 (de) Verfahren zur Gewinnung von elastomeren Polymerisaten oder Copolymerisaten aus ihrer Lösung
DE19545136C1 (de) Syndetstückseifen
EP0932483B1 (de) Wässrige betontrennmittel
DE2401102C3 (de) Verfahren zur Extraktion von 13-Butadien
DE10061418A1 (de) Verfahren zur Abfüllung mehrphasiger flüssiger Wasch- und Reinigungsmittel
AT215048B (de) Verfahren zum Spalten von Erdölemulsionen
DE4420515A1 (de) Milde wäßrige Rasierpräparate
EP3514207A1 (de) Verfahren zum entlacken unter anwendung einer mikroemulsion mit niedrigem ölgehalt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999953661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09763413

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999953661

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999953661

Country of ref document: EP