WO1999051747A1 - Gene codant des desulfurases - Google Patents

Gene codant des desulfurases Download PDF

Info

Publication number
WO1999051747A1
WO1999051747A1 PCT/JP1999/001756 JP9901756W WO9951747A1 WO 1999051747 A1 WO1999051747 A1 WO 1999051747A1 JP 9901756 W JP9901756 W JP 9901756W WO 9951747 A1 WO9951747 A1 WO 9951747A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
protein
seq
dbt
Prior art date
Application number
PCT/JP1999/001756
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Ishii
Jin Konishi
Kazuaki Hirasawa
Hideki Okada
Masanori Suzuki
Original Assignee
Petroleum Energy Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center filed Critical Petroleum Energy Center
Priority to US09/647,540 priority Critical patent/US6420158B1/en
Priority to EP99910826A priority patent/EP1069186A4/en
Publication of WO1999051747A1 publication Critical patent/WO1999051747A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention relates to a thiophene compound utilizing a microorganism, that is, benzothiophene, dibenzothiophene (hereinafter, referred to as “DBT”) and an enzyme having a function of decomposing these substituted products, or a derivative thereof, and a gene encoding the enzyme. Things.
  • DBT dibenzothiophene
  • an enzyme having a function of decomposing these substituted products, or a derivative thereof and a gene encoding the enzyme. Things.
  • hydrodesulfurization is a method in which sulfur compounds in a petroleum fraction are reacted with hydrogen in the presence of a catalyst and removed as hydrogen sulfide to reduce the sulfur content of the product.
  • a metal catalyst such as cobalt, molybdenum, nickel, and tungsten is used with alumina as a carrier.
  • cobalt or nickel is usually added as a co-catalyst to improve the catalytic performance.
  • metal catalysts generally have low substrate specificity and are therefore suitable for decomposing various types of sulfur compounds and reducing the sulfur content of fossil fuels overall, certain groups of sulfur compounds, namely benzothiophenes, Heterocycle sulfation such as and DB T It is thought that the desulfurization effect of the compounds and their alkyl derivatives may be insufficient. For example, various heterocyclic organic sulfur compounds still remain in gas oil after desulfurization. One of the reasons why the desulfurization effect of the metal catalyst is insufficient is considered to be steric hindrance due to the substituent existing around the sulfur atom in these organic sulfur compounds.
  • the enzymatic reaction performed by living organisms proceeds under relatively mild conditions, and the rate of the enzymatic reaction itself is comparable to that of reactions using chemical catalysts.
  • the need to properly respond to a wide variety of biological reactions that occur in vivo there is a great variety of enzymes, and these enzymes generally exhibit very high substrate specificities. And is known.
  • Such a feature is expected to be active in the so-called biodesulfurization reaction that removes sulfur in sulfur compounds contained in fossil fuels using microorganisms (Monticello, DJ, Hydrocarbon). Processing 39-45 (1994)).
  • biodesulfurization utilizes the metabolic reaction of microorganisms that proceeds under temperature conditions around 30 ° C. On the other hand, it is known that the rate of a chemical reaction generally increases depending on the temperature.
  • fractional distillation and desulfurization reactions are performed under high temperature and high pressure conditions. Therefore, if a bio-desulfurization step is incorporated in the oil refining process, it would be desirable to be able to perform the bio-desulfurization reaction at a higher temperature during the cooling without cooling the petroleum fraction to near normal temperature. Conceivable. Reports on high temperature biodesulfurization include:
  • Coal contains various sulfur compounds.
  • the main inorganic sulfur compound is pyrite, but there is a wide variety of organic sulfur compounds, many of which are known to contain thiol, sulfide, disulphide and thiophene groups. .
  • the microorganisms used were bacteria of the genus Sulfolobus, all of which are thermophilic. Examples of the use of different Sulfolobus strains for metal leaching from mineral sulfides (Brierley CL & Murr, LE, Science 179, 448-490 (1973)) and for the removal of pyrite from coal. (Kargi, F.
  • DBT and its derivatives or their derivatives are known to be less susceptible to hydrodesulfurization in normal petroleum refining processes. Have been taken.
  • the DBT's Sulfolobus aci docal darius hereinafter,
  • acidocaldarius can only grow in acidic media, and the oxidative degradation of DBT requires progression under harsh acidic conditions (PH2.5). It is considered that such severe conditions cause degradation of petroleum products and are undesirable in the process because acid-resistant materials are required in the steps related to desulfurization.
  • S. acidocaldarius grows under autotrophic conditions, it obtains the necessary energy from reduced iron and sulfur compounds and uses carbon dioxide as a carbon source.
  • S. acidocaldarius can utilize various organic compounds as carbon and energy sources. In other words, it is considered that the presence of fossil fuels can be used as a carbon source.
  • the degradation product of DBT by these Pseudomonas strains is 3-hydroxy-2-formylbenzothiophene reported by Kodama et al. (Mont eel 1 o, DJ, Bakker, D., Finnerty, WR App 1. Environ. Microbiol., 49, 756-760 (1985)) 0
  • the oxidation activity of DBT by these Pseudomonas strains is based on naphtha, an aromatic hydrocarbon containing no sulfur. Induced by ren and salicylic acid He was guided and stopped by Chloram Huenicol.
  • the bacteria discovered so far that can degrade DBT at high temperatures cleave the C-C bond in DBT molecules and catalyze the reaction used as a carbon source.
  • the decomposition reaction of organic sulfur compounds of the type that specifically breaks the C--S bond but leaves the C--C bond unbroken is desirable as an actual oil desulfurization method.
  • the biodesulfurization process uses microorganisms that exhibit the activity of cleaving the CS bond in the molecule of DBT and its alkyl-substituted products or their derivatives at high temperatures, and produce desulfurized products in the form of water-soluble substances. And most desirable.
  • microorganisms that carry out CS bond cleavage-type DBT degradation reactions are known among bacteria of several genera. However, no examples have been described that show that all of these bacteria exhibited DBT-degrading activity under high-temperature conditions of at least 42 ° C.
  • ATCC 53968 from Rhodo c c cu s sp. Is a well-studied DBT-degrading strain that adds an oxygen atom to the sulfur atom of DBT to form a DBT sulfoxide.
  • DBT0 DBT sulfone
  • DBT02 DBT sulfone
  • 2-HBP 2-hydroxybiphenyl
  • an organic sulfur compound particularly a heterocyclic sulfur compound containing DBT and its substituted compound, or a derivative compound thereof, is bonded to a CS bond. It was considered optimal to use a microorganism that could specifically cleave.
  • the present inventors have conducted extensive screening, grown two strains at high temperatures close to 60 ° C, and have already developed two high-temperature desulfurized bacterial strains, Paenibacillus sp., Capable of decomposing and desulfurizing DBTs. (See Japanese Patent Application Laid-Open No. 10-036859).
  • a gene encoding an enzymatic activity involved in the DBT decomposition reaction was identified and its nucleotide sequence was determined. To the best of their knowledge, it is only the dsz gene of Rhodococcus sp. IGTS8 strain (Denome, S., Oldfleld., Nash, LJ and Young, KDJ Bacteriol., 176: 6707-6716, 1994; Piddington, CS , Kovacevich, BR and Rambosek, J. Appl. Environ. Microbiol., 61: 468-475, 1995).
  • the degradation reaction of DBT by IGTS8 strain is as follows: Dsz, which catalyzes the conversion of DBT to DBT02 via DBT0, and DszA, which catalyzes the conversion of DBT02 to 2- (2'-hydroxyphenyl) benzenesulfinic acid, 2'-Hydroxyphenyl) catalyzed by three enzymes, DszB, which catalyze the conversion of benzenesulphonic acid to 2-HBP (Denome, S., Oldfield.,, Nash, LJ and Young, KDJ Bacteriol., 176: 6707-6716, 1994; Gray, K ⁇ , Pogrebinshy, 0.S., Mrachko, GT, Xi, L.
  • dszA dszB
  • dszC DszC and DszA are monooxygenases, both of which are known to require coexistence of NADH-FMN oxidoreductase activity in their oxygenation reactions (Gray, ⁇ . ⁇ ⁇ , Pogrebinsky, OS, Mrachko, GT, Xi, L.
  • An object of the present invention is to isolate a gene involved in a high-temperature desulfurization reaction from a microorganism having the ability to act on benzothiophene and DBT-based compounds and decompose them at a high temperature, specify the structure (particularly, the nucleotide sequence), Creating new desulfurized microorganisms by introducing these genes into microorganisms different from the one from which they were isolated and conferring desulfurization capacity.
  • Another object of the present invention is to establish a method for releasing sulfur by actually causing such microorganisms to act on benzothiophene, DBT and their alkyl derivatives, and cleaving the CS bond of these compounds. .
  • the first aspect of the present invention relates to a gene encoding a desulfurase.
  • the second aspect of the present invention relates to a vector containing the above gene.
  • a third aspect of the present invention relates to a transformant containing the above vector.
  • the fourth aspect of the present invention relates to a desulfurization enzyme.
  • the fifth aspect of the present invention relates to a gene encoding transposase.
  • a sixth aspect of the present invention relates to a transposase.
  • genes of the present invention include the following three types of genes.
  • the first gene may be (a) a protein represented by the amino acid sequence of SEQ ID NO: 2, or (b) one or more proteins in the amino acid sequence of SEQ ID NO: 2. Encodes a protein consisting of an amino acid sequence in which amino acid has been deleted, substituted or added, and which has a function of converting DBT02 to 2- (2'-hydroxyphenyl) benzenesulfinic acid Things.
  • the second gene is: (a) a protein represented by the amino acid sequence of SEQ ID NO: 4 or one or more amino acids in the amino acid sequence of SEQ ID NO: 4 are missing; A protein consisting of a lost, substituted or added amino acid sequence and encoding a protein having the function of converting 2- (2'-hydroxyphenyl) benzenesulfinic acid to 2-HBP It is.
  • the third gene may be (a) a protein represented by the amino acid sequence of SEQ ID NO: 6, or (b) one or more proteins in the amino acid sequence of SEQ ID NO: 6. It encodes a protein comprising an amino acid sequence in which amino acid has been deleted, substituted or added, and which has a function of converting DBT to DBT02 via DBT0.
  • the first, second, and third genes show a certain homology with ds zA, ds zB, and ds zC derived from Rhodococcus sp.I GTS8 strain, but these genes are coded as described later. Proteins differ in their properties from the proteins encoded by dszA, dszB, and dszC.
  • the genes encoding the amino acid sequences of SEQ ID NOs: 2, 4, and 6 can be obtained by the methods described in Examples in the present specification. Since the nucleotide sequences of these genes have already been determined as shown in SEQ ID NOs: 1, 3, and 5, appropriate primers were synthesized based on these sequences, and All-1 strain (This strain was deposited on July 22, 1997 with the National Institute of Advanced Industrial Science and Technology under the accession number FERM BP-6025.) or All-2 (This strain was deposited on July 22, 1997 with the National Institute of Bioscience and Human Technology, Accession No. FERM BP-6026.) It can also be obtained by performing PCR using the DNA as type III.
  • a gene encoding an amino acid sequence in which an acid has been deleted, substituted or added can be obtained by a technique commonly used at the time of filing the present application, for example, site-directed mutagenesis (Zoller et al. Nucleic Acids Res. 10 6487-6500, 1982) by modifying the gene encoding the amino acid sequence described in SEQ ID NOs: 2, 4 and 6.
  • the gene of the present invention encodes an enzyme involved in the degradation of DBT, it can be used for desulfurization of petroleum.
  • the vector of the present invention contains the above-mentioned first, second or third gene.
  • a vector can be prepared by inserting a DNA fragment containing the first, second or third gene of the present invention into a known vector.
  • the vector into which the DNA fragment is introduced may be determined according to the host to be transformed, and if Escherichia coli is used as the host, the following vector is preferably used.
  • strong promoters include pUR, pGEX, UC, pET, T7, pBluescript, pKK, including lac, lacUV5, trp, tac, trc, ⁇ pL, T7, rrnB, etc. It is preferable to use a vector such as pBS, pBC or pCAL.
  • Transformant containing a vector containing a gene encoding desulfurase contains the above vector.
  • Cells used as hosts for the transformants may be plant cells or animal cells, but microorganisms such as Escherichia coli are preferred.
  • Representative strains include, for example, Sambrook et al., Molecular Cloning Laboratory Manual 2nd ed. (These statements are published in 71/18, BB4, BHB2668, BHB2690, BL2KDE3), and BNN102 (C600hf 1A).
  • the desulfurase of the present invention includes the following three types of proteins.
  • the first protein is a protein represented by the amino acid sequence shown in SEQ ID NO: 2. And one or more amino acids in the amino acid sequence described in SEQ ID NO: 2 are deleted, substituted, or added, and DBT02 is replaced by 2 — (2′— (Hydroxyphenyl) benzenesulfinic acid.
  • the second protein is a protein represented by the amino acid sequence of SEQ ID NO: 4 and one or more amino acids are deleted or substituted in the amino acid sequence of SEQ ID NO: 4. Or a protein comprising an amino acid sequence added thereto and having a function of converting 2 — (2′-hydroxyphenyl) benzenesulfinic acid to 2-HBP.
  • the third protein is a protein represented by the amino acid sequence of SEQ ID NO: 6 and one or more amino acids in the amino acid sequence of SEQ ID NO: 6 are deleted.
  • a protein comprising a substituted or added amino acid sequence and having a function of converting DBT to DBT02.
  • the first, second, and third proteins show a certain homology to the desulfurizing enzymes DszA, DszB, and DszC derived from Rhodococcus sp.IGTS8 strain, and have the same function as the enzyme. However, the following points are clearly different.
  • DszA, DszB, and DszC cannot desulfurize benzothiophene, which is a difficult-to-desulfurize substance, but can desulfurize the first, second, and third proteins of the present invention.
  • DszA, DszB and DszC show desulfurization activity in the room temperature range, but the first, second and third proteins of the present invention show desulfurization activity in the high temperature range.
  • the desulfurase of the present invention can be produced using the above-described gene encoding the desulfurase of the present invention.
  • the desulfurizing enzyme represented by the amino acid sequence of SEQ ID NOs: 2, 4, and 6 is a Paenibaci 1 lus sp. All-1 strain (this strain was dated July 22, 1997). And AU-2 (deposited with the National Institute of Bioscience and Human Technology under the accession number FERM BP-6025.) Or AU-2 (this strain was established on July 22, 1997 by Deposited with the Biotechnology Research Institute under the accession number FERM BP-6026.) It can also be prepared from the strain according to standard methods.
  • NADH and FMN are required.
  • NADPH is a substitute for NADH, but FAD is not a substitute for FMN.
  • Properties of one protein included in the second protein of the present invention are shown below.
  • the transposase gene of the present invention comprises (a) a protein represented by the amino acid sequence of SEQ ID NO: 8, (b) a protein represented by the amino acid sequence of SEQ ID NO: 9, or ) From the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 9 in which one or more amino acids have been deleted, substituted or added. It encodes a protein having transposase activity.
  • the genes encoding the amino acid sequences described in SEQ ID NOS: 8 and 9 have already been determined as shown in SEQ ID NO: 7, and therefore, based on these sequences, Synthesize appropriate primers and use Paenibaci 1 lus sp.
  • All-1 strain (This strain has been deposited on July 22, 1997 with the National Institute of Bioscience and Human Technology, Accession No. FERM BP-6025) or AU-2 (This strain has been deposited on July 22, 1997 with the National Institute of Bioscience and Biotechnology, Accession No. FERM BP-6026.)
  • DNA prepared from the strain was type III. Alternatively, it can be obtained by performing PCR.
  • a gene encoding an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 8 or 9 is described in the application of the present application.
  • the amino acid sequence described in SEQ ID NO: 8 or 9 is synthesized by a commonly used technique, for example, a site-directed mutagenesis method (Zoller et al., Nucleic Acids Res. 10 6487-6500, 1982). Can be obtained by modifying the gene to be loaded.
  • this gene Since this gene has transposase activity, it is possible to use this gene to transfer any gene unit from one DNA molecule to another. It is not experimentally confirmed that the polypeptide represented by the amino acid sequence of SEQ ID NO: 8 or 9 has transposase activity. It must have a certain homology with the transposase, and the 0RF of the two polypeptides should be in the opposite direction to the 0RF of the desulfurase group and at a position sandwiching the 0RF of the desulfurase group. (Structures unique to transposons), and the presence of the unique repeat sequences (DR) and reverse repeat sequences (IR) characteristic of transpoposons at both ends of SEQ ID NOS: 8 and 9, etc. It is highly probable that two polypeptides have transposase activity.
  • the transposase of the present invention may be a protein represented by the amino acid sequence of SEQ ID NO: 8, (b) a protein represented by the amino acid sequence of SEQ ID NO: 9, or (c) a protein represented by the amino acid sequence of SEQ ID NO: 9.
  • amino acid sequence described in 8 or in the amino acid sequence described in SEQ ID NO: 9 one or more amino acids are deleted, substituted or added.
  • a protein having transposase activity The transposase of the present invention can be produced using the above-described gene encoding the transposase of the present invention.
  • Proteins having the activity of converting DBT02 purified from Paenibaci 1 lus sp. A11-2 into 2- (2'-hydroxyphenyl) benzenesulfinic acid hereinafter referred to as "protein A”
  • 2- The amino acid sequence at the amino terminal of each protein (hereinafter referred to as “protein B”) having an activity of converting 2′-hydroxyphenyl) benzenesulfinate to 2-HBP was determined. The sequences are shown below.
  • Rhodococcus sp. IGTS8 strain it is known that dszA and dszB are translated in different frames because the 3 'end of the coding sequence of dszA overlaps with the 5' end of dszB. It is possible that there is some similarity between the strains of Paenibacillus sp.A11-2 and Rhodococcus sp.IGTS8 in the construction of the gene sequence encoding the enzyme involved in the desulfurization of DBT. Therefore, the coding strand of the sequence at the 5 'end of dszA, which is expected to be on the upstream side, is used as the sense strand, and is expected to be on the downstream side. First, an attempt was made to amplify a DNA fragment containing the entire dszA using the complementary strand of the sequence at the 5 'end of dszB as the antisense strand.
  • THDSB-AM5 5'-ACY CTN GTN GGN CCD AT-3 'Combination of these sense primers and antisense primers, PCR using the DNA extracted from Paenibaci llus sp. was performed.
  • Preparation of DNA from Paenibaci llus sp. All-2 strain was performed as follows. Two strains of Paenibacilus sp. A1 were cultured at 50 ° C for 24 hours in A medium containing DBT (composition is shown in the table below), and then cultured at 50 ° C for 24 hours in fresh A medium containing DBT. The cells were collected.
  • the obtained cells were suspended in 1 ml of B1 buffer (50 mM EDTA, 50 mM Tris-HCl, 0.5% Triton X-100, 0.2 mg / ml RNaseA, pH 8.0).
  • B1 buffer 50 mM EDTA, 50 mM Tris-HCl, 0.5% Triton X-100, 0.2 mg / ml RNaseA, pH 8.0.
  • 20 il of a 100 mg / ml lysozyme solution and 451 of a 20 mg / ml proteinase K solution were added and reacted at 37 ° C for 10 minutes.
  • 0.35 ml of B2 buffer 800 mM guanidine hydrochloride, 20% Tween-20, pH 5.5
  • a bacterial reaction solution was prepared.
  • QIAGEN filled with anion exchange resin
  • the mixture was equilibrated with MOPS, 15% ethanol, 0.15% Triton X-100, pH 7.0), and the cell reaction solution was injected into the column. After washing the column with 3 ml of QC buffer (1 ⁇ OM NaCl, 50 mM MOPS, 153 ⁇ 4 ethanol, pH 7.0), 2 ml of QF buffer (1.25 M NaCl, 50 mM Tris-HCl, 15% ethanol , pH 8.5). After adding 1.4 ml of isopropanol to the genomic DNA solution to precipitate the DNA, it was wound and recovered with a glass rod. The genomic DNA solution was prepared by dissolving the recovered DNA in 50 ⁇ 1 TE buffer (10 mM Tris-HC1, ImM EDTA, pH 8.0).
  • Vitamin B 12 0.5mg
  • PCR 2.5U Taq DNA polymerase Annealing temperature: PCR was carried out with the temperature changed from 44 ° C to 66 ° C at 2 ° C intervals.
  • DNA amplifier Robocycler TM GRADIENT96 temperature cycler (manufactured by STRATAGENE) As a result of performing PCR under the above conditions, when the annealing temperature is 44 to 50 ° C, the combination of several primers is about 1.6kb. It was confirmed that amplification fragment was given. The PCR product of this 1.6 kb, and black Ichin into E. coli XL1- Blue MRF- Kan r lines using pCR- Script SK (+) vector data scratch. As a result of sequencing a part of the cloned DNA fragment, the 1.6 kb DNA fragment was converted to the amino acid sequence at the amino terminus of the purified protein A and the amino acid sequence at the amino terminus of protein B.
  • the sequence of the amplified DNA fragment is further downstream of the nucleotide sequence encoding the amino terminal of protein B corresponding to the nucleotide sequence used as the antisense primer. Contained an array of Examination of the determined nucleotide sequence reveals that the 3'-terminal sequence is composed of a nucleotide sequence complementary to the sense primer corresponding to the amino-terminal sequence of protein A. Do you get it. As a result, the protein A The sense primer corresponding to the amino terminal sequence anneals to a nucleotide sequence located downstream of the nucleotide sequence encoding the amino terminal sequence of protein B, and acts as an antisense primer. As a result, it was confirmed that a 1.6 kb DNA fragment was amplified.
  • the amino acid sequence to be coded was estimated from the determined DNA sequence, and the protein encoded by the dsz gene cloned from Rhodococcus sp.
  • the sequence on the amino terminal side of DszA and the sequence on the amino terminal side of DszB were compared. As a result, it was confirmed that there was significant homology between the two (73% and 61%, respectively). Since homology was found with the DNA sequence of the dsz operon composed of the desulfurization gene of Rhodococcus sp.1GTS8, this DNA sequence cloned from Paenibaci 1 lus sp. Strain A11-2 was used as a probe. We decided to further clone adjacent DNA sequences.
  • the method for preparing all D is the same as the method for preparing the DNA used as the type II PCR above.
  • a total DNA library of Paenibaci 1 lus sp. Al 1-2 strain was prepared as follows. Approximately 2 g of the total DNA sample of Paenibaci 1 lus sp. Alto 2 strain was digested with 0.1 unit of Sau3AI for 20 minutes, 30 minutes and 40 minutes, respectively, and the digest was extracted with phenol-chloroform and ethanol was added. After recovering by precipitation, the DNA fragment obtained after centrifugation is removed by treatment with an alkaline phosphatase derived from the small intestine of 8 units of chicken at 37 ° C for 60 minutes. Oxidation was performed. After alkaline phosphatase treatment, the DNA was extracted by phenol-cloth-form treatment, and recovered by ethanol precipitation.
  • a DNA probe for screening the phage library was prepared as follows. As described in Example 1, proteins A and 2- (2 ′) having the activity of converting DBT02 from Paenibacillus sp. All-2 strain to 2- (2′-hydroxyphenyl) benzenesulfinic acid were obtained. -Hydroxyphenyl) Homologous between the nucleotide sequence of DNA that is thought to encode protein B that has the activity of converting benzenesulfinate to 2-HBP and the dsz gene sequence of Rhodococcus sp. IGTS8 strain Sex is recognized. The 5 'end sequence (nucleotides 120 to 137) of dszA of the Rhodococcus sp.
  • Strain IGTS8 with high homology is used as the sense strand, and the 169th nucleotide from the 5' end of the dszB coding sequence.
  • the complementary strand of the sequence from the 1st to the 185th nucleotide was selected as the antisense strand, and a PCR primer was prepared.
  • the DNA prepared from Paenibaci 1 lus sp. Strain A11-2 was subjected to type I PCR to amplify the sequence of the region encoding protein A. .
  • a DSZA probe labeled with lysoxygenin (DIG) by the random prime method (multiprime method) was prepared.
  • the preparation method of the DIG-labeled probe followed the protocol of Boehringer Mannheim. The method for preparing the DIG-labeled probe is described below.
  • the obtained PCR product l ⁇ g (51) was heat-denatured in boiling water for 10 minutes and cooled on ice containing salt.
  • a 101 mixture of hexane nucleotides 0.5 M Tris-HCl, 0.1 M MgCl 2 , ImM Dithiolythrio 1, 2 mg / ml BSA, 3.143 mg / ml Random Primer, pH 7.2
  • 10 1 of dNTP labeling mixture ImM dATP, ImM dCTP, ImM dGTP, 0.65mM dTTP, 0.35m DIG- dUTP, P H7.5
  • the reaction was stopped by adding 5 ⁇ l of 0.5 ⁇ EDTA solution to the reaction solution. Next, 5 ⁇ l of 8 ⁇ LiCl and 275 ⁇ l of cold ethanol ( ⁇ 20 ° C) were added, left at 80 ° C for 30 minutes, and centrifuged at 15,000 rpm for 30 minutes to precipitate MA. I let it. The precipitated DNA was washed with cold 70% (w / v) ethanol, dried by suction, and dissolved in 501 TE buffer to prepare a DIG-labeled probe.
  • the phage MA prepared using the four positive plaques was cut with EcoRI, NotU Hindi 11, and Sail to prepare a restriction enzyme map shown in FIG. Furthermore, a Southern plot analysis using a DSZA probe was performed on DNA fragments obtained by digesting these four phage DNAs with EcoRI, NotI, SalI, or NotI and SalI. In addition, it was confirmed that the No. 2 and No. 4 clones hybridized to a Not I-Sail fragment of about 2 kb. On the other hand, no hybridization was observed in the No. 3 and No. 6 clones. Based on the results of these restriction enzyme maps and Southern blot analysis, the No. 3 and No.
  • phage DNAs had a deletion recombination of about 6 kb and the 0.4 phage 1 ⁇ It was considered that the dsz gene was encoded in an EcoRI-HindiII fragment of about 8.7 kb.
  • the following culture was performed to determine the DBT resolution of Escherichia coli having each subclone DNA.
  • Escherichia coli XL1-Blue strain carrying the subclone DNA was prepared by adding yeast extract to M9 medium (described in Sambrook et al., Mo 1 ecu ar cloning Laboratory Manual 2nd) as a sulfur source and DBT, respectively. The cells were cultured at 37 ° C.
  • an XL1 Blue strain having only vector pBluescript 11 KS (+) was cultured under the same conditions. Perform 1 ⁇ preculture in LB medium (described in the book “Molecular cloning” (described above) by Sambrook et al.) At 37 ° C. Centrifuge the obtained preculture and collect the cells. , And finally suspended in an M9 modified medium (in which the sulfate in the M9 medium was changed to chloride).
  • the DNA fragments obtained by digestion with Hindlll are subjected to exonuclease III treatment, followed by treatment with Mung Bean Nuclase and Klenow fragment of DNA polymerase I.
  • a deletion mutant DNA series was prepared.
  • the sequencing reaction of the deletion mutant clone was performed using Thermo Sequenase (Amersham), and the nucleotide sequence was determined by ALFred (Pharmacia).
  • the obtained nucleotide sequence data was analyzed using GENETYX-MAC / ATSQ v3.0 and GENETYX-MAC v8.0.
  • PBS2N2 and pBS2N3 were obtained.
  • PBS2N2 and pBS2N3 are subclones in which the direction of insertion of a NotI fragment of about 3 kb is opposite to each other.
  • a deletion DNA series was prepared using Kpnl, Hpal, Nrul, PstI and XhoI.
  • the sequencing reaction of the deletion clone was performed using Thermo Sequenase (Amersham), and the base sequence was determined from ALFred (Pharmacia).
  • the obtained nucleotide sequence data was analyzed using GENETYX-MAC / ATSQ v3.0 and GENETYX-MAC v8.0.
  • Amino acid sequence of protein B encoded by DszB and 0RF2 This is completely different from the above, in that the amino-terminal and carboxy-terminal sequences of DszB extend longer than both ends of protein B and are particularly homologous to the amino-terminal sequence. Sex is not recognized.
  • the amino acid sequences of DszC and protein C encoded by 0RF3 are compared, the full-length sizes are almost the same, but the sequences at the amino terminus are completely different.
  • Example 4 Isolation of desulfurization-deficient strain Paenibacillus sp. Strain M18 and analysis of its properties Paenibaci 1 lus sp. Al1-2 strain was treated with acridine orange and mutant strain M18 lost DBT resolution The strain was isolated. First, the All-2 strain was cultured overnight in 2XYT medium at 50 ° C, and 0.1 ml of the obtained overnight culture was inoculated into 5 ml of 2XYT medium containing 30 g / inl acridin orange. The cells were cultured overnight at 50 ° C. The cells were collected by centrifugation and washed once with medium A.
  • the washed cells were suspended in 0.1 ml of A medium, inoculated in 2 ml of 2XYT medium, and cultured at 50 ° C for 4 hours.
  • the bacterial solution was spread on a 2XYT agar medium and cultured at 50 ° C overnight.
  • the resulting colonies were inoculated on A medium using DBT as the sole sulfur source, and the DBT utilization was examined, and a strain deficient in DBT utilization (M18 strain) was obtained.
  • M18 strain strain deficient in DBT utilization
  • M18 cultured in AYD medium overnight and the parental AU-2 strain were collected, washed twice with AY medium, and then suspended in AY medium.
  • DBT is degraded by the route of DBT ⁇ DBT0 ⁇ DBT02 ⁇ 2- (2'-hydroxyphenyl) benzenesulfinic acid ⁇ 2-HBP + sulfite (Oldfield, C. , Pogrebinsky, 0., Simmonds, J., Olson, ES and Kulpa, CF Microbiology, 143: 2961-2973, 1997).
  • 2- (2'-Hydroxyphenyl) benzenesulfinic acid is known to give DBT sultin when cyclized (Olson, ES, Stanley, DC and Gallagher, JR Energy & Fuels 7: 159-164) , 1993).
  • Rhodococcus sp. IGTS8 strain converts DBT sultone to 2-HBP and sulfite in cooperation with reductase by the enzymatic action of DszA (Oldfield, C. et al., 1987). , Pogrebinsky, 0 .. Simmonds, J., Olson, ES and Kulpa, CF Microbiology, 143: 2961-2973, 1997).
  • the cloned DNA is the genetic body for expressing desulfurization activity, that is, the degradation activity of DBT, 0RF 1,2,3 was downstream of Ptac, a strong promoter working in E. coli.
  • Recombinant plasmids in which DNA fragments containing all of them and sequences containing a part of each of them were arranged were prepared, and E. coli JM109 strain was transformed with the obtained recombinant plasmids.
  • the methods for producing various recombinant plasmids are examined in detail below. 8.7 kb EcoRI-Hindi 11 flag derived from Paenibaci 1 lus sp.
  • A11-2 strain DNA The recombinant DNA p4EH obtained by cloning the fragment into the phagemid vector pBluescriptl I KS (+) was double-digested with Clal and Smal, and the resulting C1al-Hind111 fragment was Recombinant DNA pB14 was prepared by ligating the larger fragment obtained by cutting pBluescript II KS (+) with 1 al and Hindlll. Next, pB14 was double-digested with Xbal and Kpnl to recover a DNA fragment containing the entire DNA from the cloned Paenibaci 1 lus sp. All-2 strain, and the PHSG298 plasmid was digested with Xbal and Kpnl.
  • Recombinant DNA pSKR6 was prepared by ligation with the large fragment obtained by double digestion.
  • This PSKR6 was double-digested with EcoRI and Hindlll, and inserted into the EcoRI-Hinddlll site of PKK223-3 in the expression vector to produce an expression plasmid PSKR7.
  • Escherichia coli JM109 was transformed with this pSKR7 to obtain a transformant # 121 (pSKR7).
  • the ATG sequence which is presumed to correspond to the initiation codon of 0RF1, which is considered to correspond to dszA at the 5 'side of the dsz operon of the IGTS8 strain, is expressed on PKK223-3.
  • the Clal site (5, -ATCGAT-3 'immediately before 0RF of dszA; there is a G on the 3' side and the start codon
  • the plasmid pSKR7 is cut at the EcoRI site, and the resulting cohesive ends are blunt-ended by treatment with T4 DNA polymerase, followed by ligation and recircularization. did. With this treatment, the distance between the SD sequence and the starting ATG was llbp. Escherichia coli JM109 was transformed with this recombinant plasmid, and the resulting transformant was designated as strain # 361.
  • Dispense 6 ml of 18 mm screw-mouth test tube including LB-Amp-DBT medium (containing 10 g of Bacto polypeptone in 1 L, 5 g of Bacto yeast extract, 10 g of NaCl, 50 mg of ampicillin, and 100 mg of DBT lOOmg). After inoculating 1% of the # 361 suspension cultivated overnight in the same medium, the cells were cultured at 37 ° C. Two test tubes were removed every 2 hours after the start of the culture, and each tube was transferred to one test tube. Extract the whole culture medium containing 1.2 ml of ethyl acetate and use gas chromatography Analyzed 'quantified.
  • LB-Amp-DBT medium containing 10 g of Bacto polypeptone in 1 L, 5 g of Bacto yeast extract, 10 g of NaCl, 50 mg of ampicillin, and 100 mg of DBT lOOmg.
  • the turbidity of the culture was also measured every two hours after the start of the culture using a spectrophotometer. As a result, it was confirmed that the DBT decreased during the culture for 4 to 8 hours, and that 2-HBP, a metabolite of DBT, was produced in the medium.
  • Figure 3 shows the reduction of DBT and the formation of DBT metabolites in this culture, each value being the average of the analytical values obtained for two tubes. Since the decrease in DBT was remarkable for 4 to 6 hours in culture, it was decided to examine the activity in a cell-free extraction system using cells cultured for 6 and 8 hours.
  • Preparation of the cell-free extract was performed as follows. 100 ml of LB medium (LB-Amp medium) containing 50 mg / ml ampicillin was inoculated with 1 ml of the overnight culture of # 361 strain prepared using the same medium, and incubated at 37 ° C for 6 hours or The cells were cultured for 8 hours. After the cultured cells harvested 'washed, TH buffer cormorants I 0D 660 becomes 25 (50mM T ri s- HC 1 , I mM PMSF, 10% glycerin port - le, PH7 0.) Suspended in It became cloudy.
  • the cell suspension was treated twice with an ultrasonic crusher for 10 minutes, and the obtained cell lysate was centrifuged at 1,000 rpm for 60 minutes to prepare a cell-free extract.
  • the reaction of the cell-free extract system was performed as follows. A cell-free extract prepared in the same manner using a mutant M18 strain of Paenibactillus sp.A11-2 that does not show desulfurization activity in 0.7 ml of the prepared cell-free extract 0.7.
  • the reaction was carried out by adding 3 ml, 3 mM NADH, 10 M FMN, and DBT (about 50 ppm), and rotating and shaking at 37 ° C. or 50 ° C. for 4 hours.
  • the resulting reaction solution was extracted according to a standard method, and DBT and DBT metabolites were analyzed by gas chromatography.
  • a resting cell reaction was also performed using a part of the cell suspension in which 0D66 () was adjusted to 25.
  • the resting cell reaction was performed by adding DBT at a final concentration of about 50 ppm to an lml cell suspension and reacting at 37 ° C for 5 hours.
  • the resulting reaction solution was extracted according to a standard method and analyzed by gas chromatography.
  • Fig. 4 shows the results obtained when the reaction was carried out at 37 ° C and 50 ° C using DBT as a substrate using the cell-free extract obtained from the # 361 strain cells cultured for 6 hours and 8 hours.
  • the DBT-degrading activity in the quiescent cell reaction system examined at the same time is also shown.
  • the reaction at 37 ° C the reaction to generate 2-HBP using DBT as a substrate was observed in both the cell-free extract system and the bacteriostatic system. The desulfurization activity was confirmed.
  • the formation of 2-HBP from DBT at 50 ° C, ie, the desulfurization activity was clearly confirmed.
  • Strain A11-2 is based on the nucleotide sequence containing three 0RFs and based on the base sequence, Rhodococcus sp.
  • Strain IGTS8 and Rhodococcus erythropol is KA2-5-1 It was presumed that it had the same gene composition as the desulfurization gene group cloned from the strain. Therefore, next, various deletion DNA fragments were prepared using the recombinant plasmids of the # 361 strain, and the relevance of each 0RF to the activity in the DBT degradation system was examined.
  • the linear DNA obtained by cutting # 121 plasmid at the Bsrl site I2bp upstream of the ATG start codon of RF2 and the EcoRI site downstream of the SD sequence is treated with T4 DNA polymerase. Then, T4 DNA ligase was allowed to act to produce a recircularized recombinant plasmid. Escherichia coli JM109 was transformed with this plasmid, and the resulting transformant containing 0RF2 and 0RF3 on the cloned DNA derived from Paenibacillus sp. A11-2 was named # 233.
  • transformant # 234 containing only 0RF3 and the EcoRI site downstream of the SD sequence was used to produce a transformant # 391 containing only 0RF2.
  • a transformant strain # 401 containing 0RF1 and 0RF2 was prepared using the Pstl site inside 0RF3 of the # 361 transformant and the Pstl site derived from the vector.
  • Each of the transformants having these deleted DNAs was cultured overnight in an LB-Amp medium, and 5 ml of the culture broth 501 added with DBT, DBT02 or DBT-sultin to a final concentration of 50 mg / l.
  • DBT 136; uM DBT0: 125., DBT02: 118 z, sultin: 107 Paenibaci 1 lu sp A11-2 from data on the production of DBT metabolites by each transformant shown in this table.
  • the three ORFs present in the cloned DNA from the strain are involved in DBT degradation. First, DBT02 is generated from DBT at # 361 # 233 # 234, and DBT02 is not generated from DBT at # 391 # 401 # 421.Therefore, 0RF 3 indicates the activity of generating DBT02 from DBT.
  • DBT-sultin was generated from DBT02 in # 361 # 401 and # 421, and no DBT-sultin was generated from DBT02 in # 233 # 234 and # 391. It can be seen that oxygenase exhibiting the generated activity is coded.
  • the production of 2-HBP from DBT-sultin was performed by shaking the LB-Amp medium containing DBT-sultin as the sole source of yellow and the same conditions as the recombinant clones, without adding any cells. Slightly observed in control experiments. The present inventors have performed various control experiments and confirmed that this is a spontaneous reaction that occurs even in the absence of enzymes or cells.
  • a medium (150 ml) having the same composition as the medium A used in Example 1 was placed in a sealed screw-type conical flask equipped with a 500 ml baffle, and 50 mg / l of DBT and a culture solution of the AU-2 strain were added. Rotational shaking (120 rpm) was performed. After overnight culture, centrifuge the culture at 4 ° C
  • the cells (wet weight: 30 g) are suspended in buffer A (20 mM Tris-HCl, pH 7.5, 10% glycerol, ImM dithiothreitol, ImM phenylmethanesulfonyl fluoride), and sonicated (Branson, Crushing was performed three times at 4 ° C for 15 minutes on a model 450). After removing the unbroken cells by centrifugation at 5,000 g for 10 minutes, the supernatant was centrifuged at 100,000 g for 60 minutes.
  • the resulting supernatant was filtered through a filter (0.22 u pore size), and an anion exchange column (Pharmacia) equilibrated with buffer B (20 mM Tris-HCl, pH 7.5, 103 ⁇ 4; glycerol, ImM dithiothreitol) Applied to High Load Q 26/10). After washing with buffer B, a linear gradient elution with sodium chloride was performed up to buffer B containing 0.5 M sodium chloride. The active fraction (0.35-0.4M sodium chloride eluted fraction) was collected and concentrated by ultrafiltration. After dilution with buffer A, ammonium sulfate was added to achieve 30% saturation.
  • buffer B 20 mM Tris-HCl, pH 7.5, 103 ⁇ 4; glycerol, ImM dithiothreitol
  • This solution was applied to a hydrophobic chromatographic column (Pharmacia, High-Port-Denphenyl Sepharose HP) equilibrated with buffer B to which 30% saturation was added by adding ammonium sulfate.
  • the active fractions are collected, concentrated by ultrafiltration (Millipore, Ultrafried 15, molecular weight 10,000 cut), desalted with a desalting column (Pharmacia, PD-10), and then buffered.
  • the solution was applied to an anion exchange column (Biorad, Protein Pack DEAE) equilibrated with the solution B.
  • the active fractions were collected, concentrated by ultrafiltration, desalted with a desalting column, and then buffered with buffer C (10 mM potassium phosphate, The mixture was applied to a hydroxyapatite column (BioRad, Biogel HPHT) equilibrated with pH 7.1, 10% glycerol, ImM dithiothreitol. After washing with buffer C, the active fraction eluted with a linear gradient with potassium phosphate up to 0.2 M was collected. As a result, it was confirmed that the active fraction was electrophoretically uniform.
  • buffer C 10 mM potassium phosphate
  • Table 4 shows the enzyme activity at each purification step
  • FIGS. 6 and 7 show the activity at various pH and temperature.
  • the cells (13 g wet weight) were suspended in buffer A (20 mM Tris-HCl, pH 7.5, 10% glycerol, ImM dithiothreitol, ImM phenyl methanesulfonyl fluoride) and sonicated (Branson The crushing was performed three times at 4 ° C for 15 minutes on a Model 450). After removing the unbroken cells by centrifugation at 5,000 g for 10 minutes, the supernatant was centrifuged at 100,000 g for 60 minutes.
  • the resulting supernatant was filtered through a filter (Milliporemilex GV, 0.22 ⁇ m, pore size), and buffer B (20 mM Tris-HCl, pH 7.5, 10% glycerol, ImM dithiothreitol) was used. It was applied to an equilibrated anion exchange column (Pharmacia, High Load Q26 / 10). After washing with buffer B, linear gradient elution with sodium chloride was performed up to buffer B containing 0.5 M sodium chloride. Active fraction
  • the (0.15-0.2M sodium chloride eluted fraction) was collected and concentrated by ultrafiltration (Millipore, Ultrafree 15, molecular weight 5,000 cut). After dilution with buffer A, ammonium sulfate was added to achieve 30% saturation. This solution was applied to a hydrophobic chromatographic column (Pharmacia Co., Ltd., Higuchi 1-D-Fe-N-Sepharose HP) equilibrated with buffer B to which 30% of saturation was added by adding ammonium sulfate. The active fractions are collected, concentrated by ultrafiltration, desalted with a desalting column (Pharmacia, PD-10), and then anion exchange columns (Biorad, Bioscale, Inc.) equilibrated with buffer B. DEAE). After concentration and desalting of the active fraction, a hydroxyapatite column equilibrated with buffer C (lOmM potassium phosphate, pH 7.1, 10% dalicerol, ImM dithiothrate)
  • the present invention provides novel genes and enzymes involved in desulfurization. By using these genes and enzymes, it is possible to easily release sulfur in fossil fuels. I will be able to. BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 Restriction map of the imported DNA of the DSZ probe positive clone.
  • Figure 2 Construction process of expression plasmid pSKR7.
  • Figure 4 The results of the DBT degradation reaction in the # 361 strain cell-free extract system are shown.
  • Figure 5 Structure of the deletion expression plasmid.
  • Figure 6 Relationship between temperature and enzyme activity of protein A.
  • Figure 7 shows the relationship between pH and protein A enzyme activity.
  • Figure 8 Relationship between temperature and enzyme activity of protein B.
  • Figure 9 Relationship between pH and protein B enzyme activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明糸田書 脱硫酵素群をコードする遺伝子 発明の属する技術分野
本発明は、 微生物を利用するチォフェン系化合物、 すなわちベンゾチォフェン、 ジベンゾチォフェン (以下 「DBT 」 という) およびこれらの置換体、 又はそれら の誘導体を分解する機能を有する酵素及びそれをコー ドする遺伝子に関するもの である。 本発明の酵素及び遺伝子を利用するこ とによ り、 石油等の化石燃料中に 含まれるベンゾチォフェンや DBT およびこれらの置換体、 又はそれらの誘導体中 の硫黄を遊離させることができるので、 通常石油 · 石炭等の化石燃料の燃焼によ り空気中に拡散する と言われる硫黄を、 化石燃料中から容易に除去するこ とがで きるようになる。 従来の技術
石油のような炭化水素燃料から硫黄を除去する脱硫のための方法と しては、 ァ ルカリ洗浄や溶剤脱硫などの方法も知られているが、 現在では水素化脱硫が主流 となっている。 水素化脱硫は、 石油留分中の硫黄化合物を触媒の存在下で水素と 反応させ、 硫化水素と して除去して製品の低硫黄化を図る方法である。 触媒と し ては、 アルミナを担体と してコバルト、 モ リ ブデン、 ニッケル、 タングステン、 などの金属触媒が使用される。 モリ ブデン担持アルミナ触媒の場合には、 触媒性 能を向上させるために、 通常コバルトやニッケルが助触媒と して加えられる。 金 属触媒を用いた水素化脱硫は、 現在世界中で広く使用されているきわめて完成度 の高いプロセスであるこ とは疑いのないこ とである。 しかし、 ょ リ厳しい環境規 制に対応した石油製品を作るためのプロセスという観点からは、 いくつかの問題 点がある。 以下にその例を簡単に記載する。
金属触媒は、 一般にその基質特異性が低く、 このため多様な種類の硫黄化合物 を分解し、 化石燃料全体の硫黄含量を低下させる目的には適しているが、 特定の グループの硫黄化合物、 すなわちベンゾチォフェンや DB T のような複素環硫黄化 合物類およびそれらのアルキル誘導体類に対してはその脱硫効果が不十分となる こ とがある と考えられる。 たとえば、 脱硫後の軽油中にはなおも種々の複素環式 有機硫黄化合物が残存している。 このよ う に金属触媒による脱硫効果が不十分と なる原因の一つは、 これらの有機硫黄化合物中の硫黄原子の周囲に存在する置換 基による立体障害が考えられる。 これらの置換基のうち、 メチル置換基の存在が 水素化脱硫における金属触媒の反応性に及ぼす影響は、 チォフェン、 ベンゾチォ フェン、 DBT などについて検討されている。 それらの結果による と、 一般的には 置換基の数が増すほど脱硫反応は減少するが、 置換基の位置が反応性に及ぼす影 響も きわめて大きいこ とが明らかである。 メチル DBT 類の脱硫反応性を比較し、 置換基による立体障害が金属触媒の反応性に及ぼす影響が非常に大きいこ とを示 し た報告は、 た と えば、 Houalla, M., Broderick, D.H. , Sapre, A. V., Nag, N. K. , de Beer, V.H. , Gates, B. C. , Kwart, H丄, Catalt. , 61, 523-527( 1980) に見られる。 実際、 これらの DBT の種々のアルキル化誘導体が軽油中にかな りの 量存在することが知られている (たとえば、 Kabe, T., Ishihara, A. and Tajima, H. lnd. Eng. Chem. Res., 31, 1577-1580(1992))。
上記のように水素化脱硫に抵抗性を示す有機硫黄化合物を脱硫するためには、 現在用いられているよ り も高い反応温度や圧力が必要とされ、 また、 添加する水 素の量も非常に増大する と考えられている。 このような水素化脱硫プロセスの改 良は、 ばく大な設備投資と運転コス ト を必要とするこ とが予想される。 このよ う な水素化脱硫に抵抗性を示す有機硫黄化合物を主たる硫黄化合物種と して含むも のと しては、 たとえば、 軽油があり、 軽油のよ り高度な脱硫 (超深度脱硫) を行 う場合には上記のような水素化脱硫プロセスの大幅な改良が要求される。
一方、 生物が行う酵素反応は比較的穏和な条件下で進行し、 しかも酵素反応の 速度自体は、 化学触媒を用いた反応の速度と遜色のないという特徴を有している。 さ らに、 生体内で起こる多種多様の生物反応に適切に対応する必要があるため、 非常に多くの種類の酵素が存在し、 それらの酵素は一般的に非常に高い基質特異 性を示すこ とが知られている。 このような特徴は、 微生物を用いて化石燃料中に 含まれる硫黄化合物中の硫黄の除去を行ういわゆるバイオ脱硫反応においても活 力、される もの と期待されてレヽる ( Monticel lo, D.J. , Hydrocarbon Processing 39-45(1994)) 。
一方、 細菌を用いて石油の成分である複素環硫黄化合物から硫黄を除去する方 法については、 多数の報告があるが、 それらは環分解 (C - C 結合切断) 型反応と C - S 結合切断型反応とに大別される。 C - C 結合攻撃型脱硫活性を有する細菌と し ては、 例 ば、 Pseudomonas sp. , Pseudomonas aeruginosa, Bei jerinckia sp. , Pseudomonas al cal i genes, Pseudomonas stutzer i , Pseudomonas puti da, Brevibacterium sp.などが知られている。 これらの細菌は、 DBT で代表される複 素環式硫黄化合物中の C-C 結合の切断を行い、 ベンゼン環を分解し、 その後の酸 化反応カスケー ドによ り、 硫黄塩を放出する というタイ プの代謝を行う ものであ る。 これらの炭素骨格攻撃型経路の反応機構は芳香環の水酸化 (DBT →→1,2 -ジ ヒ ドロキシ DBT)、 環の解裂、 水溶性産物への酸化 ( 2-ジヒ ドロキシ DBT →→ ト ランス- 4 [ 2 - ( 3-ヒ ドロキシ) チアンナフテニル] -2- ォキソ- ブテノイ ン酸、 3 -ヒ ドロキシ- 2- ホルミルベンゾチォフェン) といったものでぁリ、 Kodama経路 と呼ばれている。 このタイプの反応によ り、 DBT のベンゼン環中の C- C 結合が攻 撃を受け、 油から抽出可能な種々の水溶性物質を生じる。 しかし、 この反応によ リ、 油中の他の芳香族分子が攻撃を受け、 その結果かな りの量の炭化水素が液相 に移動する こ と に な る ( Hartdegen, F. J. , Coburn, J.M. and Roberts, R. L. Chem. Eng. Progress, 80, 63-67(1984)) 。 このよ う なこ とは石油の総熱量単位 の低下を招く こ とになリ、 工業的には非効率的な反応である。 また、 このタイ プ の DBT 酸化分解菌は、 児玉らが報告しているように酸化産物と して水溶性のチォ フェン化合物 (主と して 3-ヒ ドロキシ- 2- ホルミルベンゾチォフェン) を与える が、 これは液相から除去するのが困難な物質でもある。 更に、 DBT の炭素環の攻 撃は、 しばしばアルキル置換基ゃァリル置換基を持つ DBT の 2位及び 3位の位置 で起こるため、 これらの位置で置換された DBT は Kodama経路の基質とはならない。 原油や石炭のみならず硫黄を含んだモデル化合物を分解し、 ヘテロ原子である 硫黄を選択的に除去して、 硫酸塩や水酸化化合物を産生する微生物類が報告され ている。 このタイプの反応は、 その代謝産物の構造から考えて、 硫黄化合物中の C-S 結合を特異的に切断して、 その結果硫黄を硫酸塩の形で遊離する反応である と考えられる。 現在までに、 表 1 に示すような硫黄攻撃型のバイオ脱硫反応系の 表/ OS結合攻撃型細菌 菌株 基質 分解産物 文献
Pseudomonas sp. CB 1 ジベンゾチオフ Iン;石炭 ヒドロキシビフエニル +S¾酸 ¾ Isbislerら(1985)
Acinelobacler sp. CB2 ジベンゾチォフェン ヒドロキシビフ Iニル +硫酸 ¾ Isbislerら (1985)
Gram-positive bacteria 石灰 硫酸 Grwalordら(1990)
Rhodococcus rhodochrous IGTS8 ジベンゾチォフェン; ヒドロキシビフエニル +{¾酸 ¾ Kilbane(1 989)
(ATCC 53968) 石炭; >田
Desullovibrio desulfuricans ジベンゾチ才フェン ビフヱニル +硫化水素 Kimら(1990)
C oryn ebact erium sp. ジベンゾチォフェン ヒドロキシビフエニル 道 Omorlら (1992)
Brevibacterium sp. DO ジベンゾチォフェン 安息香 K+亜) ¾酸塩 van Afferdenら (1990)
Gram- positive bacterium FE-9 ジベンゾチ才フェン; ビフ I二 硫化水素、 Finnerly(1993)
チアントレン ベンゼン" H¾化水素
Pseudomonas sp. OS 1 ベンジルメチルスルフィ ド ベンズアルデヒド van Alierden(1993)
Rhodococcus erythropolis ジベンゾチォフェン ヒドロキシビフエニル Wang b (1994)
Rhodococcus erythropolis D-1 , H-2 ジベンゾチォフェン ヒドロキシビフエニル Izumiら(1994)、 Ohshiro ¾ (1995) Agrobaclerium sp. ジベンゾチォフェン ヒドロキシビフエニル Constanllら(1994)
Xanihomonas sp. ジベンゾチォフェン ヒドロキシビフエニル Constantl ¾(1994)
Arlhrobacter K3b ジベンゾチ才フェンスルホン 安息香酸 +亜 Dahlberg(1992)
以上記載したバイオ脱硫はすべて、 30°C近辺の温度条件下で進行する微生物代 謝反応を利用するものである。 一方、 化学反応の速度は一般に温度に依存して増 大するこ とが知られている。 また、 石油精製プロセス中の脱硫工程では、 高温 - 高圧条件下で分別蒸留や脱硫反応が行われる。 従って、 石油精製プロセス中にバ ィォ脱硫工程を組み込むとする と、 常温近く にまで石油留分を冷却するこ となし に、 冷却途中のよ り高い温度でバイオ脱硫反応ができる方が望ましいと考えられ る。 高温バイオ脱硫に関する報告には以下のようなものがある。
微生物を用いて高温で脱硫反応を行わせる試みのほとんどは、 石炭脱硫におい て見るこ とができる。 石炭中には種々の硫黄化合物が含まれている。 主要な無機 硫黄化合物は黄鉄鉱であるが、 有機硫黄化合物に関しては多種多様のものが混在 しておリ、 多く がチオール、 スルフイ ド、 ジスルフイ ド、 チォフェン基を含んで いるこ とが知られている。 用いられた微生物は、 Sulfolobus属の細菌で、 これら はすべて好熱性細菌である。 鉱物スルフィ ドからの金属のリ一チング (Brier ley C.L. & Murr, L.E., Science 179, 448-490(1973)) や石炭からの黄鉄鉱の硫黄除 去などに種々の異なった Sulfolobus株を用いた例が報告されている (Kargi, F. & Robinson, J.M. , Biotechnol. Bioeng, 24, 2115-2121 (1982); Kargi , F. & Robinson, J.M. , Ap l. Environ. Microbiol. , 44, 878-883(1982); Kargi, F. & Cervoni , T. D. , Biotechnol. Letters 5, 33-38(1983); Kargi , F. and Robinson, J.M. , Biotechnol. Bioeng. , 26, 687-690(1984); Kargi , F. & Robinson, J.M. , Biotechnol . Bioeng. 27, 4ト 49(1985); Kargi , F. , Biotechnol. Lett. , 9, 478-482(1987)) 。 Kargi と Robinson (Kargi, F and Robinson, J.M. , Appl. Environ. Microbiol. , 44, 878- 883( 1982) )によれば、 米国のイエロ一ス トーン国 立公園の酸性温泉から分離された Sulfolobus acidocaldarius のある株は、 45〜 70°Cで生育するが、 至適 pH2 で元素状硫黄を酸化する。 また、 別の 2種の
Sulfolobus acidocaldarius 株による黄鉄鉱の酸化も報告されている (Tobita, M. , Yokozeki , Μ., Ni shi kawa, N. & Kawakami, Y. , Biosci. Biotech. B i ochem. 58, 77卜 772(1994))。
化石燃料中に含まれる有機硫黄化合物のうち、 DBT およびその置換体又はそれ らの誘導体は通常の石油精製プロセスにおいて水素化脱硫を受けにく いこ とが知 ら れ て い る 。 そ の DBT の Sulfolobus aci docal darius ( 以 下 、
「 S. acidocaldariusj と いう ) に よ る高温分解も報告されている (Kargi, & Robinson, J.M., Biotechnol . Bioeng, 26, 687-690(1984); Kargi, F,, Biotechnol. Letters 9, 478-482(1987))。
これらの報告によれば、 チアン ト レン、 チォキサンテン、 DBT などのモデル芳 香族複素環硫黄化合物を高温でこの微生物と反応させる と、 これらの硫黄化合物 は酸化されて、 分解する。 S. acidocaldarius によるこれらの芳香族複素環硫黄 化合物の酸化は、 70°Cで観察されておリ、 反応産物と して硫酸イオンを生じる。 しかし、 この反応は硫黄化合物の他には炭素源を含まない培地中での反応であリ、 硫黄化合物を炭素源と しても利用している。 すなわち硫黄化合物中の C-C 結合を 分解しているこ とは明瞭である。 さ らに、 この S. acidocaldarius は酸性の培地 でのみ増殖でき、 DBT の酸化分解反応は、 きびしい酸性条件下 (PH2.5)での進行 を要求する。 このようなきびしい条件は石油製品の劣化を引き起こすと同時に脱 硫に関わる工程に耐酸性材料を必要とするためプロセス上望ま しく ないと考えら れる。 S. acidocaldarius を、 独立栄養条件下で増殖させる と、 必要なエネルギ —を還元された鉄 · 硫黄化合物から獲得し、 炭素源と して二酸化炭素を利用する。 しかし、 S. acidocaldarius は、 従属栄養条件下に増殖させる と、 炭素源および エネルギー源と して種々の有機化合物を利用するこ とができる。 すなわち、 化石 燃料が存在すると炭素源と して資化されるものと考えられる。
Finnerty ら は 、 Pseudomonas stutzeri 、 Pseudomonas a 1 ca 1 i genes 、 Pseudomonas putidaに属する株が DBT 、 ベンゾチォフェン、 チォキサンテン、 チ アント レンを分解して、 水溶性の物質に変換するこ とを報告している (Finnerty, W. R. , Shockiey, K. , Attaway, Η. in Microbial Enhanced Oil Recovery, Zajic, J.E. et al. (eds. ) Penwel 1. Tuisa, Okia, 83-91(1983)。 この場合、 酸化反応は 55°Cでも進むと している。 しかし、 これらの Pseudomonas 菌株による DBT の分解 産物は、 Kodamaらが報告している 3-ヒ ドロキシ- 2- ホルミルベンゾチォフェンで あ る ( Mont 1 eel 1 o, D. J. , Bakker, D. , Finnerty, W. R. App 1. Environ. Microbiol. , 49, 756-760 ( 1985) ) 0 これらの Pseudomonas 菌株による DBT の酸化 活性は、 硫黄を含まない芳香族炭化水素であるナフタ レンやサリ チル酸によ り誘 導を受け、 クロラムフエニコ一ルによ リ 阻止される。 このこ とから、 これらの Ps eud omon as 菌株による DBT の分解反応は、 芳香環中の C- C 結合を切断するこ と による分解を基礎と しているこ とが分かる。 また、 硫黄化合物以外にも石油留分 中に含まれる貴重な芳香族炭化水素を同時に分解するおそれもあり、 これは、 燃 料の価値や石油留分の品質を低下させるこ とになる。
このよ うに、 今までに発見されている高温で DBT を分解できる菌は、 DBT 分子 中の C- C 結合を切断し、 炭素源と して利用する反応を触媒するものである。 C- S 結合を特異的に切断するが、 C- C 結合は切断しないでそのまま残すタイ プの有機 硫黄化合物の分解反応が実際の石油の脱硫方法と して望ましいこ とは上述の通り である。 すなわち、 高温で DBT およびそのアルキル置換体、 又はそれらの誘導体 分子中の C-S 結合を切断する活性を示し、 水溶性の物質の形で、 脱硫産物を生じ る微生物を利用するのがバイオ脱硫プロセスと して最も望ましい。
前述のよう に、 C- S 結合切断型の DBT 分解反応を行う微生物は、 いく つかの属 の細菌で知られている。 しかし、 これらのすべての菌について、 少なく とも 42°C 以上の高温条件下において DBT を分解する活性を示したという こ とを記載した例 は見あたらない。 た と えば、 Rhodo c o c cu s sp . の ATCC 53968 はよ く 調べられた DBT 分解菌株であ り、 DBT の硫黄原子に酸素原子を付加し、 DBT スルホキシ ド
(以下 「DBT0」 という) から DBT スルホン (以下 「DBT02 」 という) を生成し、 ついで 2- ( 2 ' -ヒ ドロキシフエニル) ベンゼンスルフィ ン酸塩を経て 2-ヒ ドロキシ ビフエニル (以下 「2- HBP 」 という) を生成する反応を行う。 しかし、 この菌も 通常の培養温度である 30°Cよ り も少し高い 37°Cおよび 43 °Cでさえ、 48時間培養す る と非常に生育が遅れるか、 生育しな く なるこ とが報告されている (特開平 6 - 54695 号公報) 。 このこ とから、 高温脱硫反応を行わせるためには、 高温で生育 でき、 しかも高温で有機硫黄化合物、 特に DBT およびその置換体、 又はそれらの 誘導体化合物を含む複素環式硫黄化合物類を C-S 結合特異的に切断できる微生物 を用いるのが最適であると考えられた。 本発明者らは広範なスク リーニングを行 い、 60 °C近い高温条件下で増殖し、 DBT 類を分解 · 脱硫できる高温脱硫菌株 Paen i bac i l l us sp .株をすでに 2株世界で初めて単離している (特開平 1 0-036859 号公報) 。 この菌株の有する高温脱硫活性に関与する遺伝子を単離すれば、 組換 え DNA 技術のような遺伝子操作技術を利用して、 他の生物にその遺伝子を導入し 発現させるこ とによ り、 広範囲の生物に高温脱硫能を賦与するこ とができるこ と になる。
C-S 結合切断型の脱硫反応を起こすこ とが知らされている細菌で、 その DBT 分 解反応に関与する酵素活性をコードする遺伝子が同定され、 その塩基配列が決定 されているのは、 本発明者らの知る限りでは、 Rhodococcus sp. IGTS8 株の dsz 遺伝子のみである ( Denome, S. , Oldf leld. , , Nash, L.J. and Young, K. D. J. Bacteriol. , 176:6707-6716, 1994; Piddington, C. S. , Kovacevi ch, B. R. and Rambosek, J. Appl. Environ. Microbiol. , 61 :468-475, 1995) 。 IGTS8 株によ る DBT 分解反応は、 DBT から DBT0を経て DBT02 への変換を触媒する Dsz DBT02 から 2-(2'-ヒ ドロキシフエニル) ベンゼンスルフィ ン酸への変換を触媒する DszA および 2- (2' -ヒ ドロキシフエニル) ベンゼンスルフィ ン酸から 2- HBP への変換を 触媒する DszBの 3つの酵素によ り触媒される (Denome, S., Oldf ield. , , Nash, L.J. and Young, K. D. J. Bacteriol. , 176:6707-6716, 1994; Gray, K丄, Pogrebinshy, 0. S. , Mrachko, G. T. , Xi , L. Mont i cello, D.J. and Squires, C. H. Nat Biotechnol. , 14 : 1705- 1709, 1996; Oldf ield, , Pogrebinsky, 0., Simmonds, J., Olson, E. S. and Kulpa, C. F. , Microbiology, 143:2961-2973, 1997)。 それぞれ対応する遺伝子は dszA, dszB, dszCと呼ばれている。 DszCと DszA はモノォキシゲナーゼで、 両者ともその酸素添加反応には NADH- FMNォキシ ドレダ クタ一ゼ活性の共存を必要とすることが知られている (Gray, Κ.Α·, Pogrebinsky, O.S., Mrachko, G. T. , Xi, L. Monticel lo, D.J. and Squires, C. H. Nat Biotechnol. , 14 : 1705- 1709, 1996; Xi, L. Squires, C. H. , Monticel lo, D.J. and Chids, J. D. Biochem. Biophys. Res Commun. , 230:73-76, 1997) 。 これら の dsz 遺伝子を大腸菌で温度シフ トによ り誘導発現させた場合、 菌体培養による DszA活性は 39°Cで最大とな り、 42°Cでは顕著に低下する こ とが報告されている
Denome, S. , Oldf ield. , D. , Nash, L.J. and Young, K. D. J. Bacteriol. , 176:6707-6716, 1994) 。 この結果は、 I GTS8 株の有する脱硫酵素活性は常温付 近で最大になり、 よ り高温では活性は低下し、 50°C以上ではまったく脱硫活性は 見られな く なる と いう休止菌体反応系の実験結果 (Konishi, J., Ishi i, Y., Onaka, T., Okumura, K. and Suzuki , M. App 1. Environ. Microbiol. , 63:3164 - 3169, 1997)と一致する。 従って、 50°C以上の高温条件下で C- S 結合特異的な DBT 分解活性を指令する遺伝子は従来報告されていないものである。 発明が解決しよう とする課題
本発明の課題は、 ベンゾチォフェン、 DBT 系化合物に作用し、 それらを高温で 分解する能力を有する微生物から高温脱硫反応に関与する遺伝子を単離し、 その 構造 (特に塩基配列) を特定し、 また、 これらの遺伝子をそれが単離されたのと は異なる微生物に導入し、 脱硫能を賦与するこ とによ り、 新規な脱硫微生物を創 製するこ とである。 また、 このような微生物を実際にベンゾチォフェン、 DBT お よびそれらのアルキル誘導体に作用させて、 これらの化合物の C-S 結合を切断す ることによ り、 硫黄を遊離させる方法を確立するこ とである。 課題を解決するための手段
本発明者は、 上記課題を解決するために鋭意検討を重ねた結果、 高温脱硫細菌 Paenibacillus sp.から脱硫反応に関与する遺伝子群の単離に成功し、 本発明を 完成するに至った。
即ち、 本発明の第一は、 脱硫酵素をコードする遺伝子に関する。
本発明の第二は、 上記遺伝子を含むベクターに関する。
本発明の第三は、 上記べクタ一を含有する形質転換体に関する。
本発明の第四は、 脱硫酵素に関する。
本発明の第五は、 ト ランスポザーゼをコードする遺伝子に関する。
本発明の第六は、 トランスポザーゼに関する。
なお、 本明細書は本願の優先権の基礎である 日本国出願 「特願平 10-090387 号」 及び 「特願平 10-310545号」 の明細書及び 又は図面に記載されている内容 を包含する。
発明の開示
以下、 本発明を詳細に説明する。
( 1 ) 脱硫酵素をコードする遺伝子 本発明の遺伝子には、 以下の 3種類の遺伝子が含まれる。
第一の遺伝子は、 (a) 配列番号 2記載のアミ ノ酸配列によ り表されるタ ンパク 質、 又は(b ) 配列番号 2記載のアミ ノ酸配列において 1 若しく は複数個のァミ ノ 酸が欠失、 置換若し く は付加されたアミ ノ酸配列からな リ、 かつ DBT02 を 2- ( 2' - ヒ ドロキシフエニル) ベンゼンスルフィ ン酸に変換する機能を有するタンパク質 を コードするものである。
第二の遺伝子は、 (a) 配列番号 4記載のアミ ノ酸配列にょ リ表されるタンパク 質、 又は配列番号 4記載のアミ ノ酸配列において 1 若し く は複数個のアミ ノ酸が 欠失、 置換若し く は付加されたアミ ノ酸配列からなり、 かつ 2- ( 2' -ヒ ドロキシフ ェニル) ベンゼンスルフィ ン酸を 2- HBP に変換する機能を有するタンパク質をコ ードするものである。
第三の遺伝子は、 (a) 配列番号 6記載のアミ ノ酸配列によ り表されるタ ンパク 質、 又は(b ) 配列番号 6記載のアミ ノ酸配列において 1 若し く は複数個のァミ ノ 酸が欠失、 置換若しく は付加されたアミ ノ酸配列からな り、 かつ DBT を DBT0を経 て DBT02 に変換する機能を有するタンパク質をコードするものである。
上記第一、 第二、 及び第三の遺伝子は、 Rhodococcus sp. I GTS8株由来の ds zA、 ds zB、 ds zCと一定の相同性を示すが、 後述するよう にこれらの遺伝子がコー ドす るタンパク質は、 dszA、 ds zB、 ds zCがコー ドするタンパク質とはその性質におい て異なる。
本発明の遺伝子のうち、 配列番号 2 、 4及び 6記載のアミ ノ酸配列を コー ドす る遺伝子については、 本明細書の実施例に記載された方法によ り得るこ とができ る。 また、 これらの遺伝子の塩基配列は、 配列番号 1 、 3及び 5 に示すよう に、 既に決定されているので、 これらの配列を基に適当なプライ マーを合成し、 Paen i bac i 1 l us sp . A l l - 1 株 (この菌株は、 平成 9年 7 月 2 2 日付けで、 工業技 術院生命工学工業技術研究所に受託番号 FERM BP- 6025と して寄託されている。 ) 又は A l l - 2 (この菌株は、 平成 9年 7月 2 2 日付けで、 工業技術院生命工学工業技 術研究所に受託番号 FERM BP- 6026と して寄託されている。 ) 株から調製された DNA を铸型と して PCR を行う ことによつても得ることができる。
配列番号 2 、 4及び 6記載のァミ ノ酸配列において 1 若しく は複数個のァミ ノ 酸が欠失、 置換若しく は付加されたアミ ノ酸配列をコー ドする遺伝子は、 本願の 出願時において常用される技術、 例えば、 部位特異的変異誘発法 (Zoller et al. Nucleic Acids Res. 10 6487-6500, 1982) によ り配列番号 2、 4及び 6記載のァ ミ ノ酸配列をコー ドする遺伝子を改変することによ り得ることができる。
本発明の遺伝子は、 DBT の分解に関与する酵素をコー ドするので、 石油の脱硫 に利用することができる。
( 2 ) 脱硫酵素をコードする遺伝子を含むベクタ一
本発明のベクタ一は、 上記の第一、 第二又は第三遺伝子を含む。 このよ うなべ クタ一は、 本発明の第一、 第二又は第三遺伝子を含む DNA 断片を、 公知のベクタ ―に揷入することによ り作製するこ とができる。 DNA 断片を揷入するべクタ一は、 形質転換する宿主に応じて決めればよ く 、 宿主と して大腸菌を使用するのであれ ば、 以下のようなベクタ一を使用するのが好ましい。 強力なプロモーターと して、 例えば、 lac 、 lacUV5、 trp 、 tac 、 trc 、 λ pL, T7、 rrnB、 などを含む pUR 系、 pGEX系、 UC 系、 pET 系、 T7 系、 pBluescript 系、 pKK 系、 pBS 系、 pBC 系、 pCAL系などのべクタ一を使用するのが好ましい。
( 3 ) 脱硫酵素をコードする遺伝子を含むベクタ一を含有する形質転換体 本発明の形質転換体は、 上記ベクターを含有する。 形質転換体の宿主とする細 胞は、 植物細胞や動物細胞などであってもよいが、 大腸菌などの微生物が好ま し い。 代表的な菌株と しては、 Sambrook等の成書 Molecular Cloning Laboratory Mannual 2nd ed. (こ言己載 さ れて ヽる 、 71/18 、 BB4 、 BHB2668 、 BHB2690 、 BL2KDE3) 、 BNN102(C600hf 1A), C- la、 C600(BNN93) 、 CES200、 CES201、 CJ236 、 CSH18 、 DH1 、 DH5 、 DH5 a 、 DP50supF、 ED8654、 ED8767、 HB101 、 HMS174、 JM101 、 JM105 、 JM107 、 JM109 、 JM110 、 K802、 KK2186 , LE392 、 LG90、 M5219 、 MBM7014.5 、 MC1061、 MM294 、 MV1184、 MV1193、 MZ- 1、 NM531 、 M538 、 NM539 、 Q358、 Q359、 R594、 RB791 、 RR1 、 SMR10 、 TAP90 、 TGI 、 TG2 、 XL1- Blue、 XS101 、 XS127 、 Y1089 、 Y1090hsdR 、 YK537 などが挙げられる。
( 4 ) 脱硫酵素
本発明の脱硫酵素には、 以下の 3種類のタンパク質が含まれる。
第一のタンパク質は、 配列番号 2記載のァミ ノ酸配列によ り表されるタンパク 質と配列番号 2記載のアミ ノ酸配列において 1 若しく は複数個のァミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなり、 かつ DBT02 を 2 — ( 2 '—ヒ ドロ キシフエニル) ベンゼンスルフィ ン酸に変換する機能を有するタンパク質とを包 含する。
第二のタンパク質は、 配列番号 4記載のァミ ノ酸配列によ リ表されるタンパク 質と配列番号 4記載のアミ ノ酸配列において 1 若しく は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなり、 かつ 2 — ( 2 '—ヒ ドロキシフエ ニル) ベンゼンスルフィ ン酸を 2- HBP に変換する機能を有するタンパク質と を包 含する。
第三のタンパク質は、 配列番号 6記載のァミ ノ酸配列によ り表されるタンパク 質と配列番号 6記載のアミ ノ酸配列において 1 若し く は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなり、 かつ DBT を DBT02 に変換する機 能を有するタンパク質とを包含する。
上記第一、 第二、 及び第三のタンパク質は、 Rhodococcus sp. IGTS8株由来の脱 硫酵素 DszA、 DszB、 DszCと一定の相同性を示し、 また、 酵素と しての作用も同一 であるが、 以下の点で明確に相違する。
(ィ) DszA、 DszB、 DszCでは、 難脱硫物質であるベンゾチォフェンを脱硫できな いが、 本発明の第一、 第二、 及び第三のタンパク質では脱硫可能である。
(口) DszA、 DszB、 DszCは、 常温領域で脱硫活性を示すが、 本発明の第一、 第二、 及び第三のタンパク質は高温領域で脱硫活性を示す。
本発明の脱硫酵素は、 上述の本発明の脱硫酵素を コー ドする遺伝子を利用して 製造することができる。 また、 配列番号 2、 4、 及び 6 に記載のアミ ノ酸配列に よ り表される脱硫酵素は、 Paenibaci 1 lus sp. All-1 株 (この菌株は、 平成 9年 7月 2 2 日付けで、 工業技術院生命工学工業技術研究所に受託番号 FERM BP- 6025 と して寄託されている。 ) 又は AU-2(この菌株は、 平成 9年 7月 2 2 日付けで、 工業技術院生命工学工業技術研究所に受託番号 FERM BP- 6026と して寄託されてい る。 ) 株から常法に従って調製するこ とも可能である。
本発明の第一タンパク質に包含される一タンパク質の性質を以下に示す。
( 1 ) 作用 : DBT02を 2 — ( 2 ' —ヒ ドロキシフエニル) ベンゼンスルフィ ン酸に する
(2) pH特性 : 図 6 に示す通り、 至適 pHは 5.5 、 安定 pHは 5〜 10である。
(3) 温度特性 : 図 7 に示す通り、 至適温度は 45°Cである。
(4) 分子量 : 120,000 (ゲル濾過法による)
(5) 活性阻害 : キレー ト剤、 SH阻害剤によって阻害されるが、 2-HBP 、 硫酸塩に よっては阻害されない
(6) 補酵素の要求性 : NADH、 FMN が必要、 NADPH は NADHの代替になるが、 FAD は FMN の代替にならない 本発明の第二タンパク質に包含される一タンパク質の性質を以下に示す。
( 1 ) 作用 : 2 — ( 2 ' —ヒ ドロキシフエニル) ベンゼンスルフィ ン酸を 2- HBPに する
(2) pH特性 : 図 8 に示す通リ、 至適 pHは 8、 安定 11は5.5 〜9.5 である。
(3) 温度特性 : 図 9 に示す通り、 至適温度は 55°Cである。
(4) 分子量 : 31,000 (ゲル濾過法による)
(5) 活性阻害 : キレート剤、 SH阻害剤によって阻害されるが、 2-HBP 、 硫酸塩に よっては阻害されない
(6) 補酵素の要求性 : 補酵素は必要と しない
( 5 ) トランスポザーゼをコードする遺伝子
本発明の トランスポザーゼ遺伝子は、 (a) 配列番号 8記載のアミ ノ酸配列によ リ表されるタンパク質、 (b) 配列番号 9記載のアミ ノ酸配列によ り表されるタン パク質、 又は ) 配列番号 8記載のアミ ノ酸配列若しく は配列番号 9記載のアミ ノ酸配列において 1 若しく は複数個のァミ ノ酸が欠失、 置換若しく は付加された アミ ノ酸配列からな リ、 かつ トランスポザーゼ活性を有するタンパク質を コー ド するものである。
本発明の トランスポザーゼ遺伝子のうち、 配列番号 8及び 9記載のァミ ノ酸配 列をコードする遺伝子については、 配列番号 7 に示すよ う に、 既に決定されてい るので、 これらの配列を基に適当なプライ マ一を合成 し、 Paenibaci 1 lus sp. All-1 株 (この菌株は、 平成 9年 7 月 2 2 日付けで、 工業技術院生命工学工業技 術研究所に受託番号 FERM BP-6025と して寄託されている。 ) 又は AU- 2(この菌株 は、 平成 9年 7月 2 2 日付けで、 工業技術院生命工学工業技術研究所に受託番号 FERM BP-6026と して寄託されている。 ) 株から調製された DNA を铸型と して PCR を行う ことによつても得るこ とができる。
配列番号 8又は 9記載のァミ ノ酸配列において 1 若し く は複数個のァミ ノ酸が 欠失、 置換若しく は付加されたアミ ノ酸配列をコー ドする遺伝子は、 本願の出願 時において常用される技術、 例えば、 部位特異的変異誘発法 (Zoller et aし, Nucleic Acids Res. 10 6487-6500, 1982) によ り配列番号 8又は 9記載のァミ ノ 酸配列をコ一ドする遺伝子を改変することによ り得ることができる。
この遺伝子は、 トランスポザーゼ活性を有するので、 この遺伝子を利用して任 意の遺伝子単位をある DNA 分子から別の DNA 分子に転移する こ とが可能である。 なお、 配列番号 8又は 9記載のアミ ノ酸配列によ り表されるポリペプチ ドが、 ト ランスポザーゼ活性を有するこ とは実験的に確認されているわけではないが、 揷 入因子 I S1202中の トランスポザ一ゼと一定の相同性を有するこ と、 及び 2つのポ リペプチドの 0RF が、 脱硫酵素群の 0RF と逆向きで、 かつ脱硫酵素群の 0RF を挟 み込むような位置に存在するこ と ( トランスポゾンに特有の構造) 、 さ らには配 列番号 8、 9の両端に トランソポゾンに特徴的な同方向繰り返し配列 (DR) 及び 逆方向繰り返し配列 ( IR) が存在するこ となどからこの 2つのポリペプチ ドがト ランスポザーゼ活性を有する可能性は非常に高いものと推定される。
( 6 ) トランスポザーゼ
本発明のトランスポザーゼは、 ) 配列番号 8記載のアミ ノ酸配列によ り表さ れるタンパク質、 (b) 配列番号 9記載のアミ ノ酸配列によ り表されるタンパク質、 又は(c) 配列番号 8記載のァミ ノ酸配列若しく は配列番号 9記載のァミ ノ酸配列 において 1 若しく は複数個のァミ ノ酸が欠失、 置換若し く は付加されたアミ ノ酸 配列からなリ、 かつ トランスポザーゼ活性を有するタンパク質で示される。 本発明の トランスポザーゼは、 上述の本発明の トランスポザーゼを コー ドする 遺伝子を利用して製造するこ とができる。 実施例
以下、 本発明を実施例によ り具体的に説明する。
実施例中の遺伝子操作に関連した実験は、 主に Maniatisらの成書 ( Sambrook, J. , Fr i tsch, E. , F. and Maniatis, T. 1989. Molecular Cloning. A laboratory Manual . 2nd. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. ) に詳述されている方法に従って行った。
〔実施例 1 〕 脱硫酵素をコードする遺伝子断片のクローニング
Paenibaci 1 lus sp. A11-2 株から精製した DBT02 を 2-(2'- ヒ ドロキシフエ二 ル) ベンゼンスルフィ ン酸へと変換する活性を有する蛋白質 (以下 「蛋白質 A 」 という) および 2- ( 2'- ヒ ドロキシフエニル) ベンゼンスルフィ ン酸を 2- HBP へと 変換する活性を有する蛋白質 (以下 「蛋白質 B 」 という) のそれぞれについてァ ミ ノ末端のアミ ノ酸配列を決定した。 それらの配列を以下に示す。
蛋白質 A NH2-MXQMXLAGFFAAGNVTXXXGA C00H
蛋白質 B NH2-TKSAIGPTRVAYSNXPVANXL C00H
(アミ ノ酸は一文字記号によ り示してある。 X は未同定。 )
この二つの蛋白質のアミ ノ末端の配列は、 以下に示すよ うに常温脱硫菌である Rhodococcus sp. IGTS8 株の dsz オペロンによ リ コ一 ドされる DszAおよび DszB蛋 白質のアミ ノ末端の配列との間にある相同性が見いだされた。
Paenibaci 1 lus sp. AU - 2 株 蛋白質 A MXQMXLAGFFAAGNVTXXXGA
Rhodococcus sp. IGTS8 株 DszA MTQQTQMHAGFFSAGNVTHAHGA
Paenibaci 1 lus sp. Al卜 2 株 蛋白質 B TKSA I GPTRVAYSNXPVANXL
Rhodococcus sp. IGTS8 株 DszB GSELDSA I RDT-LTYSNCPVPNAL
Rhodococcus sp. IGTS8 株では、 dszAと dszBとは、 dszAのコーディ ング配列の 3'末端が dszBの 5'末端と重複し、 異なるフレームで翻訳されるこ とが知られてい る 。 DBT の脱硫 に 関 与す る 酵素 を コ ー ド す る 遺伝 子 配列 の 構成 に 、 Paenibacillus sp. A11-2 株と Rhodococcus sp. IGTS8 株との間で何らかの類似 性が存在する可能性が考えられたので、 上流側にあるこ とが期待される dszAの 5' 末端側の配列のコ一ディ ング鎖をセンス鎖と し、 下流側にあるこ とが期待される dszBの 5'末端側の配列の相補鎖をアンチセンス鎖と して dszA全体を含む DNA フラ グメ ン トを増幅するこ とをまず試みた。
そこで、 上記のア ミ ノ酸配列をも と に蛋白質 A のァミ ノ末端配列に相当する PCR 用センスプライマ一を計 4種、 および蛋白質 B のァミ ノ末端に対応するアン チセンスプライマ一を計 4種それぞれ設計 ' 合成した。 以下に、 全プライマーの ヌク レオチド配列を記述する。
センスプライマ一
DSZA- MIX 5' -GGN TTY ΤΤΥ GCN GCN GGN ΑΑΥ GTN AC - 3'
THDSA-SM3 5' -TTY GCN GCN GGN AAY GT-3'
THDSA-SM4 5* -TTY TTY GCN GCN GGN AA-3'
THDSA-SM5 5' -GCN GGN TTY TTY GCN GC - 3' アンチセンスプライマー
THDSB-AM2 5' - TAN GCN ACY CTN GTN GGN CCD ATN GC - 3'
THDSB-AM3 5' -TAN GCN ACY CTN GTN GG-3'
THDSB-AM4 5' - TCR TTN ACN GCN GTY TC - 3'
THDSB-AM5 5' -ACY CTN GTN GGN CCD AT - 3' これらのセ ンスプライ マーと アンチセンスプライ マ一を種々組み合わせ、 Paenibaci llus sp. A11-2 株か ら抽出 した DNA を铸型 と して PCR を行っ た。 Paenibaci l lus sp. All- 2 株からの DNA の調製は以下のよ うに行った。 DBT を 含む A培地 (組成は下表に示す通り) で 50°Cで 24時間培養した Paenibaci l lus sp. A1卜 2 株を、 新鮮な DBT を含む A培地で 50°Cで 24時間培養して、 菌体を回収した。 得られた菌体を 1 mlの B1緩衝液 (50mM EDTA, 50mM Tris-HCl, 0.5% Triton X- 100, 0.2mg/ml RNaseA, pH 8.0) に懸濁させた。 この懸濁液に、 100mg/mlのリ ゾチーム 溶液を 20 i l と 20mg/ml の Prote i nase K溶液を 45 1 添加して、 37°Cで 10分間反 応させた。 反応液に 0.35mlの B2緩衝液 ( 800mM 塩酸グァニジン, 20% Tween-20, pH 5.5 ) を添加、 攪拌混合して、 50°Cで 30分間反応させ、 5秒間ミ キサーで攪 拌 して、 菌体反応液 を 調製 し た。 陰イ オ ン交換樹脂が充填さ れた QIAGEN GENOMIC - T1P20/G ( CHAGEN社製) カラム を 2 m 1の QBT 緩衝液 ( 750mM NaCl, 50mM
MOPS, 15¾ ethanol, 0.15% Tri ton X-100, pH7.0 ) で平衡化して、 菌体反応液を カ ラ ム に注入 し た。 カ ラ ム を 3 mlの QC緩衝液 ( 1· OM NaCl, 50mM MOPS, 15¾ ethanol, pH7.0) で洗浄したのち、 2 mlの QF緩衝液 ( 1.25M NaCl, 50mM Tris-HCl, 15% ethanol, pH 8.5) でゲノム DNA 溶液を溶出した。 ゲノム DNA 溶液に 1.4ml の イ ソプロパノールを添加して DNA を沈殿させたのち、 ガラス棒で巻きと リ 回収し た。 回収した DNA を 50^ 1 の TE緩衝液 ( 10mM Tris- HC1, ImM EDTA, pH8.0) に溶 解してゲノム DNA 溶液を調製した。
表 2
A培地の組成
l
l
l
Figure imgf000019_0001
ビタミ ン混合物
パントテンサン カルシウム 400mg
イノ'ント-ル 200mg
ナイァシン 400mg
p—アミバンゾェ-ト 200mg
ピリドキシン- HC1 400mg
ビタミン B12 0.5mg
蒸留水を加えて 1Lとする
調製した Paenibaci 1 lus sp. Al 1-2 株 DNA を錡型と して用いて行った PCR の条 件は以下の通リである。 反応液組成 : 50mM KC1
1.5mM MgCl2
各 0.2mM dNTP Mixture
0.2 μ M センスプライマ一
0.2 β M アンチセンスプライマ
200ng 錡型 DNA
2.5U Taq DNA polymerase アニーリ ング温度 : 44°Cから 66°Cまでの間で 2°C間隔で温度を変えて PCR を行つ た。
PCR サイクル : 95°C lmm 1 回
95°C lmin i
44 - 66°C lmi n この間を 30回繰り返し
72°C 5mi n †
72。C 7mi n 1回
DNA 増幅機 : RobocyclerTM GRADIENT96 温度サイクラ一 ( STRATAGENE社製) 上記の条件で PCR を行った結果、 アニーリ ング温度が 44〜50°Cの時、 数組のプ ラィマ一の組み合わせで約 1.6kb の増幅フラグメ ン トを与えるこ とが確認された。 この 1.6kb の PCR 産物を、 pCR- Script SK( + )ベク タ一を用いて大腸菌 XL1- Blue MRF- Kanr 株にクロ一ン化した。 クローン化 DNA フラグメ ン トの一部をシークェ ンシングした結果、 この 1.6kb の DNA フラグメ ン トは、 精製した蛋白質 A のアミ ノ末端のアミ ノ酸配列および蛋白質 B のァミ ノ末端のアミ ノ酸配列を コー ドでき るヌク レオチ ド配列を含んでいるこ とが明らかとなった。 しかし、 この増幅され た DNA フラグメ ン トの配列は、 アンチセンスプライマ一と して使用したヌク レオ チ ド配列に対応する蛋白質 B のァミ ノ末端をコードするヌク レオチ ド配列のさ ら に下流の配列を含んでいた。 決定されたヌク レオチ ド配列を調べる と、 その 3'末 端側の配列が、 蛋白質 A のァミ ノ末端配列に対応するセンスプライマ一に相補的 なヌク レオチ ド配列から成っているこ とが分かった。 これによ り、 蛋白質 A のァ ミ ノ末端配列に対応するセンスプライマ一が蛋白質 B のァミ ノ末端配列をコー ド するヌクレオチ ド配列よ り も下流に存在するヌク レオチ ド配列とアニーリ ングし、 アンチセンスプライマ一と して働いた結果、 1.6kb の DNA フラグメ ン トが増幅さ れたことが確認された。
決定さ れた DNA 配列か ら コ ー ド さ れる ア ミ ノ 酸配列 を 推定 し、 こ れ と Rhodococcus sp. IGTS8 株からクロ一ニングされている dsz 遺伝子によ り コー ド される蛋白質のうち、 DszAのァミ ノ末端側の配列および DszBのアミ ノ末端側の配 列とを比較した。 その結果、 両者の間に有意の相同性 (それぞれ 73%、 61%) が 存在するこ とが確認された。 Rhodococcus sp. 1GTS8 の脱硫遺伝子から構成され る dsz オペロンの DNA 配列との相同性が見つかったことから、 Paenibaci 1 lus sp. A11-2 株からクロ一ニングされたこの DNA 配列をプローブと して用いて隣接する DNA 配列をさ らクロ一ニングするこ とにした。
〔実施例 2〕 全 DNA ライブラ リーの作製
全 D の調製方法は上記の PCR の铸型と して用いた DNA の調製方法と同じであ る。
ライブラ リ一の作製方法
Paenibaci 1 lus sp. Al 1-2 株の全 DNA ライ ブラ リ一は以下のよう にして作製し た。 Paenibaci 1 lus sp. Al卜 2 株の全 DNA 標品約 2 g を 0.1 ュニッ トの Sau3AI で各々 20分、 30分、 40分消化した後、 消化物をフエノ ールークロロホルムで抽出 しェタノ一ル沈殿によ り回収した後、 遠心後得られた DNA 断片を 8ュニッ トの子 ゥシ小腸由来のアル力リ性ホスフ了タ一ゼで、 37°C60分間処理するこ とによ リ脱 リ ン酸化を行った。 アルカリ性ホスファタ一ゼ処理後フエノール—クロ口ホルム 処理にょ リ DNA を抽出し、 エタノール沈殿によ り これを回収した。 得られた DNA 断片約 0.2 g を え DASHI I/BamHI アーム約 2 6 g と 2ユニッ トの T4MA リ ガ一 ゼ存在下に 4 °C 18時間反応させた。 反応混合物を Gigapack II XL packaging Extractと反応させるこ とによ り in vitroパッケ一ジングを行い、 ファージラィ ブラ リーを作製した。 パッケージング後のファージ液の力価は 2 X 106 pfu であ つた。 〔実施例 3〕 全 DNA ライブラ リ一のスク リーニング
ファージライ ブラ リ一のスク リーニングを行うための DNA プロ一ブは以下のよ う にして作製した。 実施例 1 に記載したよ う に、 Paenibacillus sp. All- 2 株か ら DBT02を 2- (2' - ヒ ドロキシフエニル) ベンゼンスルフィ ン酸へと変換する活性 を有する蛋白質 A および 2- (2'-ヒ ドロキシフエニル) ベンゼンスルフィ ン酸を 2 - HBPへと変換する活性を有する蛋白質 B を コー ドする と考えられる DNA の塩基配 列と Rhodococcus sp. IGTS8 株の dsz 遺伝子配列との間には相同性が認められる。 相同性が高い Rhodococcus sp. IGTS8 株の dszAの 5'端側の配列 (120 番目から 137 番目のヌク レオチ ド) をセンス鎖に、 また dszBコーディ ング配列の 5'端から 169 番目のヌク レオチ ドから 185番目のヌク レオチ ドまでの配列の相補鎖をアンチセ ン ス鎖 に選択 し PCR プラ イ マ ー を 作製 し た。 こ の プラ イ マ ー を 用 い て Paenibaci 1 lus sp. A11-2 株から調製した DNA を錄型と した PCR を行う こ とによ リ、 タンパク質 Aをコー ドする領域の配列を増幅させた。 得られた PCR 産物を踌 型と してランダムプライム法 (マルチプライム法) によ リジォキシゲニン (DIG) で標識さ れた DSZAプロ ー ブを 調製 し た。 DIG 標識プロ ー ブの調製法は、 Boehringer Mannheim 社のプロ ト コールに従った。 DIG 標識プローブの調製方法 を以下に示す。
得られた PCR 産物 l ^ g ( 5 1 ) を沸騰した熱湯中で 10分間熱変性させ、 塩 を含んだ氷上で冷却した。 得られた変性 DNA 溶液に、 10 1 のへキサヌク レオチ ド 混合液 ( 0.5M Tris-HCl, 0.1M MgCl2, ImM D i th i oerythr i o 1 , 2mg/ml BSA, 3.143mg/ml Random Primer, pH7.2 ) 、 10 1 の dNTP標識混合液 (ImM dATP, ImM dCTP, ImM dGTP, 0.65mM dTTP, 0.35m DIG- dUTP, PH7.5 ) 、 70 1 の滅菌蒸留 水及び 5 μ 1 の Klenow酵素 (lOunits ) を添加して、 37°Cで 18時間反応させた。 反応液に、 5 μ 1 の 0.5Μ EDTA 溶液を添加して反応を停止させた。 次に 5 μ 1 の 8Μ LiCl と 275 μ 1 冷エタノール (― 20°C) を添加して、 一 80°Cで 30分間放置し たのち、 15,000rpm で 30分間遠心を行い、 MA を沈殿させた。 沈殿した DNA を冷 70% (w/v) エタノールで洗浄後、 吸引乾燥したのち、 50 1 の TE緩衝液に溶解し て、 DIG 標識プローブを調製した。
蛋白質 A 遺伝子のスク リーニングは上述の方法で調製した DIG 標識 DSZAプロ一 ブを用い、 Hybond N+ メ ンブレンに転写されたプラークに対するプラークハイ ブ リ ダイゼーショ ンによ リ行った。 ハイ プリ ダイズするク ローンの検出には DIG- EL1SA (Boehringer Mannheim)を用レヽた。 ゲノムライ ブラ リ一よ り約 2000個のフ ァ一ジプラーク を DSZAプロ一ブを用いてスク リーニングしたところ、 6個の陽性 プラークが検出された。 この 6個のプラークについて単ブラ一ク分離を行い、 再 度プラークハイ ブリ ダィゼ一シヨ ンを行った結果、 4個の陽性プラークが確認さ れた。 検出された DSZAプローブ陽性プラークを用いてファージクローンを調製し、 それらのクローンから QIAGEN Lambda キッ ト を用いてファ一ジ DNA を抽出した。 4個の陽性プラークを用いて調製したフ ァージ MA を EcoRI 、 NotU Hindi 11 、 Sailで切断し、 図 1 に示す制限酵素地図を作成した。 さ らに、 これら 4種のファ —ジ DNA を EcoRI 、 NotI、 Sal I , または Not Iと Sal Iを用いて消化して得られた DNA 断片について DSZAプローブを用いたサザーンプロッ ト分析を行ったと ころ、 No.2と Νο·4クローンでは、 約 2kb の Not I -Sail 断片にハイ ブリ ダィズするこ とが 確認された。 一方、 No.3および No.6クローンではハイ ブリ ダィゼーシヨ ンは観察 されなかつた。 これらの制限酵素地図およびサザ一ンブロッ ト分析の結果から、 No.3と No.6のファージ DNA については約 6kb の欠失組換えが起こったものでぁリ、 0.4のファ一ジ1^ の約 8.7kb の EcoRI- Hindi II 断片に dsz 遺伝子がコー ドされ ているものと考えられた。 各サブクローン DNA を有する大腸菌の DBT 分解能を検 定するためには以下のような培養を行った。 サブクローン DNA を保有する大腸菌 XL1 - Blue株を、 M9培地 ( Sambrook等の成書 Mo 1 ecu 1 ar cloning Laboratory Manual 2nd に記載) に の酵母抽出物を加えたものに硫黄源と してそれぞれ DBT 、 DBT02 、 硫酸ナト リ ウムなどを添加した培地で、 37°Cで 1週間培養した。 また、 対照株と してべクタ一 pBluescript 11 KS( + )のみを保有する XL1 Blue株を同様の 条件で培養した。 LB培地 ( Sambrook等の成書 Molecular cloning (上述) に記 載) で 37で、 1晚前培養を行い、 得られた前培養液を遠心し集菌した後菌体を 66mMリ ン酸緩衝液で洗浄し、 最終的に M9改変培地 ( M9培地の硫酸塩を塩化物に替 えたもの) に懸濁した。 1/100 容量の菌体懸濁液を検定用の培地 (M9改変培地に 硫黄源と して DBT も しく は DBT02 を添加した培地) に添加し、 37°Cで 48時間培養 後、 定法に従い分解産物の抽出を行い、 ガスクロマ トグラフィー分析を行った。 その結果、 No.4クローンについては、 DBT または DBT02 を唯一の硫黄源と して含 む培地で培養した場合 2- HBP が生成するこ とが確認された。 宿主の XL1 Blue株は そのような変換活性はまったく示さなかった。 このこ とから、 No.4クローンが有 するクロ一ン化 MA は DBT から 2- HBP への一連の変換反応を触媒する活性をすベ てコー ドできる配列を持っているこ とが証明された。
次に、 クローン化された Paenibaci 1 lus sp. A11-2 株由来の DNA 全体の塩基配 列を決定するために、 欠失 DNA のシリーズを作製した。 DSZAプローブ陽性ファー ジクローン No.4から調製した DNA 約 0.2 t g を EcoRI と Hindlll を用いて二重消 化し、 生じた二重消化物の電気泳動を行い約 8.7kbの揷入 DNA 断片を精製した。 この DNA 断片と、 pBluescript II KS( + )を EcoRI と Hindlll で処理して得た二重 消化物を脱リ ン酸化したものとを連結させ、 得られたハイ ブリ ッ ド DNA を用いて 大腸菌 XLI Blue株を形質転換した。 得られたサブクローン (p4EH) について制限 酵素解析を行ったところ、 挿入断片には Kpnlおよび Saclの制限部位は存在しない こ とが確認されたので、 本揷入断片のシ一クェンシング用の欠失プラスミ ドの作 製には Kpnl- HindIII、 SacI-EcoRIの二重消化の組み合わせを利用し、 欠失はェキ ソヌク レア一ゼ III、 Mung bean nuclease, K 1 enowフラグメ ン トを作用させて行 つた。 よ り具体的には、 +鎖のシークェンシングのためにはサブクロ一ン DNA を Saclと EcoRI で切断して得られた DNA 断片に対し、 また一鎖のシークェンシング のためには Kpnlと Hindlll でそれぞれ切断して得られた DNA 断片に対してェキソ ヌク レア一ゼ III 処理を行った後、 Mung Bean Nuc 1 easeおよび DNA ポリ メ ラ一ゼ I の Klenowフラグメ ントで処理することによ り欠失変異 DNA シリ一ズを作製した。 欠失変異クローンのシークェンシング反応は Thermo Sequenase (Amersham)を用い て行い、 ALFred(Pharmacia) によ リ塩基配列を決定した。 得られた塩基配列デ一 タは、 GENETYX- MAC/ATSQ v3.0 および GENETYX- MAC v8.0を用いて解析した。
次に、 クローン化された Paenibaci 1 lus sp. AU- 2 株由来の脱硫酵素遺伝子上 流領域 ( トランスポザーゼ下流領域) の塩基配列を決定するために、 欠失 DNA の シリーズを作製した。 DSZAプローブ陽性ファージクローン No.2から調製した DNA 約 0.2 μ g を Notlを用いて消化した消化物と、 pBluescript II KS( + )を Notlで処 理して得た消化物を脱リ ン酸化したものを連結させ、 得られたハイ プリ ッ ド DNA を用いて大腸菌 JM109 株を形質転換した。 20個の単コロニー分離を行い、 それぞ れの形質転換体よ り プラスミ ド MA を抽出して、 Notl処理による制限解析を行う こ とによ り、 約 3kb の Notl断片を揷入したサブクローン PBS2N2及び pBS2N3を取得 した。 PBS2N2及び pBS2N3は約 3kb の Not I断片の揷入方向が互いに逆のサブクロ一 ンである。 pBS2N2及び pBS2N3について、 Kpnl、 Hpal、 Nrul、 Pst I及び Xho Iを用い て欠失 DNA シリ ーズを作製した。 欠失ク ロ一ンのシ一ケンシング反応は Thermo Sequenase (Amersham) を用レヽて行レヽ、 ALFred (Pharmac i a) ίこよ り塩基酉己歹 !jを決定 した。 得られた塩基配列データ は、 GENETYX-MAC/ATSQ v3.0 及び GENETYX- MAC v8.0を用いて解析した。
決定された配列中の 0RF を探索した結果、 8.7kb の揷入 DNA の中央部分に lkb 以上の長さの 0RF が 3個見つかった。 これらの 0RF を 5'側から 0RF 1, 2, 3 と命 名した。 この他に揷入 DNA の端近く に 1 個ずつ互いに相同的な 0RF が存在してい た。 0RF 1, 2, 3 は、 各々 454個、 353個、 414個のア ミ ノ酸を コー ドする。 0RF 1の翻訳終始コ ドン TGA と 0RF 2 の翻訳開始コ ドン ATG は、 部分的に重なって おり、 5'- ATGA- 3, という配列になっており、 IGTS8 の dsz オペロン中の塩基配列 と同様の構成を しているこ とが確認された。 これらの 0RF について IGTS8 株の dsz 遺伝子との塩基配列相同性の解析を行ったところ、 0RF 1, 2, 3 は、 それぞ れ IGTS8 株の dsz A, B, C と約 64 %、 54%、 48 %の相同性を示した。 また、 Paenibaci 1 lus sp. A 11 - 2 株遺伝子の塩基配列を基礎と してそれらにコー ドされ る蛋白質のアミ ノ酸配列を推定したところ、 0RF 1, 2, 3 によ り コー ドされるポ リペプチ ドはそれぞれ IGTS8 株の DszA、 DszB、 DszCと 65%、 54%、 52%の相同性 を示した。
Paenibaci 1 lus sp. A11-2 株の ORF でコー ドされる蛋白質のア ミ ノ酸配列と Rhodococcus sp. IGTS8 の dsz 配列でコー ドされる蛋白質のアミ ノ酸配列とを比 較すると、 いくつかの点で特徴的な差異が見いだされる。 まず、 DszAと ORF 1 で コー ドされる蛋白質 A では、 ァミ ノ末端およびカルボキシル末端での配列がまつ たく異なってぉリ、 相同性の比較的高い内部のアミ ノ酸配列と比較する と際だつ た対照を見せている。 また、 蛋白質 A の方がアミ ノ末端およびカルボキシル末端 の両方で長く なつている。 DszBと 0RF 2 でコー ドされる蛋白質 B のアミ ノ酸配列 については、 これと まったく異なっており、 DszBのァミ ノ末端およびカルボキシ ル末端の配列の方が蛋白質 B の両末端よ リ延びて長く なっており、 特にアミ ノ末 端側の配列には相同性が認められない。 DszCと 0RF 3 でコー ドされる蛋白質 C の アミ ノ酸配列を比較する と、 全長のサイズはほとんど同じであるが、 ァミ ノ末端 側の配列が全く異なっている。
塩基配列が決定された約 8kb の DNA 中、 0RF 1、 0RF 2、 0RF 3の一連の配列 の上流に 1個の 0RF が、 下流には 2個の 0RF が見つかった。 上流の 0RF と最下流 の 0RF は長さがともに約 lkb で、 完全な相同性を示し、 それによ リ コ一 ドされる ポリぺプチ ドは揷入因子 IS1202中の トランスポザーゼとアミ ノ酸レベルで約 30% の相同性を有するこ とが確認された。 この トランスポザーゼをコードする 0RF は 脱硫遺伝子の 0RF とは逆の方向に位置していた。 揷入因子様の配列で脱硫活性を コードする一連の 0RFが挟まれている事実は、 これらの DNA 配列が一種の トラン スポゾンを形成している可能性を示唆するものである。 さ ら、 も う一つ最下流の 揷入因子様配列と脱硫活性を コー ドする一連の 0RF との間に見つかった約 0.6kb の 0RF は、 炭酸脱水酵素カルボニックアンヒ ドラ一ゼとの間で約 40%の相同性を 示すアミ ノ酸配列をコードすることも分かった。
〔実施例 4〕 脱硫能欠損株 Paenibacillus sp. M18 株の分離とその性質の解析 Paenibaci 1 lus sp. Al 1-2 株をァク リ ジンオレンジで処理し、 DBT 分解能を喪 失した変異株 M18 株を分離した。 まず、 All- 2 株を 2XYT培地で 50°C、 一夜培養 し、 得られた終夜培養液 0. lml を 30; g/inlのァク リ ジンオレンジを含む 5ml の 2 XYT培地に植菌し、 50°C、 一夜培養した。 菌体を遠心分離で回収し、 A培地で 1 回洗浄した。 洗浄菌体を A培地 0.1ml に懸濁し、 これを 2mlの 2XYT培地に植菌 し、 50°Cで 4時間培養した。 菌液を 2XYT寒天培地に塗布し、 50°Cで一夜培養し た。 生じたコロニーを、 DBT を唯一の硫黄源と した A培地に植菌し、 DBT 利用能 を調べ、 DBT 利用能欠損株 (M18 株) を得た。 変異株 M18 が DBT 類に対する分解 活性を失っているこ とは、 DBT および種々のメチル DBT 誘導体を含む培地を用い て該菌株を培養し、 その増殖性を調べるこ とによ リ確認された。 まず、 AYD 培地 で一晩培養した M18 および親株の AU- 2 株を集菌後 AY培地で 2回洗浄した後、 AY 培地に懸濁した。 直径 18mmのネジロ試験管に AY培地 5mlを入れ、 その上に各有機 硫黄化合物を硫黄濃度と して 50ppm 含む n-テ トラデカン 1mlを重層し、 上記の方 法で調製した菌体懸濁液 ΙΟΟμ Ι を加え 50°Cで 1日培養した。 培養後、 6規定の 塩酸を ΙΟΟμ Ι 添加し、 攪拌した後酢酸ェチル 1mlを用いて抽出処理を行い、 得 られた酢酸ェチル -n- テ トラデカン層についてガスクロマ トグラフィ一およびガ スクロマ トグラフィー/質量分析を行った。 分析の結果、 調べられた有機硫黄化 合物すべてについて M18 株は唯一の硫黄源と して利用できず、 また分解性も示さ ないこ とが確認された。 常温脱硫菌の Rhodococcus sp. IGTS8 株では DBT →DBT0 →DBT02 →2-(2'- ヒ ドロキシフエニル) ベンゼンスルフィ ン酸→2- HBP +亜硫酸 塩という経路で DBT が分解される (Oldfield, C. , Pogrebinsky, 0. , Simmonds, J., Olson, E.S. and Kulpa, C. F. Microbiology, 143:2961-2973, 1997)。 2- (2'- ヒ ドロキシフエニル) ベンゼンスルフィ ン酸は環状化すると DBT スルチンを 与えるこ と力 知られて ヽる (Olson, E. S. , Stanley, D. C. and Gallagher, J. R. Energy & Fuels 7: 159-164, 1993)。 さ らに、 Rhodococcus sp. IGTS8 株は、 DszA の酵素作用によ り レダクタ一ゼと共同して DBT スルトンを 2- HBP と亜硫酸塩に変 換する こ と も報告されている ( Oldfield, C. , Pogrebinsky, 0..Simmonds, J., Olson, E.S. and Kulpa, C.F. Microbiology, 143:2961-2973, 1997) 。 この経路 の中間代謝物を唯一の硫黄源と して含む培地を用いて M18 株による硫黄源と して 利用および生物変換を調べたが、 DBT0、 DBT02 、 DBT スルチン、 DBT スルト ンす ベてを硫黄源と して利用できず、 また変換する活性も検出されなかった。 これら の結果を総合して考えると、 M18 株では DBT を分解して 2- HBP を生成する分解反 応経路に関与する一連の酵素活性がすべて失われていると考えられている。
[実施例 5〕 組換え DNA 中の 0RF によ り コードされるタンパク質による脱硫活性 の証明
クローン化された DNA が脱硫活性、 すなわち DBT の分解活性を発現するための 遺伝的本体であることを確認するために、 大腸菌内で働く強力なプロモーターで ある Ptacの下流に 0RF 1, 2, 3 すべてを含む DNA 断片および各々それらの一部を 含む配列を配置した組換えプラスミ ドを作製し、 得られた組換えプラスミ ドで大 腸菌 JM109 株を形質転換した。 以下に各種組換えプラスミ ドの作製方法を詳細に 調べる。 Paenibaci 1 lus sp. A11-2 株 DNA 由来の 8.7kb の EcoRI- Hindi 11 フラグ メ ン ト を phagemidベクタ一 pBluescriptl I KS ( + ) にクローン化して得られた組換 え DNA p4EHを Clalと Smalで二重消化し、 得られた C 1 al - Hi nd 111断片を同様に C 1 al と Hindlll で pBluescript II KS ( + )を切断して得られた大きな方のフラグメ ン ト と連結し、 組換え DNA pB14を作製した。 次に、 pB14を Xbalと Kpnlで二重消化して、 クローン化された Paenibaci 1 lus sp. All- 2 株由来の DNA 全体を含む DNA 断片を 回収し、 これを PHSG298 プラスミ ドを Xbalと Kpnlで二重消化して得られた大きな 断片と連結して組換え DNA pSKR6 を作製した。 この PSKR6 を EcoRI と Hindlll で 二重消化し、 発現べクタ一の PKK223-3の EcoRI- Hindlll 部位に揷入し、 発現ブラ スミ ド PSKR7 を作製した。 この pSKR7 によ リ大腸菌 JM109 株を形質転換し、 形質 転換株 #121(pSKR7) を得た。 この pSKR7 では、 IGTS8 株の dsz オペロンの最も 5' 側にある dszAに相当する と考えられる 0RF 1 の開始コ ドンに相当する と推測され る ATG 配列が PKK223- 3上の発現プ口モータ一 Ptacの下流に配置されている Shine- Dai garno (SD)配列と約 50bp離れている。 大腸菌での種々の大腸菌由来および外来 の遺伝子の発現実験の結果、 SD配列と開始コ ドン ATG の間の距離はその遺伝子の 翻訳効率に大きな影響を与えることが分かっている (例えば、 Horwich, A, Koop, A.H. and Eckhart, W. Mol. Cell. Biol. 2:88-92, 1982; Gheysen, D. , Iserentant, D. , Derom, C. and Fiers, W. Gene 17:55-63, 1982 に記載されて いる) 。 そこで、 SD配列と ATG 開始コ ドンの間の距離を短くするために、 dszAの 0RF の直前にある Clalサイ ト (5, - ATCGAT- 3'; この 3'側に G があり、 開始コ ドン ATG 配列を構成している) および EcoRI サイ トでプラスミ ド pSKR7 を切断し、 生 じた粘着末端を T4DNA ポリ メ ラーゼで処理することによ リ平滑化したのち、 ライ ゲーシヨ ンを行い再環状化した。 この処理によ り、 SD配列と開始 ATG の間の距離 は llbpとなった。 この組換えプラスミ ドで大腸菌 JM109 を形質転換し、 得られた 形質転換株を #361株と命名した。
直怪 18mmのねじ口試験管(こ LB— Amp— DBT培地 ( 1L中 ίこ Bacto polypeptone 10g 、 Bacto 酵母抽出物 5g、 NaCl 10g、 アンピシリ ン 50mg、 DBT lOOmg を含む) 6ml を 分注して、 同培地で終夜培養した #361株懸濁液を 1%接種した後、 37°Cで培養し た。 培養開始後 2時間毎に計 2本の試験管を取り出し、 それぞれ 1本の試験管に 含まれる培養液全体を酢酸ェチル 1.2ml で抽出しガスクロマ トグラフィ一を用い て分析 ' 定量した。 培養液の濁度も培養開始後 2時間おきに分光光度計を用いて 測定した。 その結果、 4〜8 時間の培養の間 DBT の減少が確認され、 培地中に DBT の代謝産物である 2 - HBP が生成しているこ とも確認された。 図 3 は、 この培 養における DBT の減少および DBT 代謝産物の生成を示し、 各数値は 2本の試験管 について得られた分析値の平均で示してある。 培養 4〜6 時間 DBT の減少が顕著 なことから、 6時間および 8時間培養した菌体を使用して、 無細胞抽出系での活 性の検討を行う ことにした。
無細胞抽出液の調製は以下のよう にして行った。 50mg/m l のアンピシリ ンを含 む LB培地 (LB- Amp培地) 100m l に同培地を用いて作製した 1m lの #361株の終夜培 養液を接種して、 37°Cで 6時間または 8時間培養した。 培養菌体を集菌 ' 洗浄し た後、 0D660が 25となるよ う に TH緩衝液 (50mM T r i s- HC 1, I mM PMSF, 10%グリセ口 —ル, PH7. 0)に懸濁した。 菌体懸濁液を超音波破砕機で 10分間 2 回処理し、 得ら れた菌体破砕液を l l,000 rpm 、 60分遠心分離し、 無細胞抽出液を調製した。 無細 胞抽出液系の反応は以下のよう にして行った。 調製した無細胞抽出液 0. 7m l に脱 硫活性を示さない Paen i bac i l l us sp. A 1 1 -2 株の変異株 M 18 株を用いて同様に調 製した無細胞抽出液 0. 3m l 、 3mM NADH, 10 M FMN 、 DBT ( 約 50ppm)を添加して、 37°Cまたは 50°Cで 4時間回転振盪を行う こ とによ リ反応を行った。 得られた反応 液を定法に従って抽出し、 ガスクロマ トグラフィーによ り DBT および DBT 代謝物 の分析を行った。 また、 0D66()を 25に調整した菌体懸濁液の一部を使用して休止菌 体反応も行った。 休止菌体反応は lm l の菌体懸濁液に終濃度約 50ppm の DBT を添 加して、 37°Cで 5時間反応を行った。 得られた反応液を定法に従って抽出しガス クロマ トグラフィーにょ リ分析した。
6時間および 8時間培養した #361株菌体から得られた無細胞抽出液を用いて 37°Cおよび 50°Cで DBT を基質と して反応を行ったときの結果を図 4に示す。 また、 8時間培養菌体については、 同時に調べた休止菌体反応系での DBT 分解活性も示 してある。 図 4に示すよう に、 37°Cでの反応において、 無細胞抽出液系および休 止菌体系の両方で DBT を基質と して 2- HBP が生成する反応が進行しているこ とが 認められ脱硫活性が確認された。 また、 無細胞抽出液反応系では、 50°Cでの DBT からの 2- HBP の生成、 すなわち脱硫活性も明瞭に確認された。 これによ り、 クロ 一二ングされた Paenibacillus sp. AU- 2 株 DNA 由来の DNA フラグメ ン トが実際 に高温における DBT 分解活性を担っているこ とが証明された。 親株の JM109 株お よびベクター pBluescript II KS ( + )のみを含む JM109 株を用いて #361株の場合と 同様の方法で調製された無細胞抽出液を用いた場合は、 2- HBP の生成はまったく 認められなかった。 また、 この # 361 株の無細胞抽出物を用いる と、 50°Cでもべ ンゾチォフェンからその脱硫物である 0 -ヒ ドロキシスチレンへの変換が確認され た。 このこ とは高温におけるベンゾチォフェン分解活性も大腸菌に導入された A11-2 株の DNA に担われていることを示している。
Paenibacillus sp. A11-2 株由来の脱硫活性を担っている DNA フラグメ ントは、 3つ の 0RF を 含 み そ の 塩基配列 か ら Rhodococcus sp. の IGTS8 株 お よ び Rhodococcus erythropol is KA2- 5-1株からクローン化された脱硫遺伝子群と同様 の遺伝子構成を しているこ とが推測された。 そこで、 次に、 #361株が有する組換 えプラスミ ドを用いて種々の欠失 DNA フラグメ ン トを作製し、 各 0RF の DBT 分解 系における活性との関連性を調べた。 0RF 2 の ATG 開始コ ドンの I2bp上流にある Bsrlサイ トと SD配列の下流にある EcoRI サイ トで #121プラスミ ドを切断して得ら れた線状 DNA を T4DNA ポリ メ ラ一ゼで処理し、 ついで T4DNA リ ガ一ゼを作用させ て再環状化した組換えプラスミ ドを作製した。 このプラスミ ドで大腸菌 JM109 を 形質転換し、 得られた Paenibacillus sp. A11-2 株由来のクローン化 DNA 上の 0RF 2 と 3 を含む形質転換株を #233と命名した。 同様に、 0RF 3 の直前にある Sac II サイ ト と SD配列の下流にある EcoRI サイ トを利用して、 0RF 3 のみを含む形質転 換株 #234を、 また、 BsrGl サイ ト と Pstlサイ トを利用して 0RF 2 のみを含む形質 転換株 #391を作製した。 更に、 # 361 形質転換株の 0RF3の内部にある Pstlサイ ト とべクタ一由来の Pstlサイ ト を利用して 0RF1と 0RF2を含む形質転換体株 # 401 を 作製した。 これらの欠失 DNA を有する形質転換株をそれぞれ LB- Amp培地で終夜培 養し、 その培養液 50 1 を終濃度 50mg/lになる よ う に DBT または DBT02 または DBT-スルチンを添加した 5mlの LB- Amp培地に接種し、 ー晚 37°Cで培養した。 得ら れた終夜培養液を 1mlの酢酸ェチルで抽出し抽出物をガスクロマ トグラフィ一で 分析 ' 定量した。 その結果を、 表 3 に示す。 表 3
Figure imgf000031_0001
添加した基質の量; DBT:136;uM DBT0: 125 . , DBT02:118 z , スルチン:107 こ の表に示した各形質転換株による DBT 代謝産物の生成に関するデータから Paenibaci 1 lu sp A11-2 株からクロ一ン化された DNA 中に存在していた 3つの 0RF の DBT 分解への関与が分かる。 まず、 #361 #233 #234で DBT から DBT02 が生成 し、 #391 #401 #421で DBT から DBT02 の生成が見られないこ とから、 0RF 3 が DBT から DBT02 を生成する活性を示すォキシゲナ一ゼをコードするこ とが分かる。 次に、 #361 #401 #421で DBT02 から DBT-スルチンが生成し、 #233 #234 #391 で DBT02 から DBT-スルチンの生成が見られてないこ とから、 0RF1が DBT02 から DBT-スルチンを生成する活性を示すォキシゲナ一ゼをコー ドするこ とが分かる。 DBT-スルチンからの 2- HBP の生成は、 菌体を加えずに DBT-スルチンを唯一の疏黄 源と して含む LB- Amp 培地のみを組換えクローンと同様の条件で振と う した-対照 実験でもわずかであるが観察される。 本発明者らは、 種々の対照実験を行い、 こ れが酵素あるいは菌体が存在しない条件でも起こる自発的な反応であるこ と を確 認している。 従って、 blank で観察された程度の 2- HBP の生成量をそれぞれの形 質転換体株を用いて測定された生成量から差し引いて補正する必要がある。 この ような補正を行った結果、 #361、 #233、 #391、 #401で DBT-スルチンから 2- HBP が 生成し、 #234、 #421で DBT-スルチンから 2- HBP の生成がみられなかった。 このこ とから、 0RF2が DBT-スルチンから 2-HBP を生成する活性を示すデスルフイナーゼ をコードすることがわかる。
〔実施例 6〕 Paenibacillus sp. All- 2 株の培養
実施例 1 で使用した A培地と同様の組成の培地 ( 150ml ) を 500ml 容バッフル 付き密栓ネジロ三角フラスコに入れ、 50mg/lの DBTと AU-2 株の培養菌液を加え、 50°Cで回転振盪 ( 120 rpm) をおこなった。 一夜培養後、 培養液を 4 °Cで遠心
(5,000rpm、 lOmin ) して集菌した。
〔実施例 7〕
( 1 ) 蛋白質 Aの精製
菌体 (湿重量 30g) を緩衝液 A (20mM ト リ ス塩酸, pH7.5, 10%グリ セロール、 ImM ジチオスレィ トール、 ImMフエニルメタンスルホニルフルオリ ド) に懸濁し、 超音波破砕機 (ブランソン、 モデル 450) で 4°Cで 15分間、 3回破砕をおこなった。 5,000g , 10分の遠心で未破砕菌体を除いたのち、 上清を 100,000gで 60分間遠心を おこなった。 得られた上清をフィルタ一濾過(0.22u孔径) し、 緩衝液 B (20mMト リス塩酸、 PH7.5, 10¾;グリセロール、 ImM ジチオスレイ ト一ル) で平衡化した陰 イオン交換カラム (フアルマシア社、 ハイ ロー ド Q 26/10) にアプライ した。 緩 衝液 Bで洗浄後、 0.5M塩化ナト リ ゥムを含む緩衝液 B までの塩化ナ ト リ ウムによ る リニアグラジェン ト溶出をおこなった。 活性画分 (0.35-0.4M塩化ナ ト リ ウム 溶出画分) を集めて限外濾過にょ リ濃縮した。 緩衝液 Aで希釈後、 硫酸アンモニ ゥムを加えて、 30%飽和と した。 この溶液を硫酸アンモニゥムを加えて 30%飽和と した緩衝液 Bで平衡化した疎水クロマ トカラム (フアルマシア社、 ハイ 口一 ドフ ェニルセファロ一ス HP)にアプライ した。 活性画分を集めて限外濾過 (ミ リ ポア 社、 ウルトラフ リー 15,分子量 1万カッ ト) によ り濃縮し、 脱塩カラム (フアルマ シァ社、 PD- 10) で脱塩した後、 緩衝液 Bで平衡化した陰イオン交換カラム (バ ィォラッ ド社、 プロテイ ンパック DEAE)にアプライ した。 活性画分を集めて限外 濾過によ り濃縮し、 脱塩カラムで脱塩した後、 緩衝液 C ( 10mMリ ン酸カ リ ウム、 pH7.1, 10%グリセロール、 ImMジチオスレィ トール) で平衡化したヒ ドロキシァ パタイ トカラム (バイオラッ ド社、 バイオゲル HPHT)にアプライ した。 緩衝液 C で洗浄後、 0.2Mまでのリ ン酸カリ ゥムによる リ二アグラジェン トで溶出された活 性画分を集めた。 この結果、 活性画分は電気泳動的に均一であるこ とが確認され た。
( 2 ) 酵素活性の測定
3mM NADH, 10 M FMNを含む緩衝液 (50mMト リ ス塩酸、 pH7.0)に酵素溶液を加え、 さ らに All- 2株をキュアリ ング処理して得られた DBT利用能欠損株 M18株の無細胞 抽出液 0.4mlを加えた。 50°Cで 2分間プレイ ンキュベ一ショ ンした後、 DBT02 溶 液 (ジメチルホルムアミ ド溶液) を終濃度 50mg/lとなるよ う に加えた (全溶液量 lml )。 反応終了後、 6規定塩酸を 10 1と酢酸ェチル 0.4mlを加え、 よ く 混合した 後、 12000回転で 3分間遠心し、 上層 (酢酸ェチル層) をガスクロマ トグラフィー による分析に供した。 比活性は、 蛋白質 1 mg当たり 1 分間で 1 nmolの DBT—スル ホンを分解する活性を 1 と して表してある。
各精製段階における酵素活性を表 4 に、 また、 種々の pH及び温度における活性 を図 6及び図 7 に示す。
【表 4】
Figure imgf000033_0001
(実施例 8〕
( 1 ) 蛋白質 Bの精製
菌体 (湿重量 13g ) を緩衝液 A ( 20mM ト リ ス塩酸, pH7. 5, 10%グリセロール、 ImM ジチオスレイ ト一ル、 ImMフエニルメタンスルホニルフルオリ ド) に懸濁し、 超音波破砕機 (ブランソン、 モデル 450) で 4°Cで 15分間、 3回破砕をおこなった。 5,000g, 10分間の遠心で未破砕菌体を除いた後、 上清を 100, 000gで 60分間遠心を おこなった。 得られた上清をフィルター濾過(ミ リポアマイ レクス GV, 0. 22 μ m,孔 径) し、 緩衝液 B ( 20mMト リ ス塩酸、 pH7. 5, 10%グリセロール、 ImMジチオスレィ ト ール) で平衡化 した陰イ オン交換カ ラム ( フ アルマシア社、 ハイ ロー ド Q26 / 10) にアプライ した。 緩衝液 Bで洗浄後、 0. 5M塩化ナ ト リ ウムを含む緩衝液 B までの塩化ナ ト リ ゥムによる リ ニアグラジェン ト溶出をおこなった。 活性画分
( 0. 15- 0. 2M塩化ナ ト リ ウム溶出画分) を集めて限外濾過 (ミ リ ポア社、 ウル ト ラフ リー 15, 分子量 5000カッ ト) によ り濃縮した。 緩衝液 Aで希釈後、 硫酸アン モニゥムを加えて 30%飽和と した。 この溶液を、 硫酸アンモニゥムを加えて 30%飽 和と した緩衝液 Bで平衡化した疎水クロマ トカラム (フアルマシア社、 ハイ 口一 ドフエ二ルセファロ一ス HP ) にアプライ した。 活性画分を集めて限外濾過によ り 濃縮し、 脱塩カラム (フアルマシア社、 PD- 10 ) で脱塩した後、 緩衝液 Bで平衡 化した陰イオン交換カラム (バイオラッ ド社、 バイオスケール DEAE ) にアプライ した。 活性画分を濃縮脱塩後、 緩衝液 C ( l OmMリ ン酸カリ ウム, pH7. 1 , 10%ダリ セロール、 ImM ジチオスレイ ト一ル) で平衡化したヒ ドロキシアパタイ トカラム
(バイオラッ ド社、 バイオゲル HPHT) にアブライ した。 緩衝液 Cで洗浄後、 0. 2M までのリ ン酸カリ ウムによる リ二アグラジェン ト溶出によ リ溶出された活性画分 を集め、 緩衝液 Bで平衡化した陰イオン交換カラム (フ アルマシア社、 モ ノ Q HR5/5)にアプライ した。 緩衝液 Bで洗浄後、 0. 5M塩化ナ ト リ ウムを含む緩衝液 B までの塩化ナト リ ウムによる リニアグラジェン ト溶出をおこなった。 この結果、 活性画分は電気泳動的に均一であることが確認された。
( 2 ) 酵素活性の測定
緩衝液 D ( 50mMト リス塩酸、 pH7. 0 )の酵素溶液を加え、 50°Cで 2分間プレイ ン キュベ一シヨ ンした後、 スルチン (N,N -ジメチルフオルムアミ ド溶液) を終濃度 50mg/ lとなるよう に加えた (全溶液量 l m l ) 。 反応終了後、 6規定塩酸を 10 lと 酢酸ェチル 0. 4m lを加え、 よ く混合した後、 上層 (酢酸ェチル層) をガスクロマ トグラフィ一分析に供した。 活性の測定は精製した 2- HBP を定量するこ とによ リ おこなった。 比活性は、 蛋白質 1 mg当たり 1 分間で 1 nmo lの 2- HBPを生成する活 性を 1 と して表してある。 2- HBP による活性阻害の影響を除く ために、 基質と して 2-フエニルベンゼンスルフ ィ ン酸ナ ト リ ウム (エタ ノ ール溶液、 終濃度 50mg/ l ) を用い、 生成するビフエニルを定量するこ とによ リ活性を測定した。 各精製段階における酵素活性を表 5 に、 また、 種々の pH及び温度における活性 を図 8及び図 9 に示す。
【表 5】
Figure imgf000035_0001
なお、 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考と して本明細書にと リ入れるものとする。
発明の効果
本発明は、 脱硫に関与する新規な遺伝子及び酵素を提供する。 これらの遺伝子 及び酵素を利用するこ とによ り、 化石燃料中の硫黄を容易に遊離させるこ とがで きるようになる。 図面の簡単な説明
図 1 : DSZプローブ陽性クローンの揷入 DNAの制限酵素地図を示す。 図 2 : 発現プラスミ ド pSKR7の構築工程を示す。
図 3 : # 3 6 1 株による DBT分解の結果を示す。
図 4 : # 3 6 1 株無細胞抽出液系での DBT分解反応の結果を示す。 図 5 : 欠失発現プラスミ ドの構造を示す。
図 6 : 温度と蛋白質 Aの酵素活性との関係を示す。
図 7 : p Hと蛋白質 Aの酵素活性との関係を示す。
図 8 : 温度と蛋白質 Bの酵素活性との関係を示す。
図 9 : p Hと蛋白質 Bの酵素活性との関係を示す。

Claims

言青求の範囲
1 „ 以下の(a) 又は(b) のタンパク質をコードする遺伝子。
( a) 配列番号 2記載のァミ ノ酸配列によ り表されるタンパク質
( b) 配列番号 2記載のァミ ノ酸配列において 1若しく は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなリ、 かつジベンゾチオフェンスルホ ンを 2 — ( 2 ' ーヒ ドロキシフエニル) ベンゼンスルフィ ン酸に変換する機能を 有するタンパク質
2 . 以下の(a) 又は(b) のタンパク質をコードする遺伝子。
( a) 配列番号 4記載のアミ ノ酸配列によ り表されるタンパク質
( b) 配列番号 4記載のアミ ノ酸配列において 1若しく は複数個のァミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなリ、 かつ 2 — ( 2 ' —ヒ ドロキシフ ェニル) ベンゼンスルフィ ン酸を 2 —ヒ ドロキシビフエニルに変換する機能を有 するタンパク質
3 . 以下の(a) 又は(b) のタンパク質をコー ドする遺伝子。
( a) 配列番号 6記載のアミ ノ酸配列にょ リ表されるタンパク質
(b) 配列番号 6記載のァミ ノ酸配列において 1若しく は複数個のァミ ノ酸が欠失、 置換若しくは付加されたァミ ノ酸配列からなり、 かつジべンゾチォフェンをジべ ンゾチオフェンスルホンに変換する機能を有するタンパク質
4 . 請求項 1 、 2又は 3 に記載の遺伝子を含むベクタ一。
5 . 請求項 4記載のベクターを含有する形質転換体。
6 . 以下の(a) 又は(b) に示すタンパク質。
( a) 配列番号 2記載のアミ ノ酸配列によ り表されるタンパク質
(b) 配列番号 2記載のァミ ノ酸配列において 1若しく は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなり、 かつジベンゾチォフエンスルホ ンを 2 — ( 2 ' ーヒ ドロキシフエニル) ベンゼンスルフィ ン酸に変換する機能を 有するタンパク質
7„ 以下の(a) 又は(b) に示すタンパク質。
( a) 配列番号 4記載のァミ ノ酸配列によ り表されるタンパク質
( b) 配列番号 4記載のァミ ノ酸配列において 1 若しく は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からなり、 かつ 2 — ( 2 ' —ヒ ドロキシフ ェニル) ベンゼンスルフィ ン酸を 2 —ヒ ドロキシビフエニルに変換する機能を有 するタンパク質
8 . 以下の(a) 又は(b) に示すタンパク質。
( a) 配列番号 6記載のアミ ノ酸配列にょ リ表されるタンパク質
(b) 配列番号 6記載のァミ ノ酸配列において 1 若しく は複数個のアミ ノ酸が欠失、 置換若しく は付加されたアミ ノ酸配列からな り、 かつジベンゾチォフェンをジべ ンゾチオフェンスルホンに変換する機能を有するタンパク質
9 . 以下の(a) 、 ( b ) 又は(c ) のタンパク質をコードする遺伝子。
( a) 配列番号 8記載のァミ ノ酸配列によ り表されるタンパク質
(b) 配列番号 9記載のアミ ノ酸配列にょ リ表されるタンパク質
( c) 配列番号 8記載のァミ ノ酸配列又は配列番号 9記載のァミ ノ酸配列において 1若しく は複数個のァミ ノ酸が欠失、 置換若しく は付加されたァミ ノ酸配列から なリ、 かつ トランスポザーゼ活性を有するタンパク質
1 0 . 以下の(a) 、 (b) 又は(c ) に示すタンパク質。
(a) 配列番号 8記載のァミ ノ酸配列によ り表されるタンパク質
(b) 配列番号 9記載のァミ ノ酸配列によ り表されるタンパク質
( c) 配列番号 8記載のァミ ノ酸配列又は配列番号 9記載のァミ ノ酸配列において 1若しく は複数個のァミ ノ酸が欠失、 置換若し く は付加されたァミ ノ酸配列から なり、 かつ ト ラ ンスポザーゼ活性を有するタンパク質
1 1 . 以下の性質を有するタンパク質。
( 1 ) 作用 : ジベンゾチオフェンスルホンを 2 — ( 2 ' ーヒ ドロキシフエニル) ベ ンゼンスルフィ ン酸にする
(2) 至適 pH: 5.5 、 安定 pH: 5〜 10
(3) 至適温度 : 45°C
(4) 分子量 : 120,000 (ゲル濾過法による)
(5) 活性阻害 : キレー ト剤、 SH阻害剤によって阻害されるが、 2-HBP 、 硫酸塩に よっては阻害されない
(6) 補酵素の要求性 : NADH、 FMN が必要、 NADPH は NADHの代替になるが、 FAD は FMN の代替にならない
1 2. 以下の性質を有するタンパク質。
(1) 作用 : 2 — ( 2, ーヒ ドロキシフエニル) ベンゼンスルフィ ン酸を 2 —ヒ ド 口キシビフエニルににする
(2) 至適 pH: 8、 安定 pH: 5.5 〜9.5
(3) 至適温度 : 55°C
(4) 分子量 : 31, 000 (ゲル濾過法による)
(5) 活性阻害 : キレート剤、 SH阻害剤によって阻害されるが、 2- HBP 、 硫酸塩に よっては阻害されない
(6) 補酵素の要求性 : 補酵素は必要と しない
PCT/JP1999/001756 1998-04-02 1999-04-02 Gene codant des desulfurases WO1999051747A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/647,540 US6420158B1 (en) 1998-04-02 1999-04-02 Gene encoding desulfurases
EP99910826A EP1069186A4 (en) 1998-04-02 1999-04-02 GENE ENCODING DESULFURASES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/90387 1998-04-02
JP9038798 1998-04-02
JP10310545A JPH11341987A (ja) 1998-04-02 1998-10-30 脱硫酵素群をコードする遺伝子
JP10/310545 1998-10-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/647,540 A-371-Of-International US6420158B1 (en) 1998-04-02 1999-04-02 Gene encoding desulfurases
US10/119,600 Division US6479271B1 (en) 1998-04-02 2002-04-10 Genes encoding desulfurization enzymes
US10/119,651 Division US6607903B2 (en) 1998-04-02 2002-04-10 Genes encoding desulfurization enzymes

Publications (1)

Publication Number Publication Date
WO1999051747A1 true WO1999051747A1 (fr) 1999-10-14

Family

ID=26431876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001756 WO1999051747A1 (fr) 1998-04-02 1999-04-02 Gene codant des desulfurases

Country Status (4)

Country Link
US (3) US6420158B1 (ja)
EP (1) EP1069186A4 (ja)
JP (1) JPH11341987A (ja)
WO (1) WO1999051747A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS282802A0 (en) * 2002-06-07 2002-06-27 Commonwealth Scientific And Industrial Research Organisation Novel enzymes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036859A (ja) * 1996-07-30 1998-02-10 Sekiyu Sangyo Kasseika Center 微生物による高温脱硫

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU684253B2 (en) * 1992-07-10 1997-12-11 Energy Biosystems Corporation Recombinant dna encoding a desulfurization biocatalyst
US6133016A (en) * 1997-04-07 2000-10-17 Energy Biosystems Corporation Sphingomonas biodesulfurization catalyst
US5952208A (en) * 1997-04-07 1999-09-14 Energy Biosystems Corporation Dsz gene expression in pseudomonas hosts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036859A (ja) * 1996-07-30 1998-02-10 Sekiyu Sangyo Kasseika Center 微生物による高温脱硫

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DENOME S. A., ET AL.: "CHARACTERIZATION OF THE DESULFURIZATION GENES FROM RHODOCOCCUS SP. STRAIN IGTS8.", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 176., no. 21., 1 November 1994 (1994-11-01), US, pages 6707 - 6716., XP000567805, ISSN: 0021-9193 *
KONISHI J., ET AL.: "THERMOPHILIC CARBON-SULFUR-BOND-TARGETED BIODESULFURIZATION.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 63., no. 08., 1 August 1997 (1997-08-01), US, pages 3164 - 3169., XP002921260, ISSN: 0099-2240 *
NIPPON KAGAKKAISHI, (Jun. 1998), Vol. 6, No. 24, pages 373-381, XP002921259 *
PIDDINGTON C. S., ET AL.: "SEQUENCE AND MOLECULAR CHARACTERIZATION OF A DNA REGION ENCODING THE DIBENZOTHIOPHENE DESULFURIZATION OPERON OF RHODOCOCCUS SP. STRAIN IGTS8.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 61., no. 02., 1 February 1995 (1995-02-01), US, pages 468 - 475., XP002921261, ISSN: 0099-2240 *
See also references of EP1069186A4 *

Also Published As

Publication number Publication date
US6479271B1 (en) 2002-11-12
JPH11341987A (ja) 1999-12-14
EP1069186A4 (en) 2004-07-28
EP1069186A1 (en) 2001-01-17
US20030032100A1 (en) 2003-02-13
US6420158B1 (en) 2002-07-16
US6607903B2 (en) 2003-08-19

Similar Documents

Publication Publication Date Title
Oldfield et al. Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa
JP4658244B2 (ja) 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法
US5952208A (en) Dsz gene expression in pseudomonas hosts
WO1998045447A9 (en) Dsz gene expression in pseudomonas hosts
WO1999051747A1 (fr) Gene codant des desulfurases
US5846813A (en) DszD utilization in desulfurization of DBT by rhodococcus sp. IGTS8
JP4129494B2 (ja) ジベンゾチオフェン類を分解する微生物脱硫法
US5804433A (en) Rhodococcus flavin reductase complementing DszA and DszC activity
JP4296255B2 (ja) アルキルベンゾチオフェンおよびアルキルジベンゾチオフェンを分解する微生物脱硫法
US6133016A (en) Sphingomonas biodesulfurization catalyst
WO1999043826A1 (en) A gene involved in thiophene degradation from nocardia asteroides kgb1
Konishi et al. Comparison of the substrate specificity of the two bacterial desulfurization systems
JP2004283120A (ja) 脱硫関連酸化還元酵素をコードする遺伝子および取得方法
JP4150763B2 (ja) 脱硫酵素発現抑制遺伝子の特定方法、並びに脱硫酵素の発現抑制を解除された脱硫微生物及びその作出方法
JP2002253247A (ja) 耐熱性脱硫酵素とそれをコードする遺伝子
KR100343398B1 (ko) 탈황효소를 발현하는 재조합 대장균 및 이를 이용한 생물학적 탈
JP2000245478A (ja) 酸化還元酵素遺伝子
Konishi et al. Residue 345 of dibenzothiophene (DBT) sulfone monooxygenase is involved in CS bond cleavage specificity of alkylated DBT sulfones
JP2000224991A (ja) 酸化還元酵素をコードする遺伝子
JP4129493B2 (ja) 組換え脱硫菌
WO2014100251A1 (en) A cytochrome p450-based biodesulfurization pathway
JP2000245477A (ja) 脱硫酵素をコードする遺伝子
MXPA98002175A (es) Utilizacion de dszd en el desazuframiento de dbt por rhodococcus sp. igts8
JP2004242511A (ja) 組換え微生物を利用した脱硫法
Raheb et al. Nucleotide sequence of a desulfurization operon from a newly isolated Rhodococcus FMF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09647540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999910826

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999910826

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999910826

Country of ref document: EP