WO1999062442A1 - Vorrichtung für eine medizinische behandlung mit einer lichtquelle - Google Patents

Vorrichtung für eine medizinische behandlung mit einer lichtquelle Download PDF

Info

Publication number
WO1999062442A1
WO1999062442A1 PCT/EP1999/003408 EP9903408W WO9962442A1 WO 1999062442 A1 WO1999062442 A1 WO 1999062442A1 EP 9903408 W EP9903408 W EP 9903408W WO 9962442 A1 WO9962442 A1 WO 9962442A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eye
treatment
optical axis
light source
Prior art date
Application number
PCT/EP1999/003408
Other languages
English (en)
French (fr)
Inventor
Fredy Strohm
Mathias Glasmacher
Joachim Löffler
Original Assignee
Wavelight Laser Technologie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavelight Laser Technologie Gmbh filed Critical Wavelight Laser Technologie Gmbh
Publication of WO1999062442A1 publication Critical patent/WO1999062442A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/02Fastening of light sources or lamp holders with provision for adjustment, e.g. for focusing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2015Miscellaneous features
    • A61B2018/2025Miscellaneous features with a pilot laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/20Lighting for medical use
    • F21W2131/205Lighting for medical use for operating theatres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a device for medical treatment and / or surgery with a treatment agent and a light source for illuminating a treatment area or an operating field.
  • PRK Photo Refractive Keratectomy, English: Photorefractive Keratectomy
  • a method for correcting the ametropia of the human eye in which in particular the cornea is reshaped.
  • Er YAG solid-state lasers
  • the laser radiation source for the PRK In addition to other lasers (excimers), in particular Er: YAG solid-state lasers are known as the laser radiation source for the PRK.
  • PRK removes corneal material.
  • the removal is a function of the energy density (energy per unit area) of the laser beam impinging on the cornea.
  • beam shaping and beam leadership known, for example the so-called slit scanning, in which the radiation is guided by means of a moving slit over the area to be processed, the so-called spot scanning, in which a radiation spot with very low Dimensions over the area to be removed, and also the so-called full ablation, in which the radiation is radiated over a large area over the entire area to be removed and the energy density changes over the beam profile in order to achieve the desired removal of the cornea.
  • spot scanning uses a laser beam focused on a relatively small diameter (0.1-2 mm), which is directed at different locations of the cornea by means of a beam guiding device and by a so-called scanner (scanner ) is moved successively so that the desired removal from the cornea is ultimately achieved.
  • scanner so-called galvanometric scanners (scanners) can be used in particular with the PRK (see article G.F. Marshall in LASER FOCUS WORLD, June 1994, p. 57).
  • PRK Physical fixation of the eye
  • optical fixation in which a so-called fixation beam is generally used coaxially with the material-processing laser beam.
  • the patient is instructed to look closely at the point defined by the fixation beam so that the eye is always in the same position throughout the operation.
  • this does not succeed, at least not with sufficient reliability, so that movements of the Eye, which can massively affect the entire ablation process.
  • eye trackers ie devices that determine movements of the eye in order to then control the laser beam used for the ablation in accordance with the eye movements.
  • Such "eye trackers” take pictures of the eye in rapid succession and these are processed to determine the movements of the eye. From successive images (for
  • Example two successive images a change in the position of the eye (pupil position) can be determined.
  • the ablation laser beam can then be tracked using suitable beam guidance devices (e.g. the above-mentioned galvanometric scanner).
  • the actual treatment laser beam that causes the ablation and secondly the so-called fixation beam explained above, which is stationary and is intended to induce the patient to always look at the same point with the eye and thirdly the so-called illuminating radiation, that is to say the radiation which illuminates the eye in such a way that the treating doctor can see the eye.
  • the present invention relates to the latter radiation.
  • halogen lights are used to illuminate the eye, which are brought into the observation beam path by means of a fiber bundle.
  • State of the art is also the use of a ring light or the coaxial coupling of the illuminating radiation via an operating microscope.
  • Flexible goosenecks are also known for positioning the illuminating light to illuminate the front of the eye, in particular the cornea, so that the doctor can optionally adjust the light for optimal observation of the eye as a whole.
  • Halogen incandescent lamps and xenon lamps used can be improved both with regard to the burden on the patient and with regard to the quality of lighting for the attending doctor.
  • the invention has for its object to provide a device for medical treatment of the type mentioned, in which the treatment or surgical field is optimally visible to the doctor, the glare should be as low as possible and the physiological and psychological effect should be improved.
  • At least two light-emitting diodes are preferably arranged as the light source such that the beams emitted by them run at an angle between 5 ° and 40 ° to the optical axis.
  • the inclination of the illuminating radiation is preferably such that the light beam still hits the pupil but not the retina.
  • the structures and contours of the cornea come into their own through the light used. The doctor can better see the success of the operation directly. Furthermore, the undesired thermal effect of the illuminating light source is reduced, since practically no infrared radiation is emitted by the diode.
  • a preferred embodiment of the invention provides that the light emitting diodes emit white light.
  • the emission follows in the so-called white point (white area) of the spectrum.
  • a large emitting area is preferably provided for the light-emitting diodes in order to achieve the least possible glare for the patient.
  • a relatively uniform illumination of the treatment or operation area for the doctor also takes place.
  • the white light described above produces a high color contrast despite the low light output.
  • the heat radiation is suppressed and the radiation also contains no disturbing UV components.
  • An optical element can optionally be arranged in front of the light-emitting diode or the plurality of light-emitting diodes, for. B. a diffuser or a lens, in particular a light-concentrating element.
  • Another embodiment of the invention provides a rotationally symmetrical arrangement of the light-emitting diodes. It can also be provided that individual LEDs with different colors.
  • a further advantageous possibility consists in making the angle at which the radiation hits the treatment field adjustable, ie the user can optionally set the radiation angle of the light-emitting diodes before or during the
  • a further embodiment provides for the above-mentioned optical element in front of the light-emitting diodes to be adjustable so that the user can choose between setting diffuse and directed lighting.
  • a preferred embodiment of the invention provides that the rays of the light-emitting diodes strike the eye outside the pupil. This means that the distances between the LEDs and their angles to the optical axis of the system are aligned so that the Luminous radiation lies essentially outside the eye area to be treated (pupil).
  • Two or more so-called light-emitting diode arrays are preferably arranged in pairs diametrically opposite one another on both sides of the optical axis of the system, eg. B. at a distance of about 5 to 20 cm from the treating laser beam (or the optical axis of the system).
  • a diode array is an arrangement of a large number of diodes in such a way that a beam is practically emitted as a result.
  • Figure 1 schematically shows a device for eye treatment, in particular the PRK, and
  • Figure 2 shows the device of Figure 1 from below.
  • a movable or fixed arm 12 is arranged above the eye 10, on which the optical components and elements of interest here are mounted. Arm 12 is sometimes referred to as a "treatment bridge" because the patient's head is positioned underneath.
  • a surgical microscope 14 is attached to the arm 12 with eyepieces 16, 18 through which the attending physician observes the eye 10. Two rows of light-emitting diodes (arrays) 20 and 22 are attached to the underside of the arm 12.
  • the light-emitting diode array 20 consists of a plurality of light-emitting diodes which emit the beam 24 in total.
  • the LED array 22 emits the beam 26 in the direction of the eye 10.
  • the actual treatment laser beam (e.g. an excimer laser beam or an Er: YAG solid-state laser beam) is indicated schematically by reference numeral 28.
  • the treatment laser beam runs essentially along the optical axis 30 of the system.
  • the optical axis 30 can e.g. B. be defined by the microscope 14.
  • the treatment laser beam 28 is then either scanned over the cornea in the manner described above or it also acts over the entire surface. It effects the formation (ablation) of the cornea.
  • the beams 24 and 26 of the light-emitting diode arrays 20 and 22 each form an angle ( ⁇ with the optical axis 30.
  • the angle ( ⁇ is between 5 ° and 40 °, preferably between 15 ° and 25 °, at preferred embodiment at 20 °, the two beams 24, 26 are set so that they do not strike the retina of the eye 10.
  • the reflection of the beams 24, 26 lies outside the pupil of the eye, ie not on the surface to be treated.
  • FIG. 2 shows a view of the device according to FIG. 1 from below, i. H. from the perspective of the eye 10.
  • the light-emitting diode 20 shown as an example can be rotated in the direction of the arrows 32, 34 optionally about the optical axis 30.
  • a plurality of light-emitting diodes (arrays) can be arranged stationary or rotatable on the circle 36.

Abstract

Vorrichtung für eine medizinische Behandlung und/oder Operation mit einem Behandlungsmittel (28) und einer Lichtquelle (20, 22) zum Beleuchten einer Behandlungsfläche oder eines Operationsfeldes sieht vor, daß als Lichtquelle zumindest eine Leuchtdiode (20, 22) so angeordnet ist, daß die von ihr emittierte Strahlung (24, 26) unter einem Winkel (α) zwischen 5° und 80° zu einer optischen Achse (30) der Vorrichtung verläuft.

Description

Vorrichtung für eine medizinische Behandlung mit einer Lichtquelle
Die Erfindung betrifft eine Vorrichtung für eine medizinische Behandlung und/oder Operation mit einem Behandlungsmittel und einer Lichtquelle zum Beleuchten einer Behandlungsflache oder eines Operationsfeldes.
Insbesondere kann eine solche Vorrichtung für die sogenannte PRK (Foto-Refraktive Keratektomie, englisch: Photorefractive Keratectomy) verwendet werden, d.h. ein Verfahren zur Korrek- tur der Fehlsichtigkeit des menschlichen Auges, bei dem insbesondere die Cornea neu geformt wird. Zum Stand der Technik der PRK wird auf folgende Dokumente des Standes der Technik verwiesen:
Gobbi, Pier Giorgie et al.: Automatic Eye Tracker for Excimer Laser Photorefractive Keratectomy; Supplement to Journal of Refractive Surgery, Vol. 11, Mai/Juni 1995; weiterhin: Lin, J.T., Ophtal ic Surgery Method Using Non-Contact Scanning Laser, U.S. Patent 5,520,679, 28. Mai 1996; und Manns, Fabrice, et al., Optical profilometry of poly (methylmethacrylate) sur- faces after reshaping with a scanning photorefractive keratectomy (SPRK) System, Zeitschrift APPLIED OPTICS, Vol. 35. NO. 19, 1. Juli 1996.
Als Laserstrahlungsquelle für die PRK sind, neben anderen Lasern (Excimer) , insbesondere Er : YAG-Festkörperlaser bekannt.
Bei der PRK wird Material der Hornhaut abgetragen. Der Abtrag ist eine Funktion der auf die Hornhaut auftreffenden Energie- dichte (Energie pro Flächeneinheit) des Laserstrahls. Es sind unterschiedliche Techniken für die Strahlformung und Strahl- führung bekannt, so zum Beispiel die sogenannte Schlitz-Abtastung (slit scanning) , bei der die Strahlung mittels eines bewegten Schlitzes über den zu bearbeitenden Bereich geführt wird, das sogenannte Fleck-Abtasten (spot-scanning) , bei dem ein Strahlungsfleck mit sehr geringen Abmessungen über das abzutragende Gebiet geführt wird, und auch die sogenannte Vollabtragung (full-ablation) , bei der die Strahlung großflächig über den gesamten abzutragenden Bereich eingestrahlt wird und wobei die Energiedichte sich über das Strahlprofil ändert, um den gewünschten Abtrag der Hornhaut zu erreichen. Der Stand der Technik kennt für die genannten Strahl-Führungen jeweils geeignete Algorithmen zum Steuern der Strahlung, um die Hornhautoberfläche so abzutragen, daß die Cornea schließlich den gewünschten Krümmungsradius erhält.
Das vorstehend bereits erwähnte "Fleck-Abtasten" (spot- scanning) verwendet einen auf einen relativ kleinen Durchmesser (0,l-2mm) fokussierten Laserstrahl, der mittels einer Strahlführungseinrichtung auf verschiedene Stellen der Horn- haut gerichtet und durch einen sogenannten Abtaster (Scanner) sukzessive so bewegt wird, daß letztlich der gewünschte Abtrag von der Cornea erreicht wird. Bei der PRK sind insbesondere sogenannte galvanometrische Abtaster (Scanner) verwendbar (vgl. Aufsatz G.F. Marshall in LASER FOCUS WORLD, Juni 1994, S. 57) .
Ein besonderes Problem bei der PRK ist die relative Positionierung von Laserstrahl und Auge. Aus medizinischen Gründen ist eine mechanische Fixierung des Auges nicht befriedigend. Der Stand der Technik kennt deshalb eine sogenannte optische Fixierung, bei der mit dem materialbearbeitenden Laserstrahl in der Regel koaxial ein sogenannter Fixierstrahl verwendet wird. Der Patient ist angehalten, genau auf den durch den Fixierstrahl definierten Punkt zu schauen, damit das Auge wäh- rend der gesamten Operation immer die gleiche Position einnimmt. Allerdings gelingt dies nicht, jedenfalls nicht mit hinreichender Zuverlässigkeit, so daß es zu Bewegungen des Auges kommt, die den gesamten Ablationsvorgang massiv beeinträchtigen können.
Der Stand der Technik (s.o.) kennt deshalb sogenannte "Eye- Tracker", also Einrichtungen, die Bewegungen des Auges ermitteln, um dann den für die Ablation verwendeten Laserstrahl entsprechend den Augenbewegungen zu steuern (nachzuführen) . Derartige "Eye-Tracker" nehmen in schneller Folge Bilder des Auges auf und diese werden verarbeitet, um die Bewegungen des Auges zu ermitteln. Aus aufeinanderfolgenden Bildern (zum
Beispiel zwei aufeinanderfolgenden Bildern) kann eine Veränderung der Position des Auges (Pupillenlage) ermittelt werden. Entsprechend der Augenbewegung läßt sich dann der Abla- tions-Laserstrahl mittels geeigneter Strahlführungseinrich- tungen (z.B. dem obengenannten galvanometrische Scanner) nachführen.
Bei der PRK werden somit zumindest drei unterschiedliche Strahlungen unterschieden: Zum einen der eigentliche Behand- lungslaserstrahl, der die Ablation bewirkt, zum anderen den oben erläuterten sog. Fixierstrahl, der ortsfest ist und den Patienten veranlassen soll, mit dem Auge immer den gleichen Punkt anzuschauen und drittens die sogenannte Beleuchtungsstrahlung, also diejenige Strahlung, die das Auge so aus- leuchtet, daß der behandelnde Arzt das Auge sehen kann. Die vorliegende Erfindung betrifft die letztgenannte Strahlung.
Im Stand der Technik werden zur Ausleuchtung des Auges Halogenleuchten verwendet, die mittels eines Faserbündels in den Beobachtungsstrahlengang gebracht werden. Stand der Technik ist auch die Verwendung einer Ringleuchte oder die koaxiale Einkopplung der Beleuchtungsstrahlung über ein Operationsmikroskop. Bekannt sind auch flexible Schwanenhälse für die Positionierung des Beleuchtungslichtes zum Ausleuchten des Au- genvordergrundes , insbesondere der Hornhaut so, daß der Arzt wahlweise sich das Licht für eine optimale Beobachtung des Auges als Ganzes einstellen kann. Die im Stand der Technik verwendeten Halogenglühlampen und Xenonlampen sind sowohl hinsichtlich der Belastung des Patienten als auch hinsichtlich der Beleuchtungsqualität für den behandelnden Arzt verbesserungsfähig .
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung für die medizinische Behandlung der eingangs genannten Art bereitzustellen, bei der das Behandlungs- oder Operationsfeld für den Arzt optimal sichtbar ist, wobei die Blendwirkung möglichst gering und die physiologische und psychologische Wirkung verbessert sein sollen.
Die erfindungsgemäße Lösung dieser Aufgabe ist im Schutzanspruch 1 gekennzeichnet. Bevorzugte Ausgestaltungen der Er- findung sind in den abhängigen Ansprüchen beschrieben.
Bevorzugt sind als Lichtquelle zumindest zwei Leuchtdioden so angeordnet sind, daß die von ihnen emittierten Strahlen unter einem Winkel zwischen 5° und 40° zur optischen Achse verlau- fen.
Damit wird erreicht, daß insbesondere bei einer Augenbehandlung die Belastung des Patientenauges durch die Beleuchtungsstrahlen wesentlich geringer ist als beim Stand der Technik, da eine Leuchtdiode eine relativ geringe Blendwirkung hat.
Dies bedeutet einen physiologischen und auch psychologischen Vorteil für den Patienten. Die Neigung der Beleuchtungsstrahlung ist bevorzugt so, daß das Lichtbündel zwar noch die Pupille, nicht aber auf die Netzhaut trifft. Durch das verwen- dete Licht kommen die Strukturen und Konturen der Cornea gut zur Geltung. Der Arzt kann den Operationserfolg besser direkt erkennen. Weiterhin ist die unerwünschte thermische Wirkung der Beleuchtungslichtquelle reduziert, da von der Diode praktisch keine Infrarotstrahlung abgegeben wird.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, daß die Leuchtdioden weißes Licht emittieren. Die Emission er- folgt also im sog. Weißpunkt (Weißbereich) des Spektrums. In einem sogenannten Chromatizitätsdiagra m (ICI) emittiert die Leuchtdiode bevorzugt bei den Farbkoordinaten x = 0,31 ± 0,06 und y = 0,32 ± 0,08. Bevorzugt wird für die Leuchtdioden eine große emittierende Fläche vorgesehen, um eine möglichst geringe Blendwirkung für den Patienten zu erreichen. Dabei erfolgt gleichzeitig auch eine relativ gleichmäßige Ausleuchtung des Behandlungs- oder Operationsfeldes für den Arzt. Das vorstehend beschriebene weiße Licht erzeugt einen hohen Farb- kontrast trotz geringer Lichtleistung. Dabei ist die Wärmestrahlung unterdrückt und die Strahlung enthält auch keine störenden UV-Anteile.
Vor der Leuchtdiode bzw. der Mehrzahl von Leuchtdioden kann wahlweise ein optisches Element angeordnet werden, z. B. ein Diffusor oder auch eine Linse, insbesondere ein das Licht bündelndes Element.
Eine andere Ausgestaltung der Erfindung sieht eine rotations- symmetrische Anordnung der Leuchtdioden vor. Es kann auch vorgesehen sein, einzelne Leuchtdioden mit unterschiedlichen
Winkeln (α auf das Behandlungsfeld einstrahlen zu lassen. Eine weitere vorteilhafte Möglichkeit besteht darin, den Winkel, unter dem die Strahlung auf das Behandlungsfeld auf- trifft, einstellbar zu machen, d. h. der Benutzer kann den Abstrahlwinkel der Leuchtdioden wahlweise einstellen, vor oder während der Behandlung. Eine weitere Ausgestaltung sieht vor, das obengenannte optische Element vor den Leuchtdioden so einstellbar zu gestalten, daß der Benutzer wahlweise zwi- sehen diffuser und gerichteter Beleuchtung auswählen (einstellen) kann.
Eine bevorzugte Ausgestaltung der Erfindung sieht im Falle einer Augenbehandlung vor, daß die Strahlen der Leuchtdioden außerhalb der Pupille auf das Auge treffen. Dies bedeutet, daß die Abstände der Leuchtdioden und ihre Winkel zur optischen Achse des Systems so ausgerichtet sind, daß die Be- leuchtungsstrahlung im wesentlichen außerhalb der zu behandelnden Augenfläche (Pupille) liegt.
Bevorzugt werden zwei oder mehr sog. Leuchtdiodenarrays je- weils paarweise diametral gegenüberliegend auf beiden Seiten der optischen Achse des Systems angeordnet, z. B. mit einem Abstand von ca. 5 bis 20 cm vom behandelnden Laserstrahl (bzw. der optischen Achse des Systems) . Ein Diodenarray ist eine Anordnung einer Vielzahl von Dioden derart, daß im Er- gebnis praktisch ein Strahl emittiert wird.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es zeigt:
Figur 1 schematisch eine Vorrichtung für die Augenbehandlung, insbesondere die PRK, und
Figur 2 die Vorrichtung gemäß Figur 1 von unten.
Das zu behandelnde Auge 10 wird in der eingangs erläuterten Weise ruhiggestellt. Über dem Auge 10 ist ein beweglicher oder fester Arm 12 angeordnet, an dem die hier interessierenden optischen Bauteile und Elemente montiert sind. Der Arm 12 wird bisweilen auch als "Behandlungsbrücke" bezeichnet, da der Kopf des Patienten darunter positioniert wird. Am Arm 12 ist ein Operationsmikroskop 14 befestigt mit Okularen 16, 18, durch die der behandelnde Arzt das Auge 10 beobachtet. An der Unterseite des Armes 12 sind zwei Leuchtdiodenreihen (Arrays) 20 und 22 befestigt.
Das Leuchtdiodenarray 20 besteht aus einer Mehrzahl von Leuchtdioden, die insgesamt den Strahl 24 emittieren. Entsprechend emittiert das Leuchtdiodenarray 22 den Strahl 26 in Richtung auf das Auge 10.
Der eigentliche Behandlungslaserstrahl (also z. B. ein Excimerlaserstrahl oder auch ein Er: YAG-Festkörperlaserstrahl) ist mit dem Bezugszeichen 28 schematisch angedeutet. Der Behandlungslaserstrahl verläuft im wesentlichen entlang der optischen Achse 30 des Systems. Die optische Achse 30 kann z. B. durch das Mikroskop 14 definiert sein. Der Behandlungsla- serstrahl 28 wird dann in der oben beschriebenen Weise entweder abtastend über die Cornea geführt oder er wirkt auch ganzflächig. Er bewirkt die Formung (Ablation) der Cornea.
Wie die Figur zeigt, bilden die Strahlen 24 bzw. 26 der Leuchtdiodenarrays 20 bzw. 22 jeweils einen Winkel (α mit der optischen Achse 30. Der Winkel (α liegt zwischen 5° und 40°, bevorzugt zwischen 15° und 25°, beim bevorzugten Ausführungsbeispiel bei 20°. Die beiden Strahlen 24, 26 sind so eingestellt, daß sie nicht auf die Netzhaut des Auges 10 treffen. Der Reflex der Strahlen 24, 26 liegt außerhalb der Pupille des Auges, also nicht auf der zu behandelnden Fläche.
Figur 2 zeigt eine Ansicht der Vorrichtung gemäß Figur 1 von unten, d. h. aus der Perspektive des Auges 10. Die exempla- risch dargestellte Leuchtdiode 20 (beim dargestellten Ausführungsbeispiel ein Leuchtdiodenarray) ist in Richtung der Pfeile 32, 34 wahlweise um die optische Achse 30 drehbar. Auf dem Kreis 36 können mehrere Leuchtdioden (-arrays) stationär oder drehbar angeordnet sein.

Claims

Patentansprüche
1. Vorrichtung für eine medizinische Behandlung und/oder Operation mit einem Behandlungsmittel (28) und einer Lichtquelle (20, 22) zum Beleuchten einer Behandlungsfläche oder eines Operationsfeldes, dadurch gekennzeichnet, daß als Lichtquelle zumindest eine Leuchtdiode (20, 22) so angeordnet ist, daß die von ihr emittierte Strahlung (24, 26) unter einem Winkel ( ) zwischen 5° und 80° zu einer optischen Achse (30) der Vorrichtung verläuft.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Winkel ( ) zwischen 5° und 40° liegt.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Behandlungsmittel ein Behandlungslaserstrahl (28) für die Augenbehandlung vorge- sehen ist, der im wesentlichen entlang der optischen Achse (30) auf das Auge (10) lenkbar ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest zwei Leuchtdioden (20, 22) so angeordnet sind, daß die von ihnen emittierten Strahlen (24, 26) jeweils unter einem Winkel (α) zwischen 5° und 40° zur optischen Achse (30) verlaufen.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine Lichtquelle um die optische Achse drehbar angeordnet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leuchtdioden (20, 22) weißes Licht emittieren.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Leuchtdiode (n) (20, 22) weißes Licht mit hohem Farbkontrast und geringer Lichtleistung sowie geringer Wärmestrahlung und ohne UV-An- teil emittiert.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor der Leuchtdiode (n) (20, 22) ein optisches Element, wie ein Diffusor oder eine Linse angeordnet sind.
PCT/EP1999/003408 1998-05-29 1999-05-18 Vorrichtung für eine medizinische behandlung mit einer lichtquelle WO1999062442A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29809759.1 1998-05-29
DE29809759U DE29809759U1 (de) 1998-05-29 1998-05-29 Vorrichtung für eine medizinische Behandlung mit einer Lichtquelle

Publications (1)

Publication Number Publication Date
WO1999062442A1 true WO1999062442A1 (de) 1999-12-09

Family

ID=8057910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003408 WO1999062442A1 (de) 1998-05-29 1999-05-18 Vorrichtung für eine medizinische behandlung mit einer lichtquelle

Country Status (2)

Country Link
DE (1) DE29809759U1 (de)
WO (1) WO1999062442A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034123A1 (de) * 2002-10-08 2004-04-22 Karl Kaps Gmbh & Co. Kg Beleuchtungseinrichtung für ein optisches vergrösserungsgerät sowie optisches vergrösserungsgerät
FR2868505A1 (fr) * 2004-04-02 2005-10-07 Degre K Sa Dispositif d'eclairage apte a produire un eclairage uniforme et appareil comprenant de tels dispositifs
WO2007014629A1 (de) * 2005-08-02 2007-02-08 Berchtold Holding Gmbh Operationsleuchte
WO2008095880A1 (de) * 2007-02-09 2008-08-14 Leica Microsystems (Schweiz) Ag Beleuchtungseinrichtung für ein mikroskop
US20120310141A1 (en) * 2011-05-06 2012-12-06 Kornfield Julia A Light delivery device and related compositions, methods and systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926476A1 (de) 1999-06-10 2000-12-14 Wavelight Laser Technologie Gm Vorrichtung für eine medizinische Behandlung des Auges mit Laserstrahlung
DE10034594B4 (de) * 2000-07-14 2006-03-16 Sirona Dental Systems Gmbh Zahnärztliche Behandlungsleuchte
DE10226382B4 (de) 2002-06-13 2004-05-19 Carl Zeiss Kataraktchirurgie-Mikroskopiesystem und Verfahren hierzu
DE102005036230B3 (de) * 2005-08-02 2006-11-23 Leica Microsystems (Schweiz) Ag Stereomikroskop mit Auflichtbeleuchtungseinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157428A (en) * 1990-05-15 1992-10-20 Phoenix Laser Systems, Inc. Spectral division of reflected light in complex optical diagnostic and therapeutic systems
US5312393A (en) * 1992-12-31 1994-05-17 Douglas Mastel Ring lighting system for microsurgery
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
EP0765648A2 (de) * 1995-09-29 1997-04-02 Nidek Co., Ltd Gerät für die Augenchirurgie
EP0770370A2 (de) * 1995-10-27 1997-05-02 IR Vision, Inc. Vorrichtung zur Abtragung von kornealem Gewebe mittels Infrarotlaser
US5695492A (en) * 1995-04-11 1997-12-09 Brown; Alan W. Lamellar illumination apparatus for eye surgery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157428A (en) * 1990-05-15 1992-10-20 Phoenix Laser Systems, Inc. Spectral division of reflected light in complex optical diagnostic and therapeutic systems
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
US5312393A (en) * 1992-12-31 1994-05-17 Douglas Mastel Ring lighting system for microsurgery
US5695492A (en) * 1995-04-11 1997-12-09 Brown; Alan W. Lamellar illumination apparatus for eye surgery
EP0765648A2 (de) * 1995-09-29 1997-04-02 Nidek Co., Ltd Gerät für die Augenchirurgie
EP0770370A2 (de) * 1995-10-27 1997-05-02 IR Vision, Inc. Vorrichtung zur Abtragung von kornealem Gewebe mittels Infrarotlaser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034123A1 (de) * 2002-10-08 2004-04-22 Karl Kaps Gmbh & Co. Kg Beleuchtungseinrichtung für ein optisches vergrösserungsgerät sowie optisches vergrösserungsgerät
EP1549988B2 (de) 2002-10-08 2011-10-05 Karl Kaps GmbH & Co KG Beleuchtungseinrichtung für ein optisches vergrösserungsgerät sowie optisches vergrösserungsgerät
FR2868505A1 (fr) * 2004-04-02 2005-10-07 Degre K Sa Dispositif d'eclairage apte a produire un eclairage uniforme et appareil comprenant de tels dispositifs
WO2007014629A1 (de) * 2005-08-02 2007-02-08 Berchtold Holding Gmbh Operationsleuchte
JP2009502377A (ja) * 2005-08-02 2009-01-29 ベルヒトルト、ホールディング、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 手術用照明ランプ
CN101799139A (zh) * 2005-08-02 2010-08-11 贝希托尔德控股有限公司 手术灯
WO2008095880A1 (de) * 2007-02-09 2008-08-14 Leica Microsystems (Schweiz) Ag Beleuchtungseinrichtung für ein mikroskop
JP2010518435A (ja) * 2007-02-09 2010-05-27 ライカ インストルメンツ(シンガポール)プライベート リミテッド 顕微鏡の照明装置
US8331020B2 (en) 2007-02-09 2012-12-11 Leica Instruments (Singapore) Pte. Ltd. Illumination device for a microscope
US20120310141A1 (en) * 2011-05-06 2012-12-06 Kornfield Julia A Light delivery device and related compositions, methods and systems

Also Published As

Publication number Publication date
DE29809759U1 (de) 1998-08-13

Similar Documents

Publication Publication Date Title
EP1405122B1 (de) Vorrichtung zur bestimmung der orientierung eines auges
DE4135187A1 (de) Lasereinrichtung, umfassend ein binokulares indirektes ophthalmoskop
DE19914914B4 (de) Verfahren und Anordnung zur zielgerichteten Applikation eines Therapiestrahls, insbesondere zur Behandlung kranker Bereiche im Auge
US6190375B1 (en) Corneal tissue ablation designed for dark adaptability
DE69433531T2 (de) Laserbehandlungsvorrichtung mit elektronischer visualisierung
DE60030995T2 (de) Iriserkennung und Nachführung zum Behandeln optischer Ungleichmäßigkeiten des Auges
EP1406534B1 (de) Verfahren und vorrichtung zur verfolgung von augenbewegungen
EP1327412B1 (de) Anordnung zur Beleuchtung der Linse eines menschlichen Auges
WO2005048896A1 (de) Adapter zum koppeln einer laserbearbeitungsvorrichtung mit einem objekt
EP1561440A1 (de) Ophtalmologische Vorrichtung
DE10022995A1 (de) Verfahren zum Erzeugen eines Steuerprogramms für eine Vorrichtung für die Hornhautchirurgie des Auges
JPH0351A (ja) レーザ治療装置
DE69832289T2 (de) Dual-mode ophthalmische laserablation
DE10307741A1 (de) Anordnung zur Bildfeldverbesserung bei ophthalmologischen Geräten
DE60106659T2 (de) Gerät zur Augenchirurgie
WO1999062442A1 (de) Vorrichtung für eine medizinische behandlung mit einer lichtquelle
DE102015205696A1 (de) Ophthalmologische Lasertherapievorrichtung
EP1182997B1 (de) Vorrichtung für eine medizinische behandlung des auges mit laserstrahlung
DE2559668C3 (de) Ophthalmologisches Gerät
DE60036808T2 (de) Bewegungsdetektor für ophthalmologische laserablationssysteme
DE10001131A1 (de) Vorrichtung für die ophtalmologische Augenbehandlung mit Fixierlichtstrahl
EP1840627B1 (de) Vorrichtung und Verfahren zur Bestimmung der Orientierung eines Auges
EP1608259B1 (de) Beleuchtungs- und bestrahlungseinheit für ophthalmologische geräte
DE19943735B4 (de) Vorrichtung zur Bestrahlung des Auges
DE2744536C3 (de) Ophthalmologische Lasereinrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA