JPH11341987A - 脱硫酵素群をコードする遺伝子 - Google Patents
脱硫酵素群をコードする遺伝子Info
- Publication number
- JPH11341987A JPH11341987A JP10310545A JP31054598A JPH11341987A JP H11341987 A JPH11341987 A JP H11341987A JP 10310545 A JP10310545 A JP 10310545A JP 31054598 A JP31054598 A JP 31054598A JP H11341987 A JPH11341987 A JP H11341987A
- Authority
- JP
- Japan
- Prior art keywords
- ala
- leu
- arg
- gly
- glu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G32/00—Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P11/00—Preparation of sulfur-containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
(57)【要約】
【解決手段】 チオフェン系化合物を分解する機能を有
する酵素及びそれをコードする遺伝子、並びに前記遺伝
子を含むベクター及び形質転換体。 【効果】 化石燃料中の硫黄を容易に遊離させることが
できるようになる。
する酵素及びそれをコードする遺伝子、並びに前記遺伝
子を含むベクター及び形質転換体。 【効果】 化石燃料中の硫黄を容易に遊離させることが
できるようになる。
Description
【0001】
【発明の属する技術分野】本発明は、微生物を利用する
チオフェン系化合物、すなわちベンゾチオフェン、ジベ
ンゾチオフェン(以下「DBT 」という)およびこれらの
置換体、又はそれらの誘導体を分解する機能を有する酵
素及びそれをコードする遺伝子に関するものである。本
発明の酵素及び遺伝子を利用することにより、石油等の
化石燃料中に含まれるベンゾチオフェンやDBT およびこ
れらの置換体、又はそれらの誘導体中の硫黄を遊離させ
ることができるので、通常石油・石炭等の化石燃料の燃
焼により空気中に拡散すると言われる硫黄を、化石燃料
中から容易に除去することができるようになる。
チオフェン系化合物、すなわちベンゾチオフェン、ジベ
ンゾチオフェン(以下「DBT 」という)およびこれらの
置換体、又はそれらの誘導体を分解する機能を有する酵
素及びそれをコードする遺伝子に関するものである。本
発明の酵素及び遺伝子を利用することにより、石油等の
化石燃料中に含まれるベンゾチオフェンやDBT およびこ
れらの置換体、又はそれらの誘導体中の硫黄を遊離させ
ることができるので、通常石油・石炭等の化石燃料の燃
焼により空気中に拡散すると言われる硫黄を、化石燃料
中から容易に除去することができるようになる。
【0002】
【従来の技術】石油のような炭化水素燃料から硫黄を除
去する脱硫のための方法としては、アルカリ洗浄や溶剤
脱硫などの方法も知られているが、現在では水素化脱硫
が主流となっている。水素化脱硫は、石油留分中の硫黄
化合物を触媒の存在下で水素と反応させ、硫化水素とし
て除去して製品の低硫黄化を図る方法である。触媒とし
ては、アルミナを担体としてコバルト、モリブデン、ニ
ッケル、タングステン、などの金属触媒が使用される。
モリブデン担持アルミナ触媒の場合には、触媒性能を向
上させるために、通常コバルトやニッケルが助触媒とし
て加えられる。金属触媒を用いた水素化脱硫は、現在世
界中で広く使用されているきわめて完成度の高いプロセ
スであることは疑いのないことである。しかし、より厳
しい環境規制に対応した石油製品を作るためのプロセス
という観点からは、いくつかの問題点がある。以下にそ
の例を簡単に記載する。
去する脱硫のための方法としては、アルカリ洗浄や溶剤
脱硫などの方法も知られているが、現在では水素化脱硫
が主流となっている。水素化脱硫は、石油留分中の硫黄
化合物を触媒の存在下で水素と反応させ、硫化水素とし
て除去して製品の低硫黄化を図る方法である。触媒とし
ては、アルミナを担体としてコバルト、モリブデン、ニ
ッケル、タングステン、などの金属触媒が使用される。
モリブデン担持アルミナ触媒の場合には、触媒性能を向
上させるために、通常コバルトやニッケルが助触媒とし
て加えられる。金属触媒を用いた水素化脱硫は、現在世
界中で広く使用されているきわめて完成度の高いプロセ
スであることは疑いのないことである。しかし、より厳
しい環境規制に対応した石油製品を作るためのプロセス
という観点からは、いくつかの問題点がある。以下にそ
の例を簡単に記載する。
【0003】金属触媒は、一般にその基質特異性が低
く、このため多様な種類の硫黄化合物を分解し、化石燃
料全体の硫黄含量を低下させる目的には適しているが、
特定のグループの硫黄化合物、すなわちベンゾチオフェ
ンやDBT のような複素環硫黄化合物類およびそれらのア
ルキル誘導体類に対してはその脱硫効果が不十分となる
ことがあると考えられる。たとえば、脱硫後の軽油中に
はなおも種々の複素環式有機硫黄化合物が残存してい
る。このように金属触媒による脱硫効果が不十分となる
原因の一つは、これらの有機硫黄化合物中の硫黄原子の
周囲に存在する置換基による立体障害が考えられる。こ
れらの置換基のうち、メチル置換基の存在が水素化脱硫
における金属触媒の反応性に及ぼす影響は、チオフェ
ン、ベンゾチオフェン、DBT などについて検討されてい
る。それらの結果によると、一般的には置換基の数が増
すほど脱硫反応は減少するが、置換基の位置が反応性に
及ぼす影響もきわめて大きいことが明らかである。メチ
ルDBT 類の脱硫反応性を比較し、置換基による立体障害
が金属触媒の反応性に及ぼす影響が非常に大きいことを
示した報告は、たとえば、Houalla, M., Broderick, D.
H., Sapre, A.V., Nag, N.K., de Beer, V.H., Gates,
B.C., Kwart, H.J., Catalt., 61, 523-527(1980)に見
られる。実際、これらのでDBT の種々のアルキル化誘導
体が軽油中にかなりの量存在することが知られている
(たとえば、Kabe, T., Ishihara, A. and Tajima, H.
lnd. Eng. Chem. Res., 31, 1577-1580(1992))。
く、このため多様な種類の硫黄化合物を分解し、化石燃
料全体の硫黄含量を低下させる目的には適しているが、
特定のグループの硫黄化合物、すなわちベンゾチオフェ
ンやDBT のような複素環硫黄化合物類およびそれらのア
ルキル誘導体類に対してはその脱硫効果が不十分となる
ことがあると考えられる。たとえば、脱硫後の軽油中に
はなおも種々の複素環式有機硫黄化合物が残存してい
る。このように金属触媒による脱硫効果が不十分となる
原因の一つは、これらの有機硫黄化合物中の硫黄原子の
周囲に存在する置換基による立体障害が考えられる。こ
れらの置換基のうち、メチル置換基の存在が水素化脱硫
における金属触媒の反応性に及ぼす影響は、チオフェ
ン、ベンゾチオフェン、DBT などについて検討されてい
る。それらの結果によると、一般的には置換基の数が増
すほど脱硫反応は減少するが、置換基の位置が反応性に
及ぼす影響もきわめて大きいことが明らかである。メチ
ルDBT 類の脱硫反応性を比較し、置換基による立体障害
が金属触媒の反応性に及ぼす影響が非常に大きいことを
示した報告は、たとえば、Houalla, M., Broderick, D.
H., Sapre, A.V., Nag, N.K., de Beer, V.H., Gates,
B.C., Kwart, H.J., Catalt., 61, 523-527(1980)に見
られる。実際、これらのでDBT の種々のアルキル化誘導
体が軽油中にかなりの量存在することが知られている
(たとえば、Kabe, T., Ishihara, A. and Tajima, H.
