WO2000010217A2 - Hochtemperatur-brennstoffzelle mit nickelnetz auf der anodenseite und hochtemperatur-brennstoffzellenstapel mit einer solchen zelle - Google Patents

Hochtemperatur-brennstoffzelle mit nickelnetz auf der anodenseite und hochtemperatur-brennstoffzellenstapel mit einer solchen zelle Download PDF

Info

Publication number
WO2000010217A2
WO2000010217A2 PCT/DE1999/002433 DE9902433W WO0010217A2 WO 2000010217 A2 WO2000010217 A2 WO 2000010217A2 DE 9902433 W DE9902433 W DE 9902433W WO 0010217 A2 WO0010217 A2 WO 0010217A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature fuel
bipolar plate
nickel
temperature
Prior art date
Application number
PCT/DE1999/002433
Other languages
English (en)
French (fr)
Other versions
WO2000010217A3 (de
Inventor
Wolfgang Thierfelder
Manfred Wohlfart
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU64613/99A priority Critical patent/AU6461399A/en
Publication of WO2000010217A2 publication Critical patent/WO2000010217A2/de
Publication of WO2000010217A3 publication Critical patent/WO2000010217A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a high-temperature fuel cell, in which a nickel network is arranged between a bipolar plate on the fuel gas side and a solid electrolyte. It also relates to a high temperature fuel cell stack that contains a number of such high temperature fuel cells.
  • the fuel cells are divided into low, medium and high temperature fuel cells, which in turn differ in different technical embodiments.
  • the high-temperature fuel cell stack which is composed of a large number of high-temperature fuel cells (in the specialist literature, a fuel cell stack is also called “stack”)
  • there is at least one composite circuit board one in sequence, under an upper composite circuit board which covers the high-temperature fuel cell stack Protective layer, a contact layer, an electrolyte electrode unit, another contact layer, another composite printed circuit board, etc.
  • the electrolyte-electrode unit comprises two electrodes and a solid-state electrolyte arranged between the two electrodes and designed as a membrane.
  • an electrolyte electrode unit lying between adjacent composite printed circuit boards forms a high-temperature fuel cell with the contact layers directly adjoining the electrolyte electrode unit on both sides, which also includes the sides of each of the two composite printed circuit boards adjacent to the contact layers.
  • This type and further types of fuel cells are known, for example, from the "Fuel Cell Handbook" by A. J. Appleby and F. R. Foulkes, 1989, pages 440 to 454.
  • the nickel network can be designed as a nickel network package which has a thinner contact network and a thicker support network.
  • this chromium oxide layer has a higher resistance than the metals used, the increase in series resistance is attributed to this oxidation product.
  • the electrical conductivity is adversely affected.
  • the formation of the chromium oxide takes place at oxygen partial pressures of less than 10 "18 bar. These oxygen partial pressures are generally always present during the operation of the high temperature fuel cell.
  • the nickel network has been spot-welded to the bipolar plate.
  • the welding points and also the contact points are, as it were, infiltrated by the chromium oxide during operation.
  • the object of the invention is to improve a high-temperature fuel cell of the type mentioned in such a way that the increased series resistance is avoided and high conductivity is ensured even over a long period of time.
  • the invention is also based on the object of specifying a high-temperature fuel cell stack with at least one such fuel cell.
  • the invention is based on the consideration that this can be achieved if the formation of said chromium oxide layer can be at least largely avoided.
  • the first-mentioned object is achieved according to the invention in the high-temperature fuel cell mentioned at the outset by providing metallic soldering between the bipolar plate and the nickel mesh.
  • the nickel network can be a nickel network package consisting of a thinner contact network and a thicker support network.
  • the stated object is achieved according to the invention in that the stack has a multiplicity of interconnected printed circuit boards with electrolytes in between, two adjacent composite printed circuit boards each forming a high-temperature fuel cell of the type mentioned above.
  • a thin metallic solder that is a metal solder between the bipolar plate (interconnector plate) and the nickel mesh
  • the metal solder therefore has the task of permanently connecting the two materials of the bipolar plate and the nickel mesh.
  • the fuel gas side of the bipolar plate should be completely covered with the solder in the mesh area.
  • a method for producing a high-temperature fuel cell of the type mentioned is characterized according to the invention in that a) that a film or screen printing made of high-temperature metal solder is applied to the bipolar plate, b) that the bipolar plate with applied film or screen printing applied and applied nickel mesh, preferably fixed by spot welding, is subjected to vacuum annealing, and c) that the bipolar plate and the nickel mesh are wetted with the high-temperature metal solder.
  • FIG. 1 shows a section of a high-temperature fuel cell 1.
  • a bipolar plate 2 (interconnector plate made of CrFe5Y 2 0 3 l) is provided with a number of operating medium channels 4 which run perpendicular to the paper plane. These channels 4 are filled with a fuel gas such as hydrogen
  • the lower part of the high-temperature fuel cell 1 represents the anode side.
  • the surface 6 of the bipolar plate 2 is provided with a thin metallic solder 8.
  • the solder known under the name Metglas MBF 80 and obtainable from the company Hanseatisches Technologie Kontor GmbH, Hamburg, DE, is suitable for this.
  • a nickel net 10 is attached to the metallic solder 8.
  • Nickel network 10 here is a nickel network package consisting of a coarse, thicker nickel support network 10a and a fine, thinner nickel contact network 10b.
  • a solid electrolyte 12 adjoins this nickel network 10 via a thin anode 11.
  • This electrolyte 12 is delimited at the top by the cathode 14.
  • a further bipolar plate 16 with a number is connected to the cathode 14 via a contact layer 15 of resource channels 18, only one of which is shown.
  • the equipment channels 18 run parallel to the paper plane. They carry oxygen or air during operation.
  • the unit consisting of cathode 14, solid electrolyte 12 and anode 11 is referred to as an electrolyte electrode unit (MEA).
  • MEA electrolyte electrode unit
  • the bipolar plate 2, the nickel mesh 10 and the metal solder 8 are subjected to a vacuum annealing prior to use in the "stack", in which the Nikka mesh 10 and the bipolar plate 2 are connected by melting the metal solder 8.
  • the nickel mesh 10 and, if applicable, the applied metal-solder foil 8 are fixed on the bipolar plate 2 by spot welding before the heat treatment.
  • the metallic soldering 8 shown in the figure prevents the formation of a chromium oxide layer between the bipolar plate 2 and the nickel network 10 and thus ensures a consistently good electrical conductivity of the contacts.
  • the fuel cell thus has a low series resistance, which does not increase over the course of the operating time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Auf der Brenngasseite der Hochtemperatur-Brennstoffzelle ist zwischen der bipolaren Platte (2) und dem Feststoff-Elektrolyten (12) ein Nickelnetz (10) angeordnet. Um Kontaktschwierigkeiten mit zunehmender Betriebsdauer zu vermeiden, ist die bipolare Platte (2) erfindungsgemäß mit einer metallischen Lötung (8) versehen. Das Nickelnetz (10) ist auf dieser metallischen Lötung (8) elektrisch leitend befestigt.

Description

Beschreibung
Hochtemperatur-Brennstoffzelle mit Nickelnetz auf der Anodenseite und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle
Die Erfindung bezieht sich auf eine Hochtemperatur-Brennstoffzelle, bei der zwischen einer bipolaren Platte auf der Brenngasseite und einem Feststoff-Elektrolyten ein Nickelnetz angeordnet ist. Sie bezieht sich weiterhin auf einen Hochtemperatur-Brennstoffzellenstapel, der eine Anzahl solcher Hochtemperatur-Brennstoffzellen enthält .
Es ist bekannt, daß bei der Elektrolyse von Wasser die Was- sermoleküle durch elektrischen Strom in Wasserstoff (H2) und Sauerstoff (02) zerlegt werden. In einer Brennstoffzelle läuft dieser Vorgang in umgekehrter Richtung ab. Durch die elektrochemische Verbindung von Wasserstoff (H2) und Sauerstoff (02) zu Wasser entsteht elektrischer Strom mit hohem Wirkungsgrad. Wenn als Brenngas reiner Wasserstoff (H2) eingesetzt wird, geschieht dies ohne Emission von Schadstoffen und Kohlendioxid (C02) . Auch mit einem technischen Brenngas, beispielsweise Erdgas oder Kohlegas, und mit Luft (die zusätzlich mit Sauerstoff (02) angereichert sein kann) anstelle von reinem Sauerstoff (02) erzeugt eine Brennstoffzelle deutlich weniger Schadstoffe und weniger Kohlendioxid (C02) als andere Energieerzeuger, die mit fossilen Energieträgern arbeiten. Die technische Umsetzung des Prinzips der Brennstoffzelle hat zu unterschiedlichen Lösungen, und zwar mit ver- schiedenartigen Elektrolyten und mit Betriebstemperaturen zwischen 80 °C und 1000 °C, geführt.
In Abhängigkeit von ihrer Betriebstemperatur werden die Brennstoffzellen in Nieder-, Mittel- und Hochtemperatur- Brennstoffzellen eingeteilt, die sich wiederum durch verschiedene technische Ausführungsformen unterscheiden. Bei dem aus einer Vielzahl von Hochtemperatur-Brennstoffzellen sich zusammensetzenden Hochtemperatur-Brennstoffzellen- stapel (in der Fachliteratur wird ein BrennstoffZellenstapel auch „Stack" genannt) liegen unter einer oberen Verbundleiterplatte, welche den Hochtemperatur-Brennstoffzellenstapel abdeckt, der Reihenfolge nach wenigstens eine Verbundleiterplatte, eine Schutzschicht, eine Kontaktschicht, eine Elektrolyt-Elektroden-Einheit, eine weitere Kontaktschicht, eine weitere Verbundleiterplatte, usw.
Die Elektrolyt-Elektroden-Einheit umfaßt dabei zwei Elektroden und einen zwischen den beiden Elektroden angeordneten, als Membran ausgeführten Festkörperelektrolyten. Dabei bildet jeweils eine zwischen benachbarten Verbundleiterplatten lie- gende Elektrolyt-Elektroden-Einheit mit den beidseitig an der Elektrolyt-Elektroden-Einheit unmittelbar anliegenden Kontaktschichten eine Hochtemperatur-Brennstoffzelle, zu der auch noch die an den Kontaktschichten anliegenden Seiten jeder der beiden Verbundleiterplatten gehören. Dieser Typ und weitere Brennstoffzellen-Typen sind beispielsweise aus dem „Fuel Cell Handbook" von A. J. Appleby und F. R. Foulkes, 1989, Seiten 440 bis 454, bekannt.
Eine Hochtemperatur-Brennstoffzelle der eingangs genannten Art, bei der ein Nickelnetz zwischen der anodenseitig gelegenen bipolaren Platte und dem Feststoff-Elektrolyten angeordnet ist, ist als Produkt ausgeführt worden und vielfach in der Literatur beschrieben. Das Nickelnetz kann dabei als Nik- kelnetzpaket ausgeführt sein, das ein dünneres Kontaktnetz und ein dickeres Tragnetz besitzt.
