WO1999058713A2 - Verfahren zur detektion von mikroorganismen in produkten - Google Patents

Verfahren zur detektion von mikroorganismen in produkten Download PDF

Info

Publication number
WO1999058713A2
WO1999058713A2 PCT/DE1999/001471 DE9901471W WO9958713A2 WO 1999058713 A2 WO1999058713 A2 WO 1999058713A2 DE 9901471 W DE9901471 W DE 9901471W WO 9958713 A2 WO9958713 A2 WO 9958713A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
probe
primer
pcr
dna
Prior art date
Application number
PCT/DE1999/001471
Other languages
English (en)
French (fr)
Other versions
WO1999058713A3 (de
Inventor
Klaus-Peter Gerbling
Frank-Roman Lauter
Lutz Grohmann
Original Assignee
Bioinside Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioinside Gmbh filed Critical Bioinside Gmbh
Priority to DE19980848T priority Critical patent/DE19980848D2/de
Priority to JP2000548504A priority patent/JP2002514439A/ja
Priority to EP99934505A priority patent/EP1082465A2/de
Priority to AU50260/99A priority patent/AU5026099A/en
Publication of WO1999058713A2 publication Critical patent/WO1999058713A2/de
Publication of WO1999058713A3 publication Critical patent/WO1999058713A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the invention comprises methods for the detection of microbial contamination of non-sterile products, preferably according to GMP guidelines. Furthermore, the invention comprises a test kit for the detection of microbial contamination and the use of primer sequences and probe sequences for the determination of microorganisms in products, in particular in pharmaceuticals and cosmetics including their starting materials and intermediates.
  • the method is used for the quantitative identification of microorganisms by detection of specifically amplified DNA sequences and is to be used as a replacement for corresponding methods in the European Pharmacopoeia, Section 2.6.12-13.1997 (EP) and other national monographs such as USP.
  • the requirements include two groups: (i) the count of the total viable aerobic bacteria and fungi (group total bacterial count) and (ii) the absence proof of certain microorganisms: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus faecalis, Salmonella and Enterobactriaceae (group lead germs) .
  • test methods are poor and can only be automated to a small extent. • Due to the nutrient media properties only well growing ones can
  • Microorganisms but not, as required, all aerobic microorganisms are detected.
  • the storage costs are high for media and incubators.
  • Waste is high. • The fertility check of all media batches is very complex, especially because of the short shelf life of finished media.
  • This method is unsuitable for the detection of microorganisms which, like the bacterial genus Sarcina, do not form individual colonies.
  • the EP describes microbiological techniques which contain the growth of the respective microorganisms in certain selective nutrient media or on agar plates for rough differentiation. Subsequently, specific metabolic reactions of the respective microorganisms were used for fine differentiation. Appropriate detection systems, such as APILAB, or VITEK, are common.
  • Microbiological rapid tests based on a vital evidence by ATP determination e.g. Millipore company
  • ATP determination e.g. Millipore company
  • the existing PCR applications are generally susceptible to contamination from PCR products, are not very reproducible and difficult to quantify. In addition, they are time-consuming, since the alternative PCR methods generally require several hybridization steps to detect the PCR product.
  • nucleic acid to be amplified which is single-stranded or made single-stranded, is added with a molar excess of two oligonucleotide primers
  • primers are selected such that an extension product of the relevant primer complementary to the nucleic acid strand is synthesized for each strand and that an extension product of a
  • Primer when separated from its complement, as a template for the synthesis of a
  • Extension product of the other primer can serve. After disconnecting the
  • Extension products from the matrices on which they were synthesized can the extension products formed are used for renewed reaction with the primers.
  • the cyclic repetition of the steps results in a theoretically exponential increase in a nucleic acid sequence that lies within the outer hybridization positions of the primers.
  • a more refined method is the method according to Gelfand et al. US Pat. No. 5,210,015.
  • An oligonucleotide probe construction is used which hybridizes with a part of the nucleic acid strand of the template, the oligonucleotide probe being selected so that it fits between the primer pairs (forward and backward primer) for the amplification of the diagnostic target sequence of the respective microorganism.
  • the probe construction and synthesis is based on TaqMan technology (Holland et al. 1993 and Lee et al. 1993, Nucl. Acids. Res, Vol 21, p 3761 - 3766).
  • the chemical basis of this new method is the 5'-nuclease PCR assay, first published in 1991 (Holland et al. 1991, PNAS USA 88: 7276).
  • the core of this method is the 5'-nucleotide activity of Taq polymerase and the use of fluorescence-labeled, sequence-specific gene probes. These gene probes are labeled with a fluorescein derivative (reporter) at the 5 'end and with a rhodamine derivative (quencher) at the 3' end. Due to the spatial proximity of the two dyes, the fluorescent radiation of the reporter is absorbed by the quencher dye.
  • the reporter and quencher are spatially separated from one another by the 5'-nuclease activity of the Taq polymerase.
  • the reporter's fluorescence radiation is no longer quenched and can be measured and quantified directly.
  • the more probes that are cleaved the higher the fluorescence emission of the reporter molecules.
  • the amount of emission released is proportional to the amount of the resulting PCR products and this in turn is proportional to the number of copies of the genes used in the PCR.
  • the number of organisms present in the analysis sample can be calculated from the gene copy number.
  • the method is extremely sensitive since gene amplification and signal amplification take place during the PCR reaction. Since various reporter dyes are available on the market, internal controls and standards can be carried out with every reaction. In addition, a sample can be examined for the presence of several genes / organisms at the same time. There are currently three different reporter dyes available on the market. Task and solution
  • the main focus of the present invention is the development of detection methods for microorganisms, which experience has shown to occur frequently as product contaminants. These are especially in relation to the group of the leading germs: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonelia species, in relation to the group of total germ count: the bacteria and the Enterobacteriaceae.
  • the object of the present invention is to provide reagents, methods and the use of substances which make the detection of microbial contaminants of non-sterile products simpler, more precise and more efficient, for example in accordance with EP requirements. It should contain fewer components than, for example, according to EP requirements. Another task is to provide very sensitive and quantitative evidence for the required microorganisms.
  • test kit for the detection of microbial contamination of non-sterile products in particular according to GMP guidelines, also cosmetics and food, comprising at least one DNA fragment which comprises the following SEQ ID and spacers:
  • the SEQ ID [(SEQ ID forward primer); (SEQ ID probe); and (SEQ ID reverse primer)] also comprise variants in which one, two or three nucleotides are substituted, deleted and / or inserted, the variant having essentially the same function as the sequence of the SEQ ID [(SEQ ID Forward- Primer); (SEQ ID probe); and (SEQ ID reverse primer)], the function of binding to DNA for probes and the function of binding to DNA for primers and the provision of a 3 'extendable end for the DNA polymerase; the spacers comprising 0-40 nucleotides,
  • SEQ. ID. NO. 8 as reverse primer (ii) for Pseudomonas aeruginosa
  • SEQ. ID. NO. 9 as a forward primer
  • SEQ. ID. NO. 10 as a probe
  • SEQ. ID. NO. 12 as a forward primer
  • SEQ. ID. NO. 13 as a probe and SEQ. ID. NO. 14 as a reverse primer
  • SEQ. ID. NO. 15 as a forward primer
  • SEQ. ID. NO. 18 as a forward primer
  • SEQ. ID. NO. 20 as reverse primer (vi) for Enterobacteriaceae SEQ. ID. NO. 44 as a forward primer
  • SEQ. ID. NO. 45 as reverse primer (vii) for Enterobacteriaceae (16S rRNA)
  • SEQ. ID. NO. 47 as a forward primer
  • SEQ. ID. NO. 48 as a probe
  • SEQ. ID. NO. 49 as a reverse primer or further all the sequences which are complementary to the previous sequences SEQ ID NO 6 to 49.
  • a combination of two, more preferably three, more preferably four and most preferably five, six or seven total sequences is advantageous.
  • a kit with PCR reagents is preferred.
  • a kit with PCR reagents and TaqMan is more preferred. All the sequences mentioned are listed in Example 24. For a successful TaqMan - PCR, the following requirements are placed on the primer and probe sequences (example 24):
  • Probe sequence must be between primer sequences on the DNA to be amplified.
  • Probe should be between 18-30 bases long if necessary. • The probe should have a GC content of 40 - 60%.
  • the Tm of the probe (melting point) should be 5 - 10 C ° above the Tm of the
  • the same base should never follow more than 3 times in a row.
  • Probe sequences (a - c) determined by the following parameters: (i) High denaturation temperature in the first PCR cycles
  • the nucleic acids that can be used to use the amphication method and detection method for the above-mentioned target organisms are understood to mean, in particular, genomic nucleic acids.
  • Genomic nucleic acid sequences also contain, among other things, the genes or gene fragments that are suitable for a specific type, type, family, or type of microorganism -Department are characteristic.
  • the nucleic acid sequences can be used in a PCR test as diagnostic target sequences for a specific detection of this type, genus, family or department
  • a primer is a molecule that has a number of nucleotides on a polymeric backbone.
  • the sequence of the nucleobases is chosen such that they are more than 80% complementary to successive bases of the nucleotide sequence to be amplified.
  • This molecule has at least one extendable end. Extension is understood in particular to mean the enzyme-catalyzed coupling of base units using mononucleoside triphosphate units or oligonucleotides.
  • a DNA polymerase is preferably used as the enzyme.
  • the nucleic acid which contains nucleotide sequences to be amplified, serves as a template for the specific incorporation of bases. The sequence of the template determines the sequence of the bases attached to the primer.
  • Molecules with 15-30 bases are used as primers.
  • the 3 'end is preferably used as the extendable end.
  • Primers which are completely homologous to a partial sequence of the target nucleotide sequences SEQ are particularly preferred. ID. NO.1-5 are (Example 24).
  • Probe definition (including variations): A probe is understood to mean a molecule that, like the primers, has a number of nucleotides on a polymeric backbone.
  • a probe construction method according to US Pat. No. 5,210,015, which has already been described above, is used.
  • the nucleic acid probes of the present invention are 18-30 nucleobases in length. Specific sequences are obtained by selecting an at least 18 base long sequence from the respective matrices (SEQ. ID. NO. 1-5, Example 24). According to the invention, probes are therefore preferred which are at least 90% homologous to part of the respective matrices (SEQ. ID. NO. 1-5). Probes with strict homology are particularly preferred.
  • the invention relates to nucleotide sequences which are at least 80%, preferably 90%, most preferably 95% complementary to the target nucleotide sequences SEQ. ID. NO. 1 to 5 and 46 and 48.
  • the homology results from the number of identical purine or pyrimidine bases in a given nucleotide sequence.
  • Hybridization occurs when the following process steps are present, preferably the following conditions.
  • the primers and probes according to the invention bind to complementary bases, preferably to complementary nucleotide sequences in the genetic material of the target organisms the group total bacterial count and complementary nucleotide sequences in the genetic material of the target organisms from the group lead germs
  • nucleic acid sequences that are specific for other microorganisms
  • microorganism This term primarily includes organisms that can cause diseases in human and animal bodies and are only perceptible under the microscope.They are usually single-celled or occur in loose groups of cells of the same type and are called yours because of their simple cellular organization morphological and cultural-biochemical characteristics, as well as their chemical composition, antigen properties and genetic characteristics are well documented in the literature, eg in microbiological diagnostics, Burkhardt, 1992
  • PCR reagents are substances that are necessary for a PCR reaction with maximum sensitivity and specificity, in particular DNA
  • Mg 2+ ions such as MgCl2
  • potassium salts such as KCI
  • additives such as
  • Glycenn or DMSO or formamide primers and probes, deoxynucleotides, buffer substance such as Tris-Base and optional additives in the form of passive fluorescence reference compounds such as the fluorescent dye derivative ROX and e.g. 7-Deaza-2-deoxy-GTP as Replacement of dGTP
  • complementary Complementary structures correspond to or complement each other.
  • the polynucleotide strands of the natural DNA double helix are complementary. They form two complementary strands based on the specific base pairing (AT or GC). This means that the nucleotide sequence is in the other strand clearly defined, not identical, but complementary
  • cDNA has a structure complementary to an mRNA Complementary structure in which (aa) the sequence of the forward primer and the sequence of the probe or (bb) the sequence of the probe and the reverse primer of a previously mentioned group (i) to (vii) both complementary to the defined sequences are. More preferred is a complementary structure in which the sequence of the forward primer, the sequence of the probe and the reverse primer of a previously mentioned group (i) to (vii) are all three complementary to the defined sequences.
  • the invention further comprises a method for the detection of microorganisms in products, in particular pharmaceuticals or cosmetics, which method comprises the following steps: a) insertion of primers and fluorescence-labeled probes with the corresponding sequences and their variations, (i) for Staphylococus aureus
  • SEQ. ID. NO. 6 as a forward primer
  • SEQ. ID. NO. 7 as a probe
  • SEQ. ID. NO. 8 as reverse primer
  • ii for Pseudomonas aeruginosa
  • SEQ. ID. NO. 10 as a probe and SEQ. ID. NO. 1 1 as reverse primer (iii) for Escherichia coli
  • SEQ. ID. NO. 12 as a forward primer
  • SEQ. ID. NO. 13 as a probe
  • SEQ. ID. NO. 14 as reverse primer (iv) for Salmonella ssp.
  • SEQ. ID. NO. 15 as a forward primer
  • SEQ. ID. NO. 16 as a probe
  • SEQ. ID. NO. 17 as a reverse primer
  • SEQ. ID. NO. 18 as a forward primer
  • SEQ. ID. NO. 19 as a probe
  • SEQ. ID. NO. 20 as reverse primer
  • SEQ. ID. NO. 44 as a forward primer
  • SEQ. ID. NO. 46 as a probe
  • SEQ. ID. NO. 45 as a reverse primer (vii) for Enterobacteriaceae (16S rRNA)
  • SEQ. ID. NO. 49 as reverse primer or further all the sequences which are complementary to the previous sequences SEQ ID NO 6 to 49, b) amplification of the DNA with PCR; and c) irradiation with specific wavelengths that excite the fluorescent dye, d) measurement and quantification of the emission of the excited fluorescent dye.
  • the invention comprises a method according to the invention, the production of the probes being based on the TaqMan detection technology.
  • the core of the invention is the combination of certain selected probe / primer pairs which can detect microorganisms satisfactorily.
  • the optimization of the probes / primer pairs and the PCR reaction conditions for sensitivity and suitability for GMP-compliant product testing according to EP, 2.6.12-13: Microbial contamination of products not required to comply with the test for sterility (1997) is also essential.
  • a PCR technology according to US Pat. Nos. 4,800,159 and 4,683,195 is used.
  • TaqMan technology is used, which is described in US Pat. No. 5,210,015, which was issued on May 11, 1993 as a patent.
  • the method according to the invention or the test kit according to the invention is a special embodiment of the fluorescence PCR technology (TaqMan) for the above-mentioned target microorganisms.
  • the methods according to the invention and the test kits are in many respects far superior to the analytical methods prescribed in the EP (no prescribed method is currently required for cosmetics) and should completely replace them after the method has been validated with the respective test product.
  • the possibility of using other analytical methods is explicitly permitted in the EP (General Notices) if they produce the same results as the prescribed methods.
  • the method according to the invention has the following advantages:
  • (A) Kit and method for the detection of microorganisms of the group total bacterial count For the first time, all contaminating bacteria, the sequence of which is described in the NIH database, USA, status 11.1997, can be determined analytically using this kit and method without prior cultivation. Living and non-reproductive bacteria are detected quantitatively and very precisely with a sensitivity of 1-3 bacteria in the test product. The consequence of the application is a significantly increased product safety for the consumer, because:
  • Non-reproducible microorganisms that contain toxins that are difficult to detect can also be detected, • Contaminating DNA of bacterial origin, the absence of which must currently be shown in biologicals and products from rDNA technology (EP, 1997 and USP 1995) in all Test products can be proven easily and efficiently.
  • there are no special safety requirements for the application since no components of the kit are subject to a hazardous substances regulation.
  • the application has economic advantages for consumers and manufacturers, since the previous methods are several days more time-consuming and often represent the time-determining step in the release analysis. Rapid results on the microbiological safety of a biologically susceptible test product lead to lower costs in development and production, e.g. lower storage costs or faster response to variable market inquiries and thus overall to lower the production costs, which result in cheaper products.
  • Example 2 Detection of Staphylococcus aureus The detection of Sureus was carried out by the species-specific amplification according to the invention of cap-8 gene sequences (SEQ ID NO 1, see Example 24).
  • the cap-8 gene cluster encodes proteins which are involved in the biosynthesis of the capsule of Sureus
  • the capsule envelops the surface of these bacteria and represents a protective mechanism against the defense mechanisms of the host organisms.
  • the molecular composition of the capsule is specific for S aureus and represents, so to speak, a molecular fingerprint of this staphylococcal species
  • the (open reading frame O) ORF-0 of the cap -8 gene cluster is conserved in the different serotypes of S aureus (Sau and Lee 1996, J Bactenol 178, 2118-2126).
  • the DNA sequences from the ORF-0 of the cap-8 gene cluster (SEQ ID NO 1) were used as diagnostic DNA - Sequences selected for the synthesis of species-specific DNA panners and probes
  • FAM fluorescence derivative
  • TAMRA 6-carboxytetramethylrhodamine
  • Example 3 PCR conditions for the detection of Staphylococcus aureus After variation of primer and probe concentration and MgCl2 concentration, the following conditions were found to be optimal:
  • PE ABD model 7700 or model LS50B All components were purchased from PE Applied Biosystems, Rothstadt. Production of the TaqMan-PCR reaction mixtures, implementation of the PCR reactions and operation of the PCR heating blocks or the fluorescence detector (PE ABD model 7700 or model LS50B) was carried out according to the instructions of the device manufacturer (User's Manual, ABI Prism 7700 Sequence Detection System, PE Applied Biosystems 1997, or Users Manual, PE ABI LS50 B).
  • PCR reactions are carried out in the PCR heating block of the ABI Sequence Detector 7700. PCR heating blocks with comparable heating and
  • Heat transfer properties such as. B. the PE ABI devices model 7200, 9700, 9600 and
  • the PCR cycle profile is as follows:
  • genomic DNA was isolated from various organisms and used in the PCR test (Fig. 1, Sambrock et al. 1993). The resulting PCR products were analyzed ectrophoretically. The PCR products were 213 base pairs in size. Control sequencing of the PCR products verified that it was cap8-0 DNA (not shown).
  • the DNA (10 ng per lane, 2-14) of all S. aureus strains used (lane 2-5) was detected by the cap8-0 primers (# 15297 and # 15485). In contrast, the DNA of a closely related Staphylococcus species, S. epidermidis (Lane 6) and that of other bacterial genera (Lane 7-11) were not detected. Fungus, fish and human DNA (Lane 12-14) were used as controls and gave no detection signal. NTC ( no template control) is the water control in which no DNA was used.
  • the selectivity of the diagnostic PCR was performed as a TaqMan fluorescence test using the above-mentioned primers and
  • Ct value The hydrolysis of the fluorescent probe that takes place during TaqMan-PCR leads to an increase in reporter fluorescence radiation from one PCR cycle to the next. The number of cycles at which the reporter fluorescence radiation over the
  • NTC Background radiation
  • Ct Background radiation
  • NTC Background radiation
  • Ct threshold value cycle number Both the amount of reporter radiation released and the “threshold cycle” (Ct threshold value cycle number) are proportional to the amount of PCR being generated Products and thus the amount of gene copies used (bacterial count). The more gene copies are used, the lower the resulting Ct value. In a PCR system with 100% efficiency, the Ct value decreases by one cycle with every doubling of the starting gene copy number. In the case of a PCR reaction, e.g. 40 cycles, and no PCR product is produced, the Ct value by definition
  • DSM 1128 (ATCC 9027) 40 DSM 3227 (ATCC 19429) 40 DSM 50071 (ATCC 10145) 40 Salmonella typhimurium DSM 5569 (ATCC 1331 1) 40
  • DSM 2981 (ATCC 14506) 40 (reclassified DSM 2570 (ATCC 29212) 40 as Enterococcus faecalis)
  • DSM 6134 40 Escherichia coli
  • genomic S aureus DNA was prepared and used in PCR experiments
  • the result shows that the DNA of 3 bacterial cells can be detected by means of fluorescence PCR.
  • the rapid PCR test allows a linear quantification of the S aureus genomes used over 5 log steps, i.e. between 3 and 300,000 CFU (Ing DNA)
  • Pseudomonas aeruginosa was detected by the species-specific amplification of a / gQ gene sequences according to the invention (sequences see Example 24).
  • the a / gQ gene encodes elements of a protective mechanism which was developed by Pseudomonas aeruginosa in the course of evolution and which is specific for this type of bacteria
  • alginate is a unique virulence property of Pseudomonas aeruginosa.
  • Alginate is a polymer of mannuronic and guluronic acid (1, 4 glycosidically linked). This polymer forms a viscous gel on the bacterial surface. The production of this organic gel is very sensitively regulated. The ability to synthesize alginate , is present in all Pseudomonas aeruginosa strains. It is characteristic of this type of bacteria. Alginate synthesis is energy-consuming Process and therefore regulated.
  • One gene that regulates alginate synthesis is the algQ gene (Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520).
  • FAM fluorescence derivative
  • TAMRA 6-carboxytetramethylrhodamine
  • PCR primer 23 mer: 5 -CTT CGA TGC CCT GAG CGG TAT TC-3 '
  • Reverse primer sequence (# 1147):
  • Positions refer to those in Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520 published DNA sequence.
  • PCR reactions are carried out in the PCR heating block of the ABI Sequence Detector 7700.
  • Functionally equivalent are PCR heating blocks with comparable heating and heat transfer properties, e.g. B. the PE ABI devices model 7200, 9700, 9600 and 2400.
  • the PCR cycle profile for the Pseudomonas aeruginosa PCR is as follows:
  • the a / gQ system is specific to Pseudomonas aeruginosa.
  • PCR products were analyzed electrophoretically (see Example 3).
  • the PCR products were 294 base pairs in size (not shown).
  • E. coli was detected by the species-specific amplification of murA gene sequences according to the invention
  • the murA gene encodes the enzyme UDP-N-acetylglucosamine enolpyruvyltransferase, an important structural gene of E. coli (Marquardt et al. 1992, J. Bacteriol. 174, 5748-5752). This enzyme catalyzes the first step of peptidoglycan synthesis, in the case of E. coli des mureins, which is an essential part of the bacterial cell wall.
  • the cell wall composition can be seen as a characteristic feature of bacterial species.
  • the murA gene was selected as a genetic marker with diagnostic potency for identifying the Enterobacteriaceae species Escherichia coli.
  • Positions refer to those in Marquardt et al. 1992, J. Bacteriol. 174, 5748-5752 published DNA sequence (Genbank: M92358).
  • FAM fluorescence derivative
  • TAMRA 6-carboxytetramethylrhodamine
  • Baciilus subtiiis 40 Salmonella typhimurium ATCC 13311 40 Pseudomonas mirabelis DSM 788 40 Staphylococcus aureus DSM 6538P 40 Streptococcus faecalis DSM 2981 40 Klebsiella pneumonia ATCC 10031 40 Citrobacter freundii DSM 30040 40
  • Neurospora crassa 40 Arabidopsis thaliana 40
  • the / 77i / r> 4 system is specific for Escherichia coli.
  • the PCR products were 142 in size
  • Example 13 Sensitivity of the E. coli test
  • the PCR rapid test allows a linear quantification of the Escherichia co // ' genome used over 6 log levels, ie between 3 and 3,000,000 CFU.
  • Salmonella enterica The detection of Salmonella spp. of the species Salmonella enterica was carried out by specific amplification according to the invention of / wA gene sequences
  • the invA gene encodes a Salmonella-specific virulence factor.
  • Salmonella-specific virulence factor Various studies on a number of Salmonella have shown that these types of bacteria bind to epithelial cells. In this process, the actin system of the host cells is influenced by the bacteria. In response, the host cells enclose the bacterial cells. After complete confinement, the bacteria exist in vesicles in the cytoplasm of the host cells. The so-called inv genes (InvA-H) of Salmonella are involved in this inclusion process.
  • invA gene Since the invA gene is involved in the expression of a specific virulence mechanism of Salmonella, it is a genetic marker with diagnostic potency for the identification of Salmonella ssp. (Rahn et al. 1992, Mol. Cell. Probes. 6: 271-279).
  • Reverse Primer Sequence (# 542): 5 'GGT TCC TTT GAC GGT GCG ATG AAG 3' (use as reverse complement) [SEQ. ID. NO. 17]
  • FAM fluorescence derivative
  • TAMRA 6-carboxytetramethylrhodamine
  • the / nv system is specific to Salmonella.
  • PCR products were analyzed electrophoretically.
  • the PCR products were 287 base pairs in size (not shown). Control sequencing of the PCR products verified that it was invA DNA (not shown).
  • Example 17 Sensitivity of the PCR rapid test In order to determine the sensitivity of the Salmonella ssp. Determining PCR tests has been genomic
  • the result shows that the DNA of 3 bacterial cells can be detected using fluorescence PCR.
  • the PCR rapid test allows a linear quantification of the Salmonella typhimurium genomes used over 6 log steps, i. H. between 3 and 3,000,000 CFU.
  • DNA from various test microorganisms was extracted according to Boom et al., 1990, purified from proteins and other PCR inhibitors (Quiagen rampulen Kit, 1995) and used in PCR amplification experiments.
  • Example 19 Detection of bacteria universal
  • the detection of bacteria was carried out by specific amplification according to the invention of conserved 16S rRNA gene sequences (SEQ. ID. NO. 5, see Example 24).
  • Certain 16S rRNA-specific DNA sequences have been preserved in the course of evolution, are therefore present in the genome of all bacteria and can be used as primers and probes for the universal detection of bacteria (Relman 1993, Weisburg et al. 1991, J. Bacteriol. 173).
  • Positions refer to the DNA sequence of the 16S rRNA gene (E. coli in Weisburg et al. 1991, J. Bacteriol. 173)
  • PCR primer oligonucleotides The synthesis and purification of the PCR primer oligonucleotides was carried out by the company PE Applied Biosystems and according to their protocols.
  • the temperature and cycle profile of the PCR and the distance between the reporter dye and the quencher dye within the probe resulted in the following conditions being optimal:
  • the following components were mixed in a PCR reaction vessel (PE Applied Biosystems order no. N8010580):
  • the PCR cycle profile is as follows:
  • the samples were transferred to the fluorimeter LS-50B, with an additive for the detection of fluorescence in microtiter plates from Perkin Elmer.
  • the fluorescence radiation is measured and quantified according to the manufacturer's instructions (PE Applied Biosystems, Rothstadt, Germany).
  • genomic DNA was isolated from various organisms and used in the universal PCR test (Fig. 6).
  • the amount of PCR products formed is given in relative fluorescence units (Fig. 6)
  • the developed PCR test selectively detects bacteria.
  • the different signal intensities of the bacterial samples reflected the variable amounts of DNA used.
  • the resulting PCR products were analyzed electrophoretically.
  • Salmonella DNA was prepared and used in PCR experiments. Various DNA dilutions were made. Each dilution was made three times in parallel and used in the PCR test (Fig. 7). The amount of fluorescence released is called the RQ
  • the RQ value is the difference between the reporter (R) fluorescence radiation in one
  • Reporter radiation is related to the quencher position (Q).
  • the quencher radiation does not change during the PCR reaction and thus represents an internal standard against which norms are made.
  • the result shows that the DNA of 1-3 Salmonella bacteria can be identified
  • Fluorescence PCR was detected.
  • the fluorescence radiation that arises after 40 PCR cycles is significantly above the background radiation.
  • the fluorescence PCR test allows the linear quantification of the Salmonella genomes used over at least 4 log steps d. H. between 1-3 and 30,000 CFU (Fig. 7).
  • Example 23 Product Testing Using the Rapid Bacterial Test The use of the developed rapid PCR test was investigated by spiking experiments. 10 ml WFI (water for injections, lot no. 63022) was spiked with 50 CFU Salmonella (5 CFU / ml). DNA was prepared from the various spiked samples (Boom et al. 1990), purified (Qiagen 1995) and analyzed in the PCR rapid test (Fig. 8).
  • the spiked salmonella was found in the test product.
  • the detection amount was 90% of the amount of DNA used (Fig. 8). This value reflects the material losses that arise from the spiked products during DNA preparation. Despite these losses, 1-3 CFU / ml could be detected in the spiked test product. On the other hand, no Salmonella germs were detectable in the non-spiked test product (Fig. 8). The sterility of the test product was verified by membrane filtration according to the methods in EP (1997).
  • Example 24 Target gene, primer and probe sequences for the different organisms / groups
  • SEQ. ID. NO. 10 5 '- FAM - CCAACGCCGA AGAACTCCAG CATTTC - TAMRA - 3'
  • SEQ. ID. NO. 11 5 'CTGAAGGTCC TGCGGCAACA GTT 3' (use as reverse complement)
  • SEQ. ID. NO. 3 Escherichia coli
  • SEQ. ID. NO. 18 5 'GCATGGCTGT CGTCAGCTC 3'
  • the variants of the primer / probe sequence combinations are defined which detect the target DNA sequences with the same specificity (100%) and comparable sensitivity (> 70%) as the sequences given in Example 24.
  • Salmonella ssp (PCR conditions as in Example 15) [SEQ.ID.NO 15] GTGAAATTAT CGCCACGTTC GGGC / [SEQ. ID .NO 16] FAM-CTTCTCTATTGTCACCGTGG TCCA-TAMRA / [SEQ. ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
  • TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT 15 CCGCTTGCTC
  • the primer / probe combinations which detect the target DNA sequences with unsatisfactory specificity ( ⁇ 100%) and sensitivity 25 ( ⁇ 70%), such as the sequences given in Example 24, cf. Figure with primers and probes
  • Salmonella ssp (PCR conditions as in Example 15)
  • the 16S rRNA gene codes for the bacterial ⁇ bosomal DNA, which together with the 23S rRNA and the 5S rRNA in combination with the ⁇ bosomal proteins form the translation apparatus for protein biosynthesis
  • the numerical designations of the oligonucleotides refer to the positions of the leading strand of the sequence published by Brosius et al 1978 for the 16S rRNA from Escherichia coli. The location of these sequences within the 16S rRNA gene is shown in SEQ ID NO 24. The size of the primer 1053 and 1270 limited amplicons are 238 bp
  • Target sequence of the 16S rRNA gene SEQ ID NO 47 (forward primer # 1053) 5 ' -GCATGGCTGTCGTCAGCTC-3 '
  • Seqence Identifier Number 48 (Probe # 1090) 5 ' -Fam-TTAAgTCCCgCAACgAgCgCAAC-Tamra-3 '
  • composition and components of the TaqMan PCR reaction for the detection of Enterobacteriaceae Composition and components of the TaqMan PCR reaction for the detection of Enterobacteriaceae:
  • UNG uracil-N-glycosylase
  • the gram-negative family Enterobacteriaceae belongs to the gamma group of Proteobacteria (Balows et al. 1991, Holt 1989). Proteobacteria also includes members of the Alpha, Beta, Delta, and Epsilon groups as well as Amoebobacter and some unclassified Proteobacteria Figure 9 shows a simplified taxonomic scheme for the classification of Enterobacteriaceae. The similarity of DNA sequences of different species generally increases with increasing degree of relationship.
  • genomic Escherichia co // ' DNA from strain ATCC 8739 was used to represent the other Enterobacteriaceae.
  • the detection range of the developed rapid PCR test for Enterobacteriaceae ranges from less than 5 CFU (corresponds to 25 fg genomic DNA) to over 5000000 CFU (corresponds to 25 ng genomic DNA) Escherichia coli ( Figure 10). No-template controls (without Enterobacteriaceae DNA) show no reaction with the developed rapid PCR test even after 40 cycles.
  • Example 31 Product analysis Sterile water for injections (WFI, lot 63022) was examined. The result of the investigation showed the absence of Enterobacteriaceae DNA.
  • Example 32 Error Variants in the Primer and Probe Sequences Define variants are defined as the primer / probe combinations which detect the target DNA sequences with unsatisfactory specificity ( ⁇ 100%) and sensitivity ( ⁇ 70%), as those given in Example 27 Sequences.
  • the DNA (10 ng per lane, 2-14) of all S aureus strains used (Lane 2 - 5) was detected by the cap8-0 primers (# 15297 and # 15485).
  • the DNA of a closely related Staphylococcus species S- epidermidis (Lane 6) and those of other bacterial genera (Lane 7 - 11) not detected.
  • the DNA (1-10 ng) of all bacteria used (Bacillus subtihs, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Streptococcus faecalis) was detected by the 16S rRNA pnmer / probe set.
  • Genomic DNA (10 ng) from fungi was detected Neurospora crassa), plants (Arabodopsis thaliana) or by humans (Human, Perkin Elmer ABI, 401846), the measured fluorescence radiation corresponded to the water control (no DNA control)
  • RQ (R + / Q) - (R- / Q)
  • the Ct values obtained are shown depending on the nucleating units (CFU) Enterobacteriacea used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft ein Detektionsverfahren und ein Testkit zur schnellen, ökonomischen Detektion von Keimen in pharmazeutischen und kosmetischen Produkten. Dabei werden spezifische Sonden und Primer eingesetzt, deren Replikation durch ein spezielles Indikatorsystem sichtbar gemacht wird, wobei ein Fluoreszenz-Farbstoff freigesetzt wird.

Description

Verfahren zur Detektion von Mikroorganismen in
Produkten
Die Erfindung umfaßt Verfahren zum Nachweis mikrobieller Verunreinigungen nicht - steriler Produkte, bevorzugt nach GMP - Richtlinien. Weiterhin umfaßt die Erfindung einen Testkit zum Nachweis mikrobieller Verunreinigungen und die Verwendung von Primersequenzen und Sondensequenzen zur Bestimmung von Mikroorganismen in Produkten, insbesondere in Arzneimitteln und Kosmetika einschließlich ihrer Ausgangsstoffe und Zwischenprodukte. Das Verfahren dient zur quantitativen Identifizierung von Mikroorganismen durch Detektion spezifisch amplifizierter DNA-Sequenzen und soll als Ersatz entsprechender Methoden in der Europäischen Pharmakopöe, Abschnitt 2.6.12-13,1997 ( EP) sowie weiteren nationalen Monographien wie zum Beispiel USP eingesetzt werden.
Die Herstellung von Arzneimitteln und Kosmetika nach GMP - Richtlinien beinhaltet chemische, physikalische und biologische Prüfungen zur Sicherstellung der Qualität. Bei Kosmetika muß der Hersteller dafür sorgen, daß von den Fertigprodukten keine Gesundheitsgefährdung ausgeht (EG Kosmetikverordnung, 76, 768 EWG (KOSVO), 6). Änderungsrichtlinie der EG KOSVO 93/35/EEC, 1993 und Forderungen des nationalen Rechts in Deutschland ( LMBG § 24).
Bei Arzneimitteln sind die mikrobiologischen Reinheitsanforderungen wesentlich präziser und decken die Anforderungen der KOSVO mit ab ( EP Abschnitt 2.6.12-
13,1997).
Die Anforderungen beinhalten zwei Gruppen: (i) Die Zählung der gesamten lebensfähigen aeroben Bakterien und Pilze (Gruppe Gesamtkeimzahl) sowie (ii) Den Abwesenheitsnachweis bestimmter Mikroorganismen: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus faecalis, Salmonellen und Enterobactriaceae (Gruppe Leitkeime).
Stand der Technik
Keimzahlbestimmung mit Nährmedien
Als Methoden zur Zählung der gesamten lebensfähigen aeroben Bakterien (Gruppe Gesamtkeimzahl) werden in der EP konventionelle mikrobiologische Techniken beschrieben, die das Wachstum der nachzuweisenden Mikroorganismen in bestimmten Flüssignährmedien oder auf Agarplatten beinhalten. Im Handel sind zahlreiche entsprechende Fertigprodukte oder deren Ausgangsstoffe erhältlich. Die Anwendung der in der EP beschriebenen Methoden zur Bestimmung der aeroben Keime (Gruppe Gesamtkeimzahl) hat folgende Nachteile: • Die Effizienz ist niedrig, da hoher Zeitbedarf bis zum Ergebniserhalt ( 3-5 Tage) besteht.
Die Ergebnisse sind unpräzise. Die Akzeptanzgrenzen dürfen um den Faktor 5 schwanken, EP, Abschnitt 2.6.12
Die Testmethoden sind schlecht und nur im geringen Maße automatisierbar. • Bedingt durch die Nährmedieneigenschaften können nur gut wachsende
Mikroorganismen, nicht aber, wie gefordert, alle aeroben Mikroorganismen nachgewiesen werden.
Die Lagerhaltungskosten sind für Medien und Brutschränke hoch.
Bei Arzneimitteln mit bakteriostatischen Eigenschaften führt die Anwendung der EP - Methoden aufgrund der geringen Wiederfindung zugesetzter
Testmikroorganismen teilweise zu nicht verwertbaren Ergebnissen.
Umfangreiche Plastikabfälle fallen an.
Die Energiekosten für Medienherstellung und Autoklavieren der anfallenden
Abfälle sind hoch. Die Fertilitätsprüfung aller Medienchargen ist sehr aufwendig insbesondere wegen kurzer Haltbarkeiten von Fertigmedien.
Alternative Methoden zur Gesamtkeimzahlbestimmung im Handel sind: Geräte, die mittels Laserscan arbeiten wie z.B. CHEMSCAN (Chemunex):
Diese Methode ist ungeeignet zum Nachweis von Mikroorganismen, die wie die Bakteriengattung Sarcina keine Einzelkolonien bilden.
Außerdem eignet sich diese Methode nicht für feste und ölige Prüfprodukte.
Nachweis spezieller Mikroorganismen durch unterschiedliche Kultureigenschaften und spezielle Stoffwechselprodukte Als Methoden zur Bestimmung spezieller Keime (Gruppe Leitkeime) werden in der EP mikrobiologische Techniken beschrieben, die zur Grobdifferenzierung das Wachstum der jeweiligen Mikroorganismen in bestimmten selektiven Nährmedien oder auf Agarplatten beinhalten. Anschließend werden zur Feindifferenzierung spezifische Stoffwechselreaktionen der jeweiligen Mikroorganismen wurde genutzt. Entsprechende Nachweissysteme, wie z.B. APILAB oder VITEK, sind weit verbreitet.
Die Anwendung der in der EP beschriebenen Methoden zur Bestimmung der spezieilen Keime (Gruppe Leitkeime) hat die gleichen Nachteile, wie für die Anwendung der EP - geforderten Methoden zur Bestimmung der aeroben Keime (siehe oben). Ein zusätzlicher Nachteil ist, daß die Selektivität der Nachweismethoden auf Stoffwechselunterschiede beschränkt ist und damit nur unzureichende Differenzierungen zuläßt.
Nachweis spezieller Mikroorganismen durch ATP- Gehaltsbestimmung nach Vorkultivierung
Alternative Methoden im Markt sind: Mikrobiologische Schnelltests, beruhend auf einem Vitalnachweis durch ATP - Bestimmung (z.B. Firma Millipore) nach Vermehrung der Mikroorganismen in Nährmedien.
Nachteil: Speziesbestimmungen sind nicht möglich und die Meßergebnisse unterliegen hohen Schwankungen in Abhängigkeit des Vitalitätszustands und sind für unterschiedliche Bakteriengattungen sehr verschieden.
Nachweis spezieller Mikroorganismen nach Vorkultivierung mittels
DNA-Sonden, Primern und PCR
Weitere alternative Methoden im Handel sind unterschiedliche PCR - Applikationen, die aber, wie z.B. bei Chen et al. 1997, J.. Food Microbioi. 35, 239-250 auf die Prüfung von Lebensmitteln ausgerichtet sind und eventuell nicht die strengen GMP - Anforderungen an die Qualitätsprüfung von Arzneimitteln erfüllen.
Die vorhandenen PCR - Applikationen sind in der Regel anfällig für Kontaminationen durch PCR - Produkte, sind wenig reproduzierbar und schwer quantifizierbar. Darüber hinaus sind sie zeitaufwendig, da bei den alternativen PCR - Verfahren in der Regel mehrere Hybridisierungsschritte zur Detektion des PCR - Produktes notwendig sind.
Diese Technologien sind in der Regel außerdem nur begrenzt automatisierbar und störanfällig, da in der Regel zu mehreren Zeitpunkten der Applikation verschiedene Reagenzien zugegeben werden müssen.
Bei dem Verfahren gemäß der Patente US 4,800,159 und US 4,683,195 wird die zu amplifizierende Nukleinsäure, die einzelsträngig vorliegt oder einzelsträngig gemacht wird, mit einem molaren Überschuß zweier Oligonukleotidprimer unter
Hybridisierungsbedingungen und in Gegenwart eines induzierenden Agens für die
Polymerisation und Nukleotiden behandelt, wobei die Primer so gewählt werden, daß für jeden Strang ein zum Nukleinsäurenstrang komplementäres Verlängerungsprodukt des betreffenden Primers synthetisiert wird und daß ein Verlängerungsprodukt eines
Primers, wenn es von seinem Komplement getrennt ist, als Matrize zur Synthese eines
Verlängerungsproduktes des anderen Primers dienen kann. Nach Trennen der
Verlängerungsprodukte von den Matrizen, an denen sie synthetisiert wurden, können die gebildeten Verlängerungsprodukte zur erneuten Umsetzung mit den Primern verwendet werden. Durch die zyklische Wiederholung der Schritte ergibt sich eine theoretisch exponentielle Vermehrung einer Nukleinsäuresequenz, die innerhalb der äußeren Hybridisierungspositionen der Primer liegt.
Quantitativer Nachweis von Mikroorganismen - DNA durch eine spezielle Fluoreszenz - PCR - Technologie
Eine verfeinerte Methode ist das Verfahren gemäß Patent US 5,210,015 von Gelfand et al. Dabei wird eine Oligonukleotid-Sondenkonstruktion verwendet, die mit einem Teil des Nukleinsäurestrangs der Matrize hybridisiert, wobei die Oligonukleotidsonde so ausgewählt wird, daß sie zwischen die Primerpaare (Vorwärts- und Rückwärtsprimer) für die Amplifikation der diagnostischen Zielsequenz des jeweiligen Mikroorganismus paßt. Die Sondenkonstruktion und Synthese basiert auf der TaqMan - Technologie (Holland et al. 1993 und Lee et al. 1993, Nucl. Acids. Res, Vol 21 , p 3761 - 3766). Chemische Grundlage dieser neuen Methode ist der 1991 erstmalig publizierte 5'- Nuklease PCR - Assay (Holland et al. 1991 , PNAS USA 88: 7276). Kernstück dieser Methode ist die 5'-Nukiease-Aktivität der TaqPolymerase und der Einsatz von fluoreszenzmarkierten, sequenzspezifischen Gensonden. Diese Gensonden sind am 5'- Ende mit einem Fluoreszein - Derivat (Reporter) und am 3'-Ende mit einem Rhodaminderivat (Quencher) markiert. Durch die räumliche Nähe beider Farbstoffe wird die Fluoreszenzstrahlung des Reporters von dem Quencherfarbstoff absorbiert. Während der Polymerasekettenreaktion (PCR) werden Reporter und Quencher durch die 5'-Nuklease-Aktivität der Taq - Polymerase räumlich voneinander getrennt. Die Fluoreszenzstrahlung des Reporters wird nicht mehr gequencht und kann direkt gemessen und quantifiziert werden. Je mehr Sonden gespalten werden, desto höher ist die Fluoreszenz - Emission der Reportermoleküle. Die Menge an freigesetzter Emission ist der Menge der entstehenden PCR Produkte proportional und diese ist wiederum der Kopienzahl der in der PCR eingesetzten Gene proportional. Über die Genkopienzahl läßt sich die in der Analysenprobe vorhandene Organismenzahi berechnen. Die Methode ist extrem sensitiv, da während der PCR Reaktion eine Genvermehrung und somit eine Signalamplifikation stattfindet. Da verschiedene Reporterfarbstoffe am Markt zur Verfügung stehen, können interne Kontrollen und Standards bei jeder Reaktion mitgeführt werden. Darüber hinaus kann eine Probe auf das Vorhandensein mehrerer Gene/Organismen gleichzeitig untersucht werden. Zur Zeit stehen im Handel drei verschiedene Reporterfarbstoffe zur Verfügung. Aufgabe und Lösung
Aufgabenschwerpunkt der vorliegenden Erfindung bildet die Entwicklung von Nachweisverfahren für Mikroorganismen, die erfahrungsgemäß häufig als Produktkontaminanten auftreten. Das sind insbesondere in Bezug auf die Gruppe der Leitkeime: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonelien Arten, in Bezug auf die Gruppe Gesamtkeimzahl: die Bakterien und die Enterobacteriaceae.
Die Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Reagenzien, Verfahren und die Verwendung von Substanzen, die den Nachweis mikrobieller Verunreinigungen nicht - steriler Produkte zum Beispiel entsprechend Anforderungen der EP einfacher, präziser und effizienter gestalten. Dabei sollen weniger Komponenten als zum Beispiel entsprechend Anforderungen der EP enthalten sein. Eine weitere Aufgabe ist es, sehr sensitive und quantitative Nachweise für die geforderten Mikroorganismen zur Verfügung zu stellen.
Die Aufgabe wird gelöst durch ein Testkit zum Nachweis mikrobieller Verunreinigungen nicht steriler Produkte, insbesondere nach GMP - Richtlinien, auch Kosmetika und Lebensmittel, umfassend mindestens ein DNA-Fragment, das die folgenden SEQ ID und Spacer (Abstandhalter) umfaßt:
(a) einen Forward-Primer (SEQ ID Forward-Primer);
(b) eine Sonde (SEQ ID Sonde);
(c) einen Reverse-Primer (SEQ ID Reverse-Primer);
(d) gegebenenfalls einen Spacer zwischen Forward-Primer und Sonde, (e) gegebenenfalls einen Spacer zwischen Sonde und Reverse-Primer,
(f) gegebenenfalls einen Spacer upstream des Forward-Primers
(g) gegebenenfalls einen Spacer ownstream des Reverse-Primers
- wobei die SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)] auch Varianten umfassen, bei denen eine, zwei oder drei Nukleotide substituiert, deletiert und / oder insertiert sind, dabei hat die Variante im wesentlichen dieselbe Funktion wie die Sequenz der SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)], bei Sonden die Funktion der Bindung an DNA und bei Primern die Funktion der Bindung an DNA und die Bereitstellung eines veriängerbaren 3' Endes für die DNA - Polymerase; wobei die Spacer 0-40 Nukleotiden umfassen,
das DNA-Fragment genommen aus der Gruppe (i) für Staphylococcus aureus SEQ. ID. NO. 6 als Forward-Primer
SEQ. ID. NO. 7 als Sonde und
SEQ. ID. NO. 8 als Reverse-Primer (ii) für Pseudomonas aeruginosa
SEQ. ID. NO. 9 als Forward-Primer SEQ. ID. NO. 10 als Sonde und
SEQ. ID. NO. 11 als Reverse-Primer (iii) für Escherichia coli
SEQ. ID. NO. 12 als Forward-Primer
SEQ. ID. NO. 13 als Sonde und SEQ. ID. NO. 14 als Reverse-Primer
(iv) für Salmonella ssp.
SEQ. ID. NO. 15 als Forward-Primer
SEQ. ID. NO. 16 als Sonde und
SEQ. ID. NO. 17 als Reverse-Primer (v) für Bakterien
SEQ. ID. NO. 18 als Forward-Primer
SEQ. ID. NO. 19 als Sonde und
SEQ. ID. NO. 20 als Reverse-Primer (vi) für Enterobacteriaceae SEQ. ID. NO. 44 als Forward-Primer
SEQ. ID. NO. 46 als Sonde und
SEQ. ID. NO. 45 als Reverse-Primer (vii) für Enterobacteriaceae (16S rRNA)
SEQ. ID. NO. 47 als Forward-Primer SEQ. ID. NO. 48 als Sonde und
SEQ. ID. NO. 49 als Reverse-Primer oder weiterhin all die Sequenzen, welche komplementär zu den vorherigen Sequenzen SEQ ID NO 6 bis 49 sind.
Vorteilhaft ist eine Kombination aus zwei mehr bevorzugt aus drei noch mehr bevorzugt aus vier und am meisten bevorzugt aus fünf, sechs oder sieben Gesamtsequenzen. Bevorzugt ist ein Kit mit PCR Reagenzien. Mehr bevorzugt ist ein Kit mit PCR Reagenzien und TaqMan. Alle genannten Sequenzen sind in dem Beispiel 24 aufgeführt. Für eine erfolgreiche TaqMan - PCR werden an die Primer- und Sondensequenzen (Beispiel 24) folgende Anforderungen gestellt:
Primer sollten zwischen 15-30 Basen lang sein.
Sondensequenz muß sich zwischen Primer - Sequenzen auf der zu amplifizierende DNS befinden.
Sonde sollte zwischen gegebenenfalls 18-30 Basen lang sein. • Sonde sollte einen GC - Gehalt von 40 - 60% besitzen.
Der Tm der Sonde (Schmelzpunkt) sollte um 5 - 10 C° über dem Tm der
Primer liegen
Am 5' Ende der Sonde sollte sich kein G befinden.
In der Sondensequenz sollte nie mehr als 3 mal dieselbe Base hintereinander folgen.
Keine Komplementarität zwischen Sonde und Primern oder innerhalb der Primer und keine auffälligen Sekundärstrukturen innerhalb der Sonde und der Primer.
Trotz dieser allgemeinen Richtlinien für das Design von Primern und Sonden (Livak et al. 1995, Guideiines for designing Taqman fluorogenic probes for the 5' Nuclease assays, Perkin Eimer Research News) muß die optimale Primer- und Sondenkombination für jede TaqMan - PCR - Anwendung neu experimentell bestimmt werden. Es konnte in einer Reihe von Beispielen (Beispiel 25) gezeigt werden, daß obwohl oben genannten Richtlinien eingehalten wurden, kein optimales TaqMan PCR System entwickelt werden konnte. Auf der anderen Seite ist man durch die Sequenzcharakteristika der diagnostischen Zielsequenz des jeweiligen Organismus (z.B. hoher GC Gehalt, stark repetitive Sequenzen oder konservierte Sequenzbereiche) ggf. gezwungen, Primer- und Sondensequenzen auszuwählen, die nicht den oben genannten Designrichtlinien entsprechen. Konsequenz dieser Einschränkungen zu den Richtlinien ist, daß zum Erreichen der notwendigen Spezifität und Sensitivität eines TaqMan - PCR - Tests die Auswahl der diagnostischen Zielsequenz aus dem Genom des zu detektierenden Mikroorganismus und die experimentelle Determinierung der optimalen Primer- und Sondensequenzen essentiell ist.
d.PCR - Reaktionsbedingungen einschließlich TaqMan Puffer:
Die Spezifität und Sensitivität eines TaqMan - PCR Tests wird neben den Primer- und
Sondensequenzen (a - c) durch folgende Parameter bestimmt: (i) Hohe der Denatunerungstemperatur in den ersten PCR - Zyklen
(n) Hohe der Annealingtemperatur wahrend der Amplifikationsphase der PCR
(in) Anzahl der PCR Zyklen
(iv) Einsatz von PCR - Additiven wie Glyzerin und / oder Formamid
(v) Einsatz von 7-Deaza-2-deoxy-GTP neben GTP bei Genen mit hohem G/C
Gehalt
(vi) Hohe der Mg++- Ionen - Konzentration im PCR - Puffer
(VII) Konzentration der Primer und Sonde
(vm) Menge an Taq - DNA - Polymerase
(ix) Abstand des eis - orientierten Primers zur Sonde
Alle diese Parameter wurden bei der Entwicklung hier aufgeführten TaqMan - PCR Tests experimentell berücksichtigt (Daten nicht gezeigt)
Beschreibung der Nukleinsäuren, die als diagnostische Zielsequenzen eingesetzt werden:
Unter den Nukleinsäuren, die zur Verwendung des Amphfikationsverfahren und Nachweisverfahrens für die oben genannten Zieiorganismen verwendet werden können, werden insbesondere genomische Nukleinsäuren verstanden Genomische Nukleinsäure- Sequenzen enthalten unter anderem auch die Gene bzw Genfragmente, die für eine bestimmte Mikroorganismenart, -gattuπg, -familie oder -abteilung charakteristisch sind Die Nukleinsauresequenzen können in einen PCR - Test als diagnostische Zielsequenzen für einen spezifischen Nachweis dieser Art, Gattung, Familie oder Abteilung eingesetzt werden
Für den Nachweis der oben genannten Zielorganismen wurden folgende Zielsequenzen ausgewählt
Organismus/nen Genbezeichnung
(i) Staphylococcus aureus cap 8 (n) Pseudomonas aeruginosa alg Q (in) Escherichia coli murA
(iv) Salmonella ssp mv A
(v) Bakterien 16S r RNA
Die Gene, aus denen die diagnostischen Zielsequenzen ausgewählt wurden, werden in den Beispielen detailliert beschrieben Definitionen:
Primerdefinition (inklusive deren Variationen): Unter einem Primer wird ein Molekül verstanden, das an einem polymeren Grundgerüst eine Anzahl von Nukleotiden aufweist. Die Sequenz der Nukleobasen wird so gewählt, daß sie zu aufeinanderfolgenden Basen der zu amplifizierenden Nukleotidsequenz zu mehr als 80% komplementär sind. Dieses Molekül besitzt jeweils mindestens ein verlängerbares Ende. Unter Verlängerung wird insbesondere die enzymkatalysierte Ankopplung von Baseneinheiten unter Verwendung von Mononukleosid - Triphosphat - Einheiten oder Oligonukleotiden verstanden. Als Enzym wird bevorzugt eine DNA - Polymerase eingesetzt. Die Nukleinsäure, die Nukleotidsequenzen enthält, welche amplifiziert werden sollen, dient hierbei als Matrize für den spezifischen Einbau von Basen. Die Sequenz der Matrize bestimmt die Sequenz der an den Primer angehängten Basen. Als Primer werden Moleküle mit 15-30 Basen verwendet. Als verlängerbares Ende dient im Falle einer DNA - Polymerase bevorzugt das 3'-Ende. Besonders bevorzugt sind Primer, die vollständig homolog zu einer Teilsequenz der Zielnukleotidsequenzen SEQ. ID. NO.1-5 sind ( Beispiel 24).
Sondendefinition (inklusive Variationen): Unter einer Sonde wird ein Molekül verstanden, das wie die Primer an einem polymeren Grundgerüst eine Anzahl von Nukleotiden aufweist. Dabei wird ein Sondenkonstruktionsverfahren gemäß Patent US 5,210,015, verwendet, das bereits oben beschrieben wurde. Die Nukleinsäuresonden der vorliegenden Erfindung sind 18-30 Nukleobasen lang. Spezifische Sequenzen erhält man durch Aussuchen einer mindestens 18 Basen langen Sequenz aus den jeweiligen Matritzen (SEQ. ID. NO. 1-5, Beispiel 24). Erfindungsgemäß sind daher Sonden bevorzugt, die zu mindestens 90% homolog zu einem Teil der jeweiligen Matritzen ( SEQ. ID. NO. 1-5) sind. Besonders bevorzugt sind Sonden mit strenger Homologie.
Definition von Homologie: Gegenstand der Erfindung sind Nukleotidsequenzen, die zu mindestens 80%, bevorzugt zu 90 %, am meisten bevorzugt zu 95% komplementär sind zu den Ziel-Nukleotidsequenzen SEQ. ID. NO. 1 bis 5 und 46 und 48.
Die Homologie (in %) ergibt sich aus der Anzahl an identischen Purin- bzw. Pyrimidinbasen in einer gegebenen Nukleotidsequenz.
Definition von Hybridisieren: Hybridisieren liegt dann vor, wenn die folgenden Verfahrensschritte vorliegen, bevorzugt die folgenden Bedingungen.
Die erfindungsgemäßen Primer und Sonden binden an komplementäre Basen bevorzugt an komplementäre Nukleotidsequenzen im Erbgut der Zielorganismen aus der Gruppe Gesamtkeimzahl und an komplementäre Nukleotidsequenzen im Erbgut der Zieiorganismen aus der Gruppe Leitkeime
Darüber hinaus binden sie bevorzugt nicht an Nukleinsäure - Sequenzen, die für andere Mikroorganismen spezifisch sind
Definition von Arzneimittel Diese Substanzen sind die in den Monographien der EP beschriebenen Wirkstoffe, Rohstoffe, Hilfsstoffe, und Zubereitungen, die zur Anwendung in der Humanmedizin und Veterinärmedizin bestimmt sind
Definition von Kosmetika Diese Substanzen sind nicht in den Monographien der Pharmakapoen beschrieben, sondern unterliegen den Richtlinien der KOSVO und des LMBG Sie umfassen Rohstoffe, Hilfsstoffe und Zubereitungen, die zur Anwendung an Menschen und Tieren bestimmt sind
Definition von Mikroorganismus Dieser Begriff umfaßt in erster Linie Organismen, die im menschlichen und tierischen Korper Krankheiten hervorrufen können und nur mikroskopisch wahrnehmbar sind Sie sind in der Regel einzellig bzw treten in lockeren Verbanden gleichartiger Zellen auf und werden aufgrund ihrer einfachen zellularen Organisation als Protisten bezeichnet Ihre morphologischen und kulturell- biochemischen Merkmale, sowie ihre chemische Zusammensetzung, Antigen - Eigenschaften und genetischen Merkmale sind in der Literatur gut dokumentiert, z B in Mikrobiologische Diagnostik, Burkhardt, 1992
Definition von PCR-Reagenzien PCR-Reagenzien sind Stoffe, die für eine PCR Reaktion mit maximaler Sensitivität und Spezifität notwendig sind insbesondere DNA-
Polymerase, Mg2+ Ionen wie z B MgCl2, Kaliumsalze wie z B KCI , Additive wie z B
Glycenn oder DMSO oder Formamid, Primer und Sonden, Desoxynukleotide, Puffersubstanz wie z B Tris-Base sowie optionale Zusätze in Form von passiven Fluoreszenzreferenz-Verbindungen wie z B das Fluoreszenzfarbstoff-Derivat ROX und z B 7-Deaza-2-deoxy-GTP als Ersatz von dGTP
Definition von Komplementär Komplementare Strukturen entsprechen sich gegenseitig oder erganzen sich So sind zum Beispiel die Polynucleotid - Strange der natürlichen DNA - Doppelhelix komplementär Sie bilden zwei komplementäre Strange aufgrund der spezifischen Basen - Paarung (A-T beziehungsweise G-C) Dadurch ist die Nucleotid - Sequenz im anderen Strang eindeutig festgelegt, zwar nicht identisch, aber komplementär Ähnliches gilt für DNA - RNA - Hybride (mit A-U anstelle von A - T - Paaren) cDNA hat eine zu einer mRNA komplementäre Struktur Bevorzugt ist eine komplementäre Struktur, bei der (aa) die Sequenz des Forward-Primer und die Sequenz der Sonde oder (bb) die Sequenz der Sonde und des Reverse-Primers einer zuvor genannten Gruppe (i) bis (vii) alle beide komplementär zu den definierten Sequenzen sind. Mehr bevorzugt ist eine komplementäre Struktur, bei der die Sequenz des Forward-Primer, die Sequenz der Sonde und des Reverse-Primers einer zuvor genannten Gruppe (i) bis (vii) alle drei komplementär zu den definierten Sequenzen sind.
Verfahren Die Erfindung umfaßt weiterhin ein Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere Arzneimitteln oder Kosmetika, welches Verfahren die folgenden Schritte umfaßt: a) Einsetzen von Primern und fluoreszenzmarkierten Sonden mit den entsprechenden Sequenzen und deren Variationen, (i) für Staphylococus aureus
SEQ. ID. NO. 6 als Forward-Primer SEQ. ID. NO. 7 als Sonde und SEQ. ID. NO. 8 als Reverse-Primer (ii) für Pseudomonas aeruginosa SEQ. ID. NO. 9 als Forward-Primer
SEQ. ID. NO. 10 als Sonde und SEQ. ID. NO. 1 1 als Reverse-Primer (iii) für Escherichia coli
SEQ. ID. NO. 12 als Forward-Primer SEQ. ID. NO. 13 als Sonde und
SEQ. ID. NO. 14 als Reverse-Primer (iv) für Salmonella ssp.
SEQ. ID. NO. 15 als Forward-Primer SEQ. ID. NO. 16 als Sonde und SEQ. ID. NO. 17 als Reverse-Primer
(v) für Bakterien
SEQ. ID. NO. 18 als Forward-Primer SEQ. ID. NO. 19 als Sonde und SEQ. ID. NO. 20 als Reverse-Primer (vi) für Enterobacteriaceae
SEQ. ID. NO. 44 als Forward-Primer SEQ. ID. NO. 46 als Sonde und SEQ. ID. NO. 45 als Reverse-Primer (vii) für Enterobacteriaceae (16S rRNA)
SEQ. ID. NO. 47 als Forward-Primer
SEQ. ID. NO. 48 als Sonde und
SEQ. ID. NO. 49 als Reverse-Primer oder weiterhin all die Sequenzen, welche komplementär zu den vorherigen Sequenzen SEQ ID NO 6 bis 49 sind, b) Vervielfältigen der DNA mit PCR; und c) Bestrahlung mit spezifischen Wellenlängen, die den Fluoreszenzfarbstoff anregen, d) Messung und Quantifizierung der Emission des angeregten Fluoreszenzfarbstoffes.
Die Erfindung umfaßt ein erfindungsgemäßes Verfahren, wobei die Herstellung der Sonden auf der TaqMan-Detektionstechnologie beruht.
Kern der Erfindung
Kern der Erfindung ist die Kombination bestimmter ausgewählter Sonden/Primer-Paare, die Mikroorganismen zufriedenstellend detektieren können. Die Optimierung der Sonden/Primer-Paare und der PCR Reaktionsbedingungen auf Sensitivität und Eignung zur GMP-konformen Produktprüfung nach EP, 2.6.12-13: Microbial contamination of products not required to comply with the test for sterility (1997) ist ebenfalls wesentlich. Dabei wird eine PCR-Technologie nach den US-Patenten US 4,800,159 und US 4,683,195 verwendet. Dabei findet insbesondere die TaqMan-Technologie Anwendung, die in dem US-Patent 5,210,015 beschrieben ist, welches am 11. Mai 1993 als Patent herausgegeben worden ist.
Bei dem erfindungsgemäßen Verfahren oder dem erfindungsgemäßen Testkit handelt es sich um eine spezielle Ausführungsform der Fluoreszenz-PCR Technologie (TaqMan) für die oben genannten Zielmikroorganismen.
Vorteile:
Die erfindungsgemäßen Verfahren und die Testkits sind denen in der EP vorgeschriebenen Analysenmethoden in vielen Punkten weit überlegen (für Kosmetika wird z. Zt. noch keine vorgeschriebene Methode gefordert) und sollen diese, nach Validierung des Verfahrens mit dem jeweiligen Prüfprodukt, vollständig ersetzen. Die Möglichkeit, andere Analysenmethoden zu benutzen, wird in der EP (General Notices) explizit zugelassen, wenn sie die gleichen Ergebnisse wie die vorgeschriebenen Methoden ergeben. Insbesondere hat das erfindungsgemäße Verfahren die folgenden Vorteile:
(A) Kit und Verfahren zum Nachweis von Mikroorganismen der Gruppe Gesamtkeimzahl : Erstmals können durch Anwendung dieses Kits und Verfahrens ohne vorhergehende Kultivierung alle kontaminierenden Bakterien, deren Sequenz in der NIH Datenbase, USA, Stand 11.1997, beschrieben sind, analytisch bestimmt werden. Dabei werden lebende und nicht-vermehrungsfähige Bakterien quantitativ und sehr präzise mit einer Sensitivität von 1-3 Bakterien im Prüfprodukt erfaßt. Konsequenz der Anwendung ist eine deutliche erhöhte Produktsicherheit für den Verbraucher, da:
Sporen und schwer kultivierbare Mikroorganismen, von denen eine Gesundheitsgefährdung ausgehen kann, erfaßt werden können,
Nicht-vermehrungsfähige Mikroorganismen, die schwer nachweisbare Toxine enthalten, ebenfalls erfaßt werden können, Kontaminierende DNA bakterieller Herkunft , deren Abwesenheit zur Zeit schon in Biologicals und Produkten aus der rDNA-Technologie gezeigt werden muß, (EP, 1997 und USP 1995) in allen Prüfprodukten einfach und effizient nachgewiesen werden kann. Außerdem gibt es für die Anwendung keine besonderen Sicherheitsauflagen, da keine Komponenten des Kits einer Gefahrstoffverordnung unterliegen.
(B) Alle beanspruchten Kits und Verfahren:
Die Anwendung hat ökonomische Vorteile für Verbraucher und Hersteller, da die bisherigen Verfahren um mehrere Tage zeitaufwendiger sind und häufig den zeitbestimmenden Schritt in der Freigabeanalytik darstellen. Schnelle Ergebnisse zur mikrobiologischen Sicherheit eines biologisch anfälligen Prüfprodukts führen zur Senkung der Kosten in Entwicklung und Produktion wie z.B. niedrigere Lagerhaltungskosten oder schnellerer Response auf variable Marktanfragen und damit insgesamt zur Senkung der Gestehungskosten, die in preiswertere Produkte einmünden.
Die Anwendung hat ökologische Vorteile, da die Reduktion von Analysenzeit und Analysenmaterial (Plastik und Medien) die erheblichen Energiekosten deutlich erniedrigt. Beispiele:
Die nachfolgenden Beispiele beschreiben die entwickelten PCR-Schnelltests zur Detektion der Zielmikroorganismen, inklusive aller Sequenzvariationen und
Targetsequenzen
(i) Staphylococus aureus (Beispiele 1-5)
(n) Pseudomonas aeruginosa (Beispiele 6-9)
(in) Escherichia coli (Beispiele 10-13)
(iv) Salmonella ssp (Beispiele 14-17)
(iv) Bakterien (Beispiele 18-23)
(vi) Target-Sonden-und Primersequenzen (Beispiel 24)
(VII) Sequenzvariationen (Beispiel 25)
(vin) (Entwicklungssequenzen Sonden und Primer mit nicht zufriedenstellender Testspezifitat/Sensitivitat (Beispiel 26)
Beispiel 1 DNA-Freisetzung nach Voranreicherung
Je 100 μl-Aliquote der jeweiligen Mikroorganismen-Kultur wurde zur Freisetzung der DNS lysiert (Makino et al Applied Environ Microbiol 3745-3747,1995) Die DNS wurde von Proteinen und sonstigen PCR-Inbibitoren gereinigt und dann in PCR Amplifikationsexpeπmenten eingesetzt
Beispiel 2 Nachweis von Staphylococcus aureus Der Nachweis von S aureus erfolgte durch erfindungsgemaße artspezifische Amplifikation von cap-8 Gensequenzen (SEQ ID NO 1 , siehe Beispiel 24) Das cap-8 Gencluster verschlüsselt Proteine, die bei der Biosynthese der Kapsel von S aureus beteiligt sind Die Kapsel umhüllt die Oberflache dieser Bakterien und stellt einen Schutzmechanismus gegen die Abwehrmechanismen der Wirtsorganismen dar Die molekulare Zusammensetzung der Kapsel ist für S aureus spezifisch und stellt sozusagen einen molekularen Fingerabdruck dieser Staphylococcen-Art dar Der (open reading frame O) ORF-0 des cap-8 Genclusters ist in den verschiedenen Serotypen von S aureus konserviert (Sau und Lee 1996, J Bactenol 178, 2118-2126) Die DNA- Sequenzen aus dem ORF-0 des cap-8 Genclusters (SEQ ID NO 1 ) wurden als diagnostische DNA-Sequenzen zur Synthese von artspezifischen DNA-Pnmern und Sonden ausgewählt
Als Resultat von DNA-Sequenzdatenbank-Vergleichen und praktischen Optimierungsarbeiten, unter Verwendung verschiedener Pπmer- und Sondenkombinationen, wurden folgende cap-8 spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt 1. PCR-Sonde
20 mer 5'-TAMRA- CCT GGT CCA GGA GTA GGC GG 3' - FAM (Sonde cap-8 # 15460*, als reverse complement einsetzen) [SEQ. ID. NO. 7] Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.
2. PCR-Primer
24 mer: 5' -AGA TGC ACG TAC TGC TGA AAT GAG -3' (Primer cap-8 forward # 15297*) [SEQ. ID. NO. 6]
26 mer: 5' -GTT TAG CTG TTG ATC CGT ACT TTA TT - 3'
(Primer cap-8 reverse # 15485* als reverse complement einsetzen) [SEQ. ID. NO. 8]
*Die Positionen beziehen sich auf die in der von Sau and Lee (1996, J. Bacteriol. 178, 2118-2126) publizierten cap-8 DNS Sequenz. Synthese und Reinigung der PCR Primer Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen.
Beispiel 3 PCR-Bedingungen für den Nachweis von Staphylococcus aureus Nach Variation von Primer- und Sondenkonzentration, und MgCl2 Konzentration ergaben sich folgende Bedingungen als optimal:
Alle Komponenten wurden von der Firma PE Applied Biosystems, Weiterstadt, bezogen. Herstellung der TaqMan-PCR-Reaktionsgemische, Durchführung der PCR Reaktionen und Bedienung der PCR Heizblocks bzw. des Fuoreszenz-Detektors (PE ABD Modell 7700 oder Modell LS50B) erfolgte nach Anweisungen des Geräteherstellers (User's Manual, ABI Prism 7700 Sequence Detection System, PE Applied Biosystems 1997, bzw. Users Manual, PE ABI LS50 B).
Folgende Komponenten wurden in einem PCR Reaktionsgefäß (PE Applied Biosystems Best. Nr. N8010580) gemischt: Komponente Volumen Endkonzentration Menge
(μl) (in 50 μl)
DNA 5.00 1 fg - 100 ng
Bidest 10.25
10 fach 5.00 1 x konzentrierter
TaqMan Puffer A*
25 mM MgCI2 8.00 4 mM
Lösung
DATP 2.00 200 mM
DCTP 2.00 200 μM
DGTP 2.00 200 μM
DUTP 2.00 400 μM
5' Primer # 15297 5.00 15 pmol
Sonde # 15460 3.00 6 pmol
3' Primer # 15485 5.00 15 pmol
Ampli Taq Gold* 0.25 1.25 units
AmpErase UNG* 0.50 0.50 units
Gesamtvolumen 50.00
* (aus: TaqMan PCR Core Reagents, N 8080229, PE Applied Biosystems)
Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten
Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0 -15.25 μl) als Komponente in jedes PCR
Reaktionsgefäß separat zugeben.
Die PCR-Reaktionen werden in dem PCR Heizblock des ABI Sequence Detectors 7700 durchgeführt. Funktional äquivalent sind PCR-Heizblöcke mit vergleichbaren Heiz- und
Wärmetransfereigenschaften, wie z. B. die PE ABI Geräte Modell 7200, 9700, 9600 und
2400. Das PCR-Zykiusprofil ist wie folgt:
Cycle Temperatur Zeit (min) Wieder¬
(°C ) holungen
Hold 50 2:00 1
Hold 95 10:00 1
Cycle 95 0:15 40
Cycle 60 1 :00
Hold 25 5:00
Für detaillierte Erklärungen zum PCR-Zyklus-Profil siehe: User's Manual, ABI Prism 7700 Sequence Detection System, PE Applied Biosystems 1997. Beispiel 4 Selektivität des S. aureus PCR-Schnelltests
4.1 Elektrophoretische Analyse
Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im PCR Test eingesetzt (Abb. 1 , Sambrock et al. 1993). Die entstandenen PCR-Produkte wurden eiektrophoretisch analysiert. Die PCR-Produkte hatten eine Größe von 213 Basenpaaren. Kontrollsequenzierungen der PCR-Produkte verifizierte, daß es sich um cap8-0 DNA handelte (ohne Abb.)
Die DNA (10 ng pro Spur, 2-14) aller eingesetzten S. aureus Stämme (Lane 2-5) wurde von den cap8-0 Primern (# 15297 und # 15485) detektiert. Dem gegenüber wurde die DNA einer nahe verwandten Staphylococcus Art, S. epidermidis (Lane 6) und die anderer bakterieller Gattungen (Lane 7-11) nicht detektiert. DNA aus Pilz, Fisch und Mensch (Lane 12-14) wurden als Kontrollen eingesetzt und ergaben kein Detektionssignal. NTC (= no template control) ist die Wasserkontrolle, in der keine DNA eingesetzt wurde.
4.2 Fluoreszenzanalyse
Neben der elektrophoretischen Analyse wurde die Selektivität der diagnostischen PCR als TaqMan-Fluoreszenztest unter Verwendung der oben genannten Primer und
Fluoreszenzsonde bestimmt. Die Resultate sind als Ct-Werte (Threshold cycle) angegeben.
Ct-Wert: Die bei der TaqMan-PCR stattfindende Hydrolyse der Fluoreszenzsonde führt zu einem Anstieg der Reporterfluoreszenzstrahlung von einem PCR-Zyklus zum Nächsten. Die Zyklenzahl, bei der erstmals die Reporterfluoreszenzstrahlung über der
Hintergrundstrahlung (NTC) des Systems liegt und linear ansteigt, wird "Threshold cycle" (Ct) genannt. (Hintergrundstrahlung (NTC) ist die Reporterfluoreszenzstrahlung in PCR Kontrollreaktionen, in denen keine Template-DNA eingesetzt wurde.) Sowohl die Menge an freiwerdender Reporterstrahlung als auch der "Treshold cycle" (Ct- Schwellenwert-Zykluszahl) sind proportional zu der Menge an entstehenden PCR Produkten und somit zu der Menge an eingesetzten Genkopien (Keimzahl). Je mehr Genkopien eingesetzt werden, desto niedriger ist der resultierende Ct-Wert. In einem PCR - System mit 100%iger Effizienz nimmt der Ct- Wert mit jeder Verdopplung der Start-Genkopienzahl um einen Zyklus ab. Bei einer PCR-Reaktion die z.B. 40 Zyklen umfaßt, und bei der kein PCR Produkt entsteht, wird der Ct-Wert per Definition
40 sein.
Es werden je 10 ng an Template-DNA in den PCR-Reaktionen für den Spezifizitätstest eingesetzt. Die Reaktionsbedingungen sind in Beispiel 3 angegeben. Liste der getesteten DNA-Isolate
(je 10 ng genomische DNS analysiert) Organismus Resultat
(als CT-Wert)
Staphylococcus aureus Arten
S. aureus
DSM 683 (ATCC 9144) 17 DSM 1 104 (ATCC 25923) 17
DSM 6148 17
DSM 346 (ATCC 6538) 17 S. epidermidis
DSM 1798 (ATCC 12228) 40
Andere bakterielle Gattungen Organismus Resultat
(als CT-Wert)
Pseudomonas aeruginosa DSM 11 17 (ATCC 27853) 40
DSM 1128 (ATCC 9027) 40 DSM 3227 (ATCC 19429) 40 DSM 50071 (ATCC 10145) 40 Salmonella typhimurium DSM 5569 (ATCC 1331 1 ) 40
Streptococcus faecalis
DSM 2981 (ATCC 14506) 40 (reclassified DSM 2570 (ATCC 29212) 40 as Enterococcus faecalis)
DSM 6134 40 Escherichia coli
DSM 787 (ATCC 1 1229) 40 DSM 1576 (ATCC 8739) 40
Eukaryonten
Neurospora crassa 40 Mensch (Perkin Eimer ABI, 401846) 40
Salmon (Sigma D 9156) 40
Wasser 40
Nach etwa 17 Zyklen wurde erstmals ein linearer Anstieg der FAM-Fluoreszenz über der FAM-Hintergrundstrahlung der Fluoreszenzsonde detektiert, wenn S. aureus genomische DNA in der Fluoreszenz-PCR eingesetzt wurde. Wurde DNS von S. epidermidis in der PCR angesetzt, einer nahe verwandten Art von S. aureus innerhalb der Gattung Staphylococcus, so ließ sich kein signifikanter Anstieg der FAM- Reporterfiuoreszenz detektieren. Die Ergebnisse der PCR-Analyse mit DNA aus verschiedenen bakteriellen Gattungen, Staphylococcus-Arten und Staphylococcus aureus Stammen zeigt die Spezifität des entwickelten S aureus Tests Nur S aureus DNS wurde von den cap-8 Pπmern und Sonden detektiert
Beispiel 5 Sensitivität des S. aureus Nachweisverfahrens
Um die Sensitivität des S aureus PCR-Tests zu bestimmen, wurde genomische S aureus DNA präpariert und in PCR-Expeπmenten eingesetzt
10 fg genomische S aureus DNA entsprechen 3 Genomen (Strauss and Falkow 1997, Science 276, 707-712)
10 fg = 3 KBE
10 pg = 3 000 KBE
10 ng = 3 000 000 KBE
Verschiedene Mengen an S aureus DNA (1 fg bis 100 ng) wurden in der Fluoreszenz- PCR eingesetzt (Abb 2) Die gezeigten Daten stellen Mittelwerte aus 6 unabhängigen Experimenten dar Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wurde als CT-Wert angegeben
Das Ergebnis zeigt, daß sich die DNA von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen laßt Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten S aureus Genome über 5 log Stufen, d h zwischen 3 und 300 000 KBE (Ing DNS)
Beispiel 6 Nachweis von Pseudomonas aeruginosa
Der Nachweis von Pseudomonas aeruginosa erfolgte durch erfindungsgemaße artspezifische Amplifikation von a/gQ-Gensequenzen (Sequenzen s Beispiel 24) Das a/gQ-Gen verschlüsselt Elemente eines Schutzmechanismus der von Pseudomonas aeruginosa im Laufe der Evolution entwickelt wurde, und der für diese Bakterienart spezifisch ist
Die Produktion von Alginat ist eine einzigartige Virulenzeigenschaft von Pseudomonas aeruginosa Alginat ist ein Polymer aus Mannuron- und Guluronsaure (1 ,4 glykosidisch verknüpft) Dieses Polymer bildet eine viskoses Gel auf der Bakteπenoberflache Die Produktion dieses Biogeis ist sehr sensitiv reguliert Die Fähigkeit, Alginat zu synthetisieren, ist bei allen Pseudomonas aeruginosa Stammen vorhanden Sie ist charakteristisch für diese Bakterienart Alginat-Synthese ist ein energiekonsumierender Prozeß und deshalb reguliert. Ein Gen, das Alginat-Synthese reguliert, ist das algQ - Gen (Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520). Es verschlüsselt die sensorische Komponente eines Signaltransduktions-Systems (Roychoudhury et al. 1993, PNAS USA 90: 965-969). Da das algQ- Gen an der Regulation eines spezifischen Schutzmechanismus beteiligt ist, stellt es einen genetischen Marker mit diagnostischer Potenz zur Identifizierung der Art Pseudomonas aeruginosa dar.
Als Resultat von DNA-Sequenzdatenbank-Vergleichen und praktischen Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende a/gQ-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:
1. PCR-Sonde :
26 mer: 5'-FAM - CCA ACG CCG AAG AAC TCC AGC ATT TC - TAMRA (Sonde a/gQ # 911): [SEQ. ID. NO. 10]
Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.
2. PCR-Primer: 23 mer: 5 -CTT CGA TGC CCT GAG CGG TAT TC-3'
(Primer algQ forward # 876*) [SEQ. ID. NO. 9]
Reverse Primer Sequence (# 1147):
23 mer: 5 -CTG AAG GTC CTG CGG CAA CAG TT-3' (Primer algQ reverse # 1147* als reverse complement einsetzen) SEQ. ID. NO. 11
* Positionen beziehen sich auf die in Konyecsni and Deretic 1990, J. Bacteriol. 172, 2511-2520 publizierte DNA-Sequenz.
Synthese und Reinigung der PCR Primer Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen. Beispiel 7 PCR-Bedingungen für den Nachweis von P. aeruginosa
Nach Variation von Primer- und Sondenkonzentration, und MgCl2 Konzentration ergaben such folgende Bedingungen als optimal:
Komponente Volumen Endkonzentration Menge
(μl) (in 50 μl) DNA
5.00 1 fg - 100 ng
Bidest 7.25
10 x TaqMan Puffer A 5.00 1 x
25 mM MgCI2 Lösung 13.00 6.5 mM dATP 2.00 200 μM dCTP 2.00 200 μM dGTP 2.00 200 μM dUTP 2.00 400 μM
5' Primer # 876 1.00 3 pmol
Sonde # 911 4.00 8 pmol
3' Primer # 1147 5.00 15 pmol
AmpliTaq Gold 0.25 1.25 units
AmpErase UNG 0.50 0.50 units
DMSO 1 ,00
50.00
Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0-15.25 μl) als Komponente in jedes PCR Reaktionsgefäß separat zugeben.
Die PCR-Reaktionen werden in dem PCR Heizblock des ABI Sequence Detectors 7700 durchgeführt. Funktional äquivalent sind PCR-Heizblöcke mit vergleichbaren Heiz- und Wärmetransfereigenschaften, wie z. B. die PE ABI Geräte Modell 7200, 9700, 9600 und 2400.
Das PCR-Zyklenprofil für die Pseudomonas aeruginosa PCR ist wie folgt:
Cycle Temperatur (°C) Zeit (min) Wiederholungen
Hold 50 2:00 1
Hold 95 10:00 1
Cycle 97 0:30 4 60 1 :00
Cycle 94 0:30 41 60 1 :00
Hold 25 5:00 rur uetails zu PCR-Bedingungen siehe Beispiel 3.
Beispiel 8 Selektivität des Pseudomonas aeruginosa PCR-Schnelltests
Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle, für Ct- Wert s. Definition Beispiel 4) angegeben .
Liste der getesteten DNA-Isolate
Ge 10 ng genomische DNS analysiert)
Organismus Resultat
(als CT-Wert)
Pseudomonas Arten
P. aeruginosa DSM 1117 (ATCC 27853) 19
DSM 1128 (ATCC 9027) 19
DSM 3227 (ATCC 19429) 19
DSM 50071 (ATCC 10145) 19
P. putida DSM 50026 45
P. fluoreszenz ATCC 948 45
Andere bakterielle Arten
Staphylococcus aureus DSM 683 45
DSM 1104 45
DSM 6148 45
DSM 6538P 45
Streptococcus faecalis DSM 2981 45
DSM 6134 45
ATCC 29212 45
Salmonella typhimurium ATCC 13311 45
Escherichia coli DSM 301 45
DSM 787 45
DSM 1103 45
ATCC 8739 45
Eukaryonten
Neurospora crassa 45
Arabidopsis thaliana 45
Salmon (Sigma D9156) 45
Mensch (Perkin Eimer ABI, 401846) 45
Wasser 45
Ausschließlich Pseudomonas aeruginosa Stämme ergaben ein positives Ergebnis im PCR-Schnelltest. Nach 19 PCR Zyklen (CT=19) war erstmals ein linearer Anstieg der Fluoreszenz meßbar, wenn 10 ng P. aeruginosa DNS eingesetzt wurden. Der PCR Test war hochspezifisch. Auch die nahe verwandten Arten P. putida und P. fluoreszenz ergaben kein Fluoreszenzsignal im PCR-Schnelltest.
Als Positivkontrolle wurden die selben bakteriellen DNS, die im algQ-PCR-Test analysiert worden waren mit dem universellen 16S rRNA PCR System (s. Beispiel 19 ) untersucht. Alle bakteriellen DNS ergaben ein positives Signal mit dem 16S rRNA
System. Das bedeutet, alle DNS ließen sich 16S rRNA-PCR-amplifizieren, aber lediglich die P. aeruginosa DNS ließen sich a/gQ-PCR-amplifizieren.
Das a/gQ-System ist Pseudomonas aeruginosa spezifisch.
Zusätzlich wurden die entstandenen PCR-Produkte elektrophoretisch analysiert (vgl. Beispiel 3). Die PCR-Produkte hatten eine Größe von 294 Basenpaaren (ohne Abb.).
Kontrollsequenzierungen der PCR-Produkte verifizierte, daß es sich um algQ DNS handelte (ohne Abb.)
Beispiel 9 Sensitivität und Linearität des P. aeruginosa PCR-Schnelltests
Um die Sensitivität des P. aeruginosa PCR-Tests zu bestimmen, wurde genomische P. aeruginosa DNS präpariert und in PCR-Experimenten eingesetzt ( Abb.3). Verschiedene Mengen an P aerugonosa Genomkopien wurden in der Fluoreszenz- PCR eingesetzt (Abb. 3). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT- Wert angegeben. Die PCR- Reaktion wurde über 45 Zyklen durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 45. Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten P. aeruginosa Genome über 4 log Stufen, d. h. zwischen 3 und 30.000 KBE.
Beispiel 10 Nachweis von Escherichia coli
Der Nachweis von E. coli erfolgte durch erfindungsgemäße artspezifische Amplifikation von murA-Gensequenzen
Spezifische Bereiche des murA-Gens dienten als diagnostisches Ziel für die Entwicklung eines PCR-Schnelltests zum Nachweis von Escherichia coli. Warum wurde dieses Gen als diagnostisches Ziel gewählt? Das murA Gen verschlüsselt das Enzym UDP-N-Acetylglucosamin Enolpyruvyltransferase, ein wichtiges Strukturgen von E. coli (Marquardt et al. 1992, J. Bacteriol. 174, 5748-5752). Dieses Enzym katalysiert den ersten Schritt der Peptidoglykan-Synthese, im Falle von E. coli des Mureins, welches einen essentiellen Bestandteil der bakteriellen Zellwand darstellt. Die Zellwandkomposition ist als ein charakteristisches Merkmal von Bakterienarten anzusehen. Es wurde die murA Nukleotidsequenz von E. coli mit der nahe verwandten Enterobakteriaceaen-Art Enterobacter cloacae verglichen. Auf Grund der identifizierten Sequenzunterschiede wurde das murA-Gen als genetischer Marker mit diagnostischer Potenz zur Identifizierung der Enterobakteriaceaen-Art Escherichia coli ausgewählt.
Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischer Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende ur/A-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:
Forward Primer Sequence (# 767*):
5' GTT CTG TGC ATA TTG ATG CCC GCG 3' [SEQ. ID. NO. 12]
Sonde (# 802):
5'-FAM - TCT GCG CAC CTT ACG ATC TGG TT - TAMRA 3' [SEQ. ID. NO. 13]
Reverse Primer Sequence (# 884): 5' GCA AGT TTC ACT ACC TGG CGG TTG 3'
(als reverse complement einsetzen) [SEQ. ID. NO. 14]
* Positionen beziehen sich auf die in Marquardt et al. 1992, J. Bacteriol. 174, 5748- 5752 publizierte DNA-Sequenz (Genbank: M92358). Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.
Beispiel 11 PCR-Bedingungen für den Nachweis von Escherichia coli
Nach Variation von Primer- und Sondenkonzentration, der MgC_2 bzw. Glycerin Konzentration und der Nukleotidkomposition ergaben sich folgende Bedingungen als optimal: Komponente Volumen Endkonzentration Menge
(μl) (in 50 μl)
DNA 5.00 1 fg - 100 ng
Bidest 8.75
10 x TaqMan Puffer A 5.00 1 x
25 mM MgCI2 Lösung 7.00 3.5 mM dATP 2.00 200 μM dCTP 2.00 200 μM
7-deaza-dGTP 2.00 200 μM dUTP 2.00 400 μM
Glycerin 40% 2.50 2%
5' Primer # 767 5.00 15 pmol
Sonde # 802 3.00 6 pmol
3' Primer # 884 5.00 15 pmol
AmpiiTaq Gold 0.25 1.25 units
AmpErase UNG 0.50 0.50 units
50.00
Das PCR-Zyklenprofil für die Escherichia coli PCR:
Cycle Temperatur Zeit (min) Wiederholung
(C°)
Hold 50 2:00 1 Hold 95 10:00 1 Cycle 95 0:15 40
60 1 :00
Hold 25 5:00
Für Details siehe Beispiel 3.
Beispiel 12 Selektivität des Escherichia coli PCR-Schnelltests
Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle) angegeben (Tab.). Liste der getesteten DNA-Isolate
(je 10 ng genomische DNS analysiert)
Organismus Resultat
(als CT-Wert)
Escherichia coli Stämme
Escherichia coli
DSM 301 16
DSM 787 16
DSM 1 103 16
ATCC 8739 16
Andere Enterobacteriaceae
Acetobacter pasteurianus DSM 3509 40
Acinetobacter calcoaceticus DSM 6962 40
Aeromonas enteropelogenes DSM 6394 40
Alcaligenes faecalis DSM 30030 40
Budvicia aquatica DSM 5075 40
Buttiauxella agrestis DSM 4586 40
Cedecea davisae DSM 4568 40
Chromobacterium violaceum DSM 30191 40
Enterobacter cloacae DSM 30054 40
Edwardsiella tarda DSM 30052 40
Ewingella americana DSM 4580 40
Erwinia amyiovora DSM 30165 40
Hafnia alvei DSM 30163 40
Haemophilus influenzae DSM 4690 40
Halomonas elongata DSM 2581 40
Heiicobacter pylori DSM 4867 40
Kluyvera ascorbata DSM 4611 40
Leclercia adecarboxylata DSM 5077 40
Legionelia pneumophilia DSM 7515 40
Leminorella grimontli DSM 5078 40
Levinea malonatica DSM 4596 40
Listeria monocytogenes DSM 20600 40
Moellerella wisconsensis DSM 5076 40
Morganella morganii sp. DSM 30164 40
Pantoea agglomerans DSM 3493 40
Photorhabdus luminescens DSM 3368 40
Plesiomonas shigelloides DSM 8224 40
Pragia fontium DSM 5563 40
Providencia stuarti DSM 4539 40
Proteus mirabilis DSM 788 40
Rhanella aquatilis DSM 4594 40
Serratia marcescens DSM 30121 40
Tatumella ptyseos DSM 5000 40
Vibrio proteolyticus DSM 30189 40
Xenorhabdus nematophilus DSM 3370 40
Yersinia enterocolitica DSM 4780 40
Andere bakterielle Arten
Pseudomonas aeruginosa DSM 1128 (ATCC 9027) 40
Baciilus subtiiis 40 Salmonella typhimurium ATCC 13311 40 Pseudomonas mirabelis DSM 788 40 Staphylococcus aureus DSM 6538P 40 Streptococcus faecalis DSM 2981 40 Klebsiella pneumonia ATCC 10031 40 Citrobacter freundii DSM 30040 40
Eukaryonten
Neurospora crassa 40 Arabidopsis thaliana 40
Salmon (Sigma D9156) 40
Mensch (Perkin Eimer ABD, 4018 84466)) 40
Wasser 40
Lediglich Escherichia coli Stämme ergaben ein positives Ergebnis im PCR-Schnelltest. Nach 16 PCR Zyklen (CT=16) war erstmals ein linearer Anstieg der Fluoreszenz meßbar, wenn 10 ng Escherichia coli DNS eingesetzt wurden. Der PCR Test war hochspezifisch. Auch ein nahe verwandte Enterobacteriaceaen-Art, Enterobacter cloacae, ergab kein Fluoreszenzsignal im PCR-Schnelltest (Tab.).
Als Positivkontrolle wurden dieselben bakteriellen DNS, die im murA-PCR-Test analysiert worden waren (Tab.) mit dem universellen 16S rRNA PCR System (s. Beispiel 19) untersucht. Alle bakteriellen DNS ergaben ein positives Signal mit dem 16S rRNA System. D. h. alle DNS ließen sich 16S rRNA-PCR-amplifizieren, aber lediglich die Escherichia coli DNS ließen sich tm/rΛ-PCR-amplifizieren.
Das /77i/r>4-System ist spezifisch für Escherichia coli.
Zusätzlich wurden die entstandenen PCR-Produkte elektrophoretisch analysiert (vgl.
Bericht Staphylococcus aureus). Die PCR-Produkte hatten eine Größe von 142
Basenpaaren (ohne Abb.). Kontrollsequenzierungen der PCR-Produkte verifizierten, daß es sich um murA DNS handelte (ohne Abb.)
Beispiel 13 Sensitivität des E. coli Test Um die Sensitivität des Escherichia coli PCR-Tests zu bestimmen, wurde genomische Escherichia coli DNS präpariert und in PCR-Experimenten eingesetzt (Abb. 4). Verschiedene Mengen an Escherichia coli Genomkopien wurden in der Fluoreszenz- PCR eingesetzt (Abb. 4). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT angegeben. Die PCR Reaktion wurde über 40 Zyklen durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 40. Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten Escherichia co//'-Genome über 6 log Stufen, d. h. zwischen 3 und 3.000000 KBE.
Beispiel 14 Nachweis von Salmonella ssp. (Subspezies)
Der Nachweis von Salmonella spp. der Art Salmonella enterica erfolgte durch erfindungsgemäße spezifische Amplifikation von /wA-Gensequenzen
Spezifische Bereiche des invA Gens dienten als diagnostisches Ziel für die Entwicklung eines PCR-Schnelltests zum Nachweis von Salmonella spp. Warum wurde dieses Gen als diagnostisches Ziel gewählt? Das invA Gen verschlüsselt einen Salmonella-spezifischen Virulenzfaktor. Verschiedene Untersuchungen an einer Reihe von Salmonellen haben gezeigt, daß diese Bakterienarten an Epithelzellen binden. Bei diesem Prozeß wird das Actin-System der Wirtszellen von den Bakterien beeinflußt. Als Reaktion umschließen die Wirtszellen die Bakterienzellen. Nach vollständigem Einschluß existieren die Bakterien in Vesikeln im Zytoplasma der Wirtszellen. An diesem Einschließungsprozeß (engl. invasion) sind die sogenannten inv Gene (InvA-H) von Salmonella beteiligt. Mutanten in dem invA Gen binden noch an Wirtszellen, werden von diesen aber nicht mehr aufgenommen. Die inv Gensequenz Salmonella Subspezies stark konserviert erhalten (Salyers and Whitt 1994, Salmonella Infection, in: Bacterial Pathogenesis ASM Press, Washington D.C. p233). Das invA Gen von Salmonella wurde isoliert und die Nukleotidsequenz aufgeklärt (Galan and Curtis 1989, PNAS USA 86: 6383-7, Galan and Curtis 1991 , Infection and Immunity 59: 2901-2908, und siehe: Rahn et al. 1992, Mol. Cell. Probes 6: 271-279). Da das invA Gen an der Expression eines spezifischen Virulenzmechanismus von Salmonellen beteiligt ist, stellt es einen genetischen Marker mit diagnostischer Potenz zur Identifizierung von Salmonella ssp. dar (Rahn et al. 1992, Mol. Cell. Probes. 6: 271-279).
Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischer Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende /'nvA-spezifische DNA-Sequenzen als optimale Primer- / Sonden Kombination bestimmt: Forward Primer Sequence (# 269*):
5' GTG AAA TTA TCG CCA CGT TCG GGC 3* [SEQ. ID. NO. 15] Sonde (# 333):
5'-FAM - CTT CTC TAT TGT CAC CGT GGT CCA - TAMRA 3' [SEQ. ID. NO. 16]
Reverse Primer Sequence (# 542): 5' GGT TCC TTT GAC GGT GCG ATG AAG 3' (als reverse complement einsetzen) [SEQ. ID. NO. 17]
* Positionen beziehen sich auf die in Boyd et al. 1996, Appl. Environ. Microbiol. 62: 804- 808 publizierte DNA-Sequenz (Genbank: U43237).
Die Sonden wurden von der Firma PE Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamine) modifiziert wurden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems.
Beispiel 15 PCR-Bedingungen für den Nachweis von Salmonellen Nach Variation von Primer- und Sondenkonzentration, und MgCl2 Konzentration ergaben such folgende Bedingungen als optimal:
Komponente Volumen Endkonzentration Menge
(μl) (in 50 μl)
DNA 5.00 1 fg - 100 ng
Bidest 11.25
10 x TaqMan Puffer A 5.00 1 x
25 mM MgCI2 Lösung 7.00 3.5 mM dATP 2.00 200 μM dCTP 2.00 200 μM dGTP 2.00 200 μM dUTP 2.00 400 μM
5" Primer # 269 5.00 15 pmol
Sonde # 333 3.00 6 pmol
3' Primer # 542 5.00 15 pmol
AmpiiTaq Gold 0.25 1.25 units
AmpErase UNG 0.50 0.50 units
50.00 Das PCR-Zyklenprofil für die Salmonella ssp. PCR:
Cycle Temperatur Zeit (min) Wiederholung
(°C)
Hold 50 2:00 1 Hold 95 10:00 1 Cycle 95 0:15 40
60 1 :00
Hold 25 5:00
Für Details siehe Beispiel 3.
Beispiel 16 Selektivität des Salmonella ssp. PCR-Schnelltests
Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA aus verschiedenen Organismen isoliert und im Fluoreszenz-PCR Test eingesetzt. Die Menge an entstandenen PCR Produkten wurde als CT-Wert (Threshold Cycle) angegeben (CT- Definition s. Beispiel 4).
Liste der getesteten DNA-Isolate
(je 10 ng genomische DNS analysiert)
Organismus Resultat
(als CT-Wert)
Salmonella enterica
Subspezies
Salmonella typhimurium ATCC 13311 Salmonella typhi Salmonella agona Salmonella borismorbificans Salmonella anatum Salmonella brandenburg Salmonella derby Salmonella montevideo Salmonella newport Salmonella parathyphi B Salmonella pullorum Salmonella dublin Salmonella enteritidis Salmonella hadar Salmonella infantis
Andere bakterielle Arten
Pseudomonas aeruginosa DSM 1117 (ATCC 27853) 40 DSM 1128 (ATCC 9027) 40 DSM 3227 (ATCC 19429) 40
DSM 50071 (ATCC 10145) 40
Pseudomonas mirabeiis DSM 788 40
Staphylococcus aureus DSM 683 40
DSM 1104 40
DSM 6148 40
DSM 6538P 40
Streptococcus faecalis DSM 2981 40
DSM 6134 40
ATCC 29212 40
Escherichia coli DSM 301 40
DSM 787 40
DSM 1103 40
ATCC 8739 40
Enterobacter cloacae DSM 30054 40
Klebsieila pneumonia ATCC 10031 40
Citrobacter freundii DSM 30040 40
Eukaryonten
Neurospora crassa 40
Arabidopsis thaliana 40
Salmon (Sigma D9156) 40
Mensch (Perkin Eimer ABD, 401846) 40
Wasser 40
Lediglich Salmonellen ergaben ein positives Ergebnis im PCR-Schnelltest. Nach 15 PCR Zyklen (CT=15) war erstmals ein linearer Anstieg der Fluoreszenz meßbar, wenn 10 ng Salmonella ssp. DNS eingesetzt wurden. Der PCR Test war hochspezifisch. Auch die nahe verwandten Escherichia coli Stämme ergaben kein Fluoreszenzsignal im PCR-Schnelltest .
Als Positivkontrolie wurden dieselben bakteriellen DNS, die im // .4-PCR-Test analysiert worden waren mit dem universellen 16S rRNA PCR System untersucht. Alle bakteriellen DNS ergaben ein positives Signal mit dem 16S rRNA System. D. h. alle DNS ließen sich 16S rRNA-PCR-ampiifizieren, aber lediglich die Salmonella DNS ließen sich invA-PCR-amplifizieren.
Das /nv -System ist spezifisch für Salmonella.
Zusätzlich wurden die entstandenen PCR-Produkte elektrophoretisch analysiert. Die PCR-Produkte hatten eine Größe von 287 Basenpaaren (ohne Abb.). Kontrollsequenzierungen der PCR-Produkte verifizierten, daß es sich um invA DNS handelte (ohne Abb.)
Beispiel 17 Sensitivität des PCR-Schnelltests Um die Sensitivität des Salmonella ssp. PCR-Tests zu bestimmen, wurde genomische
Salmonella typhimurium DNS präpariert und in PCR-Experimenten eingesetzt (Abb. 5). Verschiedene Mengen an Salmonella typhimurium Genomkopien wurden in der Fluoreszenz-PCR eingesetzt (Abb. 5). Die gezeigten Daten stellen Mittelwerte und Standardabweichungen aus 4 unabhängigen Experimenten dar. Die Menge an freiwerdender Fluoreszenz und somit an entstehenden PCR-Produkten wird als CT angegeben. Die PCR Reaktion wurde über 40 Zyklen durchgeführt. Der CT-Wert der Wasserkontrolle (NTC = no template control) betrug 40.
Das Ergebnis zeigt, daß sich die DNS von 3 Bakterienzellen mittels Fluoreszenz-PCR nachweisen läßt. Der PCR-Schnelltest erlaubt eine lineare Quantifizierung der eingesetzten Salmonella typhimurium Genome über 6 log Stufen, d. h. zwischen 3 und 3.000000 KBE.
Beispiel 18 DNA-Freisetzung ohne Voranreicherung in Nährmedien
DNS aus verschiedenen Testmikroorganismen wurde entsprechend Boom et al.,1990, extrahiert , von Proteinen und sonstigen PCR-Inhibitoren gereinigt (Quiagen Säulen Kit, 1995) und in PCR Amplifikationsexperimenten eingesetzt.
Beispiel 19 Nachweis von Bakterien universell Der Nachweis von Bakterien erfolgte durch erfindungsgemäße spezifische Amplifikation von konservierten 16S rRNA Gensequenzen ( SEQ. ID. NO. 5, siehe Beispiel 24). Bestimmte 16S rRNA-spezifische DNA-Sequenzen haben sich im Laufe der Evolution konserviert, sind deshalb im Genom aller Bakterien vorhanden und können als Primer und Sonden zum universellen Nachweis von Bakterien eingesetzt werden (Relman 1993, Weisburg et al.1991 , J. Bacteriol. 173).
Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischen Optimierungsarbeiten, unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende 16S rRNA-spezifische DNA-Sequenzen als optimales Primer-/SondenKombination bestimmt:
1. PCR Sonde
23 mer: 5'- FAM - TTA AGT CCC GCA ACG AGC GCA AC - TAMRA - 3'
(Sonde 16S rRNA # 1090): [SEQ. ID. NO. 19] Sonden wurden von der Firma PE
Applied Biosystems Division, Weiterstadt, Deutschland hergestellt. Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluorescein) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6- carboxytetramethylrhodamine) modifiziert worden. Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems. 2. PCR Primer
19 mer: 5- GCA TGG CTG TCG TCA GCT C - 3"
(Primer 16S rRNA forward # 1053*) [SEQ. ID. NO. 18]
20 mer: 5- TGA CGG GCG GTG TGT ACA AG - 3'
(Primer 16S rRNA reverse # 1386*) [SEQ. ID. NO. 20]
* Positionen beziehen sich auf die DNS Sequenz des 16S rRNA Gens (E. coli in Weisburg et al.1991 , J. Bacteriol. 173 )
Synthese und Reinigung der PCR -Primer -Oligonukleotide erfolgte durch die Firma PE Applied Biosystems und nach deren Protokollen.
Beispiel 20 PCR Bedingungen für den Nachweis von Bakterien universell
Nach Variation von Primer- und Sondenkonzentration, und MgCl2 Konzentration
Temperatur und Zyklenprofil der PCR und Abstand des Reporterfarbstoffs zum Quencherfarbstoff innerhalb der Sonde ergaben sich folgende Bedingungen als optimal: Folgende Komponenten wurden in einem PCR Reaktionsgefäß (PE Applied Biosystems Best. No. N8010580) gemischt.:
Komponente Volumen Endkonzentration Menge
(μl) (in 50 μl)
DNA 1.00 1 f g - 100 nι
Bidest Wasser 17.25
10 x TaqMan Puffer A 5.00 1 x
25 mM MgC_2 Lösung 11.00 5.5 mM dATP 1.00 200 μM dCTP 1.00 200 μM dGTP 1.00 200 μM dUTP 1.00 400 μM
5' Primer #1053 5.00 400 nM 20 pmol
Sonde #1090 1.00 40 nM 2 pmol
3' Primer #1386 5.00 400 nM 20 pmol
AmpliTaq 0.25 1.25 units
AmpErase UNG 0.50 0.50 units
50.00
Für eine optimale Reproduzierbarkeit der Ergebnisse ist darauf zu achten, daß bei jedem PCR-Lauf möglichst viele Komponenten des PCR-Mixes in einem sogenannten Mastermix vorgemischt werden. Unter Standardbedingungen wird nur das zu untersuchende DNA-Material (0-15.25 μl) als Komponente in jedes PCR Reaktionsgefäß separat zugeben.
Das PCR-Zyklusprofil ist wie folgt:
Cycle Temperatur Zeit (min) Wiederholung
(°C)
Hold 50 2:00 1
Hold 95 10:00 1
Cycle 95 0:15 40
Cycle 60 1 :00
Hold 25 5:00
Dieses Schema ist kompatibel für PCR-Geräte mit Heizblock, wie z.B.: GeneAMP PCR Geräte 2400 und 9600 und das ABI Prism 7700 Sequence Detection System von Perkin Eimer. Für Details siehe Beispiel 3.
Nach Abschluß der PCR Reaktionen wurden die Proben in das Fluorimeter LS-50B, mit Zusatz zur Detektion von Fluoreszenz in Mikrotiterplatten der Firma Perkin Eimer transferiert. Messung und Quantifizierung der Fluoreszenzstrahlung erfolgt nach Angaben des Herstellers (PE Applied Biosystems, Weiterstadt, Germany).
Beispiel 21 Selektivität des universellen bakteriellen PCR-Schnelltests
Um die Selektivität des PCR-Tests abzuschätzen, wurde genomische DNA von verschiedenen Organismen isoliert und in dem universellen PCR-Test eingesetzt (Abb. 6). Die Menge an entstandenen PCR-Produkten wird in relativen Fluoreszenzeinheiten angegeben (Abb. 6)
Der entwickelte PCR Test detektiert selektiv Bakterien. Die unterschiedlichen Signalintensitäten der bakteriellen Proben reflektierten die eingesetzten variablen DNA-Mengen.
Die entstandenen PCR-Produkte wurden elektrophoretisch analysiert. Die PCR
Produkte hatten eine Größe von 330 Basenpaaren (ohne Abb.).
Kontrollsequenzierungen dieser PCR-Produkte ergaben, daß es sich tatsächlich um 16S rRNA handelte (ohne Abb.). Der PCR-Schnelltest ist 16S rRNA-spezifisch. Beispiel 22 Sensitivität und Linearität des Schnelltests zum Nachweis von Bakterien
Um die Sensitivität des PCR Tests zu bestimmen, wurde Salmonella DNS präpariert und in PCR-Experimenten eingesetzt. Es wurden verschiedene Verdünnungen der DNS hergestellt. Jede Verdünnung wurde dreifach parallel hergestellt und in dem PCR-Test eingesetzt (Abb. 7). Die Menge an freiwerdender Fluoreszenz wird als sogenannter RQ
Wert angegeben.
Der RQ Wert ist die Differenz zwischen der Reporter-(R) Fluoreszenzstrahlung in einer
PCR Reaktion, in der Template DNS (hier genomische Salmonella DNS) eingesetzt wurde (R+) und der Reporter-Fluoreszenzstrahlung, in einer PCR-Reaktion, in der keine DNS eingesetzt wurde (R"). R" entspricht also der Hintergrundsstrahlung. Die
Reporter-Strahlung (R) wird jeweils zur Quencher-Stahiung (Q) ins Verhältnis gesetzt.
Die Quencher-Strahlung ändert sich während der PCR-Reaktion nicht und stellt somit einen internen Standard dar, gegen den normiert wird. Das Ergebnis zeigt, daß sich die DNS von 1-3 Salmonella Bakterien mittels
Fluoreszenz-PCR nachweisen ließ. Die Fluoreszenzstrahlung, die nach 40 PCR Zyklen entsteht, liegt signifikant über der Hintergrundstrahlung.
Der Fluoreszenz-PCR-Test erlaubt die lineare Quantifizierung der eingesetzten Salmonella Genome über mindestens 4 log Stufen d. h. zwischen 1-3 und 30.000 KBE (Abb. 7).
Beispiel 23 Produktprüfung mit dem bakteriellen Schnelltest Die Anwendung des entwickelten PCR-Schnelltests wurde durch spiking Experimente untersucht. 10 ml WFI (Wasser für Injektionszwecke, Chargen Nr. 63022) wurden mit 50 KBE Salmonellen gespikt (5 KBE/ml). DNS wurde aus den verschiedenen, gespikten Proben präpariert (Boom et al. 1990), gereinigt (Qiagen 1995) und im PCR-Schnelltest analysiert (Abb. 8).
Die gespikten Salmonellen ließen sich im Prüfprodukt nachweisen. Die Nachweismenge betrug 90% der eingesetzten DNA-Menge (Abb. 8). Dieser Wert reflektiert die Materialverluste, die bei der DNS Präparation aus den gespikten Produkten auftreten. Trotz dieser Verluste ließen sich 1-3 KBE/ml in dem gespikten Prüfprodukt nachweisen. Auf der anderen Seite waren im nicht-gespikten Prüfprodukts keine Salmonella Keime detektierbar (Abb. 8). Die Sterilität des Prüfprodukts wurde durch Membranfiltration entsprechend der Methoden in der EP (1997) nachgewiesen. Beispiel 24 Target-Gen-, Primer- und Sondensequenzen für die verschiedenen Organismen / - gruppen
SEQ. ID. NO. 1 Staphylococcus aureus
5' AGATGCACGT ACTGCTGAAA TGAGTAAGCT AATGGAAAAC ACATATAGAG
ACGTGAATAT TGCTTTAGCT AATGAATTAA CAAAAATTTG CAATAACTTA AATATTAATG TATTAGTTGT GATTGAAATG GCAAACAAAC ATCCGCGTGT TAATATCCAT CAACCTGGTC CAGGAGTAGG CGGTCATTGT TTAGCTGTTG ATCCGTACTT TATT 3' (Primer und Sondensequenzen sind unterstrichen) SEQ. ID. NO. 6 5" AGATGCACGT ACTGCTGAAA TGAG 3' SEQ. ID. NO. 7 5'- TAMRA - CCTGGTCCAG GAGTAGGCGG - FAM -3' (als reverse complement einsetzen)
SEQ. ID. NO. 8 5' GTTTAGCTGT TGATCCGTAC TTTATT 3" (als reverse complement einsetzen)
SEQ. ID. NO. 2 Pseudomonas aeruginosa
5' CAGGCCTTCG ATGCCCTGAG CGGTATTCAG GCACCGGCGC CCAACGCCGA AGAACTCCAG CATTTCTGCC AATTGCTGCT GGACTATGTA TCTGCCGGAC ACTTCGAGGT CTACGAGCAA CTGACGGCGG AAGGCAAGGC CTTCGGCGAT CAGCGCGGCC TGGAGCTGGC CAAGCAGATC TTCCCCCGGC TGGAAGCCAT CACCGAATCC GCGCTGAACT TCAACGACCG CTGCGACAAC GGCGATTGCC GTGAAGGAGC CTGCCTCATC GCGGAGCTGA AGGTCCTGCG GCAACAGTTG CACGAACGCT 3' (Primer und Sondensequenzen sind unterstrichen)
SEQ. ID. NO. 9 5' CTTCGATGCC CTGAGCGGTA TTC 3'
SEQ. ID. NO. 10 5' - FAM - CCAACGCCGA AGAACTCCAG CATTTC - TAMRA - 3' SEQ. ID. NO. 11 5' CTGAAGGTCC TGCGGCAACA GTT 3' (als reverse complement einsetzen) SEQ. ID. NO. 3 Escherichia coli
5' AAAGTAGAAC GTAATGGTTC TGTGCATATT GATGCCCGCG ACGTTAATGT ATTCTGCGCA CCTTACGATC TGGTTAAAAC CATGCGTGCT TCTATCTGGG CGCTGGGGCC GCTGGTAGCG CGCTTTGGTC AGGGGCAAGT TTCACTACCT GGCGGTTGTA CGATCGGTGC GCGTCCGGTT GATCTACACA TTTCTGGCCT CGAACAATTA GGCGCGACCA TC 3' (Primer und Sondensequenzen sind unterstrichen) SEQ. ID. NO. 12 5' GTTC TGTGCATATT GATGCCCGCG 3' SEQ. ID. NO. 13 5' - FAM - TCTGCGCACC TTACGATCTG GTT - TAMRA - 3' SEQ. ID. NO. 14 5' GCAAGT TTCACTACCT GGCGGTTG 3 (als reverse complement einsetzen) SEQ. ID. NO. 4 Salmonella ssp.
5' TGATTGAAGC CGATGCCGGT GAAATTATCG CCACGTTCGG GCAATTCGTT ATTGGCGATA GCCTGGCGGT GGGTTTTGTT GTCTTCTCTA TTGTCACCGT GGTCCAGTTT ATCGTTATTA CCAAAGGTTC AGAACGTGTC GCGGAAGTCG CGGCCCGATT TTCTCTGGAT GGTATGCCCG GTAAACAGAT GAGTATTGAT GCCGATTTGA AGGCCGGTAT TATTGATGCG GATGCCGCGC GCGAACGGCG AAGCGTACTG GAAAGGGAAA GCCAGCTTTA CGGTTCCTTT GACGGTGCGA TGAAGTTTAT 3' (Primer und Sondensequenzen sind unterstrichen) SEQ. ID. NO. 15 5' GTGAAATTAT CGCCACGTTC GGGC 3' SEQ. ID. NO. 16 5' - FAM - CTTCTCTATT GTCACCGTGG TCCA - TAMRA - 3' SEQ. ID. NO. 17 5' GGTTCCTTTG ACGGTGCGAT GAAG 3' (als reverse complement einsetzen) SEQ. ID. NO. 5 Bakterien
5' GCATGGCTGT CGTCAGCTCG TGTTGTGAAA TGTTGGGTTA AGTCCCGCAA CGAGCGCAAC CCTTATCCTT TGTTGCCAGC GGTCCGGCCG GGAACTCAAA GGAGACTGCC AGTGATAAAC TGGAGGAAGG TGGGGATGAC GTCAAGTCAT CATGGCCCTT ACGACCAGGG CTACACACGT GCTACAATGG CGCATACAAA GAGAAGCGAC CTCGCGAGAG CAAGCGGACC TCATAAAGTG CGTCGTAGTC CGGATTGGAG TCTGCAACTC GACTCCATGA AGTCGGAATC GCTAGTAATC GTGGATCAGA ATGCCACGGT GAATACGTTC CCGGGCCTTG TACACACCGC CCGTCA 3' (Primer und Sondensequenzen sind unterstrichen)
(am Beispiel E. coli, Weisburg et al. 1991 , J. Bakteriol. 173: 598.) SEQ. ID. NO. 18 5' GCATGGCTGT CGTCAGCTC 3'
SEQ. ID. NO. 19 5' - FAM - TTAAGTCCCG CAACGAGCGC AAC - TAMRA - 3' SEQ. ID. NO. 20 5* CTTGTACACA CCGCCCGTCA 3' (als reverse complement einsetzen)
Beispiel 25 Varianten in den Primer- und Sondensequenzen.
Als Varianten werden die Primer- / Sondensequenzkombinationen definiert, die die Target-DNA-Sequenzen mit gleicher Spezifität (100%) und vergleichbarer Sensitivität (>70%) detektieren, wie die in Beispiel 24 angegebenen Sequenzen. Forward Primer Sonde Reverse Primer
Staphylococcus aureus (PCR-Bedingungen wie in Beispiel 3)
[SEQ.ID.NO 6]AGATGCACGT ACTGCTGAAA TGAG/ [SEQ . ID .NO 7]TAMRA- CCTGGTCCAG GAGTAGGCGG-FAM / [SEQ.ID.NO 8] GTTTAGCTGT TGATCCGTAC TTTATT
[SEQ.ID.NO 6] AGATGCACGT ACTGCTGAAA TGAG /[SEQ.ID.NO 7]TAMRA-CCTGGTCCAG GAGTAGGCGG-FAM / [SEQ.ID.NO 23] CATTGTTTAGCTGT TGATCCGTAC T
[SEQ.ID.NO 24]GCACGT ACTGCTGAAA TGAGTAAG/ [SEQ . ID .NO 7]TAMRA-CCTGGTCCAG GAGTAGGCGG-FAM / [SEQ.ID.NO 8] GTTTAGCTGT TGATCCGTAC TTTATT
Pseudomonas aeruginosa (PCR-Bedingungen wie in Beispiel 7)
[SEQ.ID.NO 9] CTTCGATGCC CTGAGCGGTA TTC/ [SEQ. ID .NO 10]FAM- CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/ [SEQ. ID .NO 11] CTGAAGGTCC TGCGGCAACA GTT
[SEQ.ID.NO 25] CAGGCCTTCG ATGCCCTGA GC /[SEQ.ID.NO 10]FAM- CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/ [SEQ. ID .NO 11] CTGAAGGTCC TGCGGCAACA GTT
[SEQ.ID.NO 9] CTTCGATGCC CTGAGCGGTA TTC/ [SEQ. ID.NO 10]FAM- CCAACGCCGA AGAACTCCAG CATTTC-TAMRA/ [SEQ. ID .NO 26]GCTGAAGGTCC TGCGGCAACA G
Escherichia coli (PCR-Bedingungen wie in Beispiel 11)
[SEQ.ID.NO 12]GTTCTGTGCA TATTGATGCC CGCG/ [SEQ. ID .NO 13]FAM- TCTGCGCACC TTACGATCTG GT -TAMRA/ [SEQ. ID.NO 14] GCAAGTTTCA CTACCTGGCG GTTG [SEQ.ID.NO 27]TAGAACGTAA TGGTTCTGTGC AT/ [SEQ. ID .NO 13]FAM- TCTGCGCACC TTACGATCTG GTT-TAMRA /[SEQ.ID.NO 14] GCAAGTTTCA CTACCTGGCG GTTG
[SEQ.ID.NO 12]GTTCTGTGCA TATTGATGCC CGCG /[SEQ.ID.NO 13]FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA/ [SEQ. ID .NO 28]CTGGCCTCGA ACAATTAGGC GCG
[SEQ.ID.NO 27]TAGAACGTAA TGGTTCTGTGC AT/ [SEQ.ID.NO 13]FAM- TCTGCGCACC TTACGATCTG GTT-TAMRA /[SEQ.ID.NO 28] CTGGCCTCGA ACAATTAGGC GCG
Salmonella ssp (PCR-Bedingungen wie in Beispiel 15) [SEQ.ID.NO 15] GTGAAATTAT CGCCACGTTC GGGC/ [SEQ. ID .NO 16]FAM- CTTCTCTATTGTCACCGTGG TCCA-TAMRA/ [SEQ. ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
[SEQ.ID.NO 15] GTGAAATTAT CGCCACGTTC GGGC / [SEQ.ID.NO 21] FAM-TT (T/C) GTTATTGGCGATAGCCTGGC-TAMRA /[SEQ.ID.NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
[SEQ.ID.NO 15] GTGAAATTAT CGCCACGTTC GGGC/ [SEQ. ID .NO 22] TAMRA-TTCTCTGGATGGTATGCCCGGTA-FAM / [SEQ . ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
Bakterien (PCR-Bedingungen wie in Beispiel 20)
[SEQ.ID.NO 18] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 19]FAM- TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 20 ] CTTGTACACA CCGCCCGTCA
[SEQ.ID.NO 29]TGCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 19]FAM- TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 20 ] CTTGTACACA CCGCCCGTCA [SEQ.ID.NO 18] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 30]FAM- TTGGGTTAAGTCCCG CAACGAGC- TAMRA / [SEQ.ID.NO 20 ] CTTGTACACA CCGCCCGTCA
5
Enterobacteriaceae (PCR-Bedingungen wie in Beispiel 30)
Varianten in den Primer- und Sondensequenzen
[SEQ.ID.NO 44] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 46]FAM- 10 TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC
[SEQ.ID.NO 50]GTGCTGCATG GCTGTCGTC / [SEQ.ID.NO 46]FAM-
TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT 15 CCGCTTGCTC
[SEQ.ID.NO 44] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 51]FAM- AGTCCCGCAA CGAGCGCAAC CC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC
20
Beispiel 26 Fehlvarianten in den Primer- und Sondensequenzen.
Als Fehlvarianten werden die Primer- / Sondenkombinationen definiert, die die Target- DNA-Sequenzen mit nicht zufriedenstellender Spezifität (<100%) und Sensitivität 25 (<70%) detektieren, wie die in Beispiel 24 angegebenen Sequenzen, vgl. Figur mit Primern und Sonden
Forward Primer Sonde Reverse Primer
_> o Staphylococcus aureus (PCR-Bedingungen wie in Beispiel 3)
[SEQ.ID.NO 31JATGCACGTAC TGCTGAAATG AG / [SEQ.ID.NO 32] FAM-AACACATATA GAGACGTGAA TATTGC- TAMRA / [SEQ.ID.NO 33] GTTTAGCTGT TGATCCGTAC TT [SEQ.ID.NO 6]AGATGCACGT ACTGCTGAAA TGAG /[SEQ.ID.NO 32] FAM-AACACATATA GAGACGTGAA TATTGC-TAMRA/ [SEQ . ID .NO 23] CATTGTTTAGCTGT GATCCGTAC T
[SEQ . ID .NO 24] GCACGT ACTGCTGAAA TGAGTAAG/ [SEQ . ID . O 32] FAM-AACACATATA GAGACGTGAA TATTGC-TAMRA/ [SEQ . ID .NO 8] GTTTAGCTGT TGATCCGTAC TTTATT
Pseudomonas aeruginosa (PCR-Beding-ungen wie in Beispiel 7) [SEQ.ID.NO 9] CTTCGATGCC CTGAGCGGTA TTC/ [SEQ. ID .NO 34] FAM - CAATTGCTGC TGGACTATGT ATCTG- TAMRA /[SEQ.ID.NO 1] CTGAAGGTCC TGCGGCAACA GTT
[SEQ.ID.NO 35] CAACGCCGA AGAACTCCAG CATTTC/ [SEQ. ID .NO 34] FAM-CAATTGCTGC TGGACTATGT ATCTG-TAMRA/ [SEQ.ID.NO 11] CTGAAGGTCC TGCGGCAACA GTT
[SEQ.ID.NO 9] CTTCGATGCC CTGAGCGGTA TTC/ [SEQ . ID .NO 36] FAM- AACGCCGA AGAACTCCAG CATTTCTGC-TAMRA/ [SEQ.ID.NO 26] GCTGAAGGTCC TGCGGCAACA G
[SEQ.ID.NO 9] CTTCGATGCC CTGAGCGGTA TTC/ [SEQ . ID .NO 36] FAM- AACGCCGA AGAACTCCAG CATTTCTGC-TAMRA/ [SEQ.ID.NO 11] CTGAAGGTCC TGCGGCAACA GTT
Escherichia coli (PCR-Bedingungen wie in Beispiel 11)
[SEQ.ID.NO 12] GTTCTGTGCA TATTGATGCC CGCG / [SEQ.ID.NO 13] FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA / [SEQ.ID.NO 37] CATTTCTGGC CTCGAACAAT TA
[SEQ.ID.NO 27] TAGAACGTAA TGGTTCTGTGC AT/ [SEQ. ID .NO 38] FAM-CCGCTGGTAG CGCG (T/C) TTTGG TCA-TAMRA/ [SEQ.ID.NO 14] GCAAGTTTCA CTACCTGGCG GTTG [SEQ . ID .NO 12] GTTCTGTGCA TATTGATGCC CGCG/ [SEQ . ID .NO 38] FAM-CCGCTGGTAG CGCG (T/C) TTTGG TCA-TAMRA/ [SEQ. ID .NO 37] CATTTCTGGC CTCGAACAAT TA
[SEQ.ID.NO 39] ATGAAGCTGC TAAGCCAGCT GGG /[SEQ.ID.NO 13] FAM-TCTGCGCACC TTACGATCTG GTT-TAMRA / [SEQ.ID.NO 28] CTGGCCTCGA ACAATTAGGC GCG
[SEQ.ID.NO 39] ATGAAGCTGC TAAGCCAGCT GGG/ [SEQ . ID .NO 38] FAM-CCGCTGGTAG CGCG (T/C) TTTGG TCA-TAMRA/ [SEQ . ID .NO 28] CTGGCCTCGA ACAATTAGGC GCG
[SEQ.ID.NO 39] ATGAAGCTGC TAAGCCAGCT GGG/ [SEQ . ID .NO 38] FAM-CCGCTGGTAG CGCG (T/C) TTTGG TCA-TAMRA/ [SEQ.ID.NO 37] CATTTCTGGC CTCGAACAAT TA
[SEQ.ID.NO 39] ATGAAGCTGC TAAGCCAGCT GGG/ [SEQ. ID .NO 38] FAM-CCGCTGGTAG CGCG (T/C) TTTGG TCA-TAMRA/ [SEQ.ID.NO 14] GCAAGTTTCA CTACCTGGCG GTTG
Salmonella ssp (PCR-Bedingungen wie in Beispiel 15)
[SEQ.ID.NO 40] TTGAAGCCGA TGCCGGTGAA ATTAT/ [SEQ. ID .NO 16] FAM-CTTCTCTATTGTCACCGTGG TCCA-TAMRA/ [SEQ. ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
[SEQ. ID . O 0] TTGAAGCCGA TGCCGGTGAA ATTAT/ [SEQ. ID . O 21] FAM-TT (T/C) GTTATTGGCGATAGCCTGGC-TAMRA/ [SEQ . ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
[SEQ.ID.NO 40] TTGAAGCCGA TGCCGGTGAA ATTAT/ [SEQ. ID .NO 22] TAMRA-TTCTCTGGATGGTATGCCCGGTA-FAM / [SEQ. ID . O 17] GGTTCCTTTG ACGGTGCGAT GAAG [SEQ.ID.NO 40] TTGAAGCCGA TGCCGGTGAA ATTAT/ [SEQ. ID .NO 41] FAM-TTTGTTGTCT TCTCTATTGT CACC-TAMRA/ [SEQ . ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
[SEQ . ID .NO 15] GTGAAATTAT CGCCACGTTC GGGC/ [SEQ . ID . O 41] FAM-TTTGTTGTCT TCTCTATTGT CACC-TAMRA/ [SEQ . ID .NO 17] GGTTCCTTTG ACGGTGCGAT GAAG
Bakterien (PCR-Bedingungen wie in Beispiel 20)
[SEQ.ID.NO 18] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 19] FAM- TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 42] AAGTCGTAAC AAGGTAACCA
[SEQ.ID.NO 29] TGCATGGCTG TCGTCAGCTC / [SEQ.ID.NO 19] FAM
- TTAAGTCCCG CAACGAGCGC AAC - TAMRA / [SEQ.ID.NO 42] AAGTCGTAAC AAGGTAACCA
[SEQ.ID.NO 43] GGATTAGATA CCCTGGTAGT C / [SEQ.ID.NO 30] FAM
- TTGGGTTAAGTCCCG CAACGAGC - TAMRA / [SEQ.ID.NO 20] CTTGTACACA CCGCCCGTCA
[SEQ.ID.NO 43] GGATTAGATA CCCTGGTAGT C / [SEQ.ID.NO 30] FAM - TTGGGTTAAGTCCCG CAACGAGC - TAMRA / [SEQ.ID.NO 42] AAGTCGTAAC AAGGTAACCA
Enterobacteriaceae (PCR-Bedingungen wie in Beispiel 30)
[SEQ.ID.NO 44] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 46] FAM-
TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC [SEQ.ID.NO 44] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 52] FAM- ATGTTGGGTT AAGTCCCGCA ACG-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC
[SEQ.ID.NO 50] GTGCTGCATG GCTGTCGTC / [SEQ.ID.NO 52] FAM- ATGTTGGGTT AAGTCCCGCA ACG-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC
[SEQ.ID.NO 53] GCTGTCGTCA GCTCGTGTT / [SEQ.ID.NO 46] FAM- TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 45] TTTATGAGGT CCGCTTGCTC
[SEQ.ID.NO 53] GCTGTCGTCA GCTCGT GTT / [SEQ.ID.NO 46] FAM- TTAAGTCCCG CAACGAGCGC AAC-TAMRA / [SEQ.ID.NO 54] AACTTTATGA GGTCCGCTTG C
[SEQ.ID.NO 44] GCATGGCTGT CGTCAGCTC / [SEQ.ID.NO 46] FAM-
TTAAGTCCCG CAACGAGCGC AAC-TAMRA /[SEQ.ID.NO 54] AACTTTATGA
GGTCCGCTTG C
Entwicklung eines PCR-Schnelitests zum Nachweis von
Enterobacteriaceae
Die nachfolgenden Beispiele beschreiben den entwickelten Schnelltest inklusiv aller Sequenzvariationen und Targetsequenzen.
(I) Schnelltest zum Nachweis von Enterobacteriaceae mit Angabe der Target-Sonden- und Primersequenzen (Beispiele 27-31)
(III) Fehlvarianten in den Primer- und Sondensequenzen (Beispiel 32)
Beispiel 27
Nachweis von Arten der Familie Enterobacteriaceae
Für die Entwicklung eines diagnostischen PCR-Schnelltests für Enterobacteriaceae wurde ein Gen gesucht, das auf der einen Seite genügend konservierte Bereiche aufweisen konnte, um die zahlreichen Arten der Familie Enterobacteriaceae nachweisen zu können, das auf der anderen Seite aber auch ausreichend variable Bereiche enthalten mußte, um die Detektion der nicht zu den Enterobacteriaceae gehörenden Bakterien ausschließen zu können Mit dem bakteriellen 16S rRNA-Gen wurde ein Target gewählt, das beide Bedingungen erfüllt
Das 16S rRNA-Gen kodiert für die bakterielle πbosomale DNA, die zusammen mit der 23S rRNA und der 5S rRNA in Kombination mit den πbosomalen Proteinen den Translationsapparat für die Proteinbiosynthese bilden
Als Resultat von DNS-Sequenzdatenbank-Vergleichen und praktischer Optimierungsarbeiten unter Verwendung verschiedener Primer- und Sondenkombinationen, wurden folgende spezifische DNS-Sequenzen als optimale Primer- / Sonden Kombination bestimmt:
Als Ergebnis von Sequenzvergleichen und praktischer Optimierungsarbeiten wurde für den Nachweis von Enterobacteriaceae folgende optimale Kombination von Primern und Sonde ermittelt Forward-Primer (#1053) 5'-GCA TGG CTG TCG TCA GCT C-3' [SEQ ID NO 44] Reverse-Primer (#1270) 5'-TTT ATG AGG TCC GCT TGC TC-3' [SEQ ID NO 45]
Sonde (#1090) 5 -Fam-TTA AGT CCC GCA ACG AGC GCA AC-Tamra-3' [SEQ ID NO 46]
Die Sonden wurden von der Firma PE Applied Biosystems Division, Weite rstadt, Deutschland hergestellt Es handelt sich um einzelsträngige Oligonukleotide, die am 5' Ende mit einem Fluoreszenzderivat (FAM = 6-carboxyfluoresceιn) und am 3' Ende mit einem Rhodaminderivat (TAMRA = 6-carboxytetramethylrhodamιne) modifiziert wurden Synthese und Reinigung erfolgte entsprechend der Vorschriften von PE-Applied Biosystems
Die numerischen Bezeichnungen der Oligonukleotide beziehen sich auf die Positionen des Leitstranges der von Brosius et al 1978 veröffentlichten Sequenz für die 16S rRNA von Escherichia coli Die Lokalisation dieser Sequenzen innerhalb des 16S rRNA-Gens ist in SEQ ID NO 24 dargestellt Die Große des durch die Primer 1053 und 1270 begrenzten Amplikons betragt 238 bp
Targetsequenz des 16S rRNA Gens SEQ ID NO 47 (Forward-Primer #1053) 5'-GCATGGCTGTCGTCAGCTC-3' aus
5 - CTTCGGGAACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAA 1082 GAAGCCCTTGGCACTCTGTCCACGACGTACCGACAGCAGTCGAGCACAACACTTT
Seqence Idenifier Number 48: (Sonde #1090) 5'-Fam-TTAAgTCCCgCAACgAgCgCAAC-Tamra-3' aus
TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCC 1137 ACAACCCAATTCAGGGCGTTGCTCGCGTTGGGAATAGGAAACAACGGTCGCCAGG GGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGAC 1192 CCGGCCCTTGAGTTTCCTCTGACGGTCACTATTTGACCTCCTTCCACCCCTACTG GTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCAT 1247 CAGTTCAGTAGTACCGGGAATGCTGGTCCCGATGTGTGCACGATGTTACCGCGTA ACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTC 1302 TGTTTCTCTTCGCTGGAGCGCTCTCGTTCGCCTGGAGTATTTCACGCAGCATCAG
Sequence Identifier Number 49: 3'-TCGTTCGCCTGGAGTATTT-5' (Reverse-Primer #1270)
Lokalisation der Primer und der Sonde für den spezifischen Nachweis für Enterobacteriaceae: Dargestellt ist ein Ausschnitt der für die 16S rRNA codierenden Sequenz. Die Ziffern am rechten Rand der Sequenz geben die Position des jeweils letzten in einer Zeile stehenden Nukleotids an. Die Positionen beziehen sich auf die von Brosius et al. (1978) veröffentlichte Sequenz. Die Primer und die Sonde sind entsprechend ihrer Position im 16S rRNA-Gen aufgeführt. FAM: Fluorescein-Derivat als Reporter, TAMRA: Tetramethylrhodamin-Derivat als Quencher.
Beispiel 28
PCR-Bedingungen für den Nachweis von Enterobacteriaceae
Zusammensetzung und Komponenten des TaqMan-PCR-Reaktionsansatzes für den Nachweis von Enterobacteriaceae:
In Spalte eins sind die einzelnen Komponenten des PCR-Reaktionsamsatzes aufgelistet. Die eingesetzten Volumina pro Reaktionsansatz sind in Spalte zwei aufgeführt, während Spalte drei die finale Konzentration der einzelnen Komponenten im Reaktionsansatz wiedergibt. In Spalte vier sind die Stoffmengen der einzelnen Komponenten für eine 50 μl-PCR angegeben. UNG: Uracil-N-Glycosylase. Komponente Volumen finale Konzentration Stoffmenge
Figure imgf000049_0001
Template (DNA) 5.00 μl 0.1 fg/μl - 20pg/μl 5fg-1ng
Aqua bidest. 11.25 μl / /
10x TaqMan-Puffer A 5.00 μl 1x /
25 mM MgCl2 7.00 μl 3.5 mM 175 nmol
1 ,25 mM dATP 2.00 μl 50 μM 2.5 nmol
1 ,25 mM dCTP 2.00 μl 50 μM 2.5 nmol
1 ,25 mM dGTP 2.00 μl 50 μM 2.5 nmol
2,50 mM dUTP 2.00 μl 0.1 mM 5.0 nmol
3 μM Forward-Primer 5.00 μl 0.3 μM 15.0 pmol
#1053
3 μM Reverse-Primer 5.00 μl 0.3 μM 15.0 pmol
#1270
2 μM Sonde #1090 3.00 μl 0.12 μM 6.0 pmol
5 U/μl AmpliTaq Gold 0.25 μl 25 mU/μl 1.25 U
1 U/μl AmpErase UNG 0.50 μl 10 mU/μl 0.5 U ∑ 50.0 μl
Folgendes PCR-Zyklenprofil wurde für den Nachweis von Enterobacteriaceae erstellt:
Schritt Dauer Temperatur Wiederholungen In min In °C
Halten 1 2 50 1
Halten 2 10 95 1
Cycius 1 % 95 40
1 60
Halten 3 2 25 1
PCR-Profil für den Nachweis von Enterobacteriaceae.
In Spalte eins sind die einzelnen Komponenten des PCR-Reaktionsamsatzes aufgelistet. Die eingesetzten Volumina pro Reaktionsansatz sind in Spalte zwei aufgeführt, während Spalte drei die finale Konzentration der einzelnen Komponenten im Reaktionsansatz wiedergibt. In Spalte vier sind die Stoffmengen der einzelnen Komponenten für eine 50 μl-PCR angegeben. UNG: Uracil-N-Glycosylase.
Beispiel 29 Selektivität zum Nachweis von Enterobacteriaceae:
Die gram-negative Familie der Enterobacteriaceae gehört zur Gamma-Gruppe der Proteobacteria (Balows et al. 1991 , Holt 1989). Zu den Proteobacteria gehören außerdem die Mitglieder der Alpha-, der Beta-, der Delta-, und der Epsilon-Gruppe sowie Amoebobacter und einige unklassifizierte Proteobacteria Abbildung 9 zeigt ein vereinfachtes taxonomisches Schema zur Einordnung der Enterobacteriaceae Die Ähnlichkeit von DNA-Sequenzen verschiedener Spezies steigt in der Regel mit zunehmendem Verwandtschaftsgrad Die Möglichkeit einer nicht-erwunschten Kreuzreaktion ist deshalb bei nah-verwandten Spezies wahrscheinlicher, als bei weniger verwandten Spezies Die Spezifität des entwickelten PCR-Schnelltests zum Nachweis von Enterobacteriaceae wurde deshalb vor allem an genomischer DNA von nahen Verwandten der Enterobacteriaceae untersucht Dreißig verschiedene Enterobactenaceae-Arten und vierzehn nicht zu den Enterobacteriaceae zahlende Bakterienarten wurden überprüft
Alle getesteten Gattungen der Enterobacteriaceae wurden durch den entwickelten PCR-Schnelltest erfaßt Die mit Enterobacteriaceae stark verwandten Bakterien, zu denen insbesondere die Vertreter der Gamma-Gruppe zu zahlen sind, als auch kaum verwandte Bakterien, vor allem die Vertreter der Firmicutes (gram positive-Bakteπen) zeigten dagegen keine Reaktion mit dem System
Liste der getesteten Enterobacteriaceae:
Jeweils 1 ng genomische DNA der in Spalte eins aufgeführten Spezies der Enterobactenacea wurden zur Spezifitatsprufung eingesetzt Die verwendeten Stamme können Spalte zwei entnommen werden In Spalte drei ist das Resultat der jeweiligen Untersuchung als + (positive Reaktion) bzw - (negative Reaktion) mit dem PCR- Schnelltest für Enterobacteriaceae angegeben
Arten der Familie Stämme Resultat (+/-)
Enterobacteriaceae
Budvicia aquatica DSM 5075 +
Buttiauxella agrestns DSM 4586 +
Cedecea davisae DSM 4568 +
Citrobacter freundn DSM 30040 +
Edwardsiella tarda DSM 30052 +
Enterobacter cloacae DSM 30054 +
Erwinia amylovora DSM 30165 +
Escherichia coli ATCC 8739, DSM 301 , DSM 787 +
Ewingella ameπcana DSM 4580 +
Hafnia alvei DSM 30163 +
Klebsiella pneumoniae DSM10031 +
Kluyvera ascorbata DSM 4611 +
Leclercia DSM 5077 + adecarboxylata
Leminorella gπmontli DSM 5078 +
Levinea malonatica DSM 4596 + Moellerella DSM 5076 wisconsensis Morganella morganii DSM 30164 + Pantoea agglomerans DSM 3493 + Photorhabdus DSM 3368 + luminescens Pragia fontium DSM 5563 + Proteus mirabilis DSM 788 + Providencia stuartii DSM 4539 + Rhanella aquatilis DSM 4594 + Salmonella typhimurium ATCC 13311 + Serratia marcescens DSM 3370 + Shigella flexneri DSM 4782 + Tatumella ptyseos DSM 5000 + Xenorhabdus DSM 3370 + nematophilius Yersinia enterocolitica DSM 4780 +
Liste der getesteten Bakterienstämme, die nicht den Enterobacteriaceae zugerechnet werden:
Jeweils 2 ng genomische DNA der in Spalte eins aufgeführten Bakterienspezies wurden zur Spezifitätsprüfung eingesetzt. Die Zugehörigkeit der jeweiligen Spezies zu einer bestimmten Überordnung zeigt Spalte 2. Die verwendeten Stämme können Spalte drei entnommen werden. In Spalte vier ist das Resultat der jeweiligen Untersuchung als + (positive Reaktion) bzw. - (negative Reaktion) mit dem PCR-Schnelltest für Enterobacteriaceae angegeben.
Nah verwandte Arten der Einordnung Stamm Resultat
Enterobacteriaceae (+/-)
Acetobacter pasteurianus Gamma-Gruppe DSM 3509 _
Acinetobacter calcoaceticus Gamma-Gruppe DSM 6962 -
Aeromonas enteropelogenes Gamma-Gruppe DSM 6394 -
Alcaligenes faecalis Beta-Gruppe DSM 30030 -
Chromobacterium violaceum Beta-Gruppe DSM 30191 -
Enterococcus faecalis Firmicutes ATCC 29212 -
Haiomonas elongata Gamma-Gruppe DSM 2581 -
Helicobacter pylori Epsilon-Gruppe DSM 4867 -
Listeria monocytogenes Firmicutes DSM 20600 -
Micrococcus luteus Firmicutes DSM 1605 -
Pseudomonas aeruginosa Gamma-Gruppe DSM 3227 -
Staphylococcus aureus Firmicutes ATCC 6538P -
Staphylococcus epidermidis Firmicutes ATCC 12228 -
Vibrio proteolyticus Gamma-Gruppe DSM 30189 - Beispiel 30 Sensitivität des PCR-Schnelltests
Für die Experimente zur Bestimmung der Sensitivität des PCR-Schnelltests für Enterobacteriaceae wurde stellvertretend für die übrigen Enterobacteriaceae genomische Escherichia co//'-DNA vom Stamm ATCC 8739 eingesetzt. Die Detektionsbreite des entwickelten PCR-Schnelltest für Enterobacteriaceae reicht nach diesen Untersuchungen von weniger als 5 KBE (entspricht 25 fg genomischer DNA) bis über 5000000 KBE (entspricht 25 ng genomischer DNA) Escherichia coli (Abbildung 10). No-Template-Kontrollen (ohne Enterobacteriaceae-DNA) zeigen auch nach 40 Zyklen keine Reaktion mit dem entwickelten PCR-Schnelltest.
Beispiel 31 Produktanalyse Steriles Wasser für Injektionszwecke (WFI, Charge 63022) wurde untersucht. Das Untersuchungsergebnis ergab Abwesenheit von Enterobacteriaceae-DNA.
Beispiel 32 Fehivarianten in den Primer- und Sondensequenzen Als Fehlvarianten werden die Primer- / Sondenkombinationen definiert, die die Target- DNS-Sequenzen mit nicht zufriedenstellender Spezifität (<100%) und Sensitivität (<70%) detektieren, wie die in Beispiel 27 angegebenen Sequenzen.
Literatur für die Beispiele: Balows, A., Truper, H., Dworkin, M., Härder, W. & Schleifer, K.-H. (1991)
The Prokaryotes: A Handbook on the Biology of Bacteria, Second Edition,
Vol 1-4, Springer- Verlag, New York NY
Brosius, J., Palmer, J. L, Kennedy, J.P. & Noller, H.F. (1978)
Complete Nucleotide Sequence of a 16S Ribosomal RNA Gene from Escherichia coli Proc. Natl. Acad. Sei. USA 75: 4801-4805
Holt, J. (editor in Chief) (1989) Bergey's Manual of Systematic Becteriology, First
Edition, Vol 1-4, Williams & Williams, Baltimore MD Legenden zu den Abbildungen
Legende zur Abb. 1 :
Die DNA (10 ng pro Spur, 2-14) aller eingesetzten S aureus Stamme (Lane 2 - 5) wurde von den cap8-0 Primern (# 15297 und # 15485) detektiert Dem gegenüber wurde die DNA einer nahe verwandten Staphylococcus Art S- epidermidis (Lane 6) und die anderer bakterieller Gattungen (Lane 7 - 11) nicht detektiert Pilz, Fisch und menschliche DNA (Lane 12 - 14) wurden als Kontrollen eingesetzt und ergaben kein Detektionssignal NTC (= no template control ) ist die Wasserkontrolle, in der keine DNA eingesetzt wurde
Legende zur Abb. 6:
Die DNA (1 - 10 ng) aller eingesetzten Bakterien (Bacillus subtihs, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa und Streptococcus faecalis) wurde von dem 16S rRNA Pnmer/Sonden Set detektiert Wurde genomische DNA (10 ng) von Pilzen (Neurospora crassa), Pflanzen (Arabodopsis thaliana) oder vom Menschen (Human, Perkin Eimer ABI, 401846) eingesetzt, so entsprach die gemessene Fluoreszenzstrahlung der Wasserkontrolle (no DNA control)
Legende zur Abb. 7 Fluoreszenzstrahlung in Abhängigkeit von der Menge an eingesetzter Salmonella DNS In dem PCR-Schnelltest wurden Salmonella DNS Mengen eingesetzt, die aus 1-3, 50, 500 usw Keimen isoliert wurde Die Menge an freiwerdender Fluoreszenz wird als sogenannter RQ Wert angegeben
RQ = (R+ / Q) - (R- / Q)
Legende zur Abb. 8:
Wasser für Injektionszwecke (10 ml Analysenvolumen) wurde jeweils in vier unabhängigen Experimenten auf die Gegenwart von Bakterien analysiert Als positive Kontrolle wurden 250 fg genomischer Salmonella DNS eingesetzt (Abb 8, ganz links) Parallel wurde das Prufprodukt mit 50 KBE / 10 ml Salmonella gespikt und dann analysiert (jeweils rechts) Es werden die Einzelergebnisse dargestellt Legende zur Abb. 9:
Schematische Darstellung taxonomischer Beziehungen der Enterobacteriaceae: Die einzelnen Gattungen der Enterobacteriaceae gehören zur Gamma-Gruppe der Proteobacteria. Diese sind eingegliedert in die Eubacteria. Aus diesem Schema ergaben sich die Überlegungen zu den Spezifitätsprüfungen. Zum Nachweis der Spezifität des entwickelten PCR-Schnelltests für Enterobacteriaceae wurden hauptsächlich Vertreter der Gamma-Gruppe und einige Mitglieder anderer Gruppen der Proteobacteria herangezogen.
Legende zur Abb. 10:
Sensitivität des PCR-Schnelltests für Enterobacteriaceae:
Dargestellt sind die erhaltenen Ct-Werte in Abhängigkeit der eingesetzten keimbildenden Einheiten (KBE) Enterobacteriacea.

Claims

Patentansprüche:
1. Testkit zum Nachweis mikrobieller Verunreinigungen nicht steriler Produkte, insbesondere nach GMP-Richlinien, auch Kosmetika und Lebensmittel, umfassend mindestens ein DNA-Fragment, das die folgenden SEQ ID und Spacer (Abstandhalter) umfaßt:
(a) einen Forward-Primer (SEQ ID Forward-Primer);
(b) eine Sonde (SEQ ID Sonde);
(c) einen Reverse-Primer (SEQ ID Reverse-Primer); (d) gegebenenfalls einen Spacer zwischen Forward-Primer und Sonde,
(e) gegebenenfalls einen Spacer zwischen Sonde und Reverse-Primer,
(f) gegebenenfalls einen Spacer upstream des Forward-Primers
(g) gegebenenfalls einen Spacer downstream des Reverse-Primers
- wobei die SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)] auch Varianten umfassen, bei denen eine, zwei oder drei Nukleotide substituiert, deletiert und / oder insertiert sind, dabei hat die Variante im wesentlichen dieselbe Funktion wie die Sequenz der SEQ ID [(SEQ ID Forward-Primer); (SEQ ID Sonde); und (SEQ ID Reverse-Primer)], bei Sonden die Funktion der Bindung an DNA und bei Primern die Funktion der Bindung an DNA und die Bereitstellung eines veriängerbaren 3' Endes für die DNA- Polymerase; - wobei die Spacer 0-40 Nukleotiden umfassen,
das DNA-Fragment genommen aus der Gruppe (i) für Staphylococus aureus
SEQ. ID. NO. 6 als Forward-Primer SEQ. ID. NO. 7 als Sonde und
SEQ. ID. NO. 8 als Reverse-Primer (ii) für Pseudomonas aeruginosa
SEQ. ID. NO. 9 als Forward-Primer SEQ. ID. NO. 10 als Sonde und SEQ. ID. NO. 1 1 als Reverse-Primer (iii) für Escherichia coli
SEQ. ID. NO. 12 als Forward-Primer SEQ. ID. NO. 13 als Sonde und SEQ. ID. NO. 14 als Reverse-Primer (iv) für Salmonella ssp.
SEQ. ID. NO. 15 als Forward-Primer SEQ. ID. NO. 16 als Sonde und SEQ. ID. NO. 17 als Reverse-Primer (v) für Bakterien SEQ. ID. NO. 18 als Forward-Primer
SEQ. ID. NO. 19 als Sonde und SEQ. ID. NO. 20 als Reverse-Primer (vi) für Enterobacteriaceae
SEQ. ID. NO. 44 als Forward-Primer SEQ. ID. NO. 46 als Sonde und
SEQ. ID. NO. 45 als Reverse-Primer oder (vii) für Enterobacteriaceae (16S rRNA) SEQ. ID. NO. 47 als Forward-Primer SEQ. ID. NO. 48 als Sonde und
SEQ. ID. NO. 49 als Reverse-Primer
oder weiterhin all die Sequenzen, welche komplementär zu den vorherigen Sequenzen SEQ ID NO 6 bis 49 sind.
2. Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere Arzneimitteln oder Kosmetika, welches Verfahren die folgenden Schritte umfaßt: a) Einsetzen von Primern und fluoreszenzmarkierten Sonden mit den entsprechenden Sequenzen und deren Variationen, (i) für Staphylococus aureus
SEQ. ID. NO. 6 als Forward-Primer SEQ. ID. NO. 7 als Sonde und SEQ. ID. NO. 8 als Reverse-Primer (ii) für Pseudomonas aeruginosa SEQ. ID. NO. 9 als Forward-Primer
SEQ. ID. NO. 10 als Sonde und SEQ. ID. NO. 11 als Reverse-Primer (iii) für Escherichia coli
SEQ. ID. NO. 12 als Forward-Primer SEQ. ID. NO. 13 als Sonde und SEQ. ID. NO. 14 als Reverse-Primer
(iv) für Salmonella ssp.
SEQ. ID. NO. 15 als Forward-Primer SEQ. ID. NO. 16 als Sonde und SEQ. ID. NO. 17 als Reverse-Primer (v) für Bakterien
SEQ. ID. NO. 18 als Forward-Primer SEQ. ID. NO. 19 als Sonde und SEQ. ID. NO. 20 als Reverse-Primer (vi) für Enterobacteriaceae SEQ. ID. NO. 44 als Forward-Primer
SEQ. ID. NO. 46 als Sonde und SEQ. ID. NO. 45 als Reverse-Primer oder (vii) für Enterobacteriaceae (16S rRNA) SEQ. ID. NO. 47 als Forward-Primer SEQ. ID. NO. 48 als Sonde und
SEQ. ID. NO. 49 als Reverse-Primer oder weiterhin all die Sequenzen, welche komplementär zu den vorherigen Sequenzen SEQ ID NO 6 bis 49 sind.
b) Vervielfältigen der DNA mit PCR; und c) Bestrahlung mit spezifischen Wellenlängen, die den Fluoreszenzfarbstoff anregen. d) Messung und Quantifizierung der Emission des angeregten Fluoreszenzfarbstoffes.
3. Verfahren nach Anspruch 2, wobei die Herstellung der Sonden auf der TaqMan- Detektionstechnologie beruht.
PCT/DE1999/001471 1998-05-12 1999-05-10 Verfahren zur detektion von mikroorganismen in produkten WO1999058713A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19980848T DE19980848D2 (de) 1998-05-12 1999-05-10 Verfahren zur Detektion von Mikroorganismen in Produkten
JP2000548504A JP2002514439A (ja) 1998-05-12 1999-05-10 製品中の微生物の検出方法
EP99934505A EP1082465A2 (de) 1998-05-12 1999-05-10 Verfahren zur detektion von mikroorganismen in produkten
AU50260/99A AU5026099A (en) 1998-05-12 1999-05-10 Method for detecting microorganisms in products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19822108.8 1998-05-12
DE19822108A DE19822108A1 (de) 1998-05-12 1998-05-12 Verfahren zur Detektion von Mikroorganismen in Produkten, insbesondere in Arzneimitteln und Kosmetika

Publications (2)

Publication Number Publication Date
WO1999058713A2 true WO1999058713A2 (de) 1999-11-18
WO1999058713A3 WO1999058713A3 (de) 2000-08-10

Family

ID=7868061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001471 WO1999058713A2 (de) 1998-05-12 1999-05-10 Verfahren zur detektion von mikroorganismen in produkten

Country Status (5)

Country Link
EP (1) EP1082465A2 (de)
JP (1) JP2002514439A (de)
AU (1) AU5026099A (de)
DE (2) DE19822108A1 (de)
WO (1) WO1999058713A2 (de)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066785A2 (en) * 1999-05-03 2000-11-09 Gen-Probe Incorporated Polynucleotide probes for detection and quantitation of bacteria in the family enterobacteriaceae
FR2811321A1 (fr) * 2000-07-04 2002-01-11 Bio Merieux Amplificateur d'une region ribonucleique cible d'un arn ribosomal 16s ou adn pour un tel arn d'une espece eubacterienne et detection de telles especes
WO2002010444A1 (en) * 2000-07-28 2002-02-07 University Of Sydney A method of detecting microorganisms
EP1233073A2 (de) * 2001-01-17 2002-08-21 Tosoh Corporation Oligonukleotid zum Nachweis von Salmonella und Nachweisverfahren
WO2003014382A2 (de) * 2001-08-09 2003-02-20 Lambda Labor Für Molekularbiologische Dna-Analysen Gmbh Vorrichtung zur analyse von nukleinsäure
WO2004046375A2 (en) * 2002-11-20 2004-06-03 Pharmacia Italia S.P.A. Method for the detection of microorganisms in pharmaceutical products
US6821770B1 (en) 1999-05-03 2004-11-23 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
WO2006102772A1 (en) 2005-04-01 2006-10-05 Smartgene Gmbh PRIMERS FOR AMPLIFICATION AND SEQUENCING OF EUBACTERIAL 16S rDNA FOR IDENTIFICATION
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8017358B2 (en) 2001-03-02 2011-09-13 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents
US8026084B2 (en) 2005-07-21 2011-09-27 Ibis Biosciences, Inc. Methods for rapid identification and quantitation of nucleic acid variants
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
WO2016012508A1 (en) * 2014-07-23 2016-01-28 Steffen Mergemeier Method for the detection of sepsis
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
WO2024077197A1 (en) * 2022-10-05 2024-04-11 Life Technologies Corporation Multiplex qpcr panel for gastrointestinal pathogens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004147A1 (de) * 2000-01-31 2001-08-09 Gsf Forschungszentrum Umwelt Oligonukleotide zur spezifischen Amplifikation und zum spezifischen Nachweis von 16S-rRNA-Genen von Bakterien
DE10010614A1 (de) * 2000-03-03 2001-09-13 Gsf Forschungszentrum Umwelt Oligonukleotidsonden zum art- und/oder gattungsspezifischen Nachweis von das Pflanzenwachstum fördernden Bakterien
US9034581B2 (en) * 2011-05-26 2015-05-19 Roche Molecular Systems, Inc. Compositions and methods for detection of Staphylococcus aureus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015157A1 (en) * 1989-05-31 1990-12-13 Gene-Trak Systems Universal eubacteria nucleic acid probes and methods
WO1991008305A1 (en) * 1989-11-27 1991-06-13 U-Gene Research B.V. Dna fragments and dna probes and primers based thereon
WO1992002638A1 (en) * 1990-08-06 1992-02-20 F. Hoffmann-La Roche Ag Homogeneous assay system
WO1993003186A1 (en) * 1991-07-31 1993-02-18 F.Hoffmann-La Roche Ag Methods and reagents for detection of bacteria in cerebrospinal fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015157A1 (en) * 1989-05-31 1990-12-13 Gene-Trak Systems Universal eubacteria nucleic acid probes and methods
WO1991008305A1 (en) * 1989-11-27 1991-06-13 U-Gene Research B.V. Dna fragments and dna probes and primers based thereon
WO1992002638A1 (en) * 1990-08-06 1992-02-20 F. Hoffmann-La Roche Ag Homogeneous assay system
WO1993003186A1 (en) * 1991-07-31 1993-02-18 F.Hoffmann-La Roche Ag Methods and reagents for detection of bacteria in cerebrospinal fluid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE L G ET AL: "ALLELIC DISCRIMINATION BY NICK-TRANSLATION PCR WITH FLUOROGENIC PROBES" NUCLEIC ACIDS RESEARCH,GB,OXFORD UNIVERSITY PRESS, SURREY, Bd. 21, Nr. 16, 11. August 1993 (1993-08-11), Seiten 3761-3766, XP000470188 ISSN: 0305-1048 *
S. SAU ET AL.: "Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in Staphylococcus aureus" JOURNAL OF BACTERIOLOGY, Bd. 178, Nr. 7, April 1996 (1996-04), Seiten 2118-2126, XP000872772 US in der Anmeldung erw{hnt *
See also references of EP1082465A2 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066785A3 (en) * 1999-05-03 2001-04-05 Gen Probe Inc Polynucleotide probes for detection and quantitation of bacteria in the family enterobacteriaceae
US6326486B1 (en) 1999-05-03 2001-12-04 Gen-Probe Incorporated Polynucleotide probes for detection and quantitation of bacteria in the family enterobacteriaceae
WO2000066785A2 (en) * 1999-05-03 2000-11-09 Gen-Probe Incorporated Polynucleotide probes for detection and quantitation of bacteria in the family enterobacteriaceae
US6821770B1 (en) 1999-05-03 2004-11-23 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
FR2811321A1 (fr) * 2000-07-04 2002-01-11 Bio Merieux Amplificateur d'une region ribonucleique cible d'un arn ribosomal 16s ou adn pour un tel arn d'une espece eubacterienne et detection de telles especes
WO2002010444A1 (en) * 2000-07-28 2002-02-07 University Of Sydney A method of detecting microorganisms
JP2004504069A (ja) * 2000-07-28 2004-02-12 ユニバーシティ オブ シドニー 微生物を検出する方法
AU2001276180B2 (en) * 2000-07-28 2007-05-10 University Of Sydney A method of detecting microorganisms
US6893847B2 (en) 2001-01-17 2005-05-17 Tosoh Corporation Oligonucleotide for detecting Salmonella and method of detecting Salmonella
EP1233073A2 (de) * 2001-01-17 2002-08-21 Tosoh Corporation Oligonukleotid zum Nachweis von Salmonella und Nachweisverfahren
EP1233073A3 (de) * 2001-01-17 2003-02-05 Tosoh Corporation Oligonukleotid zum nachweis von salmonella und nachweisverfahren
EP2009116A3 (de) * 2001-01-17 2009-06-10 Tosoh Corporation Oligonucleotid zur Erkennung von Salmonellen und Salmonellen-Erkennungsverfahren
US8815513B2 (en) 2001-03-02 2014-08-26 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents in epidemiological and forensic investigations
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US9752184B2 (en) 2001-03-02 2017-09-05 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US9416424B2 (en) 2001-03-02 2016-08-16 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8802372B2 (en) 2001-03-02 2014-08-12 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8017358B2 (en) 2001-03-02 2011-09-13 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US8921047B2 (en) 2001-06-26 2014-12-30 Ibis Biosciences, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8380442B2 (en) 2001-06-26 2013-02-19 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
WO2003014382A2 (de) * 2001-08-09 2003-02-20 Lambda Labor Für Molekularbiologische Dna-Analysen Gmbh Vorrichtung zur analyse von nukleinsäure
WO2003014382A3 (de) * 2001-08-09 2003-10-23 Lambda Labor Fuer Molekularbio Vorrichtung zur analyse von nukleinsäure
WO2004046375A3 (en) * 2002-11-20 2004-12-23 Pharmacia Italia Spa Method for the detection of microorganisms in pharmaceutical products
WO2004046375A2 (en) * 2002-11-20 2004-06-03 Pharmacia Italia S.P.A. Method for the detection of microorganisms in pharmaceutical products
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US9725771B2 (en) 2002-12-06 2017-08-08 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8476415B2 (en) 2003-05-13 2013-07-02 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8013142B2 (en) 2003-09-11 2011-09-06 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US9447462B2 (en) 2004-02-18 2016-09-20 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8987660B2 (en) 2004-05-24 2015-03-24 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US9449802B2 (en) 2004-05-24 2016-09-20 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
WO2006102772A1 (en) 2005-04-01 2006-10-05 Smartgene Gmbh PRIMERS FOR AMPLIFICATION AND SEQUENCING OF EUBACTERIAL 16S rDNA FOR IDENTIFICATION
US8026084B2 (en) 2005-07-21 2011-09-27 Ibis Biosciences, Inc. Methods for rapid identification and quantitation of nucleic acid variants
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US9027730B2 (en) 2008-09-16 2015-05-12 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US9023655B2 (en) 2008-09-16 2015-05-05 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8252599B2 (en) 2008-09-16 2012-08-28 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8609430B2 (en) 2008-09-16 2013-12-17 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8796617B2 (en) 2009-02-12 2014-08-05 Ibis Biosciences, Inc. Ionization probe assemblies
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US9165740B2 (en) 2009-02-12 2015-10-20 Ibis Biosciences, Inc. Ionization probe assemblies
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
WO2016012508A1 (en) * 2014-07-23 2016-01-28 Steffen Mergemeier Method for the detection of sepsis
WO2024077197A1 (en) * 2022-10-05 2024-04-11 Life Technologies Corporation Multiplex qpcr panel for gastrointestinal pathogens

Also Published As

Publication number Publication date
EP1082465A2 (de) 2001-03-14
DE19822108A1 (de) 2000-02-03
DE19980848D2 (de) 2001-06-13
AU5026099A (en) 1999-11-29
WO1999058713A3 (de) 2000-08-10
JP2002514439A (ja) 2002-05-21

Similar Documents

Publication Publication Date Title
WO1999058713A2 (de) Verfahren zur detektion von mikroorganismen in produkten
DE60131284T2 (de) Methode zum nachweis von mikroorganismen
DE3486254T2 (de) Verfahren zum aufspüren, identifizieren und quantifizieren von organismen und viren.
AT503862B1 (de) Pathogen-identifizierung anhand eines 16s oder 18s-rrna mikroarray
DE69022180T2 (de) Universelle nukleinsäuresonden für eubakterien sowie methoden.
DE3687287T2 (de) Verfahren zur amplifikation von nukleinsaeuresequenzen.
DE102007041864B4 (de) Verfahren zum Nachweis von Bakterien und Pilzen
EP1198597A1 (de) Verfahren zum speziesspezifischen nachweis von organismen
DE60129028T2 (de) Zelluläre arrays zur identifizierung von veränderter genexpression
EP1790735A1 (de) Oligonukleotide zur schnellen Bestimmung von mikrobieller DNS/RNS
EP1254254B1 (de) Nukleinsäuremoleküle zum nachweis von bakterien und phylogenetischen einheiten von bakterien
DE102015012691A1 (de) Verfahren zum quantitativen Nachweis von Vibrio parahaemolyticus, Vibrio vulnificus und Vibrio cholerae
EP1565576A2 (de) Verfahren zur detektion von mikroorgasnismen in pharmazeutischen produkten
EP0658630B1 (de) Oligonukleotide für den Nachweis von Enterobacteriaceae
Bumunang et al. Analysis of rhizobacterial community in field grown GM and non-GM maize soil samples using PCR-DGGE
EP1606420B1 (de) Verfahren und kit zum spezifischen nachweis von m. tuberculosis
EP2471955B1 (de) Organismusspezifisches hybridisierbares Nucleinsäuremolekül
DE102008002978B4 (de) Verfahren zur Differenzierung von verschiedenen Spezies der Gattung Methylobacterium
DE10004147A1 (de) Oligonukleotide zur spezifischen Amplifikation und zum spezifischen Nachweis von 16S-rRNA-Genen von Bakterien
WO2001016363A2 (de) Schneller, hochspezifischer nachweis von pseudomonas aeruginosa durch mehrfachsondendetektion
DE102012014981B3 (de) Verfahren zur Differenzierung zwischen lebenden und toten Zellen
DE10250948A1 (de) Verfahren zur Detektion von Nukleinsäuresequenzen
DE102008029999A1 (de) Neue PCR-gestützte Nachweismethode zur Unterscheidung lebender von toten Zellen
WO1999007886A2 (de) Nucleinsäuremolekül-satz für salmonella-nachweis, nucleinsäuren, kit und verwendung
Emmanuel et al. Analysis of Rhizobacterial Community in Field Grown GM and Non-GM Maize Soil Samples Using PCR-DGGE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09700148

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999934505

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999934505

Country of ref document: EP

REF Corresponds to

Ref document number: 19980848

Country of ref document: DE

Date of ref document: 20010613

WWE Wipo information: entry into national phase

Ref document number: 19980848

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999934505

Country of ref document: EP