lnd. Eng. Chem. Res., 31, 1577-1580(1992))。
【0004】上記のように水素化脱硫に抵抗性を示す有
機硫黄化合物を脱硫するためには、現在用いられている
よりも高い反応温度や圧力が必要とされ、また、添加す
る水素の量も非常に増大すると考えられている。このよ
うな水素化脱硫プロセスの改良は、ばく大な設備投資と
運転コストを必要とすることが予想される。このような
水素化脱硫に抵抗性を示す有機硫黄化合物を主たる硫黄
化合物種として含むものとしては、たとえば、軽油があ
り、軽油のより高度な脱硫(超深度脱硫)を行う場合に
は上記のような水素化脱硫プロセスの大幅な改良が要求
される。
機硫黄化合物を脱硫するためには、現在用いられている
よりも高い反応温度や圧力が必要とされ、また、添加す
る水素の量も非常に増大すると考えられている。このよ
うな水素化脱硫プロセスの改良は、ばく大な設備投資と
運転コストを必要とすることが予想される。このような
水素化脱硫に抵抗性を示す有機硫黄化合物を主たる硫黄
化合物種として含むものとしては、たとえば、軽油があ
り、軽油のより高度な脱硫(超深度脱硫)を行う場合に
は上記のような水素化脱硫プロセスの大幅な改良が要求
される。
【0005】一方、生物が行う酵素反応は比較的穏和な
条件下で進行し、しかも酵素反応の速度自体は、化学触
媒を用いた反応の速度と遜色のないという特徴を有して
いる。さらに、生体内で起こる多種多様の生物反応に適
切に対応する必要があるため、非常に多くの種類の酵素
が存在し、それらの酵素は一般的に非常に高い基質特異
性を示すことが知られている。このような特徴は、微生
物を用いて化石燃料中に含まれる硫黄化合物中の硫黄の
除去を行ういわゆるバイオ脱硫反応においても活かされ
るものと期待されている(Monticello, D.J., Hydrocar
bon Processing39-45(1994)) 。
条件下で進行し、しかも酵素反応の速度自体は、化学触
媒を用いた反応の速度と遜色のないという特徴を有して
いる。さらに、生体内で起こる多種多様の生物反応に適
切に対応する必要があるため、非常に多くの種類の酵素
が存在し、それらの酵素は一般的に非常に高い基質特異
性を示すことが知られている。このような特徴は、微生
物を用いて化石燃料中に含まれる硫黄化合物中の硫黄の
除去を行ういわゆるバイオ脱硫反応においても活かされ
るものと期待されている(Monticello, D.J., Hydrocar
bon Processing39-45(1994)) 。
【0006】一方、細菌を用いて石油の成分である複素
環硫黄化合物から硫黄を除去する方法については、多数
の報告があるが、それらは環分解(C-C 結合切断)型反
応とC-S 結合切断型反応とに大別される。C-C 結合攻撃
型脱硫活性を有する細菌としては、例えば、Pseudomona
s sp., Pseudomonas aeruginosa, Beijerinckia sp.,Ps
eudomonas alcaligenes, Pseudomonas stutzeri, Pseud
omonas putida, Brevibacterium sp.などが知れてい
る。これらの細菌は、DBT で代表される複素環式硫黄化
合物中のC-C 結合の切断を行い、ベンゼン環を分解し、
その後の酸化反応カスケードにより、硫黄塩を放出する
というタイプの代謝を行うものである。これらの炭素骨
格攻撃型経路の反応機構は芳香環の水酸化(DBT →→1,
2-ジヒドロキシDBT)、環の解裂、水溶性産物への酸化
(1,2-ジヒドロキシDBT →→トランス-4[2-(3-ヒドロ
キシ)チアンナフテニル]-2- オキソ- ブテノイン酸、
3-ヒドロキシ-2- ホルミルベンゾチオフェン)といった
ものであり、Kodama経路と呼ばれている。このタイプの
反応により、DBT のベンゼン環中のC-C 結合が攻撃を受
け、油から抽出可能な種々の水溶性物質を生じる。しか
し、この反応により、油中の他の芳香族分子が攻撃を受
け、その結果かなりの量の炭化水素が液相に移動するこ
とになる(Hartdegen, F.J., Coburn, J.M. and Robert
s, R.L. Chem. Eng. Progress, 80, 63-67(1984)) 。こ
のようなことは石油の総熱量単位の低下を招くことにな
り、工業的には非効率的な反応である。また、このタイ
プのDBT 酸化分解菌は、児玉らが報告しているように酸
化産物として水溶性のチオフェン化合物(主として3-ヒ
ドロキシ-2- ホルミルベンゾチオフェン)を与えるが、
これは液相から除去するのが困難な物質でもある。更
に、DBT の炭素環の攻撃は、しばしばアルキル置換基や
アリル置換基を持つDBT の 2位及び 3位の位置で起こる
ため、これらの位置で置換されたDBT はKodama経路の基
質とはならない。
環硫黄化合物から硫黄を除去する方法については、多数
の報告があるが、それらは環分解(C-C 結合切断)型反
応とC-S 結合切断型反応とに大別される。C-C 結合攻撃
型脱硫活性を有する細菌としては、例えば、Pseudomona
s sp., Pseudomonas aeruginosa, Beijerinckia sp.,Ps
eudomonas alcaligenes, Pseudomonas stutzeri, Pseud
omonas putida, Brevibacterium sp.などが知れてい
る。これらの細菌は、DBT で代表される複素環式硫黄化
合物中のC-C 結合の切断を行い、ベンゼン環を分解し、
その後の酸化反応カスケードにより、硫黄塩を放出する
というタイプの代謝を行うものである。これらの炭素骨
格攻撃型経路の反応機構は芳香環の水酸化(DBT →→1,
2-ジヒドロキシDBT)、環の解裂、水溶性産物への酸化
(1,2-ジヒドロキシDBT →→トランス-4[2-(3-ヒドロ
キシ)チアンナフテニル]-2- オキソ- ブテノイン酸、
3-ヒドロキシ-2- ホルミルベンゾチオフェン)といった
ものであり、Kodama経路と呼ばれている。このタイプの
反応により、DBT のベンゼン環中のC-C 結合が攻撃を受
け、油から抽出可能な種々の水溶性物質を生じる。しか
し、この反応により、油中の他の芳香族分子が攻撃を受
け、その結果かなりの量の炭化水素が液相に移動するこ
とになる(Hartdegen, F.J., Coburn, J.M. and Robert
s, R.L. Chem. Eng. Progress, 80, 63-67(1984)) 。こ
のようなことは石油の総熱量単位の低下を招くことにな
り、工業的には非効率的な反応である。また、このタイ
プのDBT 酸化分解菌は、児玉らが報告しているように酸
化産物として水溶性のチオフェン化合物(主として3-ヒ
ドロキシ-2- ホルミルベンゾチオフェン)を与えるが、
これは液相から除去するのが困難な物質でもある。更
に、DBT の炭素環の攻撃は、しばしばアルキル置換基や
アリル置換基を持つDBT の 2位及び 3位の位置で起こる
ため、これらの位置で置換されたDBT はKodama経路の基
質とはならない。
【0007】原油や石炭のみならず硫黄を含んだモデル
化合物を分解し、ヘテロ原子である硫黄を選択的に除去
して、硫酸塩や水酸化化合物を産生する微生物類が報告
されている。このタイプの反応は、その代謝産物の構造
から考えて、硫黄化合物中のC-S 結合を特異的に切断し
て、その結果硫黄を硫酸塩の形で遊離する反応であると
考えられる。現在までに、表1 に示すような硫黄攻撃型
のバイオ脱硫反応系の報告がある。
化合物を分解し、ヘテロ原子である硫黄を選択的に除去
して、硫酸塩や水酸化化合物を産生する微生物類が報告
されている。このタイプの反応は、その代謝産物の構造
から考えて、硫黄化合物中のC-S 結合を特異的に切断し
て、その結果硫黄を硫酸塩の形で遊離する反応であると
考えられる。現在までに、表1 に示すような硫黄攻撃型
のバイオ脱硫反応系の報告がある。
【0008】
【表1】
【0009】以上記載したバイオ脱硫はすべて、30℃近
辺の温度条件下で進行する微生物代謝反応を利用するも
のである。一方、化学反応の速度は一般に温度に依存し
て増大することが知られている。また、石油精製プロセ
ス中の脱硫工程では、高温・高圧条件下で分別蒸留や脱
硫反応が行われる。従って、石油精製プロセス中にバイ
オ脱硫工程を組み込むとすると、常温近くにまで石油留
分を冷却することなしに、冷却途中のより高い温度でバ
イオ脱硫反応ができる方が望ましいと考えられる。高温
バイオ脱硫に関する報告には以下のようなものがある。
辺の温度条件下で進行する微生物代謝反応を利用するも
のである。一方、化学反応の速度は一般に温度に依存し
て増大することが知られている。また、石油精製プロセ
ス中の脱硫工程では、高温・高圧条件下で分別蒸留や脱
硫反応が行われる。従って、石油精製プロセス中にバイ
オ脱硫工程を組み込むとすると、常温近くにまで石油留
分を冷却することなしに、冷却途中のより高い温度でバ
イオ脱硫反応ができる方が望ましいと考えられる。高温
バイオ脱硫に関する報告には以下のようなものがある。
【0010】微生物を用いて高温で脱硫反応を行わせる
試みのほとんどは、石炭脱硫において見ることができ
る。石炭中には種々の硫黄化合物が含まれている。主要
な無機硫黄化合物は黄鉄鉱であるが、有機硫黄化合物に
関しては多種多様のものが混在しており、多くがチオー
ル、スルフィド、ジスルフィド、チオフェン基を含んで
いることが知られている。用いられた微生物は、Sulfol
obus属の細菌で、これらはすべて好熱性細菌である。鉱
物スルフィドからの金属のリーチング(BrierleyC.L. &
Murr, L.E., Science 179, 448-490(1973)) や石炭か
らの黄鉄鉱の硫黄除去などに種々の異なったSulfolobus
株を用いた例が報告されている(Kargi, F. & Robinso
n, J.M., Biotechnol. Bioeng, 24, 2115-2121(1982);
Kargi, F. &Robinson, J.M., Appl. Environ. Microbio
l., 44, 878-883(1982); Kargi, F.& Cervoni, T.D., B
iotechnol. Letters 5, 33-38(1983); Kargi, F. and R
obinson, J.M., Biotechnol. Bioeng., 26, 687-690(19
84); Kargi, F. & Robinson, J.M., Biotechnol. Bioen
g. 27, 41-49(1985); Kargi, F., Biotechnol. Lett.,
9, 478-482(1987))。Kargi とRobinson (Kargi, F and
Robinson, J.M., Appl. Environ. Microbiol., 44, 878
-883(1982))によれば、米国のイエローストーン国立公
園の酸性温泉から分離されたSulfolobus acidocaldariu
s のある株は、45〜70℃で生育するが、至適pH2 で元素
状硫黄を酸化する。また、別の 2種のSulfolobus acido
caldarius 株による黄鉄鉱の酸化も報告されている(To
bita,M., Yokozeki, M., Nishikawa, N. & Kawakami,
Y., Biosci. Biotech. Biochem. 58, 771-772(1994))。
試みのほとんどは、石炭脱硫において見ることができ
る。石炭中には種々の硫黄化合物が含まれている。主要
な無機硫黄化合物は黄鉄鉱であるが、有機硫黄化合物に
関しては多種多様のものが混在しており、多くがチオー
ル、スルフィド、ジスルフィド、チオフェン基を含んで
いることが知られている。用いられた微生物は、Sulfol
obus属の細菌で、これらはすべて好熱性細菌である。鉱
物スルフィドからの金属のリーチング(BrierleyC.L. &
Murr, L.E., Science 179, 448-490(1973)) や石炭か
らの黄鉄鉱の硫黄除去などに種々の異なったSulfolobus
株を用いた例が報告されている(Kargi, F. & Robinso
n, J.M., Biotechnol. Bioeng, 24, 2115-2121(1982);
Kargi, F. &Robinson, J.M., Appl. Environ. Microbio
l., 44, 878-883(1982); Kargi, F.& Cervoni, T.D., B
iotechnol. Letters 5, 33-38(1983); Kargi, F. and R
obinson, J.M., Biotechnol. Bioeng., 26, 687-690(19
84); Kargi, F. & Robinson, J.M., Biotechnol. Bioen
g. 27, 41-49(1985); Kargi, F., Biotechnol. Lett.,
9, 478-482(1987))。Kargi とRobinson (Kargi, F and
Robinson, J.M., Appl. Environ. Microbiol., 44, 878
-883(1982))によれば、米国のイエローストーン国立公
園の酸性温泉から分離されたSulfolobus acidocaldariu
s のある株は、45〜70℃で生育するが、至適pH2 で元素
状硫黄を酸化する。また、別の 2種のSulfolobus acido
caldarius 株による黄鉄鉱の酸化も報告されている(To
bita,M., Yokozeki, M., Nishikawa, N. & Kawakami,
Y., Biosci. Biotech. Biochem. 58, 771-772(1994))。
【0011】化石燃料中に含まれる有機硫黄化合物のう
ち、DBT およびその置換体又はそれらの誘導体は通常の
石油精製プロセスにおいて水素化脱硫を受けにくいこと
が知られている。そのDBT のSulfolobus acidocaldariu
s (以下、「S.acidocaldarius」という)による高温分
解も報告されている(Kargi, & Robinson, J.M., Biote
chnol. Bioeng, 26, 687-690(1984); Kargi, F., Biote
chnol. Letters 9, 478-482(1987))。
ち、DBT およびその置換体又はそれらの誘導体は通常の
石油精製プロセスにおいて水素化脱硫を受けにくいこと
が知られている。そのDBT のSulfolobus acidocaldariu
s (以下、「S.acidocaldarius」という)による高温分
解も報告されている(Kargi, & Robinson, J.M., Biote
chnol. Bioeng, 26, 687-690(1984); Kargi, F., Biote
chnol. Letters 9, 478-482(1987))。
【0012】これらの報告によれば、チアントレン、チ
オキサンテン、DBT などのモデル芳香族複素環硫黄化合
物を高温でこの微生物と反応させると、これらの硫黄化
合物は酸化されて、分解する。S. acidocaldarius によ
るこれらの芳香族複素環硫黄化合物の酸化は、70℃で観
察されており、反応産物として硫酸イオンを生じる。し
かし、この反応は硫黄化合物の他には炭素源を含まない
培地中での反応であり、硫黄化合物を炭素源としても利
用している。すなわち硫黄化合物中のC-C 結合を分解し
ていることは明瞭である。さらに、このS. acidocaldar
ius は酸性の培地でのみ増殖でき、DBT の酸化分解反応
は、きびしい酸性条件下(pH2.5)での進行を要求する。
このようなきびしい条件は石油製品の劣化を引き起こす
と同時に脱硫に関わる工程に耐酸性材料を必要とするた
めプロセス上望ましくないと考えられる。S. acidocald
arius を、独立栄養条件下で増殖させると、必要なエネ
ルギーを還元された鉄・硫黄化合物から獲得し、炭素源
として二酸化炭素を利用する。しかし、S. acidocaldar
ius は、従属栄養条件下に増殖させると、炭素源および
エネルギー源として種々の有機化合物を利用することが
できる。すなわち、化石燃料が存在すると炭素源として
資化されるものと考えられる。
オキサンテン、DBT などのモデル芳香族複素環硫黄化合
物を高温でこの微生物と反応させると、これらの硫黄化
合物は酸化されて、分解する。S. acidocaldarius によ
るこれらの芳香族複素環硫黄化合物の酸化は、70℃で観
察されており、反応産物として硫酸イオンを生じる。し
かし、この反応は硫黄化合物の他には炭素源を含まない
培地中での反応であり、硫黄化合物を炭素源としても利
用している。すなわち硫黄化合物中のC-C 結合を分解し
ていることは明瞭である。さらに、このS. acidocaldar
ius は酸性の培地でのみ増殖でき、DBT の酸化分解反応
は、きびしい酸性条件下(pH2.5)での進行を要求する。
このようなきびしい条件は石油製品の劣化を引き起こす
と同時に脱硫に関わる工程に耐酸性材料を必要とするた
めプロセス上望ましくないと考えられる。S. acidocald
arius を、独立栄養条件下で増殖させると、必要なエネ
ルギーを還元された鉄・硫黄化合物から獲得し、炭素源
として二酸化炭素を利用する。しかし、S. acidocaldar
ius は、従属栄養条件下に増殖させると、炭素源および
エネルギー源として種々の有機化合物を利用することが
できる。すなわち、化石燃料が存在すると炭素源として
資化されるものと考えられる。
【0013】Finnertyらは、Pseudomonas stutzeri、Ps
eudomonas alcaligenes 、Pseudomonas putidaに属する
株がDBT 、ベンゾチオフェン、チオキサンテン、チアン
トレンを分解して、水溶性の物質に変換することを報告
している(Finnerty, W.R.,Shockiey, K., Attaway, H.
in Microbial Enhanced Oil Recovery, Zajic, J.E. e
t al.(eds.) Penwell. Tuisa, Okia, 83-91(1983)。こ
の場合、酸化反応は55℃でも進むとしている。しかし、
これらのPseudomonas 菌株によるDBT の分解産物は、Ko
damaらが報告している3-ヒドロキシ-2- ホルミルベンゾ
チオフェンである(Monticello, D.J., Bakker, D., Fi
nnerty, W.R. Appl. Environ. Microbiol., 49, 756-76
0(1985))。これらのPseudomonas 菌株によるDBT の酸化
活性は、硫黄を含まない芳香族炭化水素であるナフタレ
ンやサリチル酸により誘導を受け、クロラムフェニコー
ルにより阻止される。このことから、これらのPseudomo
nas 菌株によるDBT の分解反応は、芳香環中のC-C 結合
を切断することによる分解を基礎としていることが分か
る。また、硫黄化合物以外にも石油留分中に含まれる貴
重な芳香族炭化水素を同時に分解するおそれもあり、こ
れは、燃料の価値や石油留分の品質を低下させることに
なる。
eudomonas alcaligenes 、Pseudomonas putidaに属する
株がDBT 、ベンゾチオフェン、チオキサンテン、チアン
トレンを分解して、水溶性の物質に変換することを報告
している(Finnerty, W.R.,Shockiey, K., Attaway, H.
in Microbial Enhanced Oil Recovery, Zajic, J.E. e
t al.(eds.) Penwell. Tuisa, Okia, 83-91(1983)。こ
の場合、酸化反応は55℃でも進むとしている。しかし、
これらのPseudomonas 菌株によるDBT の分解産物は、Ko
damaらが報告している3-ヒドロキシ-2- ホルミルベンゾ
チオフェンである(Monticello, D.J., Bakker, D., Fi
nnerty, W.R. Appl. Environ. Microbiol., 49, 756-76
0(1985))。これらのPseudomonas 菌株によるDBT の酸化
活性は、硫黄を含まない芳香族炭化水素であるナフタレ
ンやサリチル酸により誘導を受け、クロラムフェニコー
ルにより阻止される。このことから、これらのPseudomo
nas 菌株によるDBT の分解反応は、芳香環中のC-C 結合
を切断することによる分解を基礎としていることが分か
る。また、硫黄化合物以外にも石油留分中に含まれる貴
重な芳香族炭化水素を同時に分解するおそれもあり、こ
れは、燃料の価値や石油留分の品質を低下させることに
なる。
【0014】このように、今までに発見されている高温
でDBT を分解できる菌は、DBT 分子中のC-C 結合を切断
し、炭素源として利用する反応を触媒するものである。
C-S結合を特異的に切断するが、C-C 結合は切断しない
でそのまま残すタイプの有機硫黄化合物の分解反応が実
際の石油の脱硫方法として望ましいことは上述の通りで
ある。すなわち、高温でDBT およびそのアルキル置換
体、又はそれらの誘導体分子中のC-S 結合を切断する活
性を示し、水溶性の物質の形で、脱硫産物を生じる微生
物を利用するのがバイオ脱硫プロセスとして最も望まし
い。
でDBT を分解できる菌は、DBT 分子中のC-C 結合を切断
し、炭素源として利用する反応を触媒するものである。
C-S結合を特異的に切断するが、C-C 結合は切断しない
でそのまま残すタイプの有機硫黄化合物の分解反応が実
際の石油の脱硫方法として望ましいことは上述の通りで
ある。すなわち、高温でDBT およびそのアルキル置換
体、又はそれらの誘導体分子中のC-S 結合を切断する活
性を示し、水溶性の物質の形で、脱硫産物を生じる微生
物を利用するのがバイオ脱硫プロセスとして最も望まし
い。
【0015】前述のように、C-S 結合切断型のDBT 分解
反応を行う微生物は、いくつかの属の細菌で知られてい
る。しかし、これらのすべての菌について、少なくとも
42℃以上の高温条件下においてDBT を分解する活性を示
したということを記載した例は見あたらない。たとえ
ば、Rhodococcus sp. のATCC53968 はよく調べられたDB
T 分解菌株であり、DBT の硫黄原子に酸素原子を付加
し、DBT スルホキシド(以下「DBTO」という)からDBT
スルホン(以下「DBTO2 」という)を生成し、ついで2-
(2'-ヒドロキシフェニル) ベンゼンスルフィン酸塩を経
て2-ヒドロキシビフェニル(以下「2-HBP 」という)を
生成する反応を行う。しかし、この菌も通常の培養温度
である30℃よりも少し高い37℃および43℃でさえ、48時
間培養すると非常に生育が遅れるか、生育しなくなるこ
とが報告されている(特開平6-54695号公報) 。このこ
とから、高温脱硫反応を行わせるためには、高温で生育
でき、しかも高温で有機硫黄化合物、特にDBT およびそ
の置換体、又はそれらの誘導体化合物を含む複素環式硫
黄化合物類をC-S 結合特異的に切断できる微生物を用い
るのが最適であると考えられた。本発明者らは広範なス
クリーニングを行い、60℃近い高温条件下で増殖し、DB
T 類を分解・脱硫できる高温脱硫菌株 Paenibacillus s
p.株をすでに 2株世界で初めて単離している(特開平10
-036859 号公報)。この菌株の有する高温脱硫活性に関
与する遺伝子を単離すれば、組換えDNA 技術のような遺
伝子操作技術を利用して、他の生物にその遺伝子を導入
し発現させることにより、広範囲の生物に高温脱硫能を
賦与することができることになる。
反応を行う微生物は、いくつかの属の細菌で知られてい
る。しかし、これらのすべての菌について、少なくとも
42℃以上の高温条件下においてDBT を分解する活性を示
したということを記載した例は見あたらない。たとえ
ば、Rhodococcus sp. のATCC53968 はよく調べられたDB
T 分解菌株であり、DBT の硫黄原子に酸素原子を付加
し、DBT スルホキシド(以下「DBTO」という)からDBT
スルホン(以下「DBTO2 」という)を生成し、ついで2-
(2'-ヒドロキシフェニル) ベンゼンスルフィン酸塩を経
て2-ヒドロキシビフェニル(以下「2-HBP 」という)を
生成する反応を行う。しかし、この菌も通常の培養温度
である30℃よりも少し高い37℃および43℃でさえ、48時
間培養すると非常に生育が遅れるか、生育しなくなるこ
とが報告されている(特開平6-54695号公報) 。このこ
とから、高温脱硫反応を行わせるためには、高温で生育
でき、しかも高温で有機硫黄化合物、特にDBT およびそ
の置換体、又はそれらの誘導体化合物を含む複素環式硫
黄化合物類をC-S 結合特異的に切断できる微生物を用い
るのが最適であると考えられた。本発明者らは広範なス
クリーニングを行い、60℃近い高温条件下で増殖し、DB
T 類を分解・脱硫できる高温脱硫菌株 Paenibacillus s
p.株をすでに 2株世界で初めて単離している(特開平10
-036859 号公報)。この菌株の有する高温脱硫活性に関
与する遺伝子を単離すれば、組換えDNA 技術のような遺
伝子操作技術を利用して、他の生物にその遺伝子を導入
し発現させることにより、広範囲の生物に高温脱硫能を
賦与することができることになる。
【0016】C-S 結合切断型の脱硫反応を起こすことが
知らされている細菌で、そのDBT 分解反応に関与する酵
素活性をコードする遺伝子が同定され、その塩基配列が
決定されているのは、本発明者らの知る限りでは、Rhod
ococcus sp. IGTS8 株のdsz遺伝子のみである(Denome,
S., Oldfleld., C., Nash, L.J. and Young, K.D.J.Ba
cteriol., 176:6707-6716, 1994; Piddington, C.S., K
ovacevich, B.R. and Rambosek, J. Appl. Environ. Mi
crobiol., 61:468-475, 1995) 。IGTS8 株によるDBT 分
解反応は、DBT からDBTOを経てDBTO2 への変換を触媒す
るDszC、DBTO2 から2-(2'-ヒドロキシフェニル)ベンゼ
ンスルフィン酸への変換を触媒するDszAおよび2-(2'-ヒ
ドロキシフェニル)ベンゼンスルフィン酸から2-HBP へ
の変換を触媒するDszBの3つの酵素により触媒される
(Denome, S., Oldfield., C., Nash, L.J. and Young,
K.D. J.Bacteriol., 176:6707-6716, 1994; Gray, K.
A.,Pogrebinshy, O.S., Mrachko, G.T., Xi, L. Montic
ello, D.J. and Squires,C.H. Nat Biotechnol., 14:17
05-1709, 1996; Oldfield, C., Pogrebinsky, O.,Simmo
nds, J., Olson, E.S. and Kulpa, C.F., Microbiolog
y, 143:2961-2973,1997)。それぞれ対応する遺伝子はds
zA, dszB, dszCと呼ばれている。DszCとDszAはモノオキ
シゲナーゼで、両者ともその酸素添加反応にはNADH-FMN
オキシドレダクターゼ活性の共存を必要とすることが知
られている(Gray, K.A., Pogrebinsky, O.S., Mrachk
o, G.T., Xi, L. Monticello, D.J. and Squires, C.H.
NatBiotechnol., 14:1705-1709, 1996; Xi, L. Squire
s, C.H., Monticello, D.J.and Chids, J.D. Biochem.
Biophys. Res Commun., 230:73-76, 1997) 。これらのd
sz 遺伝子を大腸菌で温度シフトにより誘導発現させた
場合、菌体培養によるDszA活性は39℃で最大となり、42
℃では顕著に低下することが報告されている(Denome,
S., Oldfield., D., Nash, L.J. and Young, K.D. J. B
acteriol., 176:6707-6716, 1994) 。この結果は、IGTS
8 株の有する脱硫酵素活性は常温付近で最大になり、よ
り高温では活性は低下し、50℃以上ではまったく脱硫活
性は見られなくなるという休止菌体反応系の実験結果
(Konishi, J., Ishii, Y., Onaka,T., Okumura, K. an
d Suzuki, M. Appl. Environ. Microbiol., 63:3164-31
69,1997)と一致する。従って、50℃以上の高温条件下で
C-S 結合特異的なDBT 分解活性を指令する遺伝子は従来
報告されていないものである。
知らされている細菌で、そのDBT 分解反応に関与する酵
素活性をコードする遺伝子が同定され、その塩基配列が
決定されているのは、本発明者らの知る限りでは、Rhod
ococcus sp. IGTS8 株のdsz遺伝子のみである(Denome,
S., Oldfleld., C., Nash, L.J. and Young, K.D.J.Ba
cteriol., 176:6707-6716, 1994; Piddington, C.S., K
ovacevich, B.R. and Rambosek, J. Appl. Environ. Mi
crobiol., 61:468-475, 1995) 。IGTS8 株によるDBT 分
解反応は、DBT からDBTOを経てDBTO2 への変換を触媒す
るDszC、DBTO2 から2-(2'-ヒドロキシフェニル)ベンゼ
ンスルフィン酸への変換を触媒するDszAおよび2-(2'-ヒ
ドロキシフェニル)ベンゼンスルフィン酸から2-HBP へ
の変換を触媒するDszBの3つの酵素により触媒される
(Denome, S., Oldfield., C., Nash, L.J. and Young,
K.D. J.Bacteriol., 176:6707-6716, 1994; Gray, K.
A.,Pogrebinshy, O.S., Mrachko, G.T., Xi, L. Montic
ello, D.J. and Squires,C.H. Nat Biotechnol., 14:17
05-1709, 1996; Oldfield, C., Pogrebinsky, O.,Simmo
nds, J., Olson, E.S. and Kulpa, C.F., Microbiolog
y, 143:2961-2973,1997)。それぞれ対応する遺伝子はds
zA, dszB, dszCと呼ばれている。DszCとDszAはモノオキ
シゲナーゼで、両者ともその酸素添加反応にはNADH-FMN
オキシドレダクターゼ活性の共存を必要とすることが知
られている(Gray, K.A., Pogrebinsky, O.S., Mrachk
o, G.T., Xi, L. Monticello, D.J. and Squires, C.H.
NatBiotechnol., 14:1705-1709, 1996; Xi, L. Squire
s, C.H., Monticello, D.J.and Chids, J.D. Biochem.
Biophys. Res Commun., 230:73-76, 1997) 。これらのd
sz 遺伝子を大腸菌で温度シフトにより誘導発現させた
場合、菌体培養によるDszA活性は39℃で最大となり、42
℃では顕著に低下することが報告されている(Denome,
S., Oldfield., D., Nash, L.J. and Young, K.D. J. B
acteriol., 176:6707-6716, 1994) 。この結果は、IGTS
8 株の有する脱硫酵素活性は常温付近で最大になり、よ
り高温では活性は低下し、50℃以上ではまったく脱硫活
性は見られなくなるという休止菌体反応系の実験結果
(Konishi, J., Ishii, Y., Onaka,T., Okumura, K. an
d Suzuki, M. Appl. Environ. Microbiol., 63:3164-31
69,1997)と一致する。従って、50℃以上の高温条件下で
C-S 結合特異的なDBT 分解活性を指令する遺伝子は従来
報告されていないものである。
【0017】
【発明が解決しようとする課題】本発明の課題は、ベン
ゾチオフェン、DBT 系化合物に作用し、それらを高温で
分解する能力を有する微生物から高温脱硫反応に関与す
る遺伝子を単離し、その構造(特に塩基配列)を特定
し、また、これらの遺伝子をそれが単離されたのとは異
なる微生物に導入し、脱硫能を賦与することにより、新
規な脱硫微生物を創製することである。また、このよう
な微生物を実際にベンゾチオフェン、DBT およびそれら
のアルキル誘導体に作用させて、これらの化合物のC-S
結合を切断することにより、硫黄を遊離させる方法を確
立することである。
ゾチオフェン、DBT 系化合物に作用し、それらを高温で
分解する能力を有する微生物から高温脱硫反応に関与す
る遺伝子を単離し、その構造(特に塩基配列)を特定
し、また、これらの遺伝子をそれが単離されたのとは異
なる微生物に導入し、脱硫能を賦与することにより、新
規な脱硫微生物を創製することである。また、このよう
な微生物を実際にベンゾチオフェン、DBT およびそれら
のアルキル誘導体に作用させて、これらの化合物のC-S
結合を切断することにより、硫黄を遊離させる方法を確
立することである。
【0018】
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を重ねた結果、高温脱硫細菌Pa
enibacillus sp.から脱硫反応に関与する遺伝子群の単
離に成功し、本発明を完成するに至った。即ち、本発明
の第一は、脱硫酵素をコードする遺伝子に関する。本発
明の第二は、上記遺伝子を含むベクターに関する。本発
明の第三は、上記ベクターを含有する形質転換体に関す
る。本発明の第四は、脱硫酵素に関する。本発明の第五
は、トランスポザーゼをコードする遺伝子に関する。本
発明の第六は、トランスポザーゼに関する。
解決するために鋭意検討を重ねた結果、高温脱硫細菌Pa
enibacillus sp.から脱硫反応に関与する遺伝子群の単
離に成功し、本発明を完成するに至った。即ち、本発明
の第一は、脱硫酵素をコードする遺伝子に関する。本発
明の第二は、上記遺伝子を含むベクターに関する。本発
明の第三は、上記ベクターを含有する形質転換体に関す
る。本発明の第四は、脱硫酵素に関する。本発明の第五
は、トランスポザーゼをコードする遺伝子に関する。本
発明の第六は、トランスポザーゼに関する。
【0019】
【発明の実施の形態】以下、本発明を詳細に説明する。 (1)脱硫酵素をコードする遺伝子 本発明の遺伝子には、以下の3種類の遺伝子が含まれ
る。第一の遺伝子は、(a) 配列番号2記載のアミノ酸配
列により表されるタンパク質、又は(b) 配列番号2記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつDBTO2 を2-(2'-ヒドロキシフェニル)ベンゼンスル
フィン酸に変換する機能を有するタンパク質をコードす
るものである。
る。第一の遺伝子は、(a) 配列番号2記載のアミノ酸配
列により表されるタンパク質、又は(b) 配列番号2記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつDBTO2 を2-(2'-ヒドロキシフェニル)ベンゼンスル
フィン酸に変換する機能を有するタンパク質をコードす
るものである。
【0020】第二の遺伝子は、(a) 配列番号4記載のア
ミノ酸配列により表されるタンパク質、又は配列番号4
記載のアミノ酸配列において1若しくは複数個のアミノ
酸が欠失、置換若しくは付加されたアミノ酸配列からな
り、かつ2-(2'-ヒドロキシフェニル)ベンゼンスルフィ
ン酸を2-HBP に変換する機能を有するタンパク質をコー
ドするものである。
ミノ酸配列により表されるタンパク質、又は配列番号4
記載のアミノ酸配列において1若しくは複数個のアミノ
酸が欠失、置換若しくは付加されたアミノ酸配列からな
り、かつ2-(2'-ヒドロキシフェニル)ベンゼンスルフィ
ン酸を2-HBP に変換する機能を有するタンパク質をコー
ドするものである。
【0021】第三の遺伝子は、(a) 配列番号6記載のア
ミノ酸配列により表されるタンパク質、又は(b) 配列番
号6記載のアミノ酸配列において1若しくは複数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、かつDBT をDBTOを経てDBTO2 に変換する機能を
有するタンパク質をコードするものである。上記第一、
第二、及び第三の遺伝子は、Rhodococcus sp.IGTS8株由
来のdszA、dszB、dszCと一定の相同性を示すが、後述す
るようにこれらの遺伝子がコードするタンパク質は、ds
zA、dszB、dszCがコードするタンパク質とはその性質に
おいて異なる。
ミノ酸配列により表されるタンパク質、又は(b) 配列番
号6記載のアミノ酸配列において1若しくは複数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、かつDBT をDBTOを経てDBTO2 に変換する機能を
有するタンパク質をコードするものである。上記第一、
第二、及び第三の遺伝子は、Rhodococcus sp.IGTS8株由
来のdszA、dszB、dszCと一定の相同性を示すが、後述す
るようにこれらの遺伝子がコードするタンパク質は、ds
zA、dszB、dszCがコードするタンパク質とはその性質に
おいて異なる。
【0022】本発明の遺伝子のうち、配列番号2、4及
び6記載のアミノ酸配列をコードする遺伝子について
は、本明細書の実施例に記載された方法により得ること
ができる。また、これらの遺伝子の塩基配列は、配列番
号1、3及び5に示すように、既に決定されているの
で、これらの配列を基に適当なプライマーを合成し、Pa
enibacillus sp. A11-1 株(FERM P-15751) 又はA11-2
(FERM P-15752) 株から調製されたDNA を鋳型としてPCR
を行うことによっても得ることができる。
び6記載のアミノ酸配列をコードする遺伝子について
は、本明細書の実施例に記載された方法により得ること
ができる。また、これらの遺伝子の塩基配列は、配列番
号1、3及び5に示すように、既に決定されているの
で、これらの配列を基に適当なプライマーを合成し、Pa
enibacillus sp. A11-1 株(FERM P-15751) 又はA11-2
(FERM P-15752) 株から調製されたDNA を鋳型としてPCR
を行うことによっても得ることができる。
【0023】配列番号2、4及び6記載のアミノ酸配列
において1若しくは複数個のアミノ酸が欠失、置換若し
くは付加されたアミノ酸配列をコードする遺伝子は、本
願の出願時において常用される技術、例えば、部位特異
的変異誘発法(Zoller et al., Nucleic Acids Res. 10
6487-6500, 1982)により配列番号2、4及び6記載の
アミノ酸配列をコードする遺伝子を改変することにより
得ることができる。本発明の遺伝子は、DBT の分解に関
与する酵素をコードするので、石油の脱硫に利用するこ
とができる。
において1若しくは複数個のアミノ酸が欠失、置換若し
くは付加されたアミノ酸配列をコードする遺伝子は、本
願の出願時において常用される技術、例えば、部位特異
的変異誘発法(Zoller et al., Nucleic Acids Res. 10
6487-6500, 1982)により配列番号2、4及び6記載の
アミノ酸配列をコードする遺伝子を改変することにより
得ることができる。本発明の遺伝子は、DBT の分解に関
与する酵素をコードするので、石油の脱硫に利用するこ
とができる。
【0024】(2)脱硫酵素をコードする遺伝子を含む
ベクター 本発明のベクターは、上記の第一、第二又は第三遺伝子
を含む。このようなベクターは、本発明の第一、第二又
は第三遺伝子を含むDNA 断片を、公知のベクターに挿入
することにより作製することができる。DNA 断片を挿入
するベクターは、形質転換する宿主に応じて決めればよ
く、宿主として大腸菌を使用するのであれば、以下のよ
うなベクターを使用するのが好ましい。強力なプロモー
ターとして、例えば、lac 、lacUV5、trp 、tac 、trc
、λpL、T7、rrnB、などを含むpUR 系、pGEX系、pUC
系、pET 系、pT7 系、pBluescript 系、pKK 系、pBS
系、pBC 系、pCAL系などのベクターを使用するのが好ま
しい。
ベクター 本発明のベクターは、上記の第一、第二又は第三遺伝子
を含む。このようなベクターは、本発明の第一、第二又
は第三遺伝子を含むDNA 断片を、公知のベクターに挿入
することにより作製することができる。DNA 断片を挿入
するベクターは、形質転換する宿主に応じて決めればよ
く、宿主として大腸菌を使用するのであれば、以下のよ
うなベクターを使用するのが好ましい。強力なプロモー
ターとして、例えば、lac 、lacUV5、trp 、tac 、trc
、λpL、T7、rrnB、などを含むpUR 系、pGEX系、pUC
系、pET 系、pT7 系、pBluescript 系、pKK 系、pBS
系、pBC 系、pCAL系などのベクターを使用するのが好ま
しい。
【0025】(3)脱硫酵素をコードする遺伝子を含む
ベクターを含有する形質転換体 本発明の形質転換体は、上記ベクターを含有する。形質
転換体の宿主とする細胞は、植物細胞や動物細胞などで
あってもよいが、大腸菌などの微生物が好ましい。代表
的な菌株としては、Sambrook等の成書Molecular Clonin
g Laboratory Mannual 2nd ed.に記載されている、71/1
8 、BB4 、BHB2668 、BHB2690 、BL21(DE3) 、BNNl02(C
600hflA)、C-1a、C600(BNN93) 、CES200、CES201、CJ23
6 、CSH18 、DH1 、DH5 、DH5 α、DP50supF、ED8654、
ED8767、HB101 、HMS174、JM101、JM105 、JM107 、JM1
09 、JM110 、K802、KK2186、LE392 、LG90、M5219 、M
BM7014.5 、MC1061、MM294 、MV1184、MV1193、MZ-1、N
M531 、NM538 、NM539 、Q358、Q359、R594、RB791 、R
R1 、SMR10 、TAP90 、TG1 、TG2 、XL1-Blue、XS101
、XS127 、Y1089 、Y1090hsdR 、YK537 などが挙げら
れる。
ベクターを含有する形質転換体 本発明の形質転換体は、上記ベクターを含有する。形質
転換体の宿主とする細胞は、植物細胞や動物細胞などで
あってもよいが、大腸菌などの微生物が好ましい。代表
的な菌株としては、Sambrook等の成書Molecular Clonin
g Laboratory Mannual 2nd ed.に記載されている、71/1
8 、BB4 、BHB2668 、BHB2690 、BL21(DE3) 、BNNl02(C
600hflA)、C-1a、C600(BNN93) 、CES200、CES201、CJ23
6 、CSH18 、DH1 、DH5 、DH5 α、DP50supF、ED8654、
ED8767、HB101 、HMS174、JM101、JM105 、JM107 、JM1
09 、JM110 、K802、KK2186、LE392 、LG90、M5219 、M
BM7014.5 、MC1061、MM294 、MV1184、MV1193、MZ-1、N
M531 、NM538 、NM539 、Q358、Q359、R594、RB791 、R
R1 、SMR10 、TAP90 、TG1 、TG2 、XL1-Blue、XS101
、XS127 、Y1089 、Y1090hsdR 、YK537 などが挙げら
れる。
【0026】(4)脱硫酵素 本発明の脱硫酵素には、以下の3種類のタンパク質が含
まれる。第一のタンパク質は、配列番号2記載のアミノ
酸配列により表されるタンパク質と配列番号2記載のア
ミノ酸配列において1若しくは複数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つDBTO2 を2−(2−ヒドロキシフェニル)ベンゼンス
ルフィン酸に変換する機能を有するタンパク質とを包含
する。
まれる。第一のタンパク質は、配列番号2記載のアミノ
酸配列により表されるタンパク質と配列番号2記載のア
ミノ酸配列において1若しくは複数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つDBTO2 を2−(2−ヒドロキシフェニル)ベンゼンス
ルフィン酸に変換する機能を有するタンパク質とを包含
する。
【0027】第二のタンパク質は、配列番号4記載のア
ミノ酸配列により表されるタンパク質と配列番号4記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつ2−(2−ヒドロキシフェニル)ベンゼンスルフィ
ン酸を2-HBP に変換する機能を有するタンパク質とを包
含する。
ミノ酸配列により表されるタンパク質と配列番号4記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつ2−(2−ヒドロキシフェニル)ベンゼンスルフィ
ン酸を2-HBP に変換する機能を有するタンパク質とを包
含する。
【0028】第三のタンパク質は、配列番号6記載のア
ミノ酸配列により表されるタンパク質と配列番号6記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつDBT をDBTO2 に変換する機能を有するタンパク質と
を包含する。上記第一、第二、及び第三のタンパク質
は、Rhodococcus sp.IGTS8株由来の脱硫酵素DszA、Dsz
B、DszCと一定の相同性を示し、また、酵素としての作
用も同一であるが、以下の点で明確に相違する。
ミノ酸配列により表されるタンパク質と配列番号6記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつDBT をDBTO2 に変換する機能を有するタンパク質と
を包含する。上記第一、第二、及び第三のタンパク質
は、Rhodococcus sp.IGTS8株由来の脱硫酵素DszA、Dsz
B、DszCと一定の相同性を示し、また、酵素としての作
用も同一であるが、以下の点で明確に相違する。
【0029】(イ)DszA、DszB、DszCでは、難脱硫物質
であるベンゾチオフェンを脱硫できないが、本発明の第
一、第二、及び第三のタンパク質では脱硫可能である。 (ロ)DszA、DszB、DszCは、常温領域で脱硫活性を示す
が、本発明の第一、第二、及び第三のタンパク質は高温
領域で脱硫活性を示す。 本発明の脱硫酵素は、上述の本発明の脱硫酵素をコード
する遺伝子を利用して製造することができる。また、配
列番号2、4、及び6に記載のアミノ酸配列により表さ
れる脱硫酵素は、Paenibacillus sp. A11-1 株(FERM P
-15751) 又はA11-2(FERM P-15752) 株から常法に従って
調製することも可能である。
であるベンゾチオフェンを脱硫できないが、本発明の第
一、第二、及び第三のタンパク質では脱硫可能である。 (ロ)DszA、DszB、DszCは、常温領域で脱硫活性を示す
が、本発明の第一、第二、及び第三のタンパク質は高温
領域で脱硫活性を示す。 本発明の脱硫酵素は、上述の本発明の脱硫酵素をコード
する遺伝子を利用して製造することができる。また、配
列番号2、4、及び6に記載のアミノ酸配列により表さ
れる脱硫酵素は、Paenibacillus sp. A11-1 株(FERM P
-15751) 又はA11-2(FERM P-15752) 株から常法に従って
調製することも可能である。
【0030】本発明の第一タンパク質に包含される一タ
ンパク質の性質を以下に示す。 (1) 作用:ジベンゾチオフェンスルホンを2−(2’−
ヒドロキシフェニル)ベンゼンスルフィン酸にする (2) pH特性:図6に示す通り、至適pHは5.5 、安定pHは
5〜10である。 (3) 温度特性:図7に示す通り、至適温度は45℃であ
る。 (4) 分子量:120,000 (ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:NADH、FMN が必要、NADPH はNADH
の代替になるが、FAD はFMN の代替にならない
ンパク質の性質を以下に示す。 (1) 作用:ジベンゾチオフェンスルホンを2−(2’−
ヒドロキシフェニル)ベンゼンスルフィン酸にする (2) pH特性:図6に示す通り、至適pHは5.5 、安定pHは
5〜10である。 (3) 温度特性:図7に示す通り、至適温度は45℃であ
る。 (4) 分子量:120,000 (ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:NADH、FMN が必要、NADPH はNADH
の代替になるが、FAD はFMN の代替にならない
【0031】本発明の第二タンパク質に包含される一タ
ンパク質の性質を以下に示す。 (1) 作用:2−(2’−ヒドロキシフェニル)ベンゼン
スルフィン酸を2−ヒドロキシビフェニルにする (2) pH特性:図8に示す通り、至適pHは8、安定pHは5.
5 〜9.5 である。 (3) 温度特性:図9に示す通り、至適温度は55℃であ
る。 (4) 分子量:31,000(ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:補酵素は必要としない
ンパク質の性質を以下に示す。 (1) 作用:2−(2’−ヒドロキシフェニル)ベンゼン
スルフィン酸を2−ヒドロキシビフェニルにする (2) pH特性:図8に示す通り、至適pHは8、安定pHは5.
5 〜9.5 である。 (3) 温度特性:図9に示す通り、至適温度は55℃であ
る。 (4) 分子量:31,000(ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:補酵素は必要としない
【0032】(5)トランスポザーゼをコードする遺伝
子 本発明のトランスポザーゼ遺伝子は、(a) 配列番号8記
載のアミノ酸配列により表されるタンパク質、(b) 配列
番号9記載のアミノ酸配列により表されるタンパク質、
又は(c) 配列番号8記載のアミノ酸配列若しくは配列番
号9記載のアミノ酸配列において1若しくは複数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、かつトランスポザーゼ活性を有するタンパク質
をコードするものである。
子 本発明のトランスポザーゼ遺伝子は、(a) 配列番号8記
載のアミノ酸配列により表されるタンパク質、(b) 配列
番号9記載のアミノ酸配列により表されるタンパク質、
又は(c) 配列番号8記載のアミノ酸配列若しくは配列番
号9記載のアミノ酸配列において1若しくは複数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、かつトランスポザーゼ活性を有するタンパク質
をコードするものである。
【0033】本発明のトランスポザーゼ遺伝子のうち、
配列番号8及び9記載のアミノ酸配列をコードする遺伝
子については、配列番号7に示すように、既に決定され
ているので、これらの配列を基に適当なプライマーを合
成し、Paenibacillus sp. A11-1 株(FERM P-15751) 又
はA11-2(FERM P-15752) 株から調製されたDNA を鋳型と
してPCR を行うことによっても得ることができる。
配列番号8及び9記載のアミノ酸配列をコードする遺伝
子については、配列番号7に示すように、既に決定され
ているので、これらの配列を基に適当なプライマーを合
成し、Paenibacillus sp. A11-1 株(FERM P-15751) 又
はA11-2(FERM P-15752) 株から調製されたDNA を鋳型と
してPCR を行うことによっても得ることができる。
【0034】配列番号8又は9記載のアミノ酸配列にお
いて1若しくは複数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列をコードする遺伝子は、本願の
出願時において常用される技術、例えば、部位特異的変
異誘発法(Zoller et al., Nucleic Acids Res. 10 648
7-6500, 1982)により配列番号8又は9記載のアミノ酸
配列をコードする遺伝子を改変することにより得ること
ができる。
いて1若しくは複数個のアミノ酸が欠失、置換若しくは
付加されたアミノ酸配列をコードする遺伝子は、本願の
出願時において常用される技術、例えば、部位特異的変
異誘発法(Zoller et al., Nucleic Acids Res. 10 648
7-6500, 1982)により配列番号8又は9記載のアミノ酸
配列をコードする遺伝子を改変することにより得ること
ができる。
【0035】この遺伝子は、トランスポザーゼ活性を有
するので、この遺伝子を利用して任意の遺伝子単位をあ
るDNA 分子から別のDNA 分子に転移することが可能であ
る。なお、配列番号8又は9記載のアミノ酸配列により
表されるポリペプチドが、トランスポザーゼ活性を有す
ることは実験的に確認されているわけではないが、挿入
因子IS1202中のトランスポザーゼと一定の相同性を有す
ること、及び2つのポリペプチドのORF が、脱硫酵素群
のORF と逆向きで、かつ脱硫酵素群のORF を挟み込むよ
うな位置に存在すること(トランスポゾンに特有の構
造)、さらには配列番号8、9の両端にトランソポゾン
に特徴的な同方向繰り返し配列(DR)及び逆方向繰り返
し配列(IR)が存在することなどからこの2つのポリペ
プチドがトランスポザーゼ活性を有する可能性は非常に
高いものと推定される。
するので、この遺伝子を利用して任意の遺伝子単位をあ
るDNA 分子から別のDNA 分子に転移することが可能であ
る。なお、配列番号8又は9記載のアミノ酸配列により
表されるポリペプチドが、トランスポザーゼ活性を有す
ることは実験的に確認されているわけではないが、挿入
因子IS1202中のトランスポザーゼと一定の相同性を有す
ること、及び2つのポリペプチドのORF が、脱硫酵素群
のORF と逆向きで、かつ脱硫酵素群のORF を挟み込むよ
うな位置に存在すること(トランスポゾンに特有の構
造)、さらには配列番号8、9の両端にトランソポゾン
に特徴的な同方向繰り返し配列(DR)及び逆方向繰り返
し配列(IR)が存在することなどからこの2つのポリペ
プチドがトランスポザーゼ活性を有する可能性は非常に
高いものと推定される。
【0036】(6)トランスポザーゼ 本発明のトランスポザーゼは、(a) 配列番号8記載のア
ミノ酸配列により表されるタンパク質、(b) 配列番号9
記載のアミノ酸配列により表されるタンパク質、又は
(c) 配列番号8記載のアミノ酸配列若しくは配列番号9
記載のアミノ酸配列において1若しくは複数個のアミノ
酸が欠失、置換若しくは付加されたアミノ酸配列からな
り、かつトランスポザーゼ活性を有するタンパク質で示
される。本発明のトランスポザーゼは、上述の本発明の
トランスポザーゼをコードする遺伝子を利用して製造す
ることができる。
ミノ酸配列により表されるタンパク質、(b) 配列番号9
記載のアミノ酸配列により表されるタンパク質、又は
(c) 配列番号8記載のアミノ酸配列若しくは配列番号9
記載のアミノ酸配列において1若しくは複数個のアミノ
酸が欠失、置換若しくは付加されたアミノ酸配列からな
り、かつトランスポザーゼ活性を有するタンパク質で示
される。本発明のトランスポザーゼは、上述の本発明の
トランスポザーゼをコードする遺伝子を利用して製造す
ることができる。
【0037】
【実施例】以下、本発明を実施例により具体的に説明す
る。実施例中の遺伝子操作に関連した実験は、主にMani
atisらの成書(Sambrook,J., Fritsch, E., F. and Man
iatis, T. 1989. Molecular Cloning. A laboratory Ma
nual. 2nd. Cold Spring Harbor Laboratory Press, Co
ld Spring Harbor,NY.) に詳述されている方法に従って
行った。
る。実施例中の遺伝子操作に関連した実験は、主にMani
atisらの成書(Sambrook,J., Fritsch, E., F. and Man
iatis, T. 1989. Molecular Cloning. A laboratory Ma
nual. 2nd. Cold Spring Harbor Laboratory Press, Co
ld Spring Harbor,NY.) に詳述されている方法に従って
行った。
【0038】〔実施例1〕脱硫酵素をコードする遺伝子
断片のクローニング Paenibacillus sp. A11-2 株から精製したDBTO2 を2-(2
- ヒドロキシフェニル)ベンゼンスルフィン酸へと変換
する活性を有する蛋白質(以下「蛋白質A 」という)お
よび2-(2- ヒドロキシフェニル)ベンゼンスルフィン酸
を2-HBP へと変換する活性を有する蛋白質(以下「蛋白
質B 」という)のそれぞれについてアミノ末端のアミノ
酸配列を決定した。それらの配列を以下に示す。
断片のクローニング Paenibacillus sp. A11-2 株から精製したDBTO2 を2-(2
- ヒドロキシフェニル)ベンゼンスルフィン酸へと変換
する活性を有する蛋白質(以下「蛋白質A 」という)お
よび2-(2- ヒドロキシフェニル)ベンゼンスルフィン酸
を2-HBP へと変換する活性を有する蛋白質(以下「蛋白
質B 」という)のそれぞれについてアミノ末端のアミノ
酸配列を決定した。それらの配列を以下に示す。
【0039】 蛋白質A NH2-MXQMXLAGFFAAGNVTXXXGA-----COOH 蛋白質B NH2-TKSAIGPTRVAYSNXPVANXL-----COOH (アミノ酸は一文字記号により示してある。X は未同
定。) この二つの蛋白質のアミノ末端の配列は、以下に示すよ
うに常温脱硫菌であるRhodococcus sp. IGTS8 株のdsz
オペロンによりコードされるDszAおよびDszB蛋白質のア
ミノ末端の配列との間にある相同性が見いだされた。
定。) この二つの蛋白質のアミノ末端の配列は、以下に示すよ
うに常温脱硫菌であるRhodococcus sp. IGTS8 株のdsz
オペロンによりコードされるDszAおよびDszB蛋白質のア
ミノ末端の配列との間にある相同性が見いだされた。
【0040】 Paenibacillus sp. A11-2 株 蛋白質A MXQMXLAGFFAAGNVTXXXGA Rhodococcus sp. IGTS8 株 DszA MTQQTQMHAGFFSAGNVTHAHGA Paenibacillus sp. A11-2 株 蛋白質B TKSAIGPTRVAYSNXPVANXL Rhodococcus sp. IGTS8 株 DszB GSELDSAIRDT-LTYSNCPVPNAL Rhodococcus sp. IGTS8 株では、dszAとdszBとは、dszA
のコーディング配列の3'末端がdszBの5'末端と重複し、
異なるフレームで翻訳されることが知られている。DBT
の脱硫に関与する酵素をコードする遺伝子配列の構成
に、Paenibacillus sp. A11-2 株とRhodococcus sp. IG
TS8 株との間で何らかの類似性が存在する可能性が考え
られたので、上流側にあることが期待されるdszAの5'末
端側の配列のコーディング鎖をセンス鎖とし、下流側に
あることが期待されるdszBの5'末端側の配列の相補鎖を
アンチセンス鎖としてdszA全体を含むDNA フラグメント
を増幅することをまず試みた。
のコーディング配列の3'末端がdszBの5'末端と重複し、
異なるフレームで翻訳されることが知られている。DBT
の脱硫に関与する酵素をコードする遺伝子配列の構成
に、Paenibacillus sp. A11-2 株とRhodococcus sp. IG
TS8 株との間で何らかの類似性が存在する可能性が考え
られたので、上流側にあることが期待されるdszAの5'末
端側の配列のコーディング鎖をセンス鎖とし、下流側に
あることが期待されるdszBの5'末端側の配列の相補鎖を
アンチセンス鎖としてdszA全体を含むDNA フラグメント
を増幅することをまず試みた。
【0041】そこで、上記のアミノ酸配列をもとに蛋白
質A のアミノ末端配列に相当するPCR 用センスプライマ
ーを計4種、および蛋白質B のアミノ末端に対応するア
ンチセンスプライマーを計4種それぞれ設計・合成し
た。以下に、全プライマーのヌクレオチド配列を記述す
る。
質A のアミノ末端配列に相当するPCR 用センスプライマ
ーを計4種、および蛋白質B のアミノ末端に対応するア
ンチセンスプライマーを計4種それぞれ設計・合成し
た。以下に、全プライマーのヌクレオチド配列を記述す
る。
【0042】 センスプライマー DSZA-MIX 5'-GGN TTY TTY GCN GCN GGN AAY GTN AC-3' THDSA-SM3 5'-TTY GCN GCN GGN AAY GT-3' THDSA-SM4 5'-TTY TTY GCN GCN GGN AA-3' THDSA-SM5 5'-GCN GGN TTY TTY GCN GC-3'
【0043】 アンチセンスプライマー THDSB-AM2 5'-TAN GCN ACY CTN GTN GGN CCD ATN GC-3' THDSB-AM3 5'-TAN GCN ACY CTN GTN GG-3' THDSB-AM4 5'-TCR TTN ACN GCN GTY TC-3' THDSB-AM5 5'-ACY CTN GTN GGN CCD AT-3'
【0044】これらのセンスプライマーとアンチセンス
プライマーを種々組み合わせ、Paenibacillus sp. A11-
2 株から抽出したDNA を鋳型としてPCR を行った。Paen
ibacillus sp. A11-2 株からのDNA の調製は以下のよう
に行った。 DBT を含むA培地(組成は下表に示す通
り)で50℃で24時間培養したPaenibacillus sp. A11-2
株を、新鮮なDBT を含むA培地で50℃で24時間培養し
て、菌体を回収した。得られた菌体を1mlのB1緩衝液
(50mM EDTA, 50mM Tris-HCl, 0.5% Triton X-100, 0.2
mg/ml RNaseA, pH 8.0)に懸濁させた。この懸濁液に、
100mg/mlのリゾチーム溶液を20μl と20mg/ml のProtei
nase K溶液を45μl 添加して、37℃で10分間反応させ
た。反応液に0.35mlのB2緩衝液(800mM GuHCl, 20% Twe
en-20, pH 5.5 )を添加、攪拌混合して、50℃で30分間
反応させ、5秒間ミキサーで攪拌して、菌体反応液を調
製した。陰イオン交換樹脂が充填されたQIAGEN GENOMIC
-TIP20/G(QIAGEN社製)カラムを2mlのQBT 緩衝液(75
0mM NaCl, 50mM MOPS, 15% ethanol, 0.15% Triton X-1
00, pH7.0 )で平衡化して、菌体反応液をカラムに注入
した。カラムを3mlのQC緩衝液(1.0M NaCl, 50mM MOP
S, 15% ethanol, pH7.0)で洗浄したのち、2mlのQF緩
衝液(1.25M NaCl, 50mM Tris-HCl, 15% ethanol, pH
8.5)でゲノムDNA 溶液を溶出した。ゲノムDNA 溶液に
1.4ml のイソプロパノールを添加してDNA を沈殿させた
のち、ガラス棒で巻きとり回収した。回収したDNAを50
μl のTE緩衝液(10mM Tris-HCl, 1mM EDTA, pH8.0)に
溶解してゲノムDNA溶液を調製した。
プライマーを種々組み合わせ、Paenibacillus sp. A11-
2 株から抽出したDNA を鋳型としてPCR を行った。Paen
ibacillus sp. A11-2 株からのDNA の調製は以下のよう
に行った。 DBT を含むA培地(組成は下表に示す通
り)で50℃で24時間培養したPaenibacillus sp. A11-2
株を、新鮮なDBT を含むA培地で50℃で24時間培養し
て、菌体を回収した。得られた菌体を1mlのB1緩衝液
(50mM EDTA, 50mM Tris-HCl, 0.5% Triton X-100, 0.2
mg/ml RNaseA, pH 8.0)に懸濁させた。この懸濁液に、
100mg/mlのリゾチーム溶液を20μl と20mg/ml のProtei
nase K溶液を45μl 添加して、37℃で10分間反応させ
た。反応液に0.35mlのB2緩衝液(800mM GuHCl, 20% Twe
en-20, pH 5.5 )を添加、攪拌混合して、50℃で30分間
反応させ、5秒間ミキサーで攪拌して、菌体反応液を調
製した。陰イオン交換樹脂が充填されたQIAGEN GENOMIC
-TIP20/G(QIAGEN社製)カラムを2mlのQBT 緩衝液(75
0mM NaCl, 50mM MOPS, 15% ethanol, 0.15% Triton X-1
00, pH7.0 )で平衡化して、菌体反応液をカラムに注入
した。カラムを3mlのQC緩衝液(1.0M NaCl, 50mM MOP
S, 15% ethanol, pH7.0)で洗浄したのち、2mlのQF緩
衝液(1.25M NaCl, 50mM Tris-HCl, 15% ethanol, pH
8.5)でゲノムDNA 溶液を溶出した。ゲノムDNA 溶液に
1.4ml のイソプロパノールを添加してDNA を沈殿させた
のち、ガラス棒で巻きとり回収した。回収したDNAを50
μl のTE緩衝液(10mM Tris-HCl, 1mM EDTA, pH8.0)に
溶解してゲノムDNA溶液を調製した。
【0045】
【表2】
【0046】調製したPaenibacillus sp. A11-2 株DNA
を鋳型として用いて行ったPCR の条件は以下の通りであ
る。
を鋳型として用いて行ったPCR の条件は以下の通りであ
る。
【0047】アニーリング温度:44℃から66℃までの間
で 2℃間隔で温度を変えてPCR を行った。 PCR サイクル:95℃ 1min 1回 95℃ 1min ↓ 44-66℃ 1min この間を30回繰り返し 72℃ 5min ↑ 72℃ 7min 1回 DNA 増幅機:RobocyclerTM GRADIENT96 温度サイクラー(STRATAGENE社製)
で 2℃間隔で温度を変えてPCR を行った。 PCR サイクル:95℃ 1min 1回 95℃ 1min ↓ 44-66℃ 1min この間を30回繰り返し 72℃ 5min ↑ 72℃ 7min 1回 DNA 増幅機:RobocyclerTM GRADIENT96 温度サイクラー(STRATAGENE社製)
【0048】上記の条件でPCR を行った結果、アニーリ
ング温度が44〜50℃の時、数組のプライマーの組み合わ
せで約1.6kb の増幅フラグメントを与えることが確認さ
れた。この1.6kb のPCR 産物を、pCR-Script SK(+)ベク
ターを用いて大腸菌XL1-BlueMRF-Kanr 株にクローン化
した。クローン化DNA フラグメントの一部をシークエン
シングした結果、この1.6kb のDNA フラグメントは、精
製した蛋白質A のアミノ末端のアミノ酸配列および蛋白
質B のアミノ末端のアミノ酸配列をコードできるヌクレ
オチド配列を含んでいることが明らかとなった。しか
し、この増幅されたDNA フラグメントの配列は、アンチ
センスプライマーとして使用したヌクレオチド配列に対
応する蛋白質B のアミノ末端をコードするヌクレオチド
配列のさらに下流の配列を含んでいた。決定されたヌク
レオチド配列を調べると、その3'末端側の配列が、蛋白
質A のアミノ末端配列に対応するセンスプライマーに相
補的なヌクレオチド配列から成っていることが分かっ
た。これにより、蛋白質A のアミノ末端配列に対応する
センスプライマーが蛋白質B のアミノ末端配列をコード
するヌクレオチド配列よりも下流に存在するヌクレオチ
ド配列とアニーリングし、アンチセンスプライマーとし
て働いた結果、1.6kb のDNA フラグメントが増幅された
ことが確認された。
ング温度が44〜50℃の時、数組のプライマーの組み合わ
せで約1.6kb の増幅フラグメントを与えることが確認さ
れた。この1.6kb のPCR 産物を、pCR-Script SK(+)ベク
ターを用いて大腸菌XL1-BlueMRF-Kanr 株にクローン化
した。クローン化DNA フラグメントの一部をシークエン
シングした結果、この1.6kb のDNA フラグメントは、精
製した蛋白質A のアミノ末端のアミノ酸配列および蛋白
質B のアミノ末端のアミノ酸配列をコードできるヌクレ
オチド配列を含んでいることが明らかとなった。しか
し、この増幅されたDNA フラグメントの配列は、アンチ
センスプライマーとして使用したヌクレオチド配列に対
応する蛋白質B のアミノ末端をコードするヌクレオチド
配列のさらに下流の配列を含んでいた。決定されたヌク
レオチド配列を調べると、その3'末端側の配列が、蛋白
質A のアミノ末端配列に対応するセンスプライマーに相
補的なヌクレオチド配列から成っていることが分かっ
た。これにより、蛋白質A のアミノ末端配列に対応する
センスプライマーが蛋白質B のアミノ末端配列をコード
するヌクレオチド配列よりも下流に存在するヌクレオチ
ド配列とアニーリングし、アンチセンスプライマーとし
て働いた結果、1.6kb のDNA フラグメントが増幅された
ことが確認された。
【0049】決定されたDNA 配列からコードされるアミ
ノ酸配列を推定し、これとRhodococcus sp. IGTS8 株か
らクローニングされているdsz 遺伝子によりコードされ
る蛋白質のうち、DszAのアミノ末端側の配列およびDszB
のアミノ末端側の配列とを比較した。その結果、両者の
間に有意の相同性(それぞれ73%、61%)が存在するこ
とが確認された。Rhodococcus sp. IGTS8 の脱硫遺伝子
から構成されるdsz オペロンのDNA 配列との相同性が見
つかったことから、Paenibacillus sp. A11-2株からク
ローニングされたこのDNA 配列をプローブとして用いて
隣接するDNA 配列をさらクローニングすることにした。
ノ酸配列を推定し、これとRhodococcus sp. IGTS8 株か
らクローニングされているdsz 遺伝子によりコードされ
る蛋白質のうち、DszAのアミノ末端