Bei einer solchen Hochtemperatur-Brennstoffzelle wurde bisher eine direkte Kontaktierung zwischen dem Nickelnetz (oder Nik- kelnetzpaket ) auf der einen Seite und der bipolaren Platte (Interkonnektorplatte) aus CrFe5Y203l auf der anderen Seite gewählt. Versuche haben nun gezeigt, daß sich auf der Brenngasseite schon nach kurzer Betriebsdauer ein erhöhter Serien- widerstand einstellt. Dieses besagte Nickelnetz dient auf der Brenngasseite (Anodenseite) der Hochtemperatur-Brennstoffzelle als Kontaktierung zwischen der bipolaren Platte und dem Feststoff-Elektrolyten-. Die Versuche haben nun ergeben, daß bei der direkten Verbindung zwischen dem Nickelnetz und der Interkonnektorplatte schon nach kurzer Zeit eine Zwi- schenoxidschicht auftritt, die sich im wesentlichen aus Chromoxid zusammensetzt. Da diese Chromoxid-Schicht einen höheren Widerstand als die eingesetzten Metalle besitzt, wird der Anstieg des Serienwiderstands diesem Oxidationsprodukt zugeschrieben. Die elektrische Leitfähigkeit wird dadurch negativ beeinflußt. Die Bildung des Chromoxids erfolgt bei Sauerstoffpartialdrücken von weniger als 10"18 bar. Diese Sauer- stoffpartialdrücke sind während des Betriebs der Hochte pera- tur-Brennstoffzelle in der Regel immer vorhanden.
Genauere Untersuchungen haben folgendes ergeben: Bisher wurde das Nickelnetz mittels Punktschweißens an der bipolaren Platte angepunktet. Die Schweißpunkte und auch die Kontakt- punkte werden während des Betriebs vom Chromoxid sozusagen unterwandert. Es liegt somit eine schlecht leitende Oxidschicht zwischen dem Nickelnetz und der Interkonnektorplatte aus CrFe5Y203l vor.
Aufgabe der Erfindung ist es, eine Hochtemperatur-Brennstoffzelle der eingangs genannten Art derart zu verbessern, daß der erhöhte Serienwiderstand vermieden und eine hohe Leitfähigkeit auch über längere Zeit sichergestellt ist.
Der Erfindung liegt weiterhin die Aufgabe zugrunde, einen Hochtemperatur-Brennstoffzellenstapel mit mindestens einer solchen Brennstoffzelle anzugeben.
Die Erfindung beruht auf der Überlegung, daß dieses erreicht werden kann, wenn die Bildung der besagten Chromoxid-Schicht zumindest weitgehend vermieden werden kann. Die erstgenannte Aufgabe wird bei der eingangs genannten Hochtemperatur-Brennstoffzelle erfindungsgemäß dadurch gelöst, daß eine metallische Lötung zwischen der bipolaren Platte und dem Nickelnetz vorgesehen ist. Auch hier kann das Nickelnetz ein Nickelnetzpaket aus einem dünneren Kontaktnetz und einem dickeren Tragnetz sein.
Weitere bevorzugte Ausführungsformen sind in den Unteransprüchen gekennzeichnet.
Bezüglich des Hochtemperatur-Brennstoffzellenstapels wird die genannte Aufgabe erfindungsgemäß dadurch gelöst, daß der Stapel eine Vielzahl übereinander angeordneter Verbundleiterplatten mit dazwischen liegenden Elektrolyten aufweist, wobei jeweils zwei benachbarte Verbundleiterplatten eine Hochtemperatur-Brennstoffzelle der vorstehend genannten Art bilden.
Durch eine dünne metallische Lötung, also ein Metall-Lot zwischen der bipolaren Platte (Interkonnektorplatte) und dem Nickelnetz, wird eine bessere Anhaftung des Nickelnetzes erreicht. Das Metall-Lot besitzt also die Aufgabe, die beiden Materialien von bipolarer Platte und Nickelnetz dauerhaft miteinander zu verbinden. Beim Betrieb der Hochtemperatur- Brennstoffzelle erfolgt praktisch keine Unterwanderung der Schweiß- und Kontaktpunkte des Netzes mit einer Chromoxidschicht. Die anfängliche Leitfähigkeit des Verbunds bipolare Platte-. Lötung -Nickelnetz bleibt innerhalb der Betriebsdauer erhalten.
