WO1999065659A1 - Procede de moulage de fluororesine et article moule - Google Patents

Procede de moulage de fluororesine et article moule Download PDF

Info

Publication number
WO1999065659A1
WO1999065659A1 PCT/JP1999/003142 JP9903142W WO9965659A1 WO 1999065659 A1 WO1999065659 A1 WO 1999065659A1 JP 9903142 W JP9903142 W JP 9903142W WO 9965659 A1 WO9965659 A1 WO 9965659A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
mold
molding
temperature
resin
Prior art date
Application number
PCT/JP1999/003142
Other languages
English (en)
French (fr)
Inventor
Yoshichika Komiya
Kazuo Ishiwari
Kunihiko Honji
Original Assignee
Daikin Industries, Ltd.
HONJI, Masako
Honji, Hidetaka
Honji, Asako
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd., HONJI, Masako, Honji, Hidetaka, Honji, Asako filed Critical Daikin Industries, Ltd.
Priority to EP99924015A priority Critical patent/EP1120219A4/en
Publication of WO1999065659A1 publication Critical patent/WO1999065659A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7356Heating or cooling of the mould the temperature of the mould being near or higher than the melting temperature or glass transition temperature of the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity

Definitions

  • the present invention relates to a novel fluororesin molding method and a molded article formed by the method.
  • Fluororesin has excellent heat resistance, wear resistance, chemical resistance, etc., and is widely used as one of the representative engineering plastics.
  • fluororesins compared to other general-purpose resins, fluororesins have extremely high melt viscosity in the molten state and poor fluidity, so it has been considered that molding by extrusion or injection molding is not easy. . In particular, this is considered to be true for ultrahigh molecular weight fluororesins having a melt viscosity of 10 poise or more. The method of measuring the melt viscosity used in the present specification will be described later in detail.
  • PTFE Polytetrafluoroethylene
  • CF bond energy 110 to 12 O kcalZmol
  • Ram extrusion and paste extrusion are used as extrusion molding methods of PTFE.
  • Ram extrusion is suitable for continuously forming an extrusion bar having a cross section conforming to the shape of the die, but it is difficult to obtain a molded product having a shape different from that of the die.
  • An auxiliary agent such as naphtha is added to the PTFE powder to wet the powder, helping to extrude the PTFE and continuously forming the fired body of the tube or wire coating. It is difficult to obtain a molded product with a different cross-sectional shape.
  • a heat compression molding method called hot molding method of PTFE powder is used.
  • hot molding method of PTFE powder a heat compression molding method having high flexural fatigue strength can be obtained, but it is necessary to anneal since a large strain remains in the molded product. Also, a large number of molded products can be It is difficult to obtain and is limited to only obtaining special molded products.
  • ETFE as compared to the PFA and ETFE melt viscosity is commercially available 1 0 3-10 "poise, ⁇ Su Torres crack resistance, has excellent impact resistance and mechanical strength.
  • PFA and ETFE like PTFE, are not likely to be easily formed by extrusion or injection molding.
  • the shape of the resin is generally not easy.
  • attempts to improve the injection molding method have been made.
  • Japanese Patent Application Laid-Open No. 6-234141 discloses A method of molding a fluororesin by so-called flash flow molding has been proposed. Although such a molding method improved the method of forming the fluororesin, it was not always satisfactory.
  • the problem to be solved by the present invention is a new molding method for various fluororesins including ultra-high molecular weight fluororesins, which at least reduces the above-mentioned problems as compared with the case where the current molding method is carried out. And preferably a molding method that solves the problem more efficiently.
  • a molded article having a more complicated shape than a molded article obtained by die extrusion or ram extrusion is used (more preferably, a molding method such as cutting). (Reducing or eliminating the need for subsequent processing).
  • the present invention relates to a fluororesin molding method, wherein a molten fluororesin is supplied to a mold, cooled and solidified to obtain a fluororesin molded product. Is supplied into a mold maintained at a temperature equal to or higher than its melting temperature.
  • the present invention relates to a fluororesin molding method, wherein a molten fluororesin is supplied to a mold, cooled and solidified to obtain a fluororesin molded article, wherein the fluororesin is used for molding.
  • a molding method using a fluororesin obtained by preliminarily gelling a fluororesin as a resin is provided.
  • the temperature of the mold may be lower than the melting temperature of the fluororesin, for example (the melting temperature of the fluororesin, 50 ° C) or higher and lower than the decomposition start temperature of Fluorine.
  • a fluororesin molded article when a fluororesin molded article is obtained by supplying a molten fluororesin to a mold and cooling and solidifying it, the molten fluororesin is melted. It is supplied into a mold maintained at a temperature equal to or higher than the temperature. That is, when the method according to the second aspect of the present invention is combined with the method according to the first aspect, it is possible to particularly efficiently form a fluororesin.
  • the melting temperature of the fluororesin is a so-called melting point of the fluororesin, and is measured by a differential scanning calorimeter as described later.
  • the present invention provides a molded article of a fluororesin formed by the method of the present invention as described above. That is, in the molding of a fluororesin, a molded product obtained when the temperature of the mold is set to be equal to or higher than its melting temperature, a molded product obtained when molded using the gelled and crushed fluororesin, Set the temperature above its melting temperature, The present invention provides a molded product obtained when molded using a hydrolyzed and crushed fluororesin.
  • FIG. 1 is a schematic sectional view of a mold that can be used in the method of the present invention.
  • FIG. 2 is a diagram schematically showing the steps of the molding method of the present invention in which the mold is heated by high-frequency induction heating in the order of a sectional view of the mold.
  • FIG. 3 is a schematic cross-sectional view of a pre-bra type injection molding machine that can be suitably used when carrying out the method of the present invention.
  • FIG. 4 is a diagram schematically showing, in a sectional view of a mold, ten steps of an injection press molding method which can be suitably used when carrying out the method of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an in-line type injection molding machine that can be suitably used when performing the method of the present invention.
  • FIG. 6 is a schematic diagram of a molded article produced in an example of the present invention.
  • the fluororesin is a resin in which fluorine atoms form a part of a polymer structure.
  • a fluororesin whose molding efficiency is low with the conventional molding method as described above can be included in the fluororesin to be targeted in the present invention.
  • those having a melt viscosity of at least 10 3 boises are included.
  • the upper limit of the melt viscosity of the fluororesin as possible supply of fluorine resin in a mold in a molten state but are not particularly limited, but it is also directed to a fluororesin having a melt viscosity of example 10 13 poises it can.
  • a fluororesin having a melt viscosity of 10 to 10 13 poise, preferably 10 5 to 10 12 poise can be used in the method of the present invention.
