WO1999058902A1 - Verfahren zur thermischen behandlung von feststoffen - Google Patents

Verfahren zur thermischen behandlung von feststoffen Download PDF

Info

Publication number
WO1999058902A1
WO1999058902A1 PCT/CH1999/000192 CH9900192W WO9958902A1 WO 1999058902 A1 WO1999058902 A1 WO 1999058902A1 CH 9900192 W CH9900192 W CH 9900192W WO 9958902 A1 WO9958902 A1 WO 9958902A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
oxygen
medium
fluidized bed
zone
Prior art date
Application number
PCT/CH1999/000192
Other languages
English (en)
French (fr)
Inventor
Hans Rueegg
Beat Stoffel
Original Assignee
Alstom Power (Schweiz) Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power (Schweiz) Ag filed Critical Alstom Power (Schweiz) Ag
Priority to CA002332011A priority Critical patent/CA2332011A1/en
Priority to US09/700,163 priority patent/US6336415B1/en
Priority to HU0102798A priority patent/HUP0102798A3/hu
Priority to EP99917726A priority patent/EP1078203A1/de
Priority to JP2000548664A priority patent/JP2002514732A/ja
Publication of WO1999058902A1 publication Critical patent/WO1999058902A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • F23L7/005Evaporated water; Steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/10Stoker grate furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07002Injecting inert gas, other than steam or evaporated water, into the combustion chambers

Definitions

  • the invention relates to a method for the thermal treatment of solids, in particular wastes such as domestic and urban waste, in which the solids are burned / gasified or pyrolyzed in a first stage with a lack of oxygen, and the exhaust gases of the first stage then in a post-combustion chamber with an oxygen-containing gaseous Mixed medium and burned with complete burnout.
  • the exhaust gases generated during combustion in and above the bed have a strongly fluctuating composition and temperature in terms of location and time. These exhaust gases are therefore subsequently used in conventional systems of secondary air or secondary air and recirculated flue gas mixed.
  • the secondary air fulfills the following functions:
  • the primary air added in the first stage is usually sufficient to burn the fuel completely, the secondary air is used to achieve the cross-mixing of the exhaust gas (mixing of CO-containing gas strands with 0 2 -containing gas strands).
  • the amount of secondary air blown in must be selected to be correspondingly high. However, this excess of air adversely increases the amount of exhaust gas.
  • EP 0 607 210 B1 describes a method for the combustion of solids, in which, in addition to the primary air, no further combustion air is fed into the combustion boiler.
  • EP 0 607 210 B1 proposes, on the one hand, to add as much primary air in the first stage that a Excess oxygen results and, on the other hand, water vapor is injected into the combustion boiler above the combustion chamber and in the lower region of the afterburning chamber at a supersonic speed generated by excess pressure.
  • This method has the disadvantage that the nitrogen contained in the fuel is oxidized to NO to an increased extent when there is excess air in the first combustion stage, and as a result low NOx emissions cannot be achieved.
  • the afterburning chamber was completely separated from the combustion chamber and connected by a pipe.
  • the exhaust gas flow was homogenized by turbulence when flowing through this pipe.
  • a pipe as a connection between the primary combustion chamber and the afterburning chamber is disadvantageous in the case of a large-scale design (wear and tear).
  • the invention tries to avoid these disadvantages. It is based on the object of a process for the thermal treatment of solids, in particular waste, in which the solids are burned / gasified or pyrolyzed in a first stage with a lack of oxygen, and subsequently the escaping gases are mixed with the oxygen-containing medium required for a complete burnout and are burned to develop, eliminating local concentration and temperature fluctuations in the exhaust gas of the first stage and thereby minimizing the pollutant concentrations, in particular the NOx emissions.
  • the exhaust gases emerging from the first stage are actively homogenized in a mixing stage with the addition of a gaseous oxygen-free or low-oxygen medium before they are mixed with the oxygen-containing medium and the homogenized oxygen-poor exhaust gas stream emerging from the mixing stage passes through a steady-state zone before the addition of the oxygen-containing medium required for complete burnout, the dwell time in the steady-state zone being at least 0.5 seconds.
  • the advantages of the invention are that the gases emerging from the first stage no longer have any concentration and temperature fluctuations due to their subsequent homogenization when they are mixed with the burnout air. Due to the additional residence of the homogenized gas flow in the persistence zone under lack of air (substoichiometric air ratio), the NO already formed can be reduced to N 2 by the NH X , HCN and CO present. As a result, only minimal pollutant emissions occur in the thermal treatment of the solids according to the invention.
  • recirculated exhaust gas water vapor, oxygen-depleted air or inert gases such as nitrogen are used as gaseous oxygen-free or low-oxygen media for homogenization.
  • gases are advantageously injected into the mixing zone perpendicular to the direction of flow of the exhaust gases or, in order to improve the homogenization and mixing effect, at a certain angle opposite or equal to the direction of flow of the exhaust gases from the first stage.
  • the active homogenization of the exhaust gases emerging from the first stage is advantageously carried out by narrowing or widening the cross section of the flow channel.
  • the afterburning stage is a fluidized bed and the oxygen-containing gaseous medium is supplied at the entry into the fluidized bed or directly into the fluidized bed.
  • the oxygen-containing gaseous medium is supplied at the entry into the fluidized bed or directly into the fluidized bed.
  • the steady-state zone is a fluidized bed and the gaseous oxygen-free or low-oxygen medium is supplied at the entry into the fluidized bed or directly into the fluidized bed.
  • FIG. 2 shows a partial longitudinal section of a plant for the thermal treatment of waste in a second embodiment of the invention, in which a fluidized bed is used as the first stage;
  • FIG. 3 shows a partial longitudinal section of a plant for the thermal treatment of waste in a third embodiment variant of the invention, in which a combustion grate is used as the first stage and a fluidized bed is used as the afterburning zone;
  • a combustion grate and a fluidized bed are used as a steady zone
  • FIG. 5 shows a partial longitudinal section of a plant analogous to FIG. 3, in which the afterburning zone is a circulating fluidized bed.
  • Figure 1 shows schematically part of a plant for the thermal treatment of solids, for. B. garbage or coal in a first embodiment of the invention.
  • waste is to be used.
  • a grate 2 is arranged in the lower part of a boiler 1, of which only the first train is shown and whose further radiation trains and its convective part are not shown in FIG. 1.
  • a medium-current grate combustion is implemented, i. H. the afterburning chamber 14 is arranged in the middle above the grate 2.
  • the solids 3, in this case waste, are charged into the boiler 1 and come to rest on the grate 2.
  • Primary air 4 is blown through the grate 2 from below. Since only a small proportion of primary air 4 is supplied, only partial combustion or gasification of the waste takes place in this first process stage 5 because of the lack of air or oxygen. It arise in this first 8th
  • Stage 5 CO-containing and 0 2 -low exhaust gases 6, which subsequently flow into a mixing zone 7.
  • the exhaust gas 6 emerging from the first stage 5 is actively homogenized in this mixing zone 7.
  • At least one almost oxygen-free or low-oxygen gaseous medium 8 is added to the mixing zone 7.
  • water vapor 9 and, on the other hand, recirculated flue gas 10 are added as medium 8.
  • Nitrogen or other inert gases and air with a reduced oxygen content are also suitable for homogenizing the exhaust gas 6 of the first stage 5. It is sufficient if one of these media 8 is introduced into the mixing zone 7, but of course mixtures between these different media 8 are also suitable. 1, the gaseous medium 8 is injected into the mixing zone 7 approximately perpendicular to the flow direction of the exhaust gases 6 in this exemplary embodiment.
  • the mixing zone 7 is characterized by changes in the cross section of the walls of the boiler 1, ie changes in the cross section 11 of the flow channel. These cross-sectional changes can be both narrowing and widening of the flow channel.
  • the cross-sectional changes 11 support the exhaust gas homogenization.
  • additional internals 12 are arranged in the mixing zone 7, which ensure a flow deflection of the exhaust gases 6 and thus further mixing and active homogenization of the exhaust gases 6.
  • the static mixer 12 have cavities (not shown in the figure), which with coolant, for. B. air, water or water vapor.
  • the homogenized CO-rich exhaust gas emerging from the mixing zone 7 then passes into a steady-state zone 13 in which there is also a lack of oxygen, that is to say a substoichiometric air ratio is present.
  • a steady-state zone 13 part of the NO already formed from the furnace is reduced to N 2 in the presence of CO, NH, and HCN.
  • the residence time of the homogenized exhaust gases in the steady-state zone 13 is at least 0.5 seconds. At a normal exhaust gas velocity of approximately 4 m / s, this means that the steady-state zone must be at least approximately 2 m long.
  • the exhaust gas then flows from the steady-state zone into the post-combustion stage 14. There, an oxygen-containing medium 15, for example air (secondary air), is mixed in, so that a complete burnout of the exhaust gas is ensured.
  • an oxygen-containing medium for example air (secondary air)
  • the process according to the invention for the graded thermal treatment of solids is characterized by simple process steps and by a 10
  • FIG. 2 shows a further exemplary embodiment of the invention, which differs from the first exemplary embodiment only in that a fluidized bed 16 is used instead of the combustion grate in the first process stage 5.
  • the waste 3 is burned sub-stoichiometrically in the fluidized bed 16, a very good material and heat exchange advantageously taking place and local temperature peaks being prevented.
  • the mixing and homogenization of the gas 6 emerging from the fluidized bed 16 (first stage 5) also takes place, as in the first exemplary embodiment, in the subsequent mixing zone 7, into which a gaseous, virtually oxygen-free or low-oxygen medium 8, for. B.
  • FIG. 3 shows an exemplary embodiment in which, in contrast to the example shown in FIG. 1, the afterburning zone 14 is designed as a fluidized bed 16.
  • the oxygen-containing gaseous medium 15 is introduced either directly into the fluidized bed 16 or at the inlet into the fluidized bed 16. These two alternatives are shown in FIG. 3.
  • the afterburning zone 14 as a fluidized bed 16
  • local hot zones with high thermal NOx formation are avoided due to the increased heat transfer due to the presence of particles.
  • caking on heat exchanger walls can be prevented and corrosion on heat exchanger surfaces can be considerably reduced.
  • Higher steam pressures and temperatures can also be set, which enable a higher thermal efficiency of the incineration plant.
  • FIG. 4 shows a partial longitudinal section of a plant for the thermal treatment of waste in a fourth embodiment variant of the invention, in which a combustion grate 2 is used as the first stage and a fluidized bed 16 is used as the persistence zone 13.
  • the mixing zone 7 in this exemplary embodiment is characterized by a cross-sectional expansion.
  • an intensive material and heat exchange then advantageously takes place in the fluidized bed 16 (steady-state zone 13). 12
  • FIG. 5 shows a further embodiment variant, which differs from FIG. 3 only in that the fluidized bed 16 in the afterburning stage 14 is a circulating fluidized bed in which the empty pipe speed in the riser pipe is increased.
  • the fluidized material is discharged into a cyclone and then returned to the fluidized bed.
  • the average vertical gas velocity in the riser pipe is higher than in the classic fluidized bed, and the average relative velocity between gas and particles also increases. This leads to an increased heat and mass exchange between gas and particles and thus to a reduced temperature and concentration distribution.
  • the amount of heat removed from the fluidized bed can be varied and the fluidized bed temperature and the temperature at the end of the afterburning zone can be set well.
  • the invention is not limited to the exemplary embodiments described.
  • the steady-state zone 13 can also be designed as a circulating fluidized bed or a grate system with countercurrent firing is used.
  • Boiler rust solids e.g. B. Waste primary air first process stage exhaust gas from item 5 mixing zone oxygen-free or low-oxygen gaseous medium water vapor recirculated exhaust gas cross-sectional changes of the flow channel internals / static mixer steady-state post-combustion stage oxygen-containing gaseous medium fluid bed

Abstract

Bei einem Verfahren zur thermischen Behandlung von Feststoffen (3), insbesondere Abfall, bei welchem die Feststoffe (3) in einer ersten Stufe (5) unter Sauerstoffmangel verbrannt/vergast oder pyrolysiert werden und die Abgase (6) der ersten Stufe (5) anschliessend in einer Nachbrennkammer (14) mit einem sauerstoffhaltigen gasförmigen Medium (15) vermischt und unter vollständigem Ausbrand verbrannt werden, werden die aus der ersten Stufe (5) austretenden Abgase (6) vor ihrer Vermischung mit dem sauerstoffhaltigen Medium (15) zunächst aktiv unter Zugabe eines gasförmigen sauerstofffreien oder sauerstoffarmen Mediums (8) in einer Mischstufe (7) homogenisiert. Anschliessend durchläuft der homogenisierte Abgasstrom eine Beharrungszone (13), in welcher er mindestens 0,5 Sekunden lang verweilt, bevor in einer Nachverbrennungsstufe (14) das Medium (15) zur Sicherstellung des vollständigen Ausbrandes des Abgases zugemischt wird. Das erfindungsgemässe Verfahren zeichnet sich durch einfache Verfahrensschritte und durch einen gegenüber dem bekannten Stand der Technik verringerten Gehalt an Schadstoffemissionen, insbesondere NOx aus.

Description

Verfahren zur thermischen Behandlung von Feststoffen
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur thermischen Behandlung von Feststoffen, insbesondere Abfällen wie Haus- und Stadtmüll, bei welchem die Feststoffe in einer ersten Stufe unter Sauerstoffmangel verbrannt/vergast oder pyrolysiert werden, und die Abgase der ersten Stufe anschliessend in einer Nachbrennkammer mit einem sauerstoffhaltigen gasförmigen Medium vermischt und unter vollständigem Ausbrand verbrannt werden.
Stand der Technik
Es ist bekannter Stand der Technik, stückige Feststoffe, wie z. B. Abfall, in einer Brennkammer, in der Primärluft zugegeben wird, und einer nachgeschalteten Nachbrennkammer, in der Sekundärluft zugegeben wird, zu verbrennen. Üblicherweise wird der Feststoff dabei auf einem Verbrennungsrost umgesetzt. Die Primärluft wird unter dem Rost zugeführt und strömt durch Öffnungen im Rostbelag in das darüberliegende Feststoffbett.
Die bei der Verbrennung im und über dem Bett entstehenden Abgase weisen örtlich und zeitlich eine stark schwankende Zusammensetzung und Temperatur auf. Diese Abgase werden daher bei konventionellen Systemen nachfolgend mit Hilfe von Sekundärluft bzw. Sekundärluft und rezirkuliertem Rauchgas vermischt. Die Sekundärluft erfüllt dabei folgende Funktionen:
- Vermischung der aus der Brennkammer austretenden Gase
- Zuführung von Sauerstoff zwecks Gewährleistung des Ausbrandes der Gase
- Abkühlung der austretenden Gase.
Die in der ersten Stufe zugegebene Primärluft reicht meist aus, um den Brennstoff vollständig zu verbrennen, die Sekundärluft wird eingesetzt, um die Quervermischung des Abgases zu erreichen (Vermischung von CO-haltigen Gassträhnen mit 02-haltigen Gassträhnen). Um eine ausreichende Vermischung sicherzustellen, muss die Menge der eingeblasenen Sekundärluft entsprechend hoch gewählt werden. Durch diesen Luftüberschuss steigt aber nachteilig die Abgasmenge an.
Um diesen Nachteil zu beseitigen, wird in EP 0 607 210 B1 ein Verfahren zur Verbrennung von Feststoffen beschrieben, bei welchem neben der Primärluft keine weitere Verbrennungsluft in den Verbrennungskessel zugeführt wird. Um den schlechten Ausbrand der Gase, welche durch die unzureichende Vermischung in der Nachbrennkammer hervorgerufen wird und welcher zu hohen Schadstoffgehalten im Abgas führt, zu verbessern, wird in EP 0 607 210 B1 vorgeschlagen, einerseits bereits in der ersten Stufe soviel Primärluft zuzugeben, dass ein Sauer- stoffüberschuss resultiert, und andererseits oberhalb des Feuerraumes und im unteren Bereich der Nachbrennkammer Wasserdampf mit einer durch einen Überdruck erzeugten Überschallgeschwindigkeit in den Verbrennungskessel ein- zudüsen. Dieses Verfahren hat den Nachteil, dass der im Brennstoff enthaltene Stickstoff bei Luftüberschuss in der ersten Verbrennungsstufe in erhöhtem Masse zu NO oxidiert wird und dadurch tiefe NOx-Emissionen nicht erreichbar werden.
Weiterhin ist ein Verfahren zur thermischen Behandlung von Abfällen bekannt (Beckmann, M. und R. Scholz: "Vergasung von Abfällen" in "Vergasungsverfahren für die Entsorgung von Abfällen", Springer-VDI-Verlag GmbH, Düsseldorf, 1998, S. 80-109), bei dem die Primärluftmenge unter dem Rost so weit reduziert wird, dass eine Vergasung des Brennstoffes auftritt und ein CO-reiches Abgas entsteht. Dieses Abgas wird in einer anschliessenden vollständig abgetrennten Nachbrennkammer mit Luft nachverbrannt. Als Folge der deutlichen Verringerung der Luftzugabe in der ersten Stufe gegenüber konventionellen Rostverbrennungssystemen wird zwar vorteilhaft von einer deutlichen Reduktion der NOx-Emissionen berichtet. Dieses Verfahren wurde aber bisher nur im Probemassstab durchgeführt. Die Nachbrennkammer war dabei vollständig von der Brennkammer getrennt und durch ein Rohr verbunden. Die Homogenisierung des Abgasstromes erfolgte dabei durch Turbulenz beim Durchströmen dieses Rohres. Als Folge der geringen Anlagengrösse und der Führung des Abgasstromes aus der Primärbrennkammer durch ein Verbindungsrohr konnte auf eine Mischeinrichtung für den Abgasstrom aus der Primärbrennkammer verzichtet werden, ohne dass erhöhte Schadstoffkonzentrationen im Abgas nach der Nachbrennkammer auftraten. Der Einsatz eines Rohres als Verbindung der Primärbrennkammer mit der Nachbrennkammer ist jedoch bei einer grosstechnischen Ausführung nachteilig (Verschleiss, Anbak- kungen).
Darstellung der Erfindung
Die Erfindung versucht, diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein Verfahren zur thermischen Behandlung von Feststoffen, insbesondere Abfällen, bei welchem die Feststoffe in einer ersten Stufe unter Sauerstoffmangel verbrannt/ vergast oder pyrolysiert werden, und nachfolgend die austretenden Gase mit dem für einen vollständigen Ausbrand benötigten sauerstoffhaltigen Medium vermischt und verbrannt werden, zu entwickeln, wobei lokale Konzentrations- und Temperaturschwankungen des Abgases der ersten Stufe beseitigt und dadurch die Schadstoffkonzentrationen, insbesondere die NOx-Emissionen, minimiert werden. Erfindungsgemäss wird dies dadurch erreicht, dass zum Zwecke der NOx- Reduktion die aus der ersten Stufe austretenden Abgase vor ihrer Vermischung mit dem sauerstoffhaltigen Medium in einer Mischstufe aktiv unter Zugabe eines gasförmigen sauerstofffreien oder sauerstoffarmen Mediums homogenisiert werden und der aus der Mischstufe austretende homogenisierte sauerstoffarme Abgasstrom vor der Zugabe des für den vollständigen Ausbrand benötigten sauerstoffhaltigen Mediums eine Beharrungszone durchläuft, wobei die Verweilzeit in der Beharrungszone mindestens 0,5 Sekunden beträgt.
Die Vorteile der Erfindung bestehen darin, dass die aus der ersten Stufe austretenden Gase aufgrund ihrer anschliessenden Homogenisierung keine Konzentrations- und Temperaturschwankungen mehr aufweisen, wenn sie mit der Aus- brandluft gemischt werden. Durch das zusätzliche Verweilen des homogenisierten Gasstromes in der Beharrungszone unter Luftmangel (unterstöchiometrisches Luftverhältnis) kann das bereits gebildete NO durch die anwesenden NHX, HCN und CO zu N2 reduziert werden. Demzufolge entstehen bei der erfindungsgemä- ssen thermischen Behandlung der Feststoffe nur minimale Schadstoffemissionen.
Es ist besonders zweckmässig, wenn als gasförmige sauerstofffreie oder sauerstoffarme Medien zur Homogenisierung rezirkuiiertes Abgas, Wasserdampf, sauerstoffverarmte Luft oder inerte Gase, wie beispielsweise Stickstoff verwendet werden. Diese Gase werden in die Mischzone vorteilhaft senkrecht zur Strömungsrichtung der Abgase eingedüst oder, um den Homogenisierungs- und Mischeffekt noch zu verbessern, unter einem bestimmten Winkel entgegengesetzt oder gleichgesetzt zur Strömungsrichtung des Abgases aus der ersten Stufe.
Ferner ist es vorteilhaft, wenn die aktive Homogenisierung der aus der ersten Stufe austretenden Abgase mit Hilfe von in der Mischzone installierten Einbauten (statische Mischer) erfolgt. Diese Einbauten verursachen eine Strömungsumlen- kung der Abgase und damit ihre effiziente Durchmischung. Es ist zweckmässig, wenn diese Einbauten Hohlräume aufweisen, die mit einem Kühlmedium, z. B. Wasser, Wasserdampf oder Luft, durchströmt werden.
Schliesslich wird mit Vorteil die aktive Homogenisierung der aus der ersten Stufe austretenden Abgase durch Querschnittsverengungen oder -erweiterungen des Strömungskanales durchgeführt.
Ausserdem ist es zweckmässig, die Temperatur der Abgase im Bereich der Ein- düsung des sauerstoffhaltigen Mediums über die Menge des in die Mischzone zugeführten sauerstofffreien bzw. sauerstoffarmen gasförmigen Mediums zu regeln. Dies ist eine sehr einfache Möglichkeit zum Konstanthalten der Temperatur.
Es ist vorteilhaft, wenn als erste Stufe ein Rostsystem mit Mittelstrom-Feuerung oder mit Gegenstromfeuerung verwendet wird.
Weiterhin ist es von Vorteil, wenn als erste Stufe eine Wirbelschicht eingesetzt wird, da hierdurch ein sehr guter Stoff- und Wärmeaustausch erzielt wird. Lokale Temperaturspitzen und ein lokal erhöhter Verschleiss der Ausmauerung können verhindert werden. Ausserdem können die im Müll enthaltenen Eisen- und Nichteisenmetalle in sehr guter Qualität aus der Asche zurückgewonnen werden.
Es ist auch zweckmässig, wenn die Nachverbrennungsstufe eine Wirbelschicht ist und das sauerstoffhaltige gasförmige Medium am Eintritt in die Wirbelschicht oder direkt in die Wirbelschicht zugeführt wird. Als Vorteil können dann infolge des erhöhten Wärmeübergangs durch die Anwesenheit von Partikeln lokale heisse Zonen mit hoher thermischer NOx-Bildung vermieden werden. Ausserdem werden Anbackungen an den Wärmetauscherwänden verhindert, was zu einer Verringerung der Korrosion an den Wärmetauscherflächen führt. Es können höhere Dampfdrücke und -temperaturen eingestellt werden, die einen höheren thermischen Wirkungsgrad der Verbrennungsanlage ermöglichen.
Schliesslich ist es zweckmässig, wenn die Beharrungszone eine Wirbelschicht ist und das gasförmige sauerstofffreie oder sauerstoffarme Medium am Eintritt in die Wirbelschicht oder direkt in die Wirbelschicht zugeführt wird.
Kurze Beschreibung der Zeichnung
In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt.
Es zeigen:
Fig. 1 : einen Teillängsschnitt einer Anlage zur thermischen Behandlung von Müll in einer ersten Ausführungsvariante der Erfindung, bei der als erste Stufe ein Verbrennungsrost eingesetzt wird;
Fig. 2: einen Teillängsschnitt einer Anlage zur thermischen Behandlung von Müll in einer zweiten Ausführungsvariante der Erfindung, bei der als erste Stufe eine Wirbelschicht eingesetzt wird;
Fig. 3: einen Teillängsschnitt einer Anlage zur thermischen Behandlung von Müll in einer dritten Ausführungsvariante der Erfindung, bei der als erste Stufe ein Verbrennungsrost und als Nachverbrennungszone eine Wirbelschicht eingesetzt werden;
Fig. 4: einen Teillängsschnitt einer Anlage zur thermischen Behandlung von Müll in einer vierten Ausführungsvariante der Erfindung, bei der als erste Stufe 7
ein Verbrennungsrost und als Beharrungszone eine Wirbelschicht eingesetzt werden;
Fig. 5. einen Teillängsschnitt einer Anlage analog zu Fig. 3, bei der die Nachverbrennungszone eine zirkulierende Wirbelschicht ist.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand mehrerer Ausführungsbeispiele und der Figuren 1 bis 5 näher erläutert.
Die Figur 1 zeigt schematisch einen Teil einer Anlage zur thermischen Behandlung von Feststoffen, z. B. Müll oder Kohle in einer ersten Ausführungsvariante der Erfindung. Im vorliegenden Ausführungsbeispiel soll Müll verwendet werden.
Im unteren Teil eines Kessels 1 , vom welchem nur der erste Zug abgebildet ist und dessen weitere Strahlungszüge und dessen konvektiver Teil in der Fig. 1 nicht dargestellt sind, ist ein Rost 2 angeordnet. In der gezeigten Müllverbrennungsanlage ist eine Mittelstrom-Rostfeuerung realisiert, d. h. die Nachbrennkammer 14 ist in der Mitte oberhalb des Rostes 2 angeordnet.
Die Feststoffe 3, in diesem Falle Müll, werden in den Kessel 1 chargiert und kommen auf dem Rost 2 zu liegen. Primärluft 4 wird von unten durch den Rost 2 eingeblasen. Da nur ein geringer Anteil an Primärluft 4 zugeführt wird, findet wegen des Luft- bzw. Sauerstoffmangels nur eine Teilverbrennung bzw. eine Vergasung des Mülls in dieser ersten Verfahrensstufe 5 statt. Es entstehen in dieser ersten 8
Stufe 5 CO-haltige und 02-arme Abgase 6, welche nachfolgend in eine Mischzone 7 strömen. In dieser Mischzone 7 wird das aus der ersten Stufe 5 austretende Abgas 6 aktiv homogenisiert.
Zum Zwecke einer Homogenisierung wird in der Mischzone 7 mindestens ein nahezu sauerstofffreies oder sauerstoffarmes gasförmiges Medium 8 zugegeben. Im vorliegenden Ausführungsbeispiel werden als Medium 8 einerseits Wasserdampf 9 und andererseits rezirkuliertes Rauchgas 10 zugegeben. Ebenso zur Homogenisierung des Abgases 6 der ersten Stufe 5 geeignet sind Stickstoff oder andere inerte Gase sowie Luft mit abgesenktem Sauerstoffgehalt. Dabei reicht es aus, wenn eines dieser Medien 8 in die Mischzone 7 eingebracht wird, aber es sind selbstverständlich auch Mischungen zwischen diesen verschiedenen Medien 8 geeignet. Das gasförmige Medium 8 wird, wie die Fig. 1 zeigt, bei diesem Ausführungsbeispiel etwa senkrecht zur Strömungsrichtung der Abgase 6 in die Mischzone 7 eingedüst.
Eine noch intensivere Vermischung und Homogenisierung wird erreicht, wenn das Medium 8 unter einem Winkel entgegengesetzt zur Strömungsrichtung der Abgase 6 aus der ersten Verfahrensstufe 5 zugegeben wird. Ebenso ist die Zugabe des Mediums 8 unter einem Winkel gleichgesetzt zur Strömungsrichtung der Abgase 6 aus der ersten Verfahrensstufe 5 möglich. Auch ein erhöhter Überdruck des Mediums 8 verbessert die Homogenisierungswirkung.
Die Mischzone 7 ist im vorliegenden Beispiel durch Querschnittsveränderungen der Wände des Kessels 1 , d.h. durch Querschnittsveränderungen 1 1 des Strö- mungskanales gekennzeichnet. Diese Querschnittsveränderungen können sowohl Verengungen als auch Erweiterungen des Strömungskanales sein. Die Querschnittsveränderungen 11 unterstützen die Abgashomogenisieruπg. 9
Weiterhin sind im vorliegenden Ausführungsbeispiel gemass Fig. 1 in der Mischzone 7 zusätzliche Einbauten 12 (statische Mischer) angeordnet, die eine Strö- mungsumlenkung der Abgase 6 und damit eine weitere Vermischung und aktive Homogenisierung der Abgase 6 gewährleisten. Die statischen Mischer 12 weisen Hohlräume auf (nicht in der Figur dargestellt), die mit Kühlmittel, z. B. Luft, Wasser oder Wasserdampf, durchströmt werden.
Selbstverständlich können in anderen Ausführungsbeispielen die o. a. verschiedenen technischen Mittel (Zugabe eines gasförmigen nahezu sauerstofffreien Mediums, Einbauten in die Gasströmung, Querschnittsveränderungen des Strömungs- kanales) auch jeweils alternativ zur Homogenisierung der Abgase 6 aus der ersten Stufe 5 verwendet werden.
Das aus der Mischzone 7 austretende homogenisierte CO-reiche Abgas gelangt anschliessend in eine Beharrungszone 13, in der ebenfalls Sauerstoffmangel herrscht, also ein unterstöchiometrisches Luftverhältnis vorhanden ist. In der Beharrungszone 13 wird ein Teil des bereits gebildeten NO aus der Feuerung in Anwesenheit von CO, NH, und HCN zu N2 reduziert. Von zentraler Bedeutung für die Erfindung ist, dass die Verweilzeit der homogenisierten Abgase in der Beharrungszone 13 mindestens 0,5 Sekunden beträgt. Bei einer üblichen Abgasgeschwindigkeit von etwa 4 m/s bedeutet dies, dass die Beharrungszone mindestens etwa 2 m lang sein muss.
Danach strömt das Abgas aus der Beharrungszone in die Nachverbrennungsstufe 14. Dort wird ein Sauerstoff enthaltendes Medium 15, beispielsweise Luft (Sekundärluft), zugemischt, damit ein vollständiger Ausbrand des Abgases sichergestellt ist.
Das erfindungsgemässe Verfahren zur gestuften thermischen Behandlung von Feststoffen zeichnet sich durch einfache Verfahrensschritte und durch einen ge- 10
genüber dem bekannten Stand der Technik verringerten Gehalt an NOx-Emissionen aus. Die Vermischung und Homogenisierung des aus der ersten Stufe 5 austretenden Gases 6 erfolgt hier im Gegensatz zum bekannten Stand der Technik nicht in der Nachverbrennungszone mittels Sekundärluft, sondern in einer zusätzlichen Mischstufe 7 vor der eigentlichen Nachverbrennung, wobei zwischen der Vermischung der Abgase 6 und der Zuführung der Ausbrandluft 15 eine Beharrungszone 13 für das Abgas unter Sauerstoffmangel eingefügt ist, in welcher die Gase mindestens 0,5 Sekunden lang verweilen müssen. Aus diese Weise werden sowohl Schadstoffemissionswerte reduziert als auch ein vollständiger Ausbrand erreicht.
Weiterhin ist es mit dem erfindungsgemässen Verfahren sehr einfach möglich, die Temperatur der Abgase im Bereich der Eindüsung des sauerstoffhaltigen Mediums 15 zu regeln, indem einfach die Menge des in die Mischzone 7 zugeführten Mediums 8 variiert und den jeweils herrschenden Betriebsbedingungen angepasst wird.
Fig. 2 zeigt ein weiteres Ausführungsbeispiei der Erfindung, welches sich vom ersten Ausführungsbeispiel nur dadurch unterscheidet, dass anstelle des Verbrennungsrostes in der ersten Verfahrensstufe 5 eine Wirbelschicht 16 eingesetzt wird. Der Müll 3 wird unterstöchiometrisch in der Wirbelschicht 16 verbrannt, wobei vorteilhaft ein sehr guter Stoff- und Wärmeaustausch stattfindet und lokale Temperaturspitzen verhindert werden. Die Vermischung und Homogenisierung des aus der Wirbelschicht 16 (erste Stufe 5) austretenden Gases 6 erfolgt ebenfalls wie im ersten Ausführungsbeispiel in der sich anschliessenden Mischzone 7, in welche ein gasförmiges nahezu sauerstofffreies oder sauerstoffarmes Medium 8, z. B. Wasserdampf 9 oder rezirkuliert.es Abgas 10, eingebracht wird und ausserdem statische Einbauten 12 angeordnet sind, welche eine Umlenkung der Abgase 6 und damit eine aktive Durchmischung und Homogenisierung bewirken. Das aus der Mischzone 7 austretende homogenisierte CO-reiche Abgas gelangt 1 1
anschliessend in eine Beharrungszone 13, in der ebenfalls Sauerstoffmangel herrscht. In der Beharrungszone 13 wird ein Teil des bereits gebildeten NO aus der Feuerung in Anwesenheit von CO, NH; und HCN zu N2 reduziert. Danach strömt das Abgas aus der Beharrungszone 13 in die Nachverbrennungsstufe 14. Dort wird ein Sauerstoff enthaltendes Medium 15, beispielsweise Luft, zugemischt, damit ein vollständiger Ausbrand des Abgases sichergestellt ist.
Fig. 3 zeigt ein Ausführungsbeispiel, bei dem im Unterschied zu dem in Fig. 1 dargestellten Beispiel die Nachverbrennungszone 14 als Wirbelschicht 16 ausgebildet ist. Das sauerstoffhaltige gasförmige Medium 15 wird dabei entweder direkt in die Wirbelschicht 16 oder am Eintritt in die Wirbelschicht 16 eingebracht. In Fig. 3 sind diese beiden Alternativen dargestellt. Durch die Ausbildung der Nachverbrennungszone 14 als Wirbelschicht 16 werden infolge des erhöhten Wärmeübergangs durch die Anwesenheit von Partikeln lokale heisse Zonen mit hoher thermischer NOx-Bildung vermieden. Ausserdem können Anbackungen an Wärmetauscherwänden verhindert und die Korrosion an Wärmetauscherflächen beträchtlich verringert werden. Es können auch höhere Dampfdrücke und -temperaturen eingestellt werden, die einen höheren thermischen Wirkungsgrad der Verbrennungsanlage ermöglichen.
In Fig. 4 ist einen Teillängsschnitt einer Anlage zur thermischen Behandlung von Müll in einer vierten Ausführungsvariante der Erfindung dargestellt, bei der als erste Stufe ein Verbrennungsrost 2 und als Beharrungszone 13 eine Wirbelschicht 16 eingesetzt werden. Im Unterschied zu Fig. 1 ist die Mischzone 7 bei diesem Ausführungsbeispiel durch eine Querschnittserweiterung charakterisiert. Bei dem aus der Mischzone 7 austretenden homogenisierten Abgas findet anschliessend vorteilhaft in der Wirbelschicht 16 (Beharrungszone 13) ein intensiver Stoff- und Wärmeaustausch statt. 12
In Fig. 5 ist schliesslich eine weitere Ausführungsvariante dargestellt, die sich nur dadurch von Fig. 3 unterscheidet, dass die Wirbelschicht 16 in der Nachverbrennungsstufe 14 hier eine zirkulierende Wirbelschicht ist, bei der die Leerrohrgeschwindigkeit im Steigrohr erhöht ist. Das Wirbelgut wird in einen Zyklon ausgetragen und anschliessend wieder in die Wirbelschicht zurückgeführt. In der zirkulierenden Wirbelschicht ist die mittlere vertikale Gasgeschwindigkeit im Steigrohr höher als bei der klassischen Wirbelschicht, ebenso erhöht sich die mittlere Relativgeschwindigkeit zwischen Gas und Partikeln. Dies führt zu einem erhöhten Wärme- und Stoffaustausch zwischen Gas und Partikeln und damit zu einer verringerten Temperatur- und Konzentrationsverteilung. Zudem kann mit dem Einsatz eines externen Fliessbettkühlers die aus der Wirbelschicht entnommene Wärmemenge variiert werden und so die Wirbelschichttemperatur und die Temperatur am Ende der Nachbrennzone gut eingestellt werden.
Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele beschränkt. So kann beispielsweise in einem anderen Ausführungsbeispiel auch die Beharrungszone 13 als zirkulierende Wirbelschicht ausgebildet sein oder es wird ein Rostsystem mit Gegenstrom-Feuerung verwendet.
13
Bezugszeichenliste
Kessel Rost Feststoffe, z. B. Müll Primärluft erste Verfahrensstufe Abgas aus Pos. 5 Mischzone sauerstofffreies oder sauerstoffarmes gasförmiges Medium Wasserdampf rezirkuliertes Abgas Querschnittsveränderungen des Strömungskanales Einbauten/statische Mischer Beharrungszone Nachverbrennungsstufe sauerstoffhaltiges gasförmiges Medium Wirbelschicht

Claims

14Patentansprüche
1. Verfahren zur thermischen Behandlung von Feststoffen (3), insbesondere Abfall, bei welchem die Feststoffe (3) in einer ersten Stufe (5) unter Sauerstoffmangel verbrannt/vergast oder pyrolysiert werden und die Abgase (6) der ersten Stufe (5) anschliessend in einer Nachverbrennungsstufe (14) mit einem sauerstoffhaltigen gasförmigen Medium (15) vermischt und unter vollständigem Ausbrand verbrannt werden, dadurch gekennzeichnet, dass zum Zwecke der NOx-Reduktion die aus der ersten Stufe (5) austretenden Abgase (6) vor ihrer Vermischung mit dem sauerstoffhaltigen Medium (15) in einer Mischstufe (7) aktiv unter Zugabe eines gasförmigen sauerstofffreien oder sauerstoffarmen Mediums (8) in die Mischstufe (7) homogenisiert werden und der aus der Mischstufe (7) austretende homogenisierte sauerstoffarme Abgasstrom vor der Zugabe des für den vollständigen Ausbrand benötigten sauerstoffhaltigen Mediums (15) eine Beharrungszone (13) durchläuft, wobei die Verweilzeit in der Beharrungszone (13) mindestens 0,5 Sekunden beträgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als gasförmiges Medium (8) rezirkuliertes Abgas (10) verwendet wird. 15
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als gasförmiges Medium (8) Wasserdampf (9) verwendet wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als gasförmiges Medium (8) sauerstoffverarmte Luft verwendet wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als gasförmiges Medium (8) Inertgas, vorzugsweise Stickstoff, verwendet wird.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die aktive Homogenisierung der aus der ersten Stufe (5) austretenden Abgase (6) mit Hilfe von in der Mischzone (7) installierten Einbauten (12) erfolgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Einbauten (12) von einem Kühlmedium, vorzugsweise Wasser, Wasserdampf oder Luft, durchströmt werden.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die aktive Homogenisierung der aus der ersten Stufe (5) austretenden Abgase (6) durch Querschnittsverengungen oder -erweiterungen (11 ) des Strömungskanales in der Mischzone (7) erfolgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Temperatur der Abgase im Bereich der Eindüsung des sauerstoffhaltigen Mediums (15) über die Menge des in die Mischzone (7) zugeführten Mediums (8) geregelt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in der Beharrungszone (13) die Abgase ein unterstöchiometrisches 16
Luft-Verhältnis aufweisen.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als erste Stufe (5) ein Rostsystem (2) mit Mittelstrom-Rostfeuerung verwendet wird.
12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als erste Stufe (5) ein Rostsystem (2) mit Gegenstrom-Rostfeuerung verwendet wird.
13. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass als erste Stufe (5) eine Wirbelschicht (16 ) verwendet wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Nachverbrennungsstufe (14) eine Wirbelschicht (16) ist und dass das sauerstoffhaltige gasförmige Medium (15) entweder dem Rauchgas (6) am Eintritt in die Wirbelschicht (16) oder direkt in die Wirbelschicht (16) zugeführt wird.
15. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Beharrungszone (13) eine Wirbelschicht (16) ist und dass das sauerstofffreie oder sauerstoffarme gasförmige Medium (8) entweder dem Rauchgas (6) am Eintritt in die Wirbelschicht (16) oder direkt in die Wirbelschicht (16) zugeführt wird.
16. Verfahren nach Anspruch 15 oder 15, dadurch gekennzeichnet, dass als Wirbelschicht (16) eine zirkulierende Wirbelschicht eingesetzt wird.
PCT/CH1999/000192 1998-05-11 1999-05-10 Verfahren zur thermischen behandlung von feststoffen WO1999058902A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002332011A CA2332011A1 (en) 1998-05-11 1999-05-10 Method for the heat treatment of solids
US09/700,163 US6336415B1 (en) 1998-05-11 1999-05-10 Method for the heat treatment of solids
HU0102798A HUP0102798A3 (en) 1998-05-11 1999-05-10 Method for the heat treatment of solids
EP99917726A EP1078203A1 (de) 1998-05-11 1999-05-10 Verfahren zur thermischen behandlung von feststoffen
JP2000548664A JP2002514732A (ja) 1998-05-11 1999-05-10 固形物の熱処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98810424 1998-05-11
EP98810424.6 1998-05-11
EP98810570 1998-06-22
EP98810570.6 1998-06-22

Publications (1)

Publication Number Publication Date
WO1999058902A1 true WO1999058902A1 (de) 1999-11-18

Family

ID=26151922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1999/000192 WO1999058902A1 (de) 1998-05-11 1999-05-10 Verfahren zur thermischen behandlung von feststoffen

Country Status (8)

Country Link
US (1) US6336415B1 (de)
EP (1) EP1078203A1 (de)
JP (1) JP2002514732A (de)
KR (1) KR100549654B1 (de)
CN (1) CN1218141C (de)
CA (1) CA2332011A1 (de)
HU (1) HUP0102798A3 (de)
WO (1) WO1999058902A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077077A2 (de) * 1999-08-12 2001-02-21 ABB (Schweiz) AG Verfahren zur thermischen Behandlung von Feststoffen
WO2007090510A1 (de) * 2006-02-07 2007-08-16 Forschungszentrum Karlsruhe Gmbh Verfahren zur primärseitigen stickoxidminderung in einem zweistufigen verbrennungsprozess
EP1901003A1 (de) * 2006-09-13 2008-03-19 MARTIN GmbH für Umwelt- und Energietechnik Verfahren zur Verbrennungsgaszuführung
DE102008054038B3 (de) * 2008-10-30 2010-04-29 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
EP1508745A3 (de) * 2003-08-22 2010-09-01 FISIA Babcock Environment GmbH Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens
EP2505919A1 (de) 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Verfahren zur Optimierung des Ausbrands von Abgasen einer Verbrennungsanlage durch Homogenisierung der Abgase über dem Brennbett mittels Abgas-Einspritzung
DE102015003995A1 (de) * 2015-03-30 2016-10-06 Martin GmbH für Umwelt- und Energietechnik Verfahren zur Verbrennungsführung bei Rostfeuerungen sowie Rostfeuerung
EP2121167B1 (de) * 2006-12-22 2017-05-03 Covanta Energy, LLC Tertiärluftzusatz zu mit festen abfällen befeuerten öfen zur nox-reduktion

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20055063A (fi) * 2005-02-11 2006-08-12 Kvaerner Power Oy Menetelmä kerrosleijukattilan typenoksidipäästöjen vähentämiseksi ja kerrosleijukattilan ilmanjakojärjestelmä
US20070266914A1 (en) * 2006-05-18 2007-11-22 Graham Robert G Method for gasifying solid organic materials and apparatus therefor
EA018777B1 (ru) * 2006-12-07 2013-10-30 Вте Вейст Ту Энерджи Канада, Инк. Способ газификации отходов
US20080149010A1 (en) * 2006-12-22 2008-06-26 Covanta Energy Corporation Tertiary air addition to solid waste-fired furnaces for nox control
JP6260058B2 (ja) 2014-09-12 2018-01-17 三菱重工環境・化学エンジニアリング株式会社 ストーカ式焼却炉
CN105003911B (zh) * 2015-08-05 2017-06-16 冯之军 一种生物质燃烧炉及炉内脱除一氧化氮的装置
CA3074239A1 (en) * 2017-06-16 2018-12-20 Pyroheat Ou Heating device using wood fuel
KR102651163B1 (ko) * 2022-06-30 2024-03-26 김광용 완전연소를 유도하는 연소실의 공기 및 산소분사장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125429A1 (de) * 1981-06-27 1983-02-03 Erk Eckrohrkessel Gmbh, 1000 Berlin "einrichtung zur durchmischung von gasstraehnen"
US4579070A (en) * 1985-03-01 1986-04-01 The M. W. Kellogg Company Reducing mode circulating fluid bed combustion
JPH02106609A (ja) * 1988-10-17 1990-04-18 Kubota Ltd 焼却炉
EP0413104A1 (de) * 1989-06-16 1991-02-20 Ebara Corporation Verfahren zur Verbrennungsregelung in einer Feuerung
EP0487052A2 (de) * 1990-11-22 1992-05-27 Hitachi Zosen Corporation Abfallverbrennungsanlage
DE4426357A1 (de) * 1993-07-27 1995-02-02 Waermetechnik Dr Pauli Gmbh Feuerungsanordnung für feste Brennstoffe wie Müll und Verbrennungsverfahren
DE4401821A1 (de) * 1994-01-22 1995-07-27 Joachim Dipl Ing Kuemmel Verfahren zum Verbrennen - insbesondere von Müll und Biomassen
DE19613777A1 (de) * 1996-04-04 1997-10-09 Eisenwerk Baumgarte Kessel U A Verbrennungsanlage und Nachverbrennungsverfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664277A (en) * 1970-07-31 1972-05-23 Carborundum Co On-site incinerator
US3658482A (en) * 1970-09-08 1972-04-25 College Research Corp Afterburner
US4334484A (en) * 1980-01-18 1982-06-15 University Of Kentucky Research Foundation Biomass gasifier combustor
US4427362A (en) * 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
DE3501189A1 (de) * 1985-01-16 1986-07-17 Henkel KGaA, 4000 Düsseldorf Verfahren und anlage zur reduzierung des no(pfeil abwaerts)x(pfeil abwaerts)-gehaltes von mittels fossiler brennstoffe beheizten grossfeuerungsanlagen
US5040470A (en) * 1988-03-25 1991-08-20 Shell Western E&P Inc. Steam generating system with NOx reduction
JPH03244908A (ja) * 1990-02-22 1991-10-31 Hitachi Zosen Corp 焼却炉における燃焼促進装置
JP2527655B2 (ja) * 1990-11-22 1996-08-28 日立造船株式会社 ごみ焼却炉
JPH04350411A (ja) * 1990-11-22 1992-12-04 Hitachi Zosen Corp ごみ焼却炉における未燃分発生抑制方法
US5501162A (en) * 1993-07-19 1996-03-26 Kravets; Alexander Method of fuel combustion
US5967061A (en) * 1997-01-14 1999-10-19 Energy And Environmental Research Corporation Method and system for reducing nitrogen oxide and sulfur oxide emissions from carbonaceous fuel combustion flue gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125429A1 (de) * 1981-06-27 1983-02-03 Erk Eckrohrkessel Gmbh, 1000 Berlin "einrichtung zur durchmischung von gasstraehnen"
US4579070A (en) * 1985-03-01 1986-04-01 The M. W. Kellogg Company Reducing mode circulating fluid bed combustion
JPH02106609A (ja) * 1988-10-17 1990-04-18 Kubota Ltd 焼却炉
EP0413104A1 (de) * 1989-06-16 1991-02-20 Ebara Corporation Verfahren zur Verbrennungsregelung in einer Feuerung
EP0487052A2 (de) * 1990-11-22 1992-05-27 Hitachi Zosen Corporation Abfallverbrennungsanlage
DE4426357A1 (de) * 1993-07-27 1995-02-02 Waermetechnik Dr Pauli Gmbh Feuerungsanordnung für feste Brennstoffe wie Müll und Verbrennungsverfahren
DE4401821A1 (de) * 1994-01-22 1995-07-27 Joachim Dipl Ing Kuemmel Verfahren zum Verbrennen - insbesondere von Müll und Biomassen
DE19613777A1 (de) * 1996-04-04 1997-10-09 Eisenwerk Baumgarte Kessel U A Verbrennungsanlage und Nachverbrennungsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 319 (M - 0996) 9 July 1990 (1990-07-09) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077077A3 (de) * 1999-08-12 2001-08-29 ABB (Schweiz) AG Verfahren zur thermischen Behandlung von Feststoffen
EP1077077A2 (de) * 1999-08-12 2001-02-21 ABB (Schweiz) AG Verfahren zur thermischen Behandlung von Feststoffen
EP1508745A3 (de) * 2003-08-22 2010-09-01 FISIA Babcock Environment GmbH Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens
WO2007090510A1 (de) * 2006-02-07 2007-08-16 Forschungszentrum Karlsruhe Gmbh Verfahren zur primärseitigen stickoxidminderung in einem zweistufigen verbrennungsprozess
US8544394B2 (en) 2006-02-07 2013-10-01 Forschungszentrum Karlsruhe Gmbh Method for reducing nitrogen oxide on the primary side in a two-stage combustion process
EP1901003A1 (de) * 2006-09-13 2008-03-19 MARTIN GmbH für Umwelt- und Energietechnik Verfahren zur Verbrennungsgaszuführung
WO2008031410A1 (de) * 2006-09-13 2008-03-20 Martin GmbH für Umwelt- und Energietechnik Verfahren zur verbrennungsgaszuführung sowie feuerungsanlage
US7975628B2 (en) 2006-09-13 2011-07-12 Martin GmbH für Umwelt- und Energietechnik Method for supplying combustion gas in incineration systems
NO343507B1 (no) * 2006-09-13 2019-03-25 Martin Gmbh Fuer Umwelt Und Energietechnik Fremgangsmåte ved styring av forbrenning samt fyringsanlegg for gjennomføring av fremgangsmåten
EP2121167B1 (de) * 2006-12-22 2017-05-03 Covanta Energy, LLC Tertiärluftzusatz zu mit festen abfällen befeuerten öfen zur nox-reduktion
DE102008054038B3 (de) * 2008-10-30 2010-04-29 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
US9134022B2 (en) 2008-10-30 2015-09-15 Karlsruher Institut Fuer Technologie Method and device for reducing hazardous emissions in internal combustion systems
EP2505919A1 (de) 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Verfahren zur Optimierung des Ausbrands von Abgasen einer Verbrennungsanlage durch Homogenisierung der Abgase über dem Brennbett mittels Abgas-Einspritzung
WO2012130446A1 (de) 2011-03-29 2012-10-04 Hitachi Zosen Inova Ag Verfahren zur optimierung des ausbrands von abgasen einer verbrennungsanlage
DE102015003995A1 (de) * 2015-03-30 2016-10-06 Martin GmbH für Umwelt- und Energietechnik Verfahren zur Verbrennungsführung bei Rostfeuerungen sowie Rostfeuerung
US10753604B2 (en) 2015-03-30 2020-08-25 Martin Gmbh Fuer Umwelt-Und Energietechnik Method for the combustion management in firing installations and firing installation

Also Published As

Publication number Publication date
KR20010025004A (ko) 2001-03-26
CN1300359A (zh) 2001-06-20
JP2002514732A (ja) 2002-05-21
CN1218141C (zh) 2005-09-07
KR100549654B1 (ko) 2006-02-08
CA2332011A1 (en) 1999-11-18
US6336415B1 (en) 2002-01-08
HUP0102798A2 (hu) 2001-12-28
EP1078203A1 (de) 2001-02-28
HUP0102798A3 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
EP1078203A1 (de) Verfahren zur thermischen behandlung von feststoffen
AT398619B (de) Zweistufiges verbrennungsverfahren
EP0118931B1 (de) Verfahren zur Nachverbrennung und Reinigung von Prozessabgasen
EP0191141B1 (de) Verfahren und Anlage zur Reduzierung des NOx-Gehaltes von mittels fossiler Brennstoffe beheizten Grossfeuerungsanlagen
DE2539546C3 (de) Verfahren zur Verbrennung kohlenstoffhaltiger Materialien
EP0302849B1 (de) Verfahren und Vorrichtung zur Verbrennung oder Vergasung von Brennstoffen in einer Wirbelschicht
DE2646860A1 (de) Verfahren zum betrieb eines fliessbettsystems
DE4102959A1 (de) Verfahren zum verbrennen von kohle in der zirkulierenden wirbelschicht
DE3809313A1 (de) Verfahren und vorrichtung zum kuehlen von partialoxidationsgas
EP2691701B1 (de) Verfahren zur optimierung des ausbrands von abgasen einer verbrennungsanlage
DE2620614A1 (de) Verfahren und vorrichtung zur herstellung einer gasfoermigen, kohlenmonoxid und wasserstoff enthaltenden mischung
EP0174676A1 (de) Verfahren zur thermischen Behandlung von stückigen oder agglomerierten Materialien auf einem Wanderrost
EP0302910B1 (de) Verbrennung von kohle mit einer wirbelschichtfeuerung
EP0132584A2 (de) Verfahren und Anlage zum Vermindern der Schadstoffemissionen in Rauchgasen von Feuerungsanlagen
EP1281026B1 (de) Verfahren und vorrichtung für die verbrennung von organischem reststoff
DE2513304A1 (de) Verfahren und vorrichtung zur verarbeitung von rohstoffen fuer die herstellung von zement
DE102006034032B4 (de) Thermische Abgasreinigungsvorrichtung und Verfahren zur thermischen Abgasreinigung
DE3530683C2 (de)
DE19703197A1 (de) Verfahren und Vorrichtung zur Verbrennung von Holz und/oder Biomassen
DE3009366A1 (de) Einrichtung zur trocknen entfernung von schadstoffen aus rauchgasen
DE102007041427A1 (de) Verfahren und Anlage zur Wärmebehandlung von feinkörnigen Feststoffen
DE19938269A1 (de) Verfahren zur thermischen Behandlung von Feststoffen
DE10051733B4 (de) Verfahren zur gestuften Verbrennung von Brennstoffen
DE3627086A1 (de) Verfahren und anordnung zum entfernen von stickstoffoxiden aus rauchgasen
DE10339133B4 (de) Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806034.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN HU JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999917726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007012562

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2332011

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09700163

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999917726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007012562

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: 1999917726

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999917726

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007012562

Country of ref document: KR