Die Brenngasseite der bipolaren Platte sollte im Netzbereich vollflächig mit der Lötung bedeckt sein.
Als besonderer Vorteil wird es angesehen, daß die elektrische Leitfähigkeit der Kontakte bipolare Platte-Lötung-Nickelnetz über praktisch die gesamte Betriebsdauer der Hochtemperatur- Brennstoffzelle beibehalten wird. Ein Verfahren zur Herstellung einer Hochtemperatur-Brennstoffzelle der erwähnten Art zeichnet sich erfindungsgemäß dadurch aus, a) daß auf die bipolare Platte eine Folie oder ein Siebdruck aus Hochtemperatur-Metall-Lot aufgebracht wird, b) daß die bipolare Platte mit aufgebrachter Folie oder aufgebrachtem Siebdruck und aufgelegtem Nickelnetz, bevorzugt fixiert durch Punktschweißen, einer Vakuu glühung unterzogen wird, und c) daß die bipolare Platte und das Nickelnetz mit dem Hochtemperatur-Metall-Lot benetzt werden.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Figur näher erläutert. Die Figur stellt einen Aus- schnitt aus einer Hochtemperatur-Brennstoffzelle 1 dar.
Nach der Figur ist eine bipolare Platte 2 (Interkonnektorplatte aus CrFe5Y203l) mit einer Anzahl vom Betriebsmittel- Kanälen 4 versehen, die senkrecht zur Papierebene verlaufen. Diese Kanäle 4 werden mit einem Brenngas, wie Wasserstoff,
Erdgas oder Methan, beschickt. Der untere Teil der Hochtemperatur-Brennstoffzelle 1 stellt die Anodenseite dar. Die Oberfläche 6 der bipolaren Platte 2 ist mit einer dünnen metallischen Lötung 8 versehen. Hierbei handelt es sich um ein Hochtemperatur-Metall-Lot, das z.B. in Form einer Folie aufgetragen und dann unter Vakuum erhitzt werden kann. Beispielsweise ist das unter der Bezeichnung Metglas MBF 80 bekannte und von der Firma Hanseatisches Technologie Kontor GmbH, Hamburg, DE, beziehbare Lot hierfür geeignet. Auf der metallischen Lötung 8 ist ein Nickelnetz 10 befestigt. Das
Nickelnetz 10 ist hier ein Nickelnetzpaket, bestehend aus einem groben, dickeren Nickel-Tragnetz 10a und einem feinen, dünneren Nickel-Kontaktnetz 10b. An dieses Nickelnetz 10 grenzt über eine dünne Anode 11 ein Feststoff-Elektrolyt 12 an. Dieser Elektrolyt 12 wird nach oben von der Kathode 14 begrenzt. An die Kathode 14 schließt sich über eine Kontaktschicht 15 eine weitere bipolare Platte 16 mit einer Anzahl von Betriebsmittel-Kanälen 18, von denen nur einer gezeigt ist, an. Die Betriebsmittel-Kanäle 18 verlaufen parallel zur Papierebene. Sie führen im Betrieb Sauerstoff oder Luft. Die Einheit bestehend aus Kathode 14, Festkörper-Elektrolyt 12 und Anode 11 wird als Elektrolyt-Elektroden-Einheit (MEA) bezeichnet.
Mehrere solcher Brennstoffzellen könen zu einem "Stack" oder Brennstoffzellen-Stapel zusammengefaßt werden.
Die bipolare Platte 2, das Nickelnetz 10 und das Metall-Lot 8 werden vor dem Einsatz im "Stack" einer Vakuumglühung unterzogen, bei der durch Aufschmelzen des Metall-Lots 8 das Nikkeinetz 10 und die bipolare Platte 2 verbunden werden. Das Nickelnetz 10 und gegebenenfalls die aufgetragene Metall-Lot- Folie 8 werden durch Punktschweißungen vor der Wärmebehandlung auf der bipolaren Platte 2 fixiert.
Die in der Figur gezeigte metallische Lötung 8 verhindert die Bildung einer Chromoxid-Schicht zwischen der bipolaren Platte 2 und dem Nickelnetz 10 und sorgt damit für eine gleichbleibend gute elektrische Leitfähigkeit der Kontakte. Die Brennstoffzelle besitzt also einen geringen Serienwiderstand, der sich im Laufe der Betriebsdauer nicht erhöht.

Claims

Patentansprüche
1. Hochtemperatur-Brennstoffzelle (1), bei der zwischen einer bipolaren Platte (2) auf der Brenngasseite und einem Fest- stoff-Elektrolyten (12) ein Nickelnetz (10) angeordnet ist, g e k e n n z e i c h n e t d u r c h eine metallische Lötung (8) zwischen der bipolaren Platte (2) und dem Nickelnetz (10) .
2. Hochtemperatur-Brennstoffzelle (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß für die Lötung ein Hochtemperatur-Metall-Lot, z.B. das MBF 80, vorgesehen ist.
3. Hochtemperatur-Brennstoffzelle (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß als Brenngas Wasserstoff vorgesehen ist.
4. Hochtemperatur-Brennstoffzelle (1) nach einem der Ansprü- ehe 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die bipolare Platte aus CrFe5Y203l besteht.
5. Hochtemperatur-Brennstoffzellenstapel, der eine Vielzahl übereinander angeordneter Verbundleiterplatten (2, 16) mit jeweils dazwischen liegendem Elektrolyten (12) aufweist, wobei jeweils zwei benachbarte Verbundleiterplatten (2, 16) eine Hochtemperatur-Brennstoffzelle (1) nach einem der Ansprüche 1 bis 4 bilden.
6. Verfahren zur Herstellung einer Hochtemperatur-Brennstoffzelle (1) nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , a) daß auf die bipolare Platte (2) eine Folie oder ein Siebdruck aus Hochtemperatur-Metall-Lot (8) aufgebracht wird, b) daß die bipolare Platte (2) mit aufgebrachter Folie (8) oder aufgebrachtem Siebdruck und aufgelegtem Nickelnetz (10), bevorzugt fixiert durch Punktschweißen, einer Vaku- umglühung unterzogen wird, und daß die bipolare Platte (2) und das Nickelnetz (10) mit dem Hochtemperatur-Metall-Lot (8) benetzt werden.
PCT/DE1999/002433 1998-08-11 1999-08-05 Hochtemperatur-brennstoffzelle mit nickelnetz auf der anodenseite und hochtemperatur-brennstoffzellenstapel mit einer solchen zelle WO2000010217A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU64613/99A AU6461399A (en) 1998-08-11 1999-08-05 High-temperature fuel cell with a nickel network on the anode side and high-temperature fuel cell stack having said cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19836351A DE19836351A1 (de) 1998-08-11 1998-08-11 Hochtemperatur-Brennstoffzelle mit Nickelnetz auf der Anodenseite und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle
DE19836351.6 1998-08-11

Publications (2)

Publication Number Publication Date
WO2000010217A2 true WO2000010217A2 (de) 2000-02-24
WO2000010217A3 WO2000010217A3 (de) 2000-05-11

Family

ID=7877188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002433 WO2000010217A2 (de) 1998-08-11 1999-08-05 Hochtemperatur-brennstoffzelle mit nickelnetz auf der anodenseite und hochtemperatur-brennstoffzellenstapel mit einer solchen zelle

Country Status (3)

Country Link
AU (1) AU6461399A (de)
DE (1) DE19836351A1 (de)
WO (1) WO2000010217A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317388B4 (de) * 2003-04-15 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10317359A1 (de) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10317361A1 (de) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10343652B4 (de) * 2003-09-20 2005-09-29 Elringklinger Ag Verfahren zum Herstellen einer Lötverbindung zwischen einem Substrat und einem Kontaktelement einer Brennstoffzelleneinheit sowie Brennstoffzelleneinheit
DE10343655B4 (de) * 2003-09-20 2005-09-29 Elringklinger Ag Verfahren zum Herstellen einer Lötverbindung zwischen einem Substrat und einem Kontaktelement einer Brennstoffzelleneinheit sowie Brennstoffzelleneinheit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443430A1 (de) * 1994-12-06 1995-04-20 Siemens Ag Verfahren zum Herstellen einer Komponente einer Hochtemperatur-Brennstoffzelle
DE19649457C1 (de) * 1996-11-28 1998-06-10 Siemens Ag Hochtemperatur-Brennstoffzelle und Verfahren zum Herstellen einer Hochtemperatur-Brennstoffzelle
DE19805142A1 (de) * 1998-02-09 1999-08-12 Siemens Ag Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
WO1999041795A1 (de) * 1998-02-12 1999-08-19 Siemens Aktiengesellschaft Hochtemperatur-brennstoffzelle und hochtemperatur-brennstoffzellenstapel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443430A1 (de) * 1994-12-06 1995-04-20 Siemens Ag Verfahren zum Herstellen einer Komponente einer Hochtemperatur-Brennstoffzelle
DE19649457C1 (de) * 1996-11-28 1998-06-10 Siemens Ag Hochtemperatur-Brennstoffzelle und Verfahren zum Herstellen einer Hochtemperatur-Brennstoffzelle
DE19805142A1 (de) * 1998-02-09 1999-08-12 Siemens Ag Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
WO1999041795A1 (de) * 1998-02-12 1999-08-19 Siemens Aktiengesellschaft Hochtemperatur-brennstoffzelle und hochtemperatur-brennstoffzellenstapel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 10, Nr 54(E-385); & JP,A,60207252 (FUJI DENKI SOUGOU KENKYUSHO K.K.), 1985-10-18 *

Also Published As

Publication number Publication date
WO2000010217A3 (de) 2000-05-11
AU6461399A (en) 2000-03-06
DE19836351A1 (de) 2000-02-17

Similar Documents

Publication Publication Date Title
DE69838679T2 (de) Elektrische leitfähigkeit in einer brennstoffzellen-anordnung
DE19502391C1 (de) Membranelektrodeneinheit gebildet durch die Zusammenfassung von flächigen Einzelzellen und deren Verwendung
DE2729640A1 (de) Batterie aus einer mehrzahl elektrochemischer zellen
DE1496111A1 (de) Brennstoffelement
EP0840947B1 (de) Hochtemperatur-brennstoffzelle und hochtemperatur-brennstoffzellenstapel mit verbundleiterplatten, die eine kontaktschicht aus chromspinell tragen
EP1333517A2 (de) Brennstoffzellenvorrichtung und System mir derartiger Brennstoffzellenvorrichtung
EP1114484B1 (de) Hochtemperatur-brennstoffzelle mit nickelnetz und hochtemperatur- brennstoffzellenstapel mit einer solchen zelle
DE112006000324B4 (de) Brennstoffzellen-Baugruppe, Brennstoffzellenmodul und Brennstoffzelleneinrichtung
EP1027743A2 (de) Verfahren zur herstellung einer hochtemperatur-brennstoffzelle
DE19945667C2 (de) Brennstoffzelle, Verfahren zu deren Betrieb und zugehörige Verwendung
EP1287572A1 (de) Vorrichtung zur elektrischen kontaktierung von elektroden in hochtemperaturbrennstoffzellen
WO2000010217A2 (de) Hochtemperatur-brennstoffzelle mit nickelnetz auf der anodenseite und hochtemperatur-brennstoffzellenstapel mit einer solchen zelle
EP1064689B1 (de) Hochtemperatur-brennstoffzelle und hochtemperatur-brennstoffzellenstapel
EP1114483B1 (de) Pme-brennstoffzelle mit verbesserter langzeitperformance, verfahren zum betrieb einer pme-brennstoffzelle und pme-brennstoffzellenbatterie
DE19757318C1 (de) Schnellheizung für Brennstoffzellen
DE112006002510T5 (de) Brennstoffzelle
DE112020003883T5 (de) Brennstoff-batteriestapel
EP0984081B1 (de) Bipolarplatte und Elektrolyseur mit einer Bipolarplatte
DE19858422C2 (de) Hochtemperatur-Brennstoffzelle mit Nickelnetz und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle
EP1173898A1 (de) Hochtemperatur-brennstoffzelle
DE19812512C2 (de) Kathode für eine Schmelzkarbonatbrennstoffzelle sowie Schmelzkarbonatbrennstoffzelle mit einer solchen Kathode
DE19808859C2 (de) Brennstoffzellenstapel mit Stromleiter
EP1301957B1 (de) Aluminiumhaltiger interkonnektor für brennstoffzellen
DE102015222245A1 (de) Polarplatte für einen Brennstoffzellenstapel
DE19913873A1 (de) Hochtemperatur-Brennstoffzelle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 1999 64613

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase