EP0302910B1 - Verbrennung von kohle mit einer wirbelschichtfeuerung - Google Patents

Verbrennung von kohle mit einer wirbelschichtfeuerung Download PDF

Info

Publication number
EP0302910B1
EP0302910B1 EP88901248A EP88901248A EP0302910B1 EP 0302910 B1 EP0302910 B1 EP 0302910B1 EP 88901248 A EP88901248 A EP 88901248A EP 88901248 A EP88901248 A EP 88901248A EP 0302910 B1 EP0302910 B1 EP 0302910B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
coal
steam generator
combustion
bed furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88901248A
Other languages
English (en)
French (fr)
Other versions
EP0302910A1 (de
Inventor
Hermann Brückner
Lothar Stadie
Gerhard Scholl
Karl-Ewald Stoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarbergwerke AG
Siemens AG
Original Assignee
Saarbergwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25851774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0302910(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19873701798 external-priority patent/DE3701798A1/de
Priority claimed from DE19873733831 external-priority patent/DE3733831A1/de
Application filed by Saarbergwerke AG, Siemens AG filed Critical Saarbergwerke AG
Publication of EP0302910A1 publication Critical patent/EP0302910A1/de
Application granted granted Critical
Publication of EP0302910B1 publication Critical patent/EP0302910B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0069Systems therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • F23J2215/301Dioxins; Furans

Definitions

  • the invention relates to a process for the combustion of coal and possibly a mixture of coal and organic substances, such as household waste, industrial waste or the like, using a fluidized bed combustion with an average combustion temperature of 800 ° C. and afterburning of unburned fuel discharged from the fluidized bed and firing system for carrying out the process.
  • fluidized bed furnaces have long been state of the art for a wide variety of applications.
  • the main advantages can be seen in the fact that, in contrast to other types of firing, low-quality fuels with high ballast content, such as.
  • B. ballast coal or processing waste which are a by-product of hard coal processing, or other organic substances, such as household waste, industrial waste and the like, can be burned in a wide variety of compositions.
  • fluidized bed combustion is its comparatively environmental friendliness, since at the relatively low combustion temperatures of approx. 800 ° C there are almost no nitrogen oxides and other pollutants, such as. B. sulfur oxides, by adding suitable adsorbents, such as. B. limestone, can already be largely bound in the fluidized bed.
  • the fluidized bed combustion is characterized by a homogeneous temperature distribution in the fluidized bed, so that especially when burning less homogeneous, waste containing organic substances, such as B. household waste or industrial waste, a good burnout is guaranteed.
  • the aim is therefore to reduce pollutant emissions from the outset through so-called primary measures that affect the combustion plants themselves, for example through low-NOx burners or through the use of fluidized bed combustion systems with heat exchanger heating surfaces.
  • the heat exchanger surfaces of fluidized bed furnaces are exposed to increased erosion and corrosion.
  • the fluidized bed combustion is also limited by the fact that due to the relatively low combustion temperatures in the event that the substances to be burned organic or inorganic chlorine compounds such as e.g. B. contain polychlorinated biphenyls (PCB), when burning highly toxic dioxins, such as. B. polychlorinated dibenzodioxins (PCDD) or polychlorinated dibenzofurans (PCDF).
  • PCB polychlorinated biphenyls
  • PCDD polychlorinated dibenzodioxins
  • PCDF polychlorinated dibenzofurans
  • a fluidized bed combustion is known with an afterburning zone arranged directly above the fluidized bed, into which a gaseous or liquid, ie a well-igniting additional fuel is inserted via pilot burners is brought to achieve a complete afterburning of unburned fuel discharged from the fluidized bed.
  • the known system does not reach temperatures high enough for the destruction of dioxins or furans, since only as much additional fuel is to be introduced as is necessary for complete post-combustion of the entrained primary fuel is.
  • the aim of the known system is therefore not the detoxification of the flue gases, but the discharge of the dust filter and the full utilization of the primary fuel, whereby it is expressly assumed that this more than compensates for the higher costs.
  • This system is also not suitable for burning waste materials such as waste. Since the flue gases from the fluidized bed combustion are only added to the flue gases from the steam generator, they are not heated to a high enough level to ensure that the pollutants generated when burning waste are destroyed.
  • DE-A-3 330 943 describes a system in which coal is burned in a charged fluidized bed with excess air and the flue gases are cooled in an unfired steam generator immediately downstream of the fluidized bed combustion. The flue gases are then dedusted so that they can be introduced into the combustion chamber of a gas turbine. A gas turbine fuel is also introduced and burned in the combustion chamber, the required combustion air being carried as excess air already in the flue gas of the fluidized bed furnace.
  • This known system is also not suitable for burning a coal-waste mixture in the fluidized bed, since the dioxins and furans formed during the combustion of the waste portion are at least to a large extent separated with the dust and are therefore not “reheated” at all. Rather, the separated dust is now contaminated with these pollutants and is therefore to be regarded as special waste and must be treated or disposed of accordingly.
  • the fluidized bed combustion must also be operated with excess air, since on the one hand the flue gases have to carry an air surplus sufficient for the combustion of the gas turbine fuel, and on the other hand it must be ensured that the flue gases no longer carry any combustible residual solids which lead to problems in the filters, especially in the electrostatic precipitator , being able to lead.
  • the object of the invention is to develop a method and a system which ensure that, on the one hand, the formation of highly toxic dioxins is prevented during the combustion of wastes containing organic substances, but which, on the other hand, also ensure that only coal is burned, that no large amounts of nitrogen oxides are formed at all, so that downstream DENOX systems for flue gas treatment become superfluous.
  • this object is achieved in that the flue gases of the fluidized bed combustion without cooling and cleaning together with the entrained flue dust below the flame zone into the combustion chamber of a steam generator fired with coal dust and introduced in this to the usual temperatures for coal dust furnaces be heated above 1 000 ° C.
  • the entire flue gases from the fluidized bed combustion system, together with the fly dust, are forcibly passed through the flame zone of the coal dust combustion system of the steam generator, where - in addition to the heating - the trace elements and heavy metals, which are partly molecularly or colloidally distributed in the coal dust combustion system and in the flue gas, cause the catalytic effect of the Hard coal on the regression of the Dioxins and furans have an optimal effect.
  • the fluidized bed combustion can, depending on the type and proportion of the waste to be incinerated, be operated stoichiometrically or - in particular when coal is being burned alone - under stoichiometric, whereby a substantial reduction in nitrogen oxide formation is achieved compared to an over-stoichiometric fluidized bed combustion .
  • the heat generated in the fluidized bed is discharged with the flue gas and released in the steam generator together with the heat generated there to the steam cycle of the power plant.
  • a constant temperature level of, for example, 800 ° C it proves to be expedient to continuously return part of the cooled and possibly already cleaned flue gases from the steam generator as cooling medium to the fluidized bed furnace, with the ratio of returned flue gas
  • Fresh air can also be set in a very simple manner in the fluidized bed firing a substoichiometric atmosphere if at least part of the recirculated flue gas is mixed with the fresh air.
  • a combustion system according to the invention with a fluidized bed combustion and a post-combustion zone is characterized in that the fluidized bed combustion as a post-combustion zone is a coal dust operated at a temperature above 1000 ° C. is fired steam generator of a coal-fired power plant, that the fluidized bed combustion is designed without heat exchange surfaces and that the flue gas discharge of the fluidized bed combustion is connected directly below the burner with the steam generator without the interposition of cooling or cleaning devices.
  • FIGS. 1 and 2 Further explanations of the invention can be found in the exemplary embodiments shown schematically in FIGS. 1 and 2.
  • Fig. 1 A furnace according to the invention for the combustion, in particular of waste containing organic substances.
  • Fig. 2 A furnace according to the invention using the example of a steam generator system.
  • FIG. 1 shows schematically a fluidized bed furnace 1 with a fluidized bed 11, in which organic waste materials fed via line 12, to which coal can optionally be added via line 13, are burned at an average combustion temperature of approximately 800 ° C.
  • the fluidized bed furnace 1 is followed by a steam generator 2 of a coal-fired power plant, which is fired with coal dust 21 - with the supply of fresh air 22.
  • the flue gases of the fluidized bed furnace 1 including entrained fuel and ash particles, are introduced into the steam generator 2 below the furnace zone 23 via line 14.
  • the flue gases introduced from the fluidized bed firing 1 are heated to temperatures above 1000 ° C.
  • pollutants such as dioxins which have arisen in the fluidized bed furnace 1 and are carried in the flue gas are destroyed.
  • the mixed flue gases from the fluidized bed furnace 1 and the steam generator 2 are drawn off via line 25 after they have given up the essential part of their heat to the water to be evaporated via a heat exchanger 24, dedusted in an electrostatic filter 3, and possibly further cooled in a heat exchanger 5 , cleaned in a flue gas scrubber 4 and largely discharged into the atmosphere via line 41.
  • a portion of the flue gases is branched off - either via line 42 before the flue gas scrubber 4 or via line 43 after the flue gas scrubber 4 and returned to the fluidized bed 11 via line 44 and a pressure-increasing blower 26 together with fresh air drawn in via line 27.
  • the combustion temperature of approx. 800 ° C. aimed at in the fluidized bed furnace 1 can be maintained via the amounts of the fuel supplied, the fresh air drawn in and the recirculated flue gas, and it may be expedient to limit part of the recirculated cold in order to limit the flow velocity in the fluidized bed 11 Introduce flue gases into the fluidized bed furnace 1 exclusively for the purpose of dissipating heat from the fluidized bed furnace 1 via line 45 above the fluidized bed 11.
  • the coarse ash is separated from the ash drawn off from the steam generator 2 via line 28 and is returned to the fluidized bed 11 via line 29, if necessary after additional cooling, as bed material.
  • the coarse ash is gradually crushed and entrained in the steam generator 2 together with the flue gases as flue dust.
  • the coarse-grained fraction can be separated from the fly ash separated in the electrostatic filter 3 and returned to the fluidized bed 11 via lines 31 and 29. The medium and fine-grained fractions are withdrawn via line 32.
  • FIG. 2 shows a schematic representation of the example of a steam generator system according to the invention.
  • This consists of a steam generator 2, which is equipped with a coal dust burner 30.
  • the surrounding walls 40 of the steam generator 2 are designed as fin tube walls and, in a manner known per se, together with the other heat exchanger heating surfaces 24 of the steam generator 2, are connected to a steam circuit, not shown here.
  • a dust filter 3, a suction fan 10 and a flue gas desulfurization system 4 are connected to the flue gas line 9 leaving the steam generator 2 and leading to the chimney 8.
  • the steam generator 2 is connected on the gas side to a fluidized bed furnace 1 with a stationary fluidized bed 11.
  • the nozzle base 15 is connected to a gas line 16 which is connected with one branch to the part of the flue gas line 9 leaving the flue gas desulfurization system 4 and with another branch to a fresh air intake opening 17.
  • a gas compressor 18 is installed on the nozzle bottom 15 to generate the necessary pressure difference.
  • a control valve 19, 20 is installed in each of the branch of the gas line 16 leading to the flue gas line 9 as well as to the branch leading to the fresh air intake opening 17.
  • the fluidized bed furnace 1 is also connected to the flue gas line 9 above the stationary fluidized bed 11 via an additional gas line 42. This branches off from the flue gas line 9 immediately behind the induced draft fan 10.
  • a control valve 6 is also installed in this additional gas line.
  • the fluidized bed furnace 1 is connected to a fuel supply line 53, which in turn is connected to a coal bunker 54 and a lime bunker 55.
  • the exhaust gas line 56 of the fluidized bed furnace 1 opens at the lower end of the steam generator 2. Above the level of the mouths of the exhaust gas lines 56 of the fluidized bed furnace 1 in Steam generator 2, the burner 57 of the coal dust burner 30 is installed in the peripheral wall 40 of the steam generator 2. The burner 57 is connected to a coal bunker 59 via a fuel line 58 and to a fresh air blower 33 via a fresh air line.
  • the steam generator system can also be equipped with a further auxiliary line 63, indicated by dashed lines, which on the one hand connects to the gas line 16 directly in front of the gas compressor 18 and connects it to the fresh air line 22 of the steam generator 2.
  • a flue gas blower 34 is installed in this auxiliary line 63.
  • flue gas is sucked in via the gas compressor 18 and pressed through the nozzle bottom 15 of the fluidized bed furnace 1.
  • Fresh air has previously been added to this flue gas via the fresh air intake opening 17.
  • the required mixing ratio, ie the required oxygen content can be set by the control valves 19, 20 installed both at the fresh air intake opening 17 and in the branches of the gas line 16 leading to the flue gas line 9.
  • the fluidized bed furnace 1 is supplied with finely ground coal and a predetermined amount of lime via the fuel supply line 53.
  • the carbon particles introduced into the fluidized bed furnace 1 oxidize in the fluidized bed 11, carbon monoxide predominantly being produced as a result of the substoichiometric addition of oxygen.
  • the sulfur contained in the fuel is bound to gypsum by the lime added to the coal in the fluidized bed 11 and discharged with the ash in a manner not shown here.
  • the oxidation of the sulfur previously required to bind the sulfur limits the extent of the sub-stoichiometric addition of oxygen in the fluidized bed 11.
  • the formation of nitrogen oxides can then not only be stopped by adding large amounts of flue gases via the additional gas line 42, but even to a small extent Reduce nitrogen oxides that have already formed.
  • the temperature in the fluidized bed furnace 1 can be lowered by the addition of cool flue gases, and the rate of formation of nitrogen oxides can be further reduced in this way.
  • the fluidized bed furnace 1 is designed without cooled peripheral walls and without other heat exchanger heating surfaces. As a result, local temperature drops in the fluidized bed 11 are avoided, which could otherwise result in the loss of turnover in the fluidized bed 11.
  • the introduction of flue gas via the additional line 42 has the effect that the calorific value of the exhaust gas from the fluidized bed furnace 1, which is fed into the steam generator 2 via the exhaust line 56, is greatly reduced. This in turn leads to a lower firing temperature of these gases in the steam generator 2 and also reduces the nitrogen oxide formation there.
  • the coal dust burner 57 is in turn the prerequisite for the stronger admixing of smoke gases from the steam generator 2 to the exhaust gases from the fluidized bed furnace 1.
  • the shunt line 62 makes it possible to selectively add flue gas to the fluidized bed furnace 1 and to remove this in front of the flue gas desulfurization system 4 of the flue gas line 9 at a somewhat higher temperature or behind the flue gas desulfurization system 4 at a somewhat lower temperature.
  • the temperature in the fluidized bed furnace 1 can thus be regulated in addition to the measures already described.
  • the flame temperature of the pulverized coal burner 57 of the steam generator 2 can also be reduced by adding flue gas to the fresh air line 22 via the auxiliary line 63.
  • a further flue gas blower 34 is installed in the auxiliary line 63 branching off in front of the gas compressor 18.
  • the fluidized bed combustion 1 is carried out without cooled peripheral walls and heat exchanger heating surfaces, local temperature drops in the fluidized bed 11 are avoided, which at these low temperatures the risk of local hypothermia of the fluidized bed 11 with the result of extinguishing reduced.
  • the formation rate of nitrogen oxides in the fluidized bed furnace 1 is also additionally reduced by the fact that fresh air is supplied to the fluidized bed furnace 1 in a substoichiometric amount. This lack of oxygen also hinders nitrogen oxide formation.
  • the operating conditions of the steam generator 2 can be regulated within wide limits and the advantages of both individual firing systems are used to a greater extent to prevent the formation of nitrogen oxides on the primary side to suppress that it can meet the emission conditions even without a DENOX system connected downstream of the flue gas stream.

Description

  • Die Erfindung betrifft ein Verfahren zur Verbrennung von Kohle und ggf. einem Gemisch aus Kohle und organischen Substanzen, wie Hausmüll, Industriemüll oder ähnlichem, unter Verwendung einer Wirbelschichtfeuerung mit einer mittleren Verbrennungstemperatur von 800° C und einer Nachverbrennung von aus dem Wirbelbett ausgetragenem, unverbranntem Brennstoff sowie Feuerungsanlage zur Durchführung des Verfahrens.
  • Wirbelschichtfeuerungen zählen in zahlreichen Ausführungsformen für die verschiedensten Anwendungsfälle seit langem zum Stand der Technik. Die wesentlichen Vorteile sind darin zu sehen, daß im Gegensatz zu anderen Feuerungstypen auch geringwertige Brennstoffe mit hohem Ballastgehalt, wie z. B. Ballastkohle oder Aufbereitungsabgänge, die als Nebenprodukt bei der Steinkohleaufbereitung anfallen, oder auch sonstige organische Substanzen, wie insbesondere Hausmüll, Industriemüll und ähnlichem, in der unterschiedlichsten Zusammensetzung verbrannt werden können.
  • Ein Vorteil der Wirbelschichtfeuerung liegt in ihrer vergleichsweisen Umweltfreundlichkeit, da bei den verhältnismäßig niedrigen Verbrennungstemperaturen von ca. 800° C nahezu keine Stickoxide entstehen und andere Schadstoffe, wie z. B. Schwefeloxide, durch Zugabe geeigneter Adsorptionsmittel, wie z. B. Kalkstein, bereits weitgehend in der Wirbelschicht gebunden werden können. Darüber hinaus zeichnet sich die Wirbelschichtfeuerung durch eine homogene Temperaturverteilung im Wirbelbett aus, so daß insbesondere bei der Verbrennung von weniger homogenen, organische Substanzen enthaltenden Abfallstoffen, wie z. B. Hausmüll oder Industriemüll, ein guter Ausbrand gewährleistet ist.
  • Demgegenüber übersteigen die Schadstoffemissionen herkömmlicher Dampferzeugeranlagen mit einem kohlebefeuerten Dampferzeuger ohne Nachbehandlung der Rauchgase, d. h. ohne Sekundärmaßnahmen, in der Regel die vom Gesetzgeber vorgegebenen Grenzwerte. Die hierfür bekannten Sekundärmaßnahmen, wie z. B. Entstaubungsanlagen, Rauchgasentschwefelungsanlagen und DENOX-Katalysatoren, erhöhen jedoch die Investitions- und Betriebsmittelkosten in erheblichem Maße.
  • Es wird daher angestrebt, die Schadstoffemission durch sog. Primärmaßnahmen, die die Verbrennungsanlagen selbst betreffen, von vornherein zu vermindern, beispielsweise durch NOx-arme Brenner oder durch Einsatz von Wirbelschichtfeuerungen mit Wärmetauscherheizflächen.
  • Nachteilig ist jedoch, daß die Wärmetauscherflächen von Wirbelschichtfeuerungen erhöhter Erosion und Korrosion ausgesetzt sind. Gerade bei der Verbrennung von organische Substanzen enthaltenden Abfallstoffen, wie Hausmüll, Industriemüll und ähnlichem, sind der Wirbelschichtfeurung darüber hinaus Grenzen dadurch gesetzt, daß sich aufgrund der relativ niedrigen Verbrennungstemperaturen für den Fall, daß die zu verbrennenden Substanzen organische bzw. auch anorganische Chlorverbindungen, wie z. B. polychlorierte Biphenyle (PCB) enthalten, bei der Verbrennung hochtoxische Dioxine, wie z. B. polychlorierte Dibenzodioxine (PCDD) bzw. auch polychlorierte Dibenzofurane (PCDF), bilden können.
  • Aus der FR-A-2 525 734 ist eine Wirbelschichtfeuerung bekannt mit einer unmittelbar oberhalb des Wirbelbettes angeordneten Nachverbrennungszone, in die über Zündbrenner ein gasförmiger oder flüssiger, also ein gut zündender Zusatzbrennstoff ein gebracht wird, um eine vollständige Nachverbrennung von aus dem Wirbelbett ausgetragenem, unverbranntem Brennstoff zu erreichen. Abgesehen davon, daß eine zweite Verbrennungsstufe zusätzliche hohe Investitions- und Betriebskosten erfordert, werden in der bekannten Anlage keine für die Zerstörung von Dioxinen oder Furanen ausreichend hohe Temperaturen erreicht, da gerade nur soviel Zusatzbrennstoff eingebracht werden soll, wie zur vollständigen Nachverbrennung des mitgerissenen Primärbrennstoffes nötig ist. Ziel der bekannten Anlage ist denn auch nicht die Entgiftung der Rauchgase, sondern die Entlastung der Staubfilter und die vollständige Ausnutzung des Primärbrennstoffes, wobei ausdrücklich unterstellt wird, daß dadurch die höheren Kosten mehr als ausgeglichen werden.
  • Aus der US-A-3 884 193 ist eine Feuerungsanlage mit einer Wirbelschichtfeuerung und einem nachgeschalteten Dampferzeuger bekannt, bei der die Rauchgase der Wirbelschichtfeuerung oberhalb der Brennerebene den Rauchgasen des Dampferzeugers zugemischt und gemeinsam mit diesen abgezogen und entstaubt werden, wobei der abgetrennte Staub mit einem Restanteil an Verbrennlichem zur Nachverbrennung in die Wirbelschicht zurückgeführt wird. Als Brennstoffe sowohl für die Wirbelschichtfeuerung als auch den Dampferzeuger dienen vorzugsweise Holzabfälle, wobei der in der Wirbelschichtfeuerung eingesezte Brennstoff minderwertiger als der im Dampferzeuger eingesetzte Brennstoff sein soll.
  • Zur Verbrennung von Abfallstoffen wie Müll eignet sich auch diese Anlage nicht. Da die Rauchgase der Wirbelschichtfeuerung lediglich den Rauchgasen des Dampferzeugers beigemischt werden, werden sie nicht ausreichend hoch erhitzt, um die Zerstörung der beim Verbrennen von Müll entstehenden Schadstoffe zu gewährleisten.
  • In der DE-A-3 330 943 ist eine Anlage beschrieben, in der Kohle in einer aufgeladenen Wirbelschiht bei Luftüberschuß verbrannt wird und die Rauchgase in einem der Wirbelschichtfeuerung unmittelbar nachgeschalteten unbefeuerten Dampferzeuger abgekühlt werden. Anschließend werden die Rauchgase entstaubt, um sie in die Brennkammer einer Gasturbine einleiten zu können. In die Brennkammer wird auch ein Gasturbinenbrennstoff eingeführt und verbrannt, wobei die erforderliche Verbrennungsluft als Luftüberschuß bereits im Rauchgas der Wirbelschichtfeuerung mitgeführt wird.
  • Zur Verfeuerung eines Kohle-Müll-Gemisches in der Wirbelschicht ist auch diese bekannte Anlage nicht geeignet, da die bei der Verbrennung des Müllanteiles entstehenden Dioxine und Furane zumindest zu einem großen Teil mit dem Staub abgeschieden werden und somit überhaupt nicht "nacherhitzt" werden. Vielmehr ist nunmehr der abgeschiedene Staub mit diesen Schadstoffen kontaminiert und somit als Sondermüll anzusehen und muß entsprechend nachbehandelt bzw. entsorgt werden.
  • Die Wirbelschichtfeuerung muß zudem mit Luftüberschuß betrieben werden, da einerseits die Rauchgase einen zur Verbrennung des Gasturbinenbrennstoffes ausreichenden Luftüberschuß mitführen müssen, und andererseits sichergestellt werden muß, daß die Rauchgase keinerlei verbrennliche Rest-Feststoffe mehr mitführen, die zu Problemen in den Filtern, insbesondere im Elektrofilter, führen können.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anlage zu entwickeln, die sicherstellen, daß einerseits bei der Verbrennung von organische Substanzen enthaltenden Abfällen die Bildung von hochtoxischen Dioxinen verhindert wird, die andererseits aber auch, auch bei Verfeuerung nur von Kohle, gewährleisten, daß erst gar nicht größere Mengen an Stickoxiden entstehen, so daß nachgeschaltete DENOX-Anlagen zur Rauchgasbehandlung überflüssig werden.
  • Bei einem Verfahren der eingangs genannten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß die Rauchgase der Wirbelschichtfeuerung ohne Abkühlung und Reinigung zusammen mit dem mitgeführten Flugstaub unterhalb der Flammenzone in den Feuerraum eines mit Kohlenstaub befeuerten Dampferzeugers eines Kraftwerkes eingeleitet und in diesem auf bei Kohlenstaubfeuerungen übliche Temperaturen oberhalb 1 000° C erhitzt werden.
  • Das erfindungsgemäße Verfahren nutzt somit die in einem Kohlekraftwerk ohnehin vorhandene Infrastruktur unmittelbar ohne zusätzlich erforderliche Komponenten zur Behandlung der Rauchgase der Wirbelschicht und zwar
    • die Feuerung zur Nacherhitzung bzw. Nachverbrennung der Rauchgase sowie der Flugasche
    • die Wärmeübertragerflächen des Dampferzeugers zur Ankopplung auch von in der Wirbelschichtfeuerung erzeugter Wärme
    • die Komponenten zur Staubabscheidung und Rauchgasreinigung
  • Über den thermischen Effekt hinaus hat sich gezeigt, daß die Gesamtheit der Kohleinhaltstoffe einen reaktionshemmenden Einfluß auf die Dioxin- und Furanbildung selbst und auch eine katalytische Unterstützung bei der Zerstörung gebildeter Schadstoffe bewirkt. Bei der Verbrennung des Kohle-Müll-Gemisches wirken sich diese auf die Dioxin- und Furanbildung reaktionshemmenden Eigenschaften der Kohle bereits in der Wirbelschichtfeuerung aus. Anschließend werden dann die gesamten Rauchgase der Wirbelschichtfeuerung zusammen mit dem Flugstaub zwangsweise durch die Flammenzone der Steinkohlenstaubfeuerung des Dampferzeugers geführt, wo - neben der Erhitzung - durch die in der Kohlenstaubfeuerung und im Rauchgas zum Teil molekular bzw. kolloidal verteilten Spurenelemente und Schwermetalle die katalytische Wirkung der Steinkohle auf die Rückbildung der Dioxine und Furane optimal zur Wirkung kommt.
  • Durch die erfindungsgemäße Verfahrensweise gelingt es somit in besonders einfacher und wirtschaftlicher Weise, die Vorteile der Wirbelschichtfeuerung, wie z. B. niedrige Verbrennungstemperatur und damit verbunden geringere Stickoxidbildung - dies auch bei der Verfeuerung ausschließlich von Kohle auch in der Wirbelschicht -, zu nutzen und bei der Mitverbrennung von Müll entstehende giftige Schadstoffe zu zerstören.
  • Gemäß einem weiteren Merkmal der Erfindung kann darüber hinaus die Wirbelschichtfeuerung, je nach Art und Anteil der zu verbrennenden Abfälle, stöchiometrisch oder - insbesondere bei der Verfeuerung von Kohle allein - unterstöchiometrisch betrieben werden, wodurch gegenüber einer überstöchiometrisch betriebenen Wirbelschichtfeuerung eine wesentliche Minderung der Stickoxidbildung erreicht wird.
  • Die in der Wirbelschicht erzeugte Wärme wird mit dem Rauchgas ausgetragen und im Dampferzeuger zusammen mit der dort erzeugten Wärme an den Dampfkreislauf des Kraftwerkes abgegeben. Zur Regelung der Temeratur in der Wirbelschichtfeuerung auf ein konstantes Temperaturniveau von beispielsweise 800° C erweist es sich als zweckmäßig, einen Teil der abgekühlten und ggf. bereits gereinigten Rauchgase aus dem Dampferzeuger als Kühlmedium kontinuierlich in die Wirbelschichtfeuerung zurückzuleiten, wobei über das Verhältnis rückgeführtes Rauchgas zu Frischluft auch in sehr einfacher Weise in die Wirbelschichtfeuerung eine unterstöchiometrische Atmosphäre eingestellt werden kann, wenn zumindest ein Teil des rückgeführten Rauchgases der Frischluft beigemischt wird.
  • Eine erfindungsgemäße Feuerungsanlage mit einer Wirbelschichtfeuerung und einer Nachverbrennungszone zeichnet sich dadurch aus, daß der Wirbelschichtfeuerung als Nachverbrennungszone ein mit einer Temperatur oberhalb 1 000° C betriebener kohlenstaub befeuerter Dampferzeuger eines Kohlekraftwerkes nachgeschaltet ist, daß die Wirbelschichtfeuerung ohne Wärmeaustauschflächen ausgebildet ist und daß der Rauchgasabzug der Wirbelschichtfeuerung ohne Zwischenschaltung von Kühl- oder Reinigungsvorrichtungen unmittelbar unterhalb der Brenner mit dem Dampferzeuger verbunden ist.
  • Weitere Erläuterungen zu der Erfindung sind den in den Figuren 1 und 2 schematisch dargestellten Auführungsbeispielen zu entnehmen.
  • Es zeigen:
  • Fig. 1: Eine erfindungsgemäße Feuerungsanlage zur Verbrennung insbesondere von organische Substanzen enthaltenden Abfällen.
  • Fig. 2: Eine erfindungsgemäße Feuerungsanlage am Beispiel einer Dampferzeugeranlage.
  • Die Figur 1 zeigt schematisch eine Wirbelschichtfeuerung 1 mit einem Wirbelbett 11, in dem über Leitung 12 zugeführte organische Abfallstoffe, denen ggf. über Leitung 13 Kohle zugemischt werden kann, bei einer mittleren Verbrennungstemperatur von ca. 800° C verbrannt werden.
  • Der Wirbelschichtfeuerung 1 ist im gezeigten Beispiel der Figur 1 rauchgasseitig ein mit Kohlenstaub 21 - unter Zufuhr von Frischluft 22 - befeuerter Dampferzeuger 2 eines Kohlekraftwerkes, nachgeschaltet. Über Leitung 14 werden die Rauchgase der Wirbelschichtfeuerung 1 einschließlich mitgerissener Brennstoffund Ascheteilchen unterhalb der Feuerungszone 23 in den Dampferzeuger 2 eingeleitet. Beim anschließenden Durchströmen der Feuerungszone 23 des Dampferzeugers 2 werden die eingeleiteten Rauchgase der Wirbelschichtfeuerung 1 auf Temperaturen oberhalb 1 000° C erhitzt.
  • Dabei werden ggf. in der Wirbelschichtfeuerung 1 entstandene und im Rauchgas mitgeführte Schadstoffe wie Dioxine zerstört. Die vermischten Rauchgase der Wirbelschichtfeuerung 1 und des Dampferzeugers 2 werden, nachdem sie den wesentlichen Teil ihrer Wärme über einen Wärmetauscher 24 an das zu verdmpfende Wasser abgegeben haben, über Leitung 25 abgezogen, in einem Elektrofilter 3 entstaubt, in einem Wärmetauscher 5 ggf. weiter abgekühlt, in einer Rauchgaswäsche 4 gereinigt und zum überwiegenden Teil über Leitung 41 in die Atmosphäre abgeleitet.
  • Ein Teil der Rauchgase wird - entweder über Leitung 42 vor der Rauchgaswäsche 4 oder über Leitung 43 nach der Rauchgaswäsche 4 - abgezweigt und über Leitung 44 sowie ein Druckerhöhungsgebläse 26 zusammen mit über Leitung 27 angesaugter Frischluft in das Wirbelbett 11 zurückgeführt. Dabei kann über die Mengen des zugeführten Brennstoffes, der angesaugten Frischluft sowie des rezirkulierten Rauchgases die in der Wirbelschichtfeuerung 1 angestrebte Verbrennungstemperatur von ca. 800° C eingehalten werden, wobei es zur Begrenzung der Strömungsgeschwindigkeit im Wirbelbett 11 zweckmäßig sein kann, einen Teil der rückgeführten kalten Rauchgase ausschließlich zum Zwecke der Wärmeabfuhr aus der Wirbelschichtfeuerung 1 über Leitung 45 oberhalb des Wirbelbettes 11 in die Wirbelschichtfeuerung 1 einzuleiten.
  • Von der aus dem Dampferzeuger 2 über Leitung 28 abgezogenen Asche wird im gezeigten Beispiel die Grobasche abgetrennt und über Leitung 29, ggf. nach zusätzlicher Abkühlung, als Bettmaterial in das Wirbelbett 11 zurückgeführt. Infolge der Reibung im Wirbelbett 11 wird die Grobasche nach und nach zerkleinert und als Flugstaub zusammen mit den Rauchgasen in den Dampferzeuger 2 mitgerissen. Ebenso kann aus der im Elektrofilter 3 abgeschiedenen Flugasche der grobkörnige Anteil abgetrennt und über Leitungen 31 und 29 in das Wirbelbett 11 zurückgeführt werden. Die mittel- und feinkörnigen Anteile werden über Leitung 32 abgezogen.
  • Die Fig. 2 zeigt in schematischer Darstellung das Beispiel einer erfindungsgemäßen Dampferzeugeranlage. Diese besteht aus einem Dampferzeuger 2, der mit einer Kohlenstaubfeuerung 30 ausgestattet ist. Die Umfassungswände 40 des Dampferzeugers 2 sind als Flossenrohrwände ausgebildet und in an sich bekannter Weise zusammen mit den übrigen Wärmetauscherheizflächen 24 des Dampferzeugers 2 an einen hier nicht weiter dargestellten Wasserdampfkreislauf angeschlossen. An der den Dampferzeuger 2 verlassenden und zum Kamin 8 führenden Rauchgasleitung 9 sind ein Staubfilter 3, ein Saugzuggebläse 10 und eine Rauchgasentschwefelungsanlage 4 angeschlossen.
  • Der Dampferzeuger 2 ist gasseitig einer Wirbelschichtfeuerung 1 mit stationärem Wirbelbett 11 nachgeschaltet. Deren Düsenboden 15 ist an eine Gasleitung 16 angeschlossen, die mit einem Zweig an den die Rauchgasentschwefelungsanlage 4 verlassenden Teil der Rauchgasleitung 9 und mit einem anderen Zweig an eine Frischluftansaugöffnung 17 angeschlossen ist.
  • In dieser Gasleitung 16 ist ein Gasverdichter 18 zur Erzeugung der nötigen Druckdifferenz am Düsenboden 15 eingebaut. Sowohl in dem zur Rauchgasleitung 9 als auch zu dem zur Frischluftansaugöffnung 17 führenden Zweig der Gasleitung 16 ist je ein Regelventil 19, 20 eingebaut. Die Wirbelschichtfeuerung 1 ist darüber hinaus oberhalb des stationären Wirbelbettes 11 über eine zusätzliche Gasleitung 42 mit der Rauchgasleitung 9 verbunden. Diese zweigt unmittelbar hinter dem Saugzuggebläse 10 von der Rauchgasleitung 9 ab. Auch in dieser zusätzlichen Gasleitung ist ein Regelventil 6 eingebaut. Darüber hinaus ist die Wirbelschichtfeuerung 1 an eine Brennstoffversorgungsleitung 53 angeschlossen, die ihrerseits wiederum mit einem Kohlebunker 54 und einem Kalkbunker 55 verbunden ist.
  • Die Abgasleitung 56 der Wirbelschichtfeuerung 1 mündet am unteren Ende des Dampferzeugers 2. Oberhalb der Ebene der Mündungen der Abgasleitungen 56 der Wirbelschichtfeuerung 1 im Dampferzeuger 2 ist der Brenner 57 der Kohlenstaubfeuerung 30 in der Umfassungswand 40 des Dampferzeugers 2 eingebaut. Der Brenner 57 ist über eine Brennstoffleitung 58 an einen Kohlebunker 59 und über eine Frischluftleitung an ein Frischluftgebläse 33 angeschlossen.
  • Zusätzlich besteht die Möglichkeit, die beiden Gasleitungen 16, 42 über eine gestrichtelt angedeutete Shuntleitung 62 zu verbinden. Auch kann die Dampferzeugeranlage mit einer weiteren gestrichelt angedeuteten Hilfsleitung 63 ausgerüstet sein, die einerseits an die Gasleitung 16 unmittelbar vor dem Gasverdichter 18 anschließt und diese mit Frischluftleitung 22 des Dampferzeugers 2 verbindet. In diese Hilfsleitung 63 ist ein Rauchgasgebläse 34 eingebaut.
  • Beim Betrieb der Dampferzeugeranlage wird dem Kohlebunker 59 feingemahlene Kohle entnommen und zusammen mit der vom Frischluftgebläse 33 geförderten Frischluft dem Kohlenstaubbrenner 57 zugeführt. Die sich bei der Verbrennung bildenden heißen Rauchgase durchströmen den Dampferzeuger 2, heizen dabei dessen Umfassungswände 40 und die in den Dampferzeuger 2 hineinragenden Wärmetauscherheizflächen 24 auf und verlassen den Dampferzeuger 2 stark abgekühlt über die Rauchgasleitung 9. In dem an der Rauchgasleitung 9 angeschlossenen Staubfilter 3, im Ausführungsbeisiel ein Elektrofilter, werden die Staubpartikel zurückgehalten. Das den Staubfilter 3 verlassende entstaubte Rauchgas wird über das Saugzuggebläse 10 in die Rauchgasentschwefelungsanlage 4 gedrückt und dort von den verbliebenen Schwefelbestandteilen befreit und in den Kamin 8 entlassen.
  • Über die an die Rauchgasleitung 9 zwischen der Rauchgasentschwefelungsanlage 4 und dem Kamin 8 abzweigende Gasleitung 16 wird Rauchgas über den Gasverdichter 18 angesaugt und durch den Düsenboden 15 der Wirbelschichtfeuerung 1 gedrückt. Diesem Rauchgas ist zuvor über die Frischluftansaugöffnung 17 Frischluft beigemischt worden. Das erforderliche Mischungsverhältnis, d. h. der erforderliche Sauerstoffgehalt, läßt sich durch die sowohl an der Frischluftansaugöffnung 17 als auch in den zur Rauchgasleitung 9 führende Zweige der Gasleitung 16 eingebauten Regelventile 19, 20 einstellen. Über die Brennstoffversorgungsleitung 53 wird der Wirbelschichtfeuerung 1 feingemahlene Kohle sowie eine vorgegebene Menge Kalk zugeführt. Die in die Wirbelschichtfeuerung 1 eingeführten Kohlenpartikel oxidieren in dem Wirbelbett 11, wobei infolge der unterstöchiometrischen Sauerstoffzugabe überwiegend Kohlenmonoxid entsteht. Der im Brennstoff enthaltene Schwefel wird durch den der Kohle beigemischten Kalk noch im Wirbelbett 11 zu Gips gebunden und mit der Asche in hier nicht weiter dargestellter Weise abgeführt. Die zur Einbindung des Schwefels zuvor erforderliche Oxidation desselben begrenzt das Ausmaß der unterstöchiometrischen Sauerstoffbeigabe im Wirbelbett 11. Oberhalb des Wirbelbettes 11 läßt sich dann die Bildung von Stickoxiden durch Zugabe größerer Mengen von Rauchgasen über die zusätzliche Gasleitung 42 nicht nur stoppen, sondern sogar in geringfügigem Maße bereits gebildete Stickoxide reduzieren. Darüber hinaus kann die Temperatur in der Wirbelschichtfeuerung 1 durch die Zumischung kühler Rauchgase abgesenkt und auf diese Weise die Bildungsrate von Stickoxiden weiter herabgesetzt werden.
  • Die Wirbelschichtfeuerung 1 ist ohne gekühlte Umfassungswände und ohne sonstige Wärmetauscherheizflächen ausgeführt. Dadurch werden örtliche Temperatursenken im Wirbelbett 11 vermieden, von denen sonst ein Verlöschen des Umsatzes im Wirbelbett 11 ausgehen könnte. Schließlich führt die Einleitung von Rauchgas über die zusätzliche Leitung 42 dazu, daß der Heizwert des Abgases der Wirbelschichtfeuerung 1, das über die Abgasleitung 56 in den Dampferzeuger 2 eingespeist wird, stark herabgesetzt wird. Dies wiederum führt zu einer geringeren Brenntemperatur dieser Gase im Dampferzeuger 2 und setzt auch dort die Stickoxidbildung herab. Der Kohlenstaubbrenner 57 ist seinerseits wiederum die Voraussetzung für die stärkere Beimischung von Rauchgasen aus dem Dampferzeuger 2 zu den Abgasen der Wirbelschichtfeuerung 1.
  • Denn ohne die Flamme des Kohlenstaubbrenners 57 könnte sonst das über die Abgasleitung 56 zugeführte extrem heizwertarme Abgas aus der Wirbelschichtfeuerung 1 nicht zuverlässig im Dampferzeuger 2 brennen.
  • Die Shuntleitung 62 ermöglicht es, der Wirbelschichtfeuerung 1 wahlweise Rauchgas zuzumischen und dieses vor der Rauchgasentschwefelungsanlage 4 der Rauchgasleitung 9 mit einer etwas höheren Temperatur oder hinter der Rauchgasentschwefelungsanlage 4 mit einer etwas niederen Temperatur zu entnehmen. So läßt sich die Temperatur in der Wirbelschichtfeuerung 1 zusätzlich zu den bereits geschilderten Maßnahmen regulieren. Schließlich läßt sich auch die Flammtemperatur des Kohlenstaubbrenners 57 des Dampferzeugers 2 dadurch vermindern, daß der Frischluftleitung 22 Rauchgas über die Hilfsleitung 63 beigemischt wird. Hierzu ist in der vor dem Gasverdichter 18 abzweigenden Hilfsleitung 63 ein weiteres Rauchgasgebläse 34 eingebaut.
  • Es ist ein Vorteil dieser Dampferzeugeranlage, daß in der Wirbelschichtfeuerung 1 bereits ein Großteil des Schwefelgehaltes durch die Zugabe von Kalk in Gips eingebunden und mit der Asche der Wirbelschichtfeuerung 1 abgeführt werden kann. Hierdurch verringert sich der Aufwand für die Rauchgasentschwefelung. Wird dann für den Kohlenstaubbunker 59 noch eine andere, schwefelärmere Kohlensorte benutzt als für den Kohlenbunker 54, so nähert man sich auch ohne Rauchgasentschwefelungsanlage den diesbezüglichen gesetzlich vorgeschriebenen Grenzwerten. Desweiteren wird durch die unterstöchiometrische Verbrennung in der Wirbelschichtfeuerung 1 und der Einleitung abgekühlter Rauchgase über die zusätzliche Gasleitung 42 die Temperatur im Wirbelbett 11 auf Werte abgesenkt, bei denen sich kaum noch Stickoxide bilden können. Dadurch, daß die Wirbelschichtfeuerung 1 ohne gekühlte Umfassungswände und Wärmetauscherheizflächen ausgeführt ist, werden lokale Temperatursenken im Wirbelbett 11 vermieden, was bei diesen niedrigen Temperaturen die Gefahr einer örtlichen Unterkühlung des Wirbelbettes 11 mit der Folge des Verlöschens vermindert. Darüber hinaus wird die Bildungsrate der Stickoxide in der Wirbelschichtfeuerung 1 auch dadurch zusätzlich verringert, daß der Wirbelschichtfeuerung 1 Frischluft in unterstöchiometrischer Menge zugeführt wird. Dieser Sauerstoffmangel behindert die Stickoxidbildung zusätzlich. Die die Wirbelschichtfeuerung 1 verlassenden Gase, die bei der Verbrennung nur von Kohle im wesentlichen aus Kohlenmonoxid bestehen, denen über eine andere Gasleitung zur Heizwertherabsetzung weiteres Rauchgas beigemischt ist, verbrennen in der sauerstoffhaltigen Atmosphäre des Dampferzeugers 2 mit relativ niedriger Temperatur, so daß auch hier im Dampferzeuger 2 kaum Stickoxide entstehen. Schließlich wird auch die Flamme des Kohlenstaubbrenners 57 des Dampferzeugers 2, die zugleich auch die Abgase der Wirbelschichtfeuerung 1 verbrennt, selber durch die Zumischung von Rauchgasen aus der Hilfsleitung 63 gekühlt, so daß auch hier kaum Stickoxide entstehen.
  • Durch die Kopplung des Dampferzeugers 2 mit der Wirbelschichtfeuerung 1 und die Vorschaltung der einzelnen zur Wirbelschichtfeuerung 1 führenden Gasleitungen 16, 42 sind die Betriebsbedingungen des Dampferzeugers 2 in weiten Grenzen regelbar und werden die Vorteile beider Einzelfeuerungssysteme verstärkt genutzt, um die Bildung von Stickoxiden primärseitig so stark zu unterdrücken, daß sie auch ohne eine dem Rauchgasstrom nachgeschaltete DENOX-Anlage den Imissionsbedingungen genügen kann.

Claims (5)

1. Verfahren zur Verbrennung von kohle und ggf. einem Gemisch aus kohle und organischen Substanzen, wie Hausmüll, Industriemüll und ähnlichem, unter Verwendung einer Wirbelschichtfeuerung mit einer mittleren Verbrennungstemperatur von 800° C und einer Nachverbrennung von aus dem Wirbelbett ausgetragenem, unverbranntem Brennstoff, wobei die Rauchgase der Wirbelschichtfeuerung ohne Abkühlung und Reinigung zusammen mit dem mitgeführten Flugstaub unterhalb der Flammenzone in den Feuerraum eines mit kohlenstaub befeuerten Dampferzeugers eines kraftwerkes eingeleitet und in diesem auf bei kohlenstaubfeuerungen übliche Temperaturen oberhalb 1 000° C erhitzt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Wirbelschichtfeuerung bei unterstöchiometrisch bis stöchiometrisch eingestellter Atmosphäre betrieben wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil der den Dampferzeuger verlassenden Rauchgase nach erfolgter Abkühlung und ggf. Reinigung kontinuierlich in die Wirbelschichtfeuerung zurückgeführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß rückgeführtes abgekühltes Rauchgas der zu dem Düsenboden der Wirbelschichtfeuerung strömenden Verbrennungsluft beigemischt wird.
5. Feuerungsanlage zur Verbrennung von kohle und ggf. einem Gemisch aus kohle und organischen Stubstanzen zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, mit einer Wirbelbettfeuerung (1) mit einer mittleren Verbrennungstemperatur von 800° C und einer Nachverbrennungszone, wobei der Wirbelschichtfeuerung (1) als Nachverbrennungszone ein mit einer Temperatur oberhalb 1 000° C betriebener kohlenstaubbefeuerter Dampferzeuger (2) eines Kohlekraftwerkes nachgeschaltet ist, wobei die Wirbelschichtfeuerung (1) ohne Wärmeaustauschflächen ausgebildet ist und wobei der Rauchgasabzug (56) der Wirbelschichtfeuerung (1) ohne Zwischenschaltung von Kühl- oder Reinigungsvorrichtungen unmittelbar unterhalb der Brenner (57) mit dem Dampferzeuger verbunden ist.
EP88901248A 1987-01-22 1988-01-21 Verbrennung von kohle mit einer wirbelschichtfeuerung Expired - Lifetime EP0302910B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19873701798 DE3701798A1 (de) 1987-01-22 1987-01-22 Dampferzeugeranlage mit einem kohlebefeuerten dampferzeuger
DE3701798 1987-01-22
DE3733831 1987-10-07
DE19873733831 DE3733831A1 (de) 1987-10-07 1987-10-07 Verfahren zur verbrennung von organischen substanzen, wie hausmuell, industriemuell und aehnlichem, unter verwendung einer wirbelschichtfeuerung

Publications (2)

Publication Number Publication Date
EP0302910A1 EP0302910A1 (de) 1989-02-15
EP0302910B1 true EP0302910B1 (de) 1992-07-15

Family

ID=25851774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88901248A Expired - Lifetime EP0302910B1 (de) 1987-01-22 1988-01-21 Verbrennung von kohle mit einer wirbelschichtfeuerung

Country Status (5)

Country Link
US (1) US4932335A (de)
EP (1) EP0302910B1 (de)
DE (1) DE3872787D1 (de)
DK (1) DK165762C (de)
WO (1) WO1988005494A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11919201B2 (en) 2018-12-19 2024-03-05 Next Generation Recyclingmaschinen Gmbh Processing plant and method for processing plastics material for the recycling thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102959A1 (de) * 1991-02-01 1992-08-13 Metallgesellschaft Ag Verfahren zum verbrennen von kohle in der zirkulierenden wirbelschicht
NL9401269A (nl) * 1994-08-02 1996-03-01 Kema Nv Werkwijze en verbrander voor het uitvoeren van met zuurstof verrijkte verbranding.
US5507238A (en) * 1994-09-23 1996-04-16 Knowles; Bruce M. Reduction of air toxics in coal combustion gas system and method
CH689312A5 (de) * 1995-01-10 1999-02-15 Von Roll Umwelttechnik Ag Verfahren zum Verbrennen von Abfallmaterial unter Gewinnung von thermischer Energie.
US5626088A (en) * 1995-11-28 1997-05-06 Foster Wheeler Energia Oy Method and apparatus for utilizing biofuel or waste material in energy production
WO1998003250A1 (de) * 1996-07-18 1998-01-29 Hoelter Heinz Verfahren zur behandlung der in einer verbrennungsanlage für organische abfälle anfallenden abgase
ES2156095B1 (es) * 1999-12-07 2002-03-01 Gil Alfredo Peris Depurador de dioxinas y toxicos organicos volatiles de alta resistencia termica.
US6883444B2 (en) * 2001-04-23 2005-04-26 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
CN100396993C (zh) * 2005-05-27 2008-06-25 中国科学院工程热物理研究所 一种为煤粉锅炉的煤粉直燃提供高温空气的方法
DE102005036792A1 (de) * 2005-08-02 2007-02-08 Ecoenergy Gesellschaft Für Energie- Und Umwelttechnik Mbh Verfahren und Vorrichtung zur Erzeugung von überhitztem Dampf
CN101158468B (zh) * 2007-09-30 2011-08-31 中国科学院工程热物理研究所 煤粉高温预热方法
CN102276130B (zh) * 2011-05-31 2013-06-05 陈海渊 污泥资源化处理装置及其对污泥进行处理的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884193A (en) * 1974-03-22 1975-05-20 Foster Wheeler Corp Vapor generating system and method
DE3066241D1 (en) * 1980-04-16 1984-03-01 Bbc Brown Boveri & Cie Steam power station with pressure-fired fluidised bed steam generator
DE3136480A1 (de) * 1981-09-15 1983-06-30 Steag Ag, 4300 Essen Verfahren und anordnung zum wiederaufheizen von nassentschwefelten rauchgasen
US4355601A (en) * 1981-09-25 1982-10-26 Conoco Inc. Recirculating flue gas fluidized bed heater
CH656936A5 (de) * 1982-04-26 1986-07-31 Sulzer Ag Dampferzeuger mit wirbelschichtfeuerung.
US4628833A (en) * 1983-04-11 1986-12-16 The Garrett Corporation Fluid bed hog fuel dryer
DE3330943A1 (de) * 1983-08-27 1985-03-07 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Kombiniertes gasturbinen-/dampfturbinenkraftwerk mit aufgeladenem wirbelschicht-dampferzeuger
JPH0229372Y2 (de) * 1984-09-26 1990-08-07
US4676177A (en) * 1985-10-09 1987-06-30 A. Ahlstrom Corporation Method of generating energy from low-grade alkaline fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11919201B2 (en) 2018-12-19 2024-03-05 Next Generation Recyclingmaschinen Gmbh Processing plant and method for processing plastics material for the recycling thereof

Also Published As

Publication number Publication date
DE3872787D1 (de) 1992-08-20
DK524388A (da) 1988-11-18
DK165762B (da) 1993-01-11
US4932335A (en) 1990-06-12
DK524388D0 (da) 1988-09-21
DK165762C (da) 1993-05-24
EP0302910A1 (de) 1989-02-15
WO1988005494A1 (en) 1988-07-28

Similar Documents

Publication Publication Date Title
EP2344810B1 (de) Verfahren und vorrichtung zur reduzierung von schadstoffemissionen in verbrennungsanlagen
EP0694147B1 (de) Verfahren zur reduzierung der emissionen bei der verbrennung von abfällen
DE2615369C3 (de) Verfahren zur Rauchgaskonditionierung in Abfallverbrennungsanlagen mit Wärmeverwertung, insbesondere für kommunalen und industriellen Müll, und Vorrichtung zur Durchführung des Verfahrens
EP0302910B1 (de) Verbrennung von kohle mit einer wirbelschichtfeuerung
EP0461305B1 (de) Verfahren zur Reinigung der Abgase von Anlagen zur Herstellung von Zementklinker
EP0183961A2 (de) Verfahren und Anlage zum Verbrennen von Abfällen wie Haus-, Industrie- oder Sondermüll
DE3915992A1 (de) Verfahren zur reduktion von stickstoffoxiden
EP0132584B1 (de) Verfahren und Anlage zum Vermindern der Schadstoffemissionen in Rauchgasen von Feuerungsanlagen
DE4308388A1 (de) Verfahren zur Reduzierung des Schadstoffgehaltes im Rohgas von Verbrennungsanlagen
DE3733831C2 (de)
DE3503603A1 (de) Feuerungsanlage
DE3329342C2 (de) Verfahren zur Behandlung von Rauchgasen aus einer Dampferzeugungsanlage
EP0496856A1 (de) Verfahren und vorrichtung zur vollständigen trockenen entschwefelung von so 2?- und staubhaltigen verbrennungsabgasen.
DE3324411C2 (de)
WO2005068908A1 (de) Verfahren zur energetischen nutzung von ersatzbrennstoffen, pyrolyseanlage für ersatzbrennstoffe sowie kombination aus pyrolyseanlage und feuerungsanlage zur verfeuerung von pyrolysegasen
DE4209166A1 (de) Verfahren und einrichtung zur katalytischen entfernung von schadstoffen aus rauchgas
DE3701875A1 (de) Kombiniertes verfahren zur erzeugung von koks und elektrischer energie
DD267301A5 (de) Verfahren und feuerungsanlage zur verbrennung von kohle und/oder organische substanzen enthaltende abfallstoffe
EP0204888A1 (de) Verfahren zum Verbrennen von Abfallstoffen, insbesondere von Müll und Schlamm
EP0381946A1 (de) Müllverbrennungsanlage und Verfahren zu Ihrem Betrieb
EP0363812A2 (de) Verfahren und Anlage zur Dampferzeugung, insbesondere in Heizkraftwerken
DE19925011C2 (de) Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen
DE3317507C2 (de) Verfahren zur Verminderung des NO↓X↓-Gehaltes in Rauchgasen einer Schmelzfeuerung
EP0890788A1 (de) Verfahren und Vorrichtung zur Einäscherung eines leblosen, menschlichen Körpers
DE3900977A1 (de) Verfahren zum verbrennen von brennstoffen sowie verbrennungsanlage zum durchfuehren dieses verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL SE

17Q First examination report despatched

Effective date: 19890630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: SAARBERGWERKE AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3872787

Country of ref document: DE

Date of ref document: 19920820

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

Effective date: 19930414

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BABCOCK AG.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19940826

EAL Se: european patent in force in sweden

Ref document number: 88901248.0

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070109

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070111

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070613

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *SAARBERGWERKE A.G.

Effective date: 20080121

Owner name: *SIEMENS A.G.

Effective date: 20080121

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080121

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080120