  • fluororesin examples include homopolymers of tetrafluoroethylene, perfluoroalkylvinylether, hexafluoropropylene, chlorotrifluoroethylene or vinylidene fluoride.
  • copolymer examples include two or more of these, a copolymer of tetrafluoroethylene and ethylene, and a copolymer of chlorofluoroethylene and ethylene.
  • PTFE borite trafluoroethylene
  • PFA tetrafluoroethylene Z perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene Z hexafnoreoethylene propylene cobolimer
  • PCTFE polychloride mouth
  • PVDF polyvinylidene fluoride
  • Polymers such as TFE (ethylene / tetrafluoroethylene copolymer) and ECTFE (ethylene / chlorotrifluoroethylene copolymer) are included in the fluororesin that can be used in the method of the present invention.
  • PTFE can be used particularly advantageously in the method of the present invention.
  • a combination of any of these polymers for example, a mixture such as a compound may be used.
  • the melting temperature and the decomposition onset temperature of the present invention refer to the highest and lowest of the melting temperature and the decomposition onset temperature of the components constituting the combination, respectively ( (Even if the same component has both the highest melting temperature and the lowest decomposition onset temperature, two different components may have the highest melting temperature and the lowest decomposition onset temperature, respectively.)
  • the melting temperature and decomposition onset temperature of the present invention are the melting temperature and decomposition onset temperature for the compatible material.
  • PTF E that can be used in the present invention is, for example, 2 weight.
  • Tetrafluoroethylene copolymer modified with a copolymerizable monomer of 0 or less (usually in powder form) Is included.
  • the copolymerizable monomer used for this modification include a perfluoroalkene having 3 to 6 carbon atoms (for example, hexafluoropropylene), and a perfluoroalkoxy having 3 to 6 carbon atoms (alkyl butyl ether) such as perfluoro ( Propyl vinyl ether).
  • These modified copolymers have a high melting point of 3% like the PTFE homopolymer, and it is not easy to perform extrusion molding or injection molding by ordinary methods.
  • the fluororesin used in the method of the present invention includes ultra-high molecular weight PF ⁇ (melt viscosity
  • additives and / or additives may be used as necessary.
  • Agents and the like may be contained in appropriate amounts.
  • additives include fillers (glass fiber, graphite, molybdenum disulfide, carbon, bronze, etc.), coloring agents, and the like.
  • the fluororesin used in the present invention may be in the form of powder ( Or a granular or granular form (so-called granulated product) is more preferable.
  • a resin is advantageous because it is difficult to form a bridge when the resin is charged into the hopper, and the supply to the screw is facilitated.
  • Particularly preferred fluororesins to be used in the method of the present invention are those obtained by preliminarily gelling and crushing various fluororesins that can be used in the above method of the present invention (also referred to as “gelling crushed fluororesin” in this specification). Call).
  • what has been preliminarily gelled and crushed means that fine powder or powdery fluororesin (hereinafter, simply referred to as “powder-like fluororesin”) is gelled and integrated, and then crushed. Means what can be obtained.
  • powdered fluororesin generally called “molding powder or fine powder” is a powdered fluororesin to which this Gerich disintegration can be applied.
  • gelation means that the powdered fluororesin obtained by polymerization is subjected to the following heat treatment: In an inert atmosphere or air, a temperature in the range of (temperature lower than the melting temperature of the fluororesin by about 50 ° C) to (temperature at which the decomposition of the fluororesin starts), preferably above the melting temperature of the fluororesin and its decomposition After the polymerization, for the first time after the polymerization, for a predetermined time (for example, 1 to 5 hours), the temperature is lower than the starting temperature, more preferably about 20 ° C higher than the melting temperature to about 80 ° C higher than the melting temperature. ) Exposure, followed by a heat treatment of cooling to a temperature below the melting temperature of the fluoropolymer, preferably slow cooling.
  • the fluororesin obtained by polymerization does not undergo the above-mentioned heat history at high temperatures before gelation.
  • cutting waste generated when manufacturing a molded article of fluororesin by the conventional technology ie, when a preformed article obtained by compression molding of a fluororesin is fired, and then cut when the preformed article is cut.
  • a gelled crushed fluororesin according to the present invention when the size of the cutting waste is small as described above, it can be used as a gelled resin without grinding).
  • unfired powdered fluororesin or non-gelled powdered fluororesin
  • the fluororesin has favorable properties for molding it, especially for injection molding.
  • the fluororesin easily forms a bridge in the hopper, which has been a problem in the past, and the resin slips due to a screw that supplies the resin.
  • the problem is that it is difficult to feed the resin easily when using the same molding machine. Is also reduced and preferably eliminated.
  • the “gelled” fluororesin is a fluororesin having an increased apparent density that can reduce the occurrence of a ridge in a molding machine when compared to a non-gelled fluororesin.
  • the “gelled crushed fluororesin” can be defined as a granular fluororesin obtained by pulverizing such a gelled fluororesin so that it can be used in a molding machine.
  • the gelled and disintegrated fluororesin is easier to move with a screw in the molding machine than the non-gelled fluororesin, and consequently the molding condition setting width related to the screw operation of the molding machine And the moldability is good.
  • the gelled and crushed fluororesin is in a molten state at a temperature exceeding its melting point, but even in that case, the individual particles have a high viscosity and substantially maintain the original particle form without breaking down. As a result, adjacent particles are in a state substantially close to point contact In contact.
  • the powdered fluororesin which has not passed through the thermal history before gelation was gelled and crushed because the individual particles exceeded the melting point in a state close to spherical, preferably substantially without load during gelation. Fluororesins also remain in that form.
  • the particles that are adjacent to each other at the time of the gelation treatment have a small area in contact with each other, and at such a contact portion, the molten fluororesin is fused and the adjacent particles are bonded to each other. It is considered that the whole will be integrated enough to require crushing. Due to the small contact area, this bond is not strong and, in the weakest cases, can be separated by a fairly weak force (eg, a force that can be applied by hand).
  • a fairly weak force eg, a force that can be applied by hand.
  • such bonding between particles is exposed even when the fluororesin is exposed to a temperature lower than the melting point, for example, at a temperature in the range of about 50 ° C lower than the melting point to the melting point. As the time increases or the load is applied, the surfaces of the particles combine and become similarly integrated.
  • the fluororesin When the fluororesin is exposed to a high temperature such as the gelation temperature described above, the motion of the polymer chains in the particles becomes active, and the polymer chains in the particles tend to be entangled with each other, resulting in a smaller and denser structure. As a result, it is thought that the particle shrinks and its density increases. Focusing on individual fluororesin particles, it can be considered that the size of the particles became smaller than the original size due to gelation, and the density increased correspondingly.
  • the temperature of the mold may be a temperature higher than or equal to the melting temperature of the fluororesin, or a temperature lower than the melting temperature (however, (At least about 50 ° C lower than the melting temperature).
  • the preferred temperature of the mold is in the range from the melting temperature to (a temperature 50 ° C. lower than the decomposition starting temperature of the fluororesin). More preferred mold temperature is in the range of (temperature higher than melting temperature by 50 ° C) to (temperature higher than melting temperature by 100 ° C). Therefore, in the following description, the power mainly explaining the case where the mold is heated to a temperature higher than the melting temperature of the fluororesin and the molding is performed.
  • the temperature of the mold may be lower than the melting temperature.
  • the molding method that can be used in the method of the present invention, as described below with reference to the drawings, Injection molding and particularly preferably an injection compression molding method in which compression is performed after or simultaneously with injection into a mold.
  • a molding method is a method known per se, and the method of the present invention differs substantially in that the temperature of the mold and the use of Z or gelled crushed fluororesin are used.
  • the molding can be performed efficiently as compared with the conventional molding method.
  • the melt viscosity of the fluororesin used in the present specification is the viscosity of the fluororesin which has not substantially received a heat history at a temperature of about 50 ° C. or lower after the production of the resin. It is described in Japanese Patent Application Laid-open No. Hei 10-533364 (or WO98 / 067662 or EP-A091915955) and Japanese Patent Application Laid-Open No. Hei 6-23441 Means the melt viscosity measured according to the method described.
  • Fluororesin melt viscosity 1 0 7 to 1 0 13 (Unit: poise) when it is expected to be about (the skilled person depending on the type of resin and other physical properties can be empirically schematically predict melt viscosity) is Means the viscosity measured by the following method.
  • melt viscosity (unit: poise) measured using a tester (manufactured by Shimadzu Corporation) at the temperature and load shown in Table 1 below:
  • the heating temperature of the mold is equal to or higher than the melting temperature of the fluororesin used for molding (of course, in the case of gelled crushed fluororesin, it may be lower than the melting temperature). It must be high enough to have an adverse effect.
  • the temperature at which an article is adversely affected depends on the intended article.
  • the heating temperature of the mold is preferably (the melting temperature of the fluororesin) to (the decomposition starting temperature of the fluororesin-50 ° C), more preferably 50 ° C to 1 ° C than the melting temperature of the fluororesin. 0 0. C higher temperatures are more preferred. In any case, it is preferable to heat the mold beyond the decomposition starting temperature of the fluororesin.
  • the mold used is not particularly limited as long as it is a mold generally used for injection molding and injection compression molding and can be heated to a predetermined temperature.
  • a mold as schematically shown in a sectional view in FIG. 1 can be used.
  • a cavity 13 is defined by a fixed mold 11 and a movable mold 12, and this cavity moves the compression plate 14 in the direction of the arrow (from position A to position B).
  • the volume can be changed by moving.
  • the moving mold 12 may have a structure capable of changing the volume of the cavity.
  • a nozzle 15 of an injection molding machine can be attached to the fixed mold 11, and the molten fluororesin is supplied to the cavity 13 via the nozzle.
  • the surfaces of the dies 11 and 12 defining the cavities 13 and the plate 14 are heated to a predetermined temperature equal to or higher than the melting temperature of the fluororesin to be molded.
  • the heating of the mold to the above-mentioned temperature may be performed by any method. That is, when molding a resin, a method generally used for heating a mold (for example, a method using a cartridge heater embedded in a mold) can be used. However, in a preferred embodiment, high frequency induction heating is used to selectively heat the mold, especially only the surface portion of the mold that defines its cavity.
  • high-frequency induction heating having a shape substantially complementary to the shape of the surface 23 that defines the cavity 21 of the mold 20.
  • the coil 24 is removed from the mold 20 (see FIG. 2 (b)).
  • the mold is closed, and while the mold surface is maintained at a predetermined temperature, the molten fluororesin 25 is supplied into the mold via the molding machine nozzle 15 (see FIG. 2 ( c))). After that, it waits for the resin to cool and solidify to form a molded product 26 (see FIG. 2 (d)). After cooling, open the mold and remove the molded product 26 from the mold (see Fig. 2 (e)).
  • the method of the present invention can be carried out by supplying a resin melted using a general injection molding machine to a mold in which a temperature equal to or higher than the melting temperature of the fluororesin is maintained.
  • the melting of the fluororesin may be performed by any suitable method, but a melting method generally used in injection molding may be applied.
  • the melting of the fluororesin is achieved by heating the cylinder and / or screw of the molding machine and transferring heat from them to the resin, and the fluororesin is further kneaded between the screw and the cylinder. It can be implemented by utilizing the heat generated by the shear energy at the time.
  • a so-called pre-plastic injection molding machine as schematically shown in FIG. 3 is used.
  • the molding machine 30 kneads and plasticizes and melts the fluorine lumber supplied from the hopper 31 while heating it with the cylinder 132 and / or the screw 33.
  • a predetermined amount of molten resin is supplied to a resin holding cavity 35 in an injection cylinder 34 having a heating Z heat retaining function and temporarily stored therein, and then a communication passage 36 between the screw and the cavity is formed.
  • Shut off by appropriate means for example, by closing the passage with the tip of a screw), and then use the injection plunger 37 to move the mold cavity 39 from the cavity 35 through the nozzle 38. Inject the molten fluororesin into the interior.
  • Such a pre-plastic injection molding machine uses a cylinder for heating and melting of fluororesin. 2 and Z or screw 33, and the metering of the resin to be molded is performed by feeding the resin to the cavity 35 by the screw 33. Therefore, as compared with the case of using an injection molding machine having only a screw, which measures by rotating a screw, there is an advantage that reciprocation of the screw is not required, and the distribution of resin temperature can be made uniform.
  • the resin in the mold may be compressed to maintain a high pressure by using a movable element of the mold (for example, the plate 14 in FIG. 1).
  • a movable element of the mold for example, the plate 14 in FIG. 1.
  • the molten resin supply side (for example, a screw is used in the above-mentioned pre-bra type injection molding machine). 33 side) It is preferable to maintain a state in which a higher back pressure is applied to the cavity 35, and to supply the resin into the cavity, it is necessary to supply the resin in a pressurized state. This can be performed, for example, by applying a certain amount of pressure to the injection plunger 37 when using the above-described plumber type injection molding machine.
  • the gas for example, air
  • the fluorocarbon resin melted in the cavity at a pressure higher than the back pressure is supplied into the cavity on which the back pressure acts, and is temporarily held in the cavity and melted from the cavity.
  • the fluororesin is supplied into the mold.
  • a plunger type and an in-line screw type are also suitable for the injection molding of the fluororesin of the present invention.
  • the plunger type a space for weighing is created just below the hopper by moving the piston opening, and after dropping fluororesin into that space, the piston rod is moved forward and the fluororesin is sent forward.
  • the piston rod moves forward for resin injection, Since resin is sometimes supplied, the pressure for supply is the injection pressure itself.
  • the force to send the material is larger than the in-line screw set.
  • the space for supplying fluororesin is large, and bridges are unlikely to occur.
  • fluororesin can be supplied continuously by rotating the screw, and uniform plasticization is easy.
  • the feed force of the material is affected by friction, and fluorocarbon resin with a small coefficient of friction is disadvantageous because the loss is large and the space for dropping the material is small.
  • the method of the present invention is performed using an injection press. That is, the method of the present invention is performed by an injection compression molding method.
  • molten fluororesin 41 is supplied into an open stationary mold 40 maintained at a predetermined temperature (FIG. 4 (a)). Then, the resin is formed by shrinking the mold opened by the pair of movable molds 42 (see FIG. 4 (b)), and then holding the pair of molds 42. And cool it (see Fig. 4 (c)). After that, the mold is opened and the molded product 43 is taken out.
  • the method of the present invention is performed using a so-called in-line injection molding machine as schematically shown in FIG.
  • the fluororesin is transported from the hopper 51 by the screw 53, and the resin transported to the tip of the screw is transferred to the die via the nozzle 55 by the screw. It has a structure to supply into the cavity. At the tip of the screw, the resin is transported by the screw while the back pressure acts on the transported resin.
  • the mold may have a structure in which the volume of the cavity previously formed before the injection increases when the pressure of the injected resin becomes larger than a certain threshold. In this case, the cavity space is reduced. Spreading resin is easy to fill and suitable Because of the back pressure, there is the advantage that air can escape easily.
  • the mold defines a closed cavity as shown in Fig. 4 (c), supplies the resin in that state, and moves according to the injection pressure of the resin.
  • the mold 42 is moved upward to open to a state as shown in FIG. 4 (b), and then the opened movable mold 42 is moved downward to compress and obtain a molded product.
  • the resin when the molten fluororesin is supplied into the mold in a predetermined amount, the resin may be supplied at any speed, but it is preferable to supply the loose resin as far as possible.
  • the feed rate of ⁇ fat at the outlet of the nozzle 3 8 for supplying a molten resin into the mold 1 0 7 sec 'or less, preferably 1 0 4 sec 1 less shear speed.
  • the shear rate is given by the following equation when the nozzle cross section is circular:
  • V 4 QZ R 3 (where ⁇ is the shear rate (sec- 1 ), Q is the injection amount of resin (cc / sec), and R is the inner diameter of the nozzle tip #diameter, cm).
  • is the shear rate (sec- 1 )
  • Q is the injection amount of resin (cc / sec)
  • R is the inner diameter of the nozzle tip #diameter, cm).
  • the shear rate at the time of supply can be, for example, a 1 0 ⁇ 1 0 2 sec 1.
  • the fluororesin filled in the cylinder is preferably melted at a temperature not lower than the melting temperature of the fluororesin and lower than the decomposition starting temperature.
  • the molecular weight of the molded article reduction is small, normal PFA (melt viscosity 1 0 4 to 1 0 5 poise) or heat resistance than molded article ETFE (melt viscosity 1 0 3 to 1 0 4 poises), in the friction wear resistance and repeated bending fatigue properties A more excellent molded product can be obtained.
  • the melting temperature of the fluororesin is a value measured by a differential scanning calorimeter (DSC-7, manufactured by PERKIN ELMER; second up).
  • the decomposition temperature of the fluororesin is measured by a differential thermometer (TGA-50, manufactured by Shimadzu Corporation: temperature rise rate of 10 ° CZ in air).
  • the melting temperature and decomposition onset temperature which are guidelines for mold temperature, are the melting and decomposition onset temperatures measured for the fluororesin before gelation .
  • the molten resin supplied into the mold is cooled and thereby solidified, that is, cooled and solidified.
  • the degree of cooling is not particularly limited as long as the resin is solidified, and can be appropriately selected by those skilled in the art according to the desired molded product.
  • the mold is opened by cooling to a temperature 100 ° C. lower than the melting temperature of the fluororesin, preferably to room temperature, and the molded product is taken out.
  • the resin injected into the mold maintains the molten state even after the injection. Molded product that has a desired shape even in a complicated shape when fully welded Is obtained. Therefore, according to the method of the present invention, a fluororesin including an ultrahigh molecular weight fluororesin can be easily and efficiently molded.
  • the resulting molded product has few cutting surfaces and does not have problems such as cutting or high-order fluffing, and has excellent bending fatigue properties and friction wear properties in high-temperature chemicals.
  • a desired molded product can be substantially obtained in a single injection molding step using an injection molding machine, so that the processing cost of fluororesin can be significantly reduced.
  • fluororesins are excellent in heat resistance, chemical resistance, non-adhesion, friction and wear properties, weather resistance, etc.
  • molded products obtained by the method of the present invention are particularly suitable for packings, flanges, gaskets, bearings, and sleeves. It is useful for sliding parts such as valves for chemical liquids and pumps, and sealing parts.
  • a granulated PTFE (trade name: New Polyflon TFEM—A granulated product obtained by underwater granulation of 111) , melt viscosity: 6 X 1 0 9 poises, average particle diameter 5 0 0 mu m, apparent density:. 0 9 0 g Z cm 3, the true density: 2 ⁇ 1 7 g, cm 3, melting temperature: 3 2 4 ° C, decomposition start temperature: 493 ° C, manufactured by Daikin Industries, Ltd.).
  • the fluororesin was kneaded and melted with the screw 33 and the cylinder 32, and was once filled into the cylinder cavity 35 having the nozzle 15 (38) (internal diameter of 5.0 mm).
  • the temperature of the injection cylinder 134 was heated to 450 ° C. and maintained in a molten state.
  • the resin is supplied from a nozzle 15 at a shear rate of 8 x 1 O sce- 1 and a mold cavity 13 with an inner diameter of 40 strokes and a thickness of 20 mm (the tip of the compression plate 14 in the cavity). Is in position A) within 25 seconds, and the molten fluorocarbon resin is used for cavity 1
  • the cavity temperature during this injection (the temperature of the mold surface 23) is determined by With the ridge heater constantly keeping the temperature at 250 U C, the mold is opened, and its surface (depth: 0.2 mm) is instantaneously heated by the high-frequency induction heating device 24 to reach 350 ° C. Was Thereafter, the mold is closed, the fluororesin is injected as described above, and a compression pressure of 175 kgf Zcm 2 is applied to move the tip of the compression plate 14 in the cavity to position B (cavity dimension). : Inner diameter 4 O mmX thickness 13 sleep, compression ratio 35%).
  • Example 1 was repeated under the conditions shown in Table 2. Table 2 also shows these results.
  • Granular PTFE (trade name: New Polyflon TFE M- 1 37, the melt viscosity: 5 X 10 9 poises, average particle size 400 / im, apparent density: 0. 80 gcm 3, the true density: 2. 1 7 GZC m 3 , melting temperature: 323 ° C, decomposition start temperature: 493 ° C, manufactured by Daikin Industries, Ltd.) were spread over a stainless steel vat with a thickness of 5 cm, placed in an oven, and heated in air. For heating, the oven temperature was raised from room temperature to 365 ° C in 2 hours, kept at that temperature for 2.5 hours, and then cooled to room temperature in 4 hours.
  • the appearance of the obtained fluororesin was in the form of a block in which individual particles were fused together while maintaining the original shape.
  • This block is crushed with a powder stone right (rotary blade type)
  • a granular gelled crushed fluororesin having an average particle size of 1 mm was obtained.
  • the apparent density of this gelled crushed fluororesin is 1.05 gZcm. Met.
  • the obtained gelled and crushed fluororesin was molded into a molded product schematically shown in Fig. 6 using an injection molding machine shown in Fig. 5 and a mold of the type shown in Fig. 4 (however, the mold opened during injection).
  • Table 3 shows the molding conditions and the evaluation of the molded products (same as in Table 2).
  • Tradename powdered PTFE New Polyflon TFE M- 1 1 1 (melt viscosity: 6 X 1 0 9 poises, average particle size 33 / zm, apparent density: 0. 35 g Z cm 3, the true density: 2. 1 7 g / cm 3, melt temperature: 324 ° C, decomposition starting temperature: 493 ° C, using Daikin Industries Ltd.)) spread with a thickness 5 cm of stainless steel vat, oven And heated in air. For heating, the oven temperature was raised from room temperature to 365 ° C in 2 hours, kept at that temperature for 2.5 hours, and then cooled to room temperature in 4 hours.
  • the appearance of the obtained fluororesin was in the form of a block in which individual particles were fused together while maintaining the original shape.
  • This block was crushed in the same manner as in Example 3 to obtain a granular gelled crushed fluororesin having an average particle size of 1 mm.
  • the apparent density of this gelled crushed fluororesin was 0.75 g Z cm 3 .
  • Example 5 In the same manner as in Example 3, a molded article schematically shown in FIG. 6 was produced using the obtained Gelich crushed fluororesin. Table 3 below shows the molding conditions and the evaluation of the molded product (same as in Table 2). Example 5 The following procedure was used to produce a gelled crushed fluororesin:
  • Powdered PTFE (trade name: Polyflon TF EM-12, melt viscosity: 3 X 101 G poise, average particle size 25 Mm, apparent density: 0.29 g / cm 3 , true density: 2 . 16 g / c Melting temperature: 328 ° C, decomposition onset temperature: 493 ° C, Daikin Industries, Ltd.) was spread over a stainless steel batter to a thickness of 5 cm, placed in an oven, and heated in air. . Heating the oven temperature was raised from room temperature 2 hours 3 8 5 D C, and held at that temperature for 3 hours, then cooled at 5 hours to room temperature. The appearance of the obtained fluororesin was in the form of a block in which individual particles were fused together while maintaining the original shape. This block was crushed in the same manner as in Example 3 to obtain a granular gelled crushed fluororesin having an average particle size of 500 ⁇ m. The apparent density of the gelled and crushed fluororesin was 0.53 g / cm 3 .
  • Example 3 a molded article schematically shown in FIG. 6 was produced using the obtained gelled crushed fluororesin.
  • the molding conditions and the evaluation of the molded product are shown in Table 3 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 フッ素樹脂の成形方法および成形クロ口
技術分野
本発明は、 新規なフッ素樹脂の成形方法およびその方法により形成される成形 品に関する。
背景技術
フッ素樹脂は耐熱性、 耐摩耗性、 耐薬品性などに優れており、 代表的なェンジ ニアリングプラスチックスの一つとして広く利用されている。 しかしながら、 フ ッ素樹脂は他の汎用の樹脂に比べて、 溶融状態において溶融粘度が極めて高く、 流動性が悪いため、 押出成形または射出成形等により成形することは容易ではな いと考えられてきた。 特に、 溶融粘度が 1 0 ポアズ以上の超高分子量のフッ素 樹脂にはこのことが当て嵌まると考えられている。 尚、 本明細書にて使用する溶 融粘度の測定方法に関しては、 後で詳細に説明する。
代表的なフッ素樹脂であるボリテトラフルォロエチレン (P T F E ) は、 C— F結合エネルギーが 1 1 0〜 1 2 O kcalZmolと大きく耐熱性、 耐薬品性、 非粘 着性、 摩耗特性および耐候性等の点で有用な樹脂である。 P T F Eの押出成形方 法としては、 ラム押出およびペース卜押出が用いられている。
ラム押出は、 断面がダイの形状通りの押出バ一を連続的に成形することに適し ているが、 ダイの形状と異なる成形品を得ることは困難である。 ペースト押出に も同様のことが当て嵌まる。 P T F Eの粉末にナフサなどの助剤を加えて粉末を 濡らすことにより P T F Eの押し出しを助け、 チューブや電線被覆の焼成体を連 続的に成形することが行われているが、 この方法もダイの断面形状と異なる成形 品を得ることは困難である。
また、 P T F E粉末のホッ トモールディング法と呼ばれる加熱圧縮成形法も用 いられている。 この方法では、 屈曲疲労強度の高い成形品が得られるが、 成形品 中に歪みが大きく残るのでァニールの必要がある。 また、 一度に多数の成形品を 得ることが困難であり、 特殊な成形品を得る場合のみに限られている。
従って、 所望の PTFE成形品を得るためには、 PTFEの粉末を圧縮成形し て予備成形品を作り、 予備成形品を焼成して得られる成形品を切削加工すること が一般的に行われている。 しかしながら、 この方法は作業効率が悪いので、 作業 効率が改善された PTF Eの成形法の開発が望まれている。
また、 超高分子量のテトラフルォロエチレンノパーフルォロアルキルビュルェ —テル共重合体 (PFA) およびエチレンノテトラフルォロエチレン共重合体
(ETFE) は、 溶融粘度が 1 03〜10"ポアズの市販されている PFAおよ び E T F Eに比べて、 耐ス トレスクラック性、 耐衝撃性および機械的強度に優れ ている。 しかしながら、 このような超高分子量の PFAや ETFEも、 PTFE と同様に、 押出成形または射出成形によつて成形することが容易ではないと考え られる。
上述のように、 フツ^樹脂の^形が一般的に容易ではないが、 例えば射出成型 法を改善しょうとする試みが种:々なされており、 例えば、 特開平 6— 234 14 1号公報において、 いわゆるフラッシュフロー成形によるフッ素樹脂の成形方法 が提案されている。 このような成形方法により、 フッ素樹脂の形成方法は改善さ れたが、 必ずしも満足できるものではなレ V,
例えば、 PTF Eのようなフッ素樹脂を射出成形する場合には、 例えば、 ホッ パーにおいてフッ素樹脂がプリッジを形成するため、 スクリュ一にフッ素樹脂を 連続的に供給するのが容易でないという問題や、 また、 フッ素樹脂を供給するス クリューでは樹脂が滑り易く、 樹脂の送りがうまく行き難いというような問題点 がある。 これは、 フィブリル化し易く、 摩擦係数が小さいというフッ素樹脂固有 の性質に基づくものと考えられる。
このような問題点は、 機械的にブリ ッジを壊したり、 滑りにくいスクリユー形 状を開発すること等により基本的には解決できるものではあるが、 そのような解 決策は必ずしも最良のものとは言えず、 フッ素樹脂を一層効率的に成形できる新 たな方法を提供することが未だに望まれている。 発明の開示 .
従って、 本発明が解決しょうとする課題は、 超高分子量フッ素樹脂をも含む 種々のフッ素樹脂の新たな成形方法であって、 上述の問題点を、 現状の成形方法 を実施する場合より少なくとも軽減する成形方法、 好ましくは一層効率的に解決 する成形方法を提供し、 好ましくは、 ダイ押出またはラム押出により得られる成 形品より複雑な形状の成形品を (より好ましくは切削加工のような二次加工の必 要性を軽減または解消して) 得ることを可能にすることにある。
第 1の要旨において、 本発明は、 溶融状態のフッ素樹脂を金型へ供給して冷 却 ·固化することによりフッ素樹脂の成形品を得る、 フッ素樹脂成形方法であつ て、 溶融状態のフッ素樹脂がその溶融温度以上の温度に保持された金型内に供給 されることを特徴とする成形方法を提供する。
第 2の要旨において、 本発明は、 溶融状態のフッ素樹脂を金型へ供給して冷 却 ·固化することによりフッ素樹脂の成形品を得る、 フッ素樹脂成形方法であつ て、 成形に使用するフッ素樹脂として、 フッ素樹脂を予めゲル化角 ¥砕したフッ素 樹脂を用いる成形方法を提供する。 本発明の第 2の要旨の方法では、 一般的に実 施されている種々の成形と同様に、 金型の温度はフッ素樹脂の溶融温度より低く てもよく、 例えば (フッ素樹脂の溶融温度一 5 0 °C) 以上であって、 フッ素樹月旨 の分解開始温度より低くてよレ、。
しかしながら、 本発明の第 2の要旨において特に好ましい態様では、 溶融状態 のフッ素樹脂を金型へ供給して冷却 ·固化することによりフッ素樹脂の成形品を 得るに際して、 溶融状態のフッ素樹脂がその溶融温度以上の温度に保持された金 型内に供給される。 即ち、 本発明の第 2の要旨の方法は、 第 1の要旨の方法と組 み合わせると特に効率的にフッ素樹脂を成形することが可能となる。
尚、 本発明において、 フッ素樹脂の溶融温度とは、 フッ素樹脂のいわゆる融点 であり、 後述するように、 示差走査熱量計によって測定される。
更に、 本発明は、 上述のような本発明の方法により形成されるフッ素樹脂の成 形品を提供する。 即ち、 フッ素樹脂の成形において、 金型の温度をその溶融温度 以上として成形した場合に得られる成形品、 ゲル化解砕したフッ素樹脂を用いて 成形した場合に得られる成形品、 また、 金型の温度をその溶融温度以上とし、 ゲ ル化解砕したフッ素樹脂を用いて成形した場合に得られる成形品を提供する。 図面の簡単な説明
図 1は、 本発明の方法に使用できる金型の模式的断面図である。 δ 図 2は、 高周波誘導加熱により金型を加熱する本発明の成形方法の工程を順に 金型の断面図にて模式的に示す図である。
図 3は、 本発明の方法を実施する場合に好適に使用できるプリブラ式射出成形 機の模式的断面図である。
図 4は、 本発明の方法を実施する場合に好適に使用できる射出プレス成形法の 10 工程を順に金型の断面図にて模式的に示す図である。
図 5は、 本発明の方法を実施する場合に好適に使用できるィンライン式射出成 形機の模式的断面図である。
図 6は、 本発明の実施例にて作製した成形品の模式図である。
尚、 図面において引用番号は、 以下の要素を示す:
10…金型、 1 1…固定金型、 1 2···移動金型、
1 3···キヤビティ、 1 4…圧縮用プレート、 1 5' ノズル、 20…金型、
21…キヤビティ、 23…キヤビティ規定表面、 24···高周波誘導加熱コイル、
25···フッ素樹脂、 26···成形品、 30…プリブラ式射出成形機、
3 1…ホッパー、 32…シリンダー、 33…スク リュー、
0 34…射出用シリンダー、 35…キヤビティ、 36…連絡通路、
37…プランジャー、 38…ノズル、 40……固定金型、 4 1…フッ素樹脂、
42…可動金型、 43…成形品、 50…成形機、 5 1…ホッパー、
52. "シリンダー、 53…スクリュー、 55···ノズル。 5 発明を実施するための形態
いずれの要旨の本発明においても、 フッ素樹脂とは、 フッ素原子がポリマ一構 造の一部分を構成する樹脂である。 特に、 上述のような従来の成形方法では成形 の効率が悪いフッ素樹脂を、 本発明では対象とするフッ素樹脂に含めることがで きる。 具体的には、 溶融粘度が少なくとも 1 03ボアズであるものが含まれる。 フッ素樹脂の溶融粘度の上限は、 溶融状態で金型にフッ素樹脂を供給できる限り、 特に限定されるものではないが、 例えば 1013ポアズの溶融粘度を有するフッ 素樹脂をも対象とすることができる。 例えば、 溶融粘度が 1 0リ 〜1013ポアズ、 好ましくは 105〜1012ポアズのフッ素樹脂を本発明の方法に使用することが できる。
本発明の方法に使用できるフッ素樹脂としては、 テ卜ラフルォロエチレン、 パ 一フルォロアルキルビニルェ一テル、 へキサフルォロプロピレン、 クロロ トリフ ルォロエチレンもしくはビニリデンフルオラィ ドの単独重合体またはそれらの 2 種以上からなる共重合体、 あるいはテトラフルォロエチレンとエチレンとの共重 合体、 クロ口フルォロエチレンとエチレンとの共重合体を例として挙げることが できる。
具体的には、 PTFE (ボリテ トラフルォロエチレン) 、 PFA (テトラフル ォロエチレン Zパ一フルォロアルキルビニルエーテルコポリマー) 、 FEP (テ トラフノレォロエチレン Zへキサフノレオ口プロピレンコボリマー) 、 PCTFE (ポリクロ口 トリフルォロエチレン) 、 PVDF (ポリフッ化ビニリデン) 、 E
TFE (エチレン/テトラフルォロエチレンコポリマー) 、 ECTFE (ェチレ ン/クロ口 トリフルォロエチレンコポリマー) 等のポリマーが本発明の方法に使 用できるフッ素樹脂に含まれる。 中でも、 PTFEが本発明の方法に特に好都合 に使用できる。 更に、 これらのポリマ一のいずれかの組み合わせ (例えばコンパ ゥンドのような混合物) であってもよい。
この組み合わせが非相溶性である場合、 本発明の溶融温度および分解開始温度 は、 組み合わせを構成する成分が有する溶融温度および分解開始温度の内のそれ ぞれ最も高いものおよび最も低いものをいう (尚、 同じ成分が最も高い溶融温度 および最も低い分解開始温度の双方を有しても、 異なる 2種の成分がそれぞれ最 も高い溶融温度および最も低い分解開始温度を有してもよい) 。 この組み合わせ が相溶性である場合、 本発明の溶融温度および分解開始温度は、 相溶物について の溶融温度および分解開始温度である。
本発明において用いることのできる PTF Eには、 例えば 2重量。 /0以下の共重 合性単量体で変性されたテ トラフルォロエチレンの共重合体 (通常、 粉末形態) が含まれる。 この変性に用いる共重合性単量体としては、 炭素数 3〜6のパーフ ルォロアルケン (例えばへキサフルォロプロピレン) 、 炭素数 3〜6のパ一フル ォロ (アルキルビュルエーテル) たとえばパーフルォロ (プロピルビニルェ一テ ル) などがあげられる。 これら変性共重合体は、 P T F E単独重合体と同様に溶 融3¾度が高く、 通常の方法では押出成形または射出成形することは容易ではなレ、。 更に、 本発明の方法に使用するフッ素樹脂には、 超高分子量 P F Α (溶融粘度
1 0 〜 1 0 'ポアズ) および超高分子量 E T F E (溶融粘度 1 0 6〜 1 0 ポア ズ) も含まれる。
本発明において使用するフッ素樹脂は、 本発明の方法に悪影響を及ぼさない限 り (即ち、 成形することが不可能とならない限り) 、 必要に応じて、 他の成分、 例えば添加剤および/または助剤等を適当量で含んでよい。 そのような添加剤と しては、 充填剤 (ガラス繊維、 グラフアイ ト、 二硫化モリブデン、 炭素 、 ブ ロンズなど) 、 着色剤等を例^できる。
尚、 P T F Eのモ一ルディングパウダーまたはファインバウダ一のような微粉 末の樹脂は、 流動性が必ずしも 卜分でない場合があるので、 本発明において使用 するフッ素樹脂は、 易流動性を^する粉末状 (または粒状もしくは顆粒状) 形態 であるもの (いわゆる造粒品) がより好ましレ、。 そのような樹脂を用いると、 ホ ツバ一に樹脂を投入したときにプリッジを形成し難く、 スクリューに供給される ことが促進されるので好都合である。
本発明の方法において使用するのが特に好ましいフッ素樹脂は、 上述の本発明 の方法において使用できる種々のフッ素樹脂を、 予めゲル化解砕したもの (本明 細書において、 「ゲル化解砕フッ素樹脂」 とも呼ぶ) である。 本明細書において、 予めゲル化解砕したものとは、 微粉末または粉末状フッ素樹脂 (以下、 単に 「粉 末状フッ素樹脂」 と呼ぶ。 ) をゲル化させて一体化した後、 それを粉砕して得ら れるものを意味する。 尚、 一般的に市販されている、 「モールディングパウダ一 またはファインパウダー」 と呼ばれる粉末状フッ素樹脂は、 このゲルィヒ解砕を適 用できる粉末状フッ素樹脂である。
本明細書において、 「ゲル化」 とは、 重合して得られた粉末状フッ素樹脂に、 次のような熱処理を施すことを意味する : 不活性雰囲気または空気中において、 (フッ素樹脂の溶融温度より約 5 0 °C低 い温度) 〜 (フッ素樹脂の分解開始温度) の範囲の温度、 好ましくはフッ素樹脂 - の溶融温度以上かつその分解開始温度未満の温度、 より好ましくは溶融温度より 約 2 0 °C高い温度〜溶融温度より約 8 0 °C高い温度の範囲内の温度に、 重合後に δ 初めて、 所定時間 (例えば 1〜 5時間) 曝し、 その後、 フッ素樹脂の溶融温度以 下の温度に冷却する、 好ましくは徐冷する熱処理。
従って、 重合により得られたフッ素樹脂は、 ゲル化以前には、 上述のような高 温における熱履歴を経ていない。
「ゲル化」 処理した粉末状フッ素樹脂の個々の粒子は、 それぞれ粒子形状を維0 持しながらも全体としては弱い結合力で一体に結合しているので、 これを成形機 に供給するために、 所定寸法を有する粒状物となるように粉碎する必要があり、 本明細書では、 この粉砕を 「解砕」 と呼ぶ。 この解砕は、 いずれの適当な手段で 実施してもよく、 例えば粉砕機を用いて実施できる。 解砕する所定寸法は、 成形 品、 成形機の条件等に応じて適宜決定できるが、 一般的には、 5 mm以下の粒子5 寸法、 例えば平均粒子寸径が l m m〜3 mmとなるように解砕すればょレ、。
尚、 従来技術によりフッ素樹脂の成形品を製造する際に発生する切削屑 (即ち、 フッ素樹脂の圧縮成形により得られる予備成形品を焼成し、 その後、 予備成形品 を切削する時に発生する、 現在は廃棄している切削屑) は、 上述のようなゲルィ匕 処理を実質的に受けているので、 そのような切削屑を粉砕することによって、 本0 発明に基づいてゲル化解砕フッ素樹脂として使用することができる (勿論、 切削 屑の寸法が上述のように小さい場合には、 粉砕しなくてもゲル化解砕樹脂として 使用できる) 。 また、 本発明の効果を損なわない範囲で未焼成の粉末状フッ素樹 脂 (またはゲル化処理していない粉末状フッ素樹脂) をゲル化解砕フッ素樹脂と 混合して使用することもできる。
5 このような 「ゲル化解砕」 により、 フッ素樹脂は、 それを成形する、 特に射出 成形するのに好ましい特性を有することになる。 特に、 一般的な射出成形機を使 用する場合に従来から問題となっていたホッパー部分にぉレヽてフッ素樹脂がブリ ッジを形成し易いという問題点や樹脂を供給するスクリユーで樹脂が滑りやすく、 樹脂の送りがうまく行き難いという問題点が、 同じ成形機を用いる場合であって も、 軽減され、 好ましくは解消される。
上述の 「ゲル化」 処理によって、 フッ素樹脂の物性の変化は種々生じていると 推察されるが、 少なくとも樹脂の見掛密度が増加する。 換言すれば、 このような 密度の増加は、 粉末状フッ素樹脂の粒子自体の密度が増加し、 フッ素樹脂が 「引 き締まった」 と表現できる。 密度の増加は、 ゲル化の条件、 フッ素樹脂の種類お よびグレード等に応じて異なるが、 一般的には、 ゲル化による粉末粒子自体の密 度増加の結果としてフッ素樹脂の見掛密度が 3 0〜 2 0 0 °/o増える。
従って、 本発明において、 「ゲル化」 したフッ素樹脂とは、 ゲル化していない フッ素樹脂と比較した場合、 成形機におけるプリッジの発生を減らすことができ る、 見掛密度が増えたフッ素樹脂であると定義できる。 また、 「ゲル化解砕フッ 素樹脂」 とは、 そのようなゲル化したフッ素樹脂を、 成形機に使用できるように するために、 粉砕することによって得られる粒状フッ素樹脂であると定義できる。 加えて、 ゲル化解砕したフッ素樹脂は、 ゲル化していないフッ素樹脂と比較して 成形機においてスク リューによる移動が容易であり、 その結果、 成形機のスクリ ユーの操作に関わる成形条件設定可能幅が広く、 成形性が良好になる。
ゲルィヒしたフッ素樹脂の方が、 スクリューでの材料搬送が容易になる理由の一 つとして、 見掛上の粘度の低下が考えられる。 粉末状フッ素樹脂は、 ホッパーブ リッジを発生し易いのと同様の理由で、 スクリュー内でも結合して連続性を示し 易く、 その結果、 強い絡み合いができた粉末状フッ素樹脂は、 樹脂本来の高粘度 の性質を示し、 スクリユーによる供給が難しい。 これに比べ、 ゲル化解砕したフ ッ素樹脂は、 前述の熱履歴を経ているため、 粒子内での結合力は強まっているが、 粒子間の連続性 (または結合) は示しづらくなつている。 このため、 スクリュー によって加熱されても、 粉末状フッ素樹脂に比べ連続性を示し難く、 見掛上の粘 度は低くなっているので、 スクリユーによる供給が容易になっている。
一つの可能性として、 上述のようなゲルィヒしたフッ素樹脂の粒子間の弱い結合、 フッ素樹脂の引き締まりは、 次のように考えることが可能である :
ゲル化解砕したフッ素樹脂は、 その融点を超える温度においては溶融状態とな るが、 その場合でも、 個々の粒子は粘度が高いために元の粒子形態を崩すことな く実質的に保持し、 その結果、 隣接する粒子同士は、 実質的に点接触に近い状態 で接触したままである。 尚、 重合後、 ゲル化前の熱履歴を経ていない粉末フッ素 樹脂は、 個々の粒子が球形に近い状態で、 好ましくはゲル化時に実質的に無荷重 で、 融点を超えるため、 ゲル化解砕したフッ素樹脂もその形態を残している。 従って、 ゲル化処理の時に隣接している粒子同士は、 相互に接触する面積が小 さく、 そのような接触部分において溶融したフッ素樹脂が融着して隣接する粒子 同士が結合し、 フッ素樹脂は全体として解砕が必要な程には一体化すると考えら れる。 接触面積が小さいため、 この結合は強固なものではなく、 最も弱い場合で は、 相当弱い力 (例えば手で加えることができる力) によってでも結合を分離で きる場合がある。
また、 このような粒子間の結合は、 フッ素樹脂が融点より低い温度に曝される 場合であっても、 例えば融点より約 5 0 °C低い温度〜融点の範囲の温度において も、 曝される時間が長くなつたり、 荷重が負荷されれば、 粒子の表面同士が結合 して同様に一体化する。
上述のゲル化の温度のような高温にフッ素樹脂を曝すと、 粒子内のポリマー鎖 の運動が盛んになって、 粒子内でポリマー鎖が相互に絡み合つてより小さく且つ 密な構造となりやすく、 その結果として、 粒子が収縮するとともに、 その密度が 大きくなると考えられる。 このことはフッ素樹脂の個々の粒子に着目すると、 粒 子の寸法が、 ゲル化によって元の寸法より小さくなり、 その分に対応して密度が 大きくなつたと考えることができる。
先にも説明したように、 上述のゲル化解砕フッ素樹脂を用いて成形する場合、 金型の温度は、 フッ素樹脂の溶融温度以上の温度であっても、 あるいは溶融温度 より低い温度 (但し、 溶融温度より約 5 0 °C低い温度以上) であってもよい。 し かしながら、 好ましい金型の温度は、 溶融温度〜 (フッ素樹脂の分解開始温度よ り 5 0 °C低い温度) の範囲である。 より好ましい金型温度は、 (溶融温度より 5 0 °C高い温度) 〜 (溶融温度より 1 0 0 °C高い温度) の範囲である。 従って、 以 下の説明では、 金型の温度をフッ素樹脂の溶融温度以上の温度に加熱して成形す る場合を主として説明する力 フッ素樹脂としてゲルィヒ解砕フッ素樹月旨を使用す る場合は、 金型の温度は溶融温度より低くてもよい。
本発明の方法に使用できる成形方法は、 以下に図面を参照して説明するように、 射出成形および特に好ましくは金型に射出した後に若しくは同時に圧縮を加える 射出圧縮成形方法である。 このような成形方法は、 自体周知の方法であり、 本発 明の方法は、 そのような方法において、 金型の温度および Zまたはゲル化解砕フ ッ素樹脂を使用する点において実質的に異なり、 これにより、 従来の成形方法と 比較した場合、 成形を効率的に実施できる。
本明細書において用いるフッ素樹脂の溶融粘度とは、 樹脂の製造後、 溶融温度 より約 5 0°C低い温度以上のような温度における熱履歴を実質的に受けていない フッ素樹脂の粘度であり、 特開平 1 0— 5 3 6 24号公報 (または WO 9 8/0 6 7 6 2もしくは E P— A 0 9 1 9 5 7 5) 及び特開平 6 - 2 3 4 1 4 1号公 報に記載された方法に基づいて測定される溶融粘度を意味する。
フッ素樹脂の溶融粘度が 1 07〜 1 013 (単位:ポアズ) 程度であると予想さ れる場合 (樹脂の種類および他の物性等により当業者が溶融粘度を経験的に概略 予想できる) は、 次の 法により測定した粘度を意味する。
測定装置としてレオメ 卜リクス仕製粘弾性測定機 R D S— 2を使用し、 3 8 0°Cにおいて剪断速度】 . 2 rad/sでの 77 * (動的粘度) を測定した値である。 フッ素樹脂の溶融粘度が 1 05〜 1 08 (単位: ポアズ) 程度である場合 (樹 脂の種類および他の物性等により 業者が溶融粘度を経験的に概略予想できる) は、 キヤビラリーフ口一テスタ ( (株) 島津製作所製) を用いて以下の表 1の温 度 ·荷重で測定される溶融粘度 (単位:ポアズ) を意味する :
【表 1】
フッ素樹脂 温度 (°C) 荷重 (kgf)
P F A 3 8 0 7
F E P 3 8 0 7
PCTF E 24 0 1 0 0
P VDF 2 3 0 7
ETF E 3 0 0 7
ECTF E 3 0 0 7 本発明において、 金型の加熱温度は、 成形に使用するフッ素樹脂の溶融温度以 上である (勿論、 ゲル化解砕フッ素樹脂の場合は、 溶融温度より低くてもよい) 、 成形品の品質に悪影響を及ぼす程に高くてはならなレ、。 成形品に悪影響を及 ぼす温度は、 目的とする成形品に応じて異なる。 しかしながら、 一般的には、 金 型の加熱温度は、 (フッ素樹脂の溶融温度) 〜 (フッ素樹脂の分解開始温度一 5 0 °C) が好ましく、 フッ素樹脂の溶融温度より 5 0 °C〜 1 0 0。C高い温度がより 好ましい。 いずれの場合であっても、 フッ素樹脂の分解開始温度を越えて金型を 加熱するのは好ましくなレ、。
本発明の方法において、 使用する金型は、 一般的に射出成形及び射出圧縮成形 に使用される金型であって、 所定温度に加熱できるものであれば特に限定される ものではない。 例えば、 図 1に模式的に断面図で示すような金型を使用できる。 この金型 1 0は、 固定金型 1 1および移動金型 1 2によりキヤビティ 1 3が規定 され、 このキヤビティは圧縮用プレー卜 1 4を矢印の方向に (位置 Aから位置 B に向かって) 移動させることによりその体積を変えることができるようになって いるのが好ましい。 また、 移動金型 1 2がキヤビティの体積を変えることができ る構造であってもよい。
固定金型 1 1には、 射出成形機のノズル 1 5を取り付けることができ、 このノ ズルを介して溶融したフッ素樹脂がキヤビティ 1 3に供給される。 キヤビティ 1 3を規定する金型 1 1および 1 2ならびにプレート 1 4の表面は、 成形すべきフ ッ素樹脂の溶融温度以上の所定温度に加熱される。
本発明の方法において、 上述のような温度への金型の加熱は、 いずれの方法に より実施してもよレ、。 即ち、 樹脂を成形する場合に金型の加熱に一般的に用いら れる方法 (例えば金型に埋設したカートリッジヒーターを使用する方法) を使用 できる。 しかしながら、 好ましい態様では、 高周波誘導加熱を用いて金型、 特に そのキヤビティを規定する金型の表面部分のみを選択的に加熱する。
例えば、 図 2において金型の断面図にて模式的に示すように、 金型 2 0のキヤ ビティ 2 1を規定する表面 2 3の形状と実質的に相補的な形状を有する高周波誘 導加熱コイル 2 4を準備し、 これを金型のキヤビティ内に配置し、 コイルに電流 を通して高周波誘導加熱により所定の金型温度 (または若干の温度低下を考慮し てそれより少し高い温度) に加熱する (図 2 ( a ) 参照) 。 その後、 コイル 2 4 を金型 2 0から取り出す (図 2 ( b ) 参照) 。 次に、 金型を閉じて、 金型の表面 が所定温度に保持されている間に、 溶融状態のフッ素樹脂 2 5を成形機ノズル 1 5を介して金型内に供給する (図 2 ( c ) 参照) 。 その後、 樹脂が冷却されて固 化して成形品 2 6が形成されるのを待つ (図 2 ( d ) 参照) 。 冷却後、 金型を開 いて成形品 2 6を金型から取り出す (図 2 ( e ) 参照) 。
このように、 高周波誘導加熱を用いる場合、 金型の表面およびその直下の薄層 部分のみ (図 2の斜線部分に対応) が高温に急速に加熱され、 それ以外の部分は それほど加熱されないので、 樹脂を供給した後の冷却が速やかに進行する。 従つ て、 成形のサイクル時間を短縮できるという利点がある。
本発明の方法は、 フッ素樹脂の溶融温度以上の温度を保持した状態の金型に、 一般的な射出成形機を用いて溶融させた樹脂を供給することにより実施すること ができる。 本発明の方法において、 フッ素樹脂の溶融は、 いずれの適当な方法で 実施してもよいが、 一般的に射出成形に際して用いられる溶融方法を適用してよ い。 例えば、 フッ素樹脂の溶融は、 成形機のシリンダ一および/またはスクリュ —を加熱して、 それらから熱を樹脂に伝えることにより、 更に、 スクリューとシ リンダ一との間でフッ素樹脂が混練される時の剪断エネルギーによる発熱等を利 用することにより、 実施してよレ、。
特に、 好ましい 1つの態様では、 図 3に模式的に示すようないわゆるプリプラ 式射出成形機を使用する。
この成形機 3 0は、 ホッパー 3 1から供給されたフッ素樹月旨をシリンダ一 3 2 および/またはスクリユー 3 3により加熱しながら混練して可塑化して溶融させ る。 所定量の溶融した樹脂を、 加熱 Z保温機能を有する射出用シリンダー 3 4内 の樹脂保持キヤビティ 3 5に供給して一旦そこに溜め、 その後、 スクリューとキ ャビティとの間の連絡通路 3 6を適当な手段で遮断し (例えばスクリューの先端 部により通路を閉鎖することにより遮断する) 、 その後、 射出用プランジャー 3 7を用いてキヤビティ 3 5からノズル 3 8を介して金型のキヤビティ 3 9内に溶 融したフッ素樹脂を射出する。
このようなプリプラ式射出成形機は、 フッ素樹脂の加熱 ·溶融はシリンダ一 3 2および Zまたはスクリユー 3 3により行われ、 成形すべき樹脂の計量は、 スク リュー 3 3によりキヤビティ 3 5に樹脂を供給することにより行われる。 従って、 スクリューを回転させて計量する、 スクリユーのみを有する射出成形機を用いる 場合と比較すると、 スクリューの往復動が不要となり、 榭脂温度の分布が均一に 出来るという利点がある。
場合により、 フッ素樹脂を金型内に供給した後、 金型の可動要素 (例えば図 1 のプレート 1 4 ) を使用して、 金型内の樹脂を圧縮して高圧を保持してよく、 そ れにより、 金型内に供給された樹脂が金型全体に確実に行きわたると共に、 榭脂 全体にわたって圧力が均等に伝達されるので、 金型に対応する所定の形状を有し、 密度が高くかつ均一な成形品を得ることができる。
尚、 上述のプリブラ式射出成形機のように、 溶融した樹脂を一旦キヤビティ内 に溜めて射出成形すべき樹脂の量を計る場合において、 溶融樹脂供給側 (例えば 上述のプリブラ式射出成形機ではスクリュー 3 3側) より高い背圧をキヤビティ 3 5に作用させた状態で保持し、 キヤビティ内に樹脂を供給するには加圧状態で 樹脂を供給する必要があるようにするのが好ましい。 これは、 例えば、 上述のプ リブラ式射出成形機を用いる場合では、 射出用プランジャー 3 7にある程度の圧 力を作用させておくことにより実施できる。
このようにすると、 フッ素樹脂の溶融 ·混練中に同伴される気体 (例えば空 気) が圧縮されて気体の占める体積が小さくなつたり、 スクリユー後方に排出さ れるので、 気体の存在による樹脂計量の誤差が抑制されるという利点がある。 従 つて、 本発明の 1つの好ましい態様では、 背圧が作用するキヤビティ内にその背 圧を上回る圧力でキヤビティ内に溶融したフッ素樹脂を供給して一旦キヤビティ 内に保持し、 そのキヤビティから溶融したフッ素樹脂を金型内に供給する。
射出成形機としてプリブラ式以外に、 プランジャー式およびインラインスクリ ュ一式も本発明のフッ素樹脂の射出形成には適している。 プランジャー式の場合、 ビストン口ッドの移動によりホッパ一直下に計量のための空間を作り、 その空間 にフッ素樹脂を落とした後、 ピス トンロッドを前方に移動させ、 フッ素樹脂を前 方に送る。
この方法では、 ピス トンロッ ドは樹脂の射出のために前方に移動するが、 その 時に樹脂供給をするので、 供給のための圧力は射出圧力そのもので、 一般的に 2
0 0 ~ 6 0 0 K g Z c m2と大きく、 材料を送る力はインラインスクリュ一式に 比べて大きい。 また、 フッ素樹脂の供給のための空間が大きく、 ブリッジも発生 し難い。
インラインスクリユー式では、 フッ素樹脂の供給はスクリュー回転により連続 的に供給ができ, 均一可塑化が容易である。 しかし、 材料の送り力には摩擦が影 響し、 摩擦係数の小さなフッ素樹脂ではロスが大きく不利で且つ材料を落とし込 む空間が小さいため、 ブリッジが発生し易いので注意を要する。
本発明の別の態様では、 本発明の方法を射出プレスを用いて成形を実施する。 即ち、 本発明の方法を射出圧縮成形法で実施する。 この態様では、 例えば金型の 断面を模式的に示す図 4のように、 所定温度に保持された開いた固定金型 4 0内 に溶融したフッ素樹脂 4 1 を供給し (図 4 ( a ) 参照) 、 その後、 対の可動金型 4 2により開いた金型を mじて 縮することにより樹脂を賦形し (図 4 ( b ) 参 照) 、 その後、 対の型 4 2を保^した状態で冷却する (図 4 ( c ) 参照) 。 その 後、 金型を開いて成形品 4 3を取り出す。
このような射出プレスの態様では、 閉じた金型に樹脂を供給する通常の射出成 形と異なり、 溶融樹脂の金型への供給に際してより小さい射出圧ですみ、 金型内 において樹脂全体に均一に圧力が作用するので強度の局部的なムラの無い成形品 4 3が得られる。 また、 固化する際に圧縮力が作用しているので、 収縮による変 形を最小限に押さえることができる。
本発明の更に別の態様では、 図 5に模式的に示すようないわゆるインライン射 出成形機を用いて、 本発明の方法を実施する。 図 5に示す成形機 5 0では、 ホッ パ一5 1からフッ素樹脂をスクリュー 5 3によって輸送し、 スクリュ一の先端部 に輸送された樹脂を、 スク リューによってノズル 5 5を介して金型のキヤビティ 内に供給する構造になっている。 スクリューの先端部においては、 背圧が輸送さ れた樹脂に作用した状態で、 スクリューにより樹脂が輸送されてくる。
この場合において、 金型は、 射出されている樹脂の圧力がある閾値より大きく なると、 射出前に予め形成されていたキヤビティの体積が広がる構造のものであ つてもよく、 この場合、 キヤビティ空間が広がり樹脂が充填し易く、 且つ適切な 背圧があるため、 空気が逃げやすいという利点がある。 具体的には、 樹脂を供給 する前の状態では、 金型は、 図 4 ( c ) に示すような閉じたキヤビティを規定し、 その状態で樹脂を供給し、 樹脂の射出圧力に応じて移動金型 4 2が上向きに移動 して開いて図 4 ( b ) に示すような状態となり、 その後、 開いた移動金型 4 2を 下向きに移動させて圧縮して成形品を得る構造である。
本発明の方法において、 溶融したフッ素樹脂を金型内に所定量で供給する場合、 いずれの速度で樹脂を供給してもよいが、 可能な限度においてゆつくり樹脂を供 給するのが好ましい。
好ましい態様では、 溶融樹脂を金型内に供給するノズル 3 8の出口における榭 脂の供給速度を、 1 0 7 s e c '以下、 好ましくは 1 0 4 s e c 1以下の剪断速 度とする。 尚、 剪断速度は、 ノズル断面が円形の場合、 次の式により表される :
V = 4 QZ R 3 (式中、 γは剪断速度 (sec— 1 ) 、 Qは樹脂の射出量 (cc/ sec) 、 Rはノズル先端の内径 #径、 cm) を表す (瀬戸正二他著 「射出成形」 、 株式会社プラスチック ·エージ発行、 1 9 7 0年 7月 1 日増訂第 6版の 3 8頁参 照) ) 。 従って、 所望の剪断速度は、 ノズル先端の内径および射出量を適当に選 ぶことによって得ることができる。
剪断速度が 1 0 4 s e c 1以上となると、 溶融した樹脂が金型内に供給される 時に、 粒子状形態になり易い。 そのような樹脂は、 溶融温度以上に保持されてい る金型内においては、 容易に合一するが、 場合によっては、 金型表面から離れた 場所では、 粒状形態のままで冷却されて固化することもあり得、 その場合には、 粒子の周囲に空隙が存在することになる。 そのような場合、 樹脂供給後の圧縮に より、 空隙を最小限に減らすことができる。
しかしながら、 最も好ましいのは、 金型内に樹脂を供給するに際して、 そのよ うな粒子が形成されないことである。 この粒子形成を避けるためには、 樹脂の供 給速度をある程度小さくするのが好ましく、 その臨界的な剪断速度が 1 0 4 s e c 1である。 勿論、 使用する樹脂、 溶融樹脂の温度により影響されるが、 上述 の速度が目安の臨界値である。 より好ましい態様において、 溶融樹脂を供給する 場合の剪断速度は、 1〜 1 0 3 s e c - 1である。 また、 樹脂をノズルから供給す る場合に、 剪断速度が過度に大きいと、 樹脂に剪断応力が作用し、 その結果、 応 力による熱および機械的な作用により分子量が小さくなる恐れもある。 このよう な観点からも、 溶融樹脂をゆつくりと金型のキヤビティ内に供給するのが好まし く、 供給時の剪断速度は、 例えば 1 0〜 1 0 2 s e c 1であってよい。
本発明の方法では、 シリンダ一に充填されたフッ素樹脂は好ましくはフッ素樹 脂の溶融温度以上かつ分解開始温度より低い温度で溶融されるのが好ましい。 そ の結果、 溶融状態でノズルから射出される場合であっても、 ノズルにおける剪断 に起因する温度上昇によるフッ素樹脂の分子量の著しい低下は生じない。 例えば、 このような条件で超高分子量 P F A (溶融粘度 1 0 5〜1 0 7ポアズ) または超 高分子量 E T F E (溶融粘度 1 0 6〜1 0 7ポアズ) を射出成形すると、 成形品 の分子量の低下は少なく、 通常の P F A (溶融粘度 1 0 4〜1 0 5ポアズ) また は E T F E (溶融粘度 1 0 3〜 1 0 4ポアズ) の成形品より耐熱性、 摩擦摩耗性 および繰返し屈曲疲労特性において、 一層優れた成形品が得られる。
尚、 本発明においてフッ素樹脂の溶融温度は、 示差走査熱量計 (パーキンエル マー (PERKIN ELMER) 社製 D S C— 7 ; second up) により測定される値
(°C) である。 また、 フッ素樹脂の分解開始温度は、 示差熱天秤計 ( (株) 島津 製作所製、 T G A— 5 0 :昇温速度 1 0 °CZ分、 空気中) により測定される値
(°C) である。 尚、 ゲル化解砕フッ素樹脂を用いて成形する場合、 金型温度の目 安となる溶融温度および分解開始温度は、 ゲル化する前のフッ素樹脂について測 定される溶融温度および分解開始温度である。
本発明において、 金型内に供給した溶融樹脂を冷却し、 それにより固化させる、 即ち、 冷却,固化する。 この冷却の程度は、 樹脂が固化するのであれば、 特に限 定されるものではなく、 目的とする成形品に応じて当業者であれば適当に選択で きる。 例えばフッ素樹脂の溶融温度より 1 0 0 °C低い温度まで、 好ましくは室温 まで冷却して金型を開いて成形品を取り出す。
産業上の利用の可能性
本発明の方法では、 金型温度がフッ素樹脂の溶融温度より高い温度であるので、 金型内に射出された樹脂は、 射出後であっても、 溶融状態を保持しているため、 樹脂が十分に溶着した状態で、 複雑な形状であっても所望の形状を有する成形品 が得られる。 そのため、 本発明の方法によれば、 超高分子量のフッ素樹脂も含め て、 フッ素樹脂を容易に効率的に成形することができる。 得られた成形品は、 切 削加工面が少ないため切削または高次のケバ立ちなどの問題がなく、 高温薬液中 での繰返し屈曲疲労特性、 摩擦摩耗特性などが優れている。
本発明の方法は、 射出成形機を用いて単一の射出成形工程で実質的に所望の成 形品を得ることができるので、 フッ素樹脂の加工コストを大幅に低下させること ができる。 また、 フッ素榭脂は、 耐熱性、 耐薬品性、 非粘着性、 摩擦摩耗特性、 耐候性などに優れるため、 本発明の方法により得られる成形品は、 特にパッキン、 フランジ、 ガスケット、 軸受、 スリーブおよび薬液用バルブ、 ポンプなどの摺動 部品、 シール部品などにおいて有用なものである。
更に、 フッ素樹脂としてゲル化解砕したものを使用すると、 成形機においてブ リッジの発生が抑制され、 また、 スク リユーの操作に関して融通性が広がるため、 より効率的な射出成形が可能となる。 実施例
実施例 1
図 1に示した金型を装着した、 図 3に示す射出成形機を用いて頼粒状タイプの P T F E (商品名 :ニューポリフロン T F E M— 1 1 1の水中造粒により得ら れた造粒品、 溶融粘度: 6 X 1 0 9ポアズ、 平均粒子径 5 0 0 μ m、 見掛密度: 0 . 9 0 g Z c m3、 真密度: 2 · 1 7 g , c m3、 溶融温度: 3 2 4 °C、 分解 開始温度: 4 9 3 °C、 ダイキン工業 (株) 製) を射出成形した。
まず、 スクリュー 3 3およびシリンダー 3 2によりフッ素樹脂を混練溶融し、 ノズル 1 5 ( 3 8 ) (内径 5 . O mm) を有するシリンダーキヤビティ 3 5内に一 旦充填した。 射出用シリンダ一 3 4の温度を 4 4 0 °Cに加熱して溶融状態で保持 した。 この樹脂を、 ノズル 1 5から剪断速度 8 X 1 O sce— 1で、 内径 4 0画 X厚 み 2 0 mmの金型のキヤビティ一 1 3 (キヤビティ一内の圧縮用プレート 1 4の先 端が位置 Aにある状態) 内に 2 5秒で射出し、 溶融フッ素樹脂でキヤビティ一 1
3内を充填した。
この射出時のキヤビティー温度 (金型表面 2 3の温度) は、 金型全体をカート リッジヒータで常時 2 5 0 UCに保った状態で、 金型を開き、 その表面 (深さ 0 . 2 mm) を高周波誘導加熱装置 2 4にて瞬間的に加熱して、 3 5 0 °Cにしてあった。 その後、 金型を閉じ、 上述のようにフッ素樹脂を射出し、 1 7 5 kgf Zcm2の圧 縮圧をかけてキヤビティー内の圧縮用プレート 1 4の先端を位置 Bまで移動 (キ ャビティ一寸法:内径 4 O mmX厚み 1 3 睡、 圧縮割合 3 5 %) した。
フッ素樹脂から金型表面を介して金型内部に熱が伝導することにより、 金型の 表面の温度が短時間 (約 2分) で低下し、 それにより樹脂を冷却固化させた。 金 型表面温度が 2 5 0 °Cになった時点で金型を開いて成形品を取り出した。 得られ た成型品の外観は白化ゃ融着不足がなく良好であり、 その比重は 2 . 2であった。 フッ素樹脂の特性及び射出成形条件等を以下の表 2に示す。
なお、 表 2において、 成型品の外観は白化がなく融着が良好なものを〇で表現 した。 尚、 キヤビティー内の圧縮割合 (%) は式: { (射出時のキヤビティ一容 積一圧縮後のキヤビティ一容積) / (射出時のキヤビティ一容積) } X 1 0 0 により算出される。. 実施例 2
実施例 1の P T F Eに代えて、 実施例 2では超高分子量 P F A (溶融粘度 5
X 1 0 5ポアズ) を使用した以外は、 表 2に示す条件にて実施例 1を繰り返した。 これらの結果も、 併せて表 2に示す。
T /03142
19
【表 2】
Figure imgf000021_0001
実施例 3
以下の手順で、 ゲル化解砕フッ素樹脂を製造した:
顆粒状 PTFE (商品名 :ニューポリフロン TFE M— 1 37、 溶融粘度: 5 X 109ポアズ、 平均粒子径 400 /im、 見掛密度: 0. 80 g c m3、 真 密度: 2. 1 7 gZc m3、 溶融温度: 323°C、 分解開始温度: 493°C、 ダ ィキン工業 (株) 製) をステンレススチール製バットに 5 c mの厚さで敷き詰め、 オーブンに入れて空気中で加熱した。 加熱は、 オーブン温度を 2時間で室温から 365°Cまで昇温し、 その温度で 2. 5時間保持し、 その後、 室温まで 4時間で 冷却した。
得られたフッ素樹脂の外観は、 個々の粒子が元の形態を保持しながらも一体に 融着したブロックの形態であった。 このブロックを粉石權 (回転刃式) で解砕し、 平均粒子寸法が 1 mmの粒状のゲル化解砕フッ素樹脂を得た。 このゲル化解砕フ ッ素樹脂の見掛密度は、 1. 05 gZc m。であった。
得られたゲル化解砕フッ素樹脂を図 5に示す射出成形機および図 4に示すタイ プの金型 (但し、 射出時に金型が開くタイプ) を用いて図 6に模式的に示す成形 品を作製した。 成形条件および成形品の評価 (表 2の場合と同様) を以下の表 3 に示す。 尚、 樹脂の金型への充填時には、 約 50 k g f /c m2の背圧を金型に 作用させてあり、 充填初期においては金型に変化は生じないが、 充填終期におい て樹脂圧が高くなるため、 背圧に打ち勝って金型が 1 Omm開いた。 その後、 約
200 k g f Zc m2の圧縮圧を加え、 金型温度が 250°C以下となって離型可 能となるまで圧力を加えたままであった。 実施例 4
以下の手順で、 ゲル化解砕フッ素樹脂を製造した:
粉末状 PTFEとして商品名 :ニューポリフロン TFE M- 1 1 1 (溶融粘 度: 6 X 1 09ポアズ、 平均粒子径 33 /zm、 見掛密度: 0. 35 g Z c m3、 真密度: 2. 1 7 g/c m3, 溶融温度: 324°C、 分解開始温度: 493°C、 ダイキン工業 (株) 製) ) を使用してステンレススチール製バットに 5 cmの厚 さで敷き詰め、 オーブンに入れて空気中で加熱した。 加熱は、 オーブン温度を 2 時間で室温から 365°Cまで昇温し、 その温度で 2. 5時間保持し、 その後、 室 温まで 4時間で冷却した。
得られたフッ素樹脂の外観は、 個々の粒子が元の形態を保持しながらも一体に 融着したプロックの形態であった。 このプロックを実施例 3と同様に解砕し、 平 均粒子寸法が 1 mmの粒状のゲル化解砕フッ素樹脂を得た。 このゲル化解砕フッ 素樹脂の見掛密度は、 0. 75 g Z c m3であった。
実施例 3と同様に、 得られたゲルィヒ解砕フッ素樹脂を用いて図 6に模式的に示 す成形品を作製した。 成形条件および成形品の評価 (表 2の場合と同様) を以下 の表 3に示す。 実施例 5 以下の手順で、 ゲル化解砕フッ素樹脂を製造した:
粉末状 P T F E (商品名 :ポリフロン TF E M— 1 2、 溶融粘度 : 3 X 1 01 Gポアズ、 平均粒子径 2 5 M m, 見掛密度: 0. 2 9 g/c m3、 真密度: 2. 1 6 g/c
Figure imgf000023_0001
溶融温度: 3 2 8°C、 分解開始温度: 4 9 3°C、 ダイキン工業 (株) 製) をステンレススチール製バッ トに 5 c mの厚さで敷き詰め、 オーブン に入れて空気中で加熱した。 加熱は、 オーブン温度を 2時間で室温から 3 8 5DC まで昇温し、 その温度で 3時間保持し、 その後、 室温まで 5時間で冷却した。 得られたフッ素樹脂の外観は、 個々の粒子が元の形態を保持しながらも一体に 融着したプロックの形態であった。 このブロックを実施例 3と同様に解砕し、 平 均粒子寸法が 5 00 μ mの粒状のゲル化解碎フッ素樹脂を得た。 このゲル化解砕 フッ素樹脂の見掛密度は、 0. 5 3 g/c m3であった。
実施例 3と同様に、 得られたゲルィヒ解碎フッ素樹脂を用いて図 6に模式的に示 す成形品を作製した。 成形条件および成形品の評価 (表 2の場合と同様) は以下 の表 3に示すようであった。
【表 3】
Figure imgf000024_0001
実施例 1および 2では、 成形操作においてブリッジ形成が生じたが、 機械的に ブリッジを壊す (例えば棒で樹脂を押込む) ことにより、 それに伴う実質的な問 題は生じなかった。 また、 実施例 3〜5では、 成形操作において問題は全く生じ なかった。

Claims

請 求 の 範 囲
1 . 溶融状態のフッ素樹脂を金型へ供給して冷却 '固化することによりフッ素 樹脂の成形品を得るフッ素樹脂成形方法であって、 溶融状態のフッ素樹脂がその 溶融温度以上の温度に保持された金型内に供給されることを特徴とする成形方法。
2 . 金型は、 フッ素樹脂の溶融温度より 0 °C〜8 0 °C高い温度に保持されてい る請求項 1記載の方法。
3 . フッ素樹脂は、 1 0 5ポアズ〜 1 0 1 3ポアズの溶融粘度を有する請求項 1 または 2記載の方法。
4 . フッ素樹脂は、 ポリテトラフルォロエチレン、 テトラフルォロエチレン/ パ一フルォロアルキルビニルエーテルコポリマ一、 テトラフルォロエチレン /へ キサフルォロプロピレンコポリマー、 ポリクロロ トリフ /レオ口エチレン、 ポリフ ッ化ビユリデン、 エチレンノテトラフルォロエチレンコポリマー、 エチレン ク ロロ トリフルォロエチレンコポリマーから選択される請求項 1〜3のいずれかに 記載の方法。
5 . 高周波誘導加熱により金型を加熱する請求項 1〜4のいずれかに記載の方 法。
6 . 成形は射出圧縮法により実施する請求項 1〜 5のいずれかに記載の方法。
7 . 成形はプリブラ式射出成形機を用いて実施する請求項 1〜6のいずれかに 記載の方法。
8 . 背圧が作用するキヤビティ内にその背圧を上回る圧力でキヤビティ内に溶 融したフッ素樹脂を供給し、 そのキヤビティから溶融したフッ素樹脂を金型内に 供給する請求項 7に記載の方法。
9 . 成形はプランジャー式射出成形機を用いて実施する請求項 1〜 6のいずれ かに記載の方法。
1 0 . 成形はインラインスクリュー式射出成形機を用いて実施する請求項 1〜 6のいずれかに記載の方法。
1 1 . 溶融したフッ素樹脂は、 1 0 4 s e c 1以下の剪断速度で金型内に供給 する請求項 1〜 1 0のいずれかに記載の方法。
1 2. フッ素樹脂は、 ゲル化解砕フッ素樹脂である請求項 1〜1 1のいずれか に記載の方法。
1 3. 溶融状態のフッ素樹脂を金型へ供給して冷却 ·固化することによりフッ 素樹脂の成形品を得るフッ素樹脂成形方法であって、 フッ素樹脂は、 ゲル化解砕 フッ素樹脂であることを特徴とする成形方法。
1 4. 金型は、 (フッ素樹脂の溶融温度一 50°C) 〜 (フッ素樹脂の分解開始 に保持されている請求項 1 3記載の方法。
1 5. フッ素樹脂は、 1 05ポアズ〜 1 013ポアズの溶融粘度を有する請求項 1 3または 1 4記載の方法。
1 6. フッ素樹脂は、 ポリテトラフルォロエチレン、 テトラフルォロエチレン
/パ一フルォロアルキルビュルエーテルコポリマー、 テトラフルォロエチレン へキサフルォロプロピレンコポリマー、 ポリクロ口トリフルォロエチレン、 ポリ フッ化ビニリデン、 エチレンノテトラフルォロエチレンコポリマー、 エチレン Z クロ口トリフルォロエチレンコポリマ一から選択される請求項 1 3〜1 5のいず れかに記載の方法。
1 7. 成形は射出圧縮法により実施する請求項 1 3〜1 6のいずれかに記載の 方法。
1 8. 溶融したフッ素樹脂は、 1 07 s e c 1以下の剪断速度で金型内に供給 する請求項 1 3〜 1 7のいずれかに記載の方法。
1 9. 溶融したフッ素樹脂は、 1 04 s e c 1以下の剪断速度で金型内に供給 する請求項 1 3〜 1 8のいずれかに記載の方法。
20. 請求項 1〜1 9のいずれかに記載の方法により形成されるフッ素樹脂成 形品。
PCT/JP1999/003142 1998-06-15 1999-06-14 Procede de moulage de fluororesine et article moule WO1999065659A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99924015A EP1120219A4 (en) 1998-06-15 1999-06-14 PROCESS FOR FORMING FLUORIDE RESIN AND SHAPED OBJECT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP16673998 1998-06-15
JP10/166739 1998-06-15
JP11/124128 1999-04-30
JP12412899 1999-04-30

Publications (1)

Publication Number Publication Date
WO1999065659A1 true WO1999065659A1 (fr) 1999-12-23

Family

ID=26460868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003142 WO1999065659A1 (fr) 1998-06-15 1999-06-14 Procede de moulage de fluororesine et article moule

Country Status (2)

Country Link
EP (1) EP1120219A4 (ja)
WO (1) WO1999065659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142418B1 (ja) * 2012-03-21 2013-02-13 株式会社名機製作所 射出成形方法および射出成形装置
CN110712348A (zh) * 2018-07-12 2020-01-21 大金工业株式会社 成型品的制造方法和成型品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021135B2 (en) 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
US9096009B2 (en) 2007-10-26 2015-08-04 Sabic Global Technologies B.V. Method for forming a polymer part
KR101827463B1 (ko) 2014-06-27 2018-02-08 사빅 글로벌 테크놀러지스 비.브이. 다재료 코어를 갖는 유도 가열 금형 장치 및 이의 사용 방법
CN112757564B (zh) * 2020-12-30 2021-10-12 江苏亿豪塑业股份有限公司 一种防止聚四氟乙烯管变形的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS335837B1 (ja) * 1955-03-24 1958-07-31
JPS57169335A (en) * 1981-04-14 1982-10-19 Mitsui Petrochem Ind Ltd Injection-compression molding method
JPS59120433A (ja) * 1982-12-27 1984-07-12 Du Pont Mitsui Fluorochem Co Ltd ライニング方法
JPH06234141A (ja) * 1993-02-12 1994-08-23 Daikin Ind Ltd フッ素樹脂の成形方法、フッ素樹脂溶融微粉末の製法およびフッ素樹脂微粉末
JPH06270221A (ja) * 1993-03-23 1994-09-27 Komatsu Ltd 熱可塑性樹脂ポーラス体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617151A (en) * 1949-12-31 1952-11-11 Kellogg M W Co Injection molding of polytrifluorochloroethylene
GB758332A (en) * 1954-01-22 1956-10-03 Du Pont Process for the injection molding of polytetrafluoroethylene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS335837B1 (ja) * 1955-03-24 1958-07-31
JPS57169335A (en) * 1981-04-14 1982-10-19 Mitsui Petrochem Ind Ltd Injection-compression molding method
JPS59120433A (ja) * 1982-12-27 1984-07-12 Du Pont Mitsui Fluorochem Co Ltd ライニング方法
JPH06234141A (ja) * 1993-02-12 1994-08-23 Daikin Ind Ltd フッ素樹脂の成形方法、フッ素樹脂溶融微粉末の製法およびフッ素樹脂微粉末
JPH06270221A (ja) * 1993-03-23 1994-09-27 Komatsu Ltd 熱可塑性樹脂ポーラス体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1120219A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142418B1 (ja) * 2012-03-21 2013-02-13 株式会社名機製作所 射出成形方法および射出成形装置
CN110712348A (zh) * 2018-07-12 2020-01-21 大金工业株式会社 成型品的制造方法和成型品
CN110712348B (zh) * 2018-07-12 2022-01-11 大金工业株式会社 成型品的制造方法和成型品

Also Published As

Publication number Publication date
EP1120219A1 (en) 2001-08-01
EP1120219A4 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
Masood et al. Development of new metal/polymer materials for rapid tooling using fused deposition modelling
JP5299348B2 (ja) Ptfe粉末及びptfe成形用粉末製造方法
CN101641173B (zh) 用于金属注射模制的螺杆设计和方法
CN103842143B (zh) 氟树脂成型品
CN100575371C (zh) 熔融成型用聚偏氟乙烯树脂粉末和使用该树脂粉末的成型体的制造方法
US20040115292A1 (en) Nozzle insert for long fiber compounding
WO1999065659A1 (fr) Procede de moulage de fluororesine et article moule
EP0260215B1 (en) Use of a solid flowable polymer medium with metal additives in a molding process
Wilczynski et al. Experimental study of melting in an intermeshing counter-rotating twin screw extruder
Zhang et al. The use of modulated pressure in ceramic injection moulding
JP7539280B2 (ja) 圧縮成形用組成物、その製造方法、および成形品
JP3282209B2 (ja) 多孔質ポリテトラフルオロエチレン成形体の製法
JP4714310B2 (ja) 非溶融加工性フッ素樹脂
JP2015108126A (ja) フッ素樹脂のリサイクル方法
Chansoda et al. Comparative study on the wood-based PLA fabricated by compression molding and additive manufacturing
JP2014233865A (ja) 無機物高充填樹脂のペレット製造装置および無機物高充填樹脂のペレット製造方法
JPH06234141A (ja) フッ素樹脂の成形方法、フッ素樹脂溶融微粉末の製法およびフッ素樹脂微粉末
CN107530641A (zh) 用于复合多孔固体物品的生产系统
WO2018163998A1 (ja) 発泡成形体の製造方法及び製造装置
JP4148583B2 (ja) 難成形樹脂成形体の製造方法
JP2006103099A (ja) 成形品の製造方法及び成形品
CN109058608A (zh) 一种复合超高分子量聚乙烯管材
WO2019009362A1 (ja) 成形体の製造方法及び製造装置
EP4387822A1 (en) Process for the production of shaped objects of ultra-high molecular weight polyethylenes
JP2006088533A (ja) 射出スクリュ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999924015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09719583

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999924015

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999924015

Country of ref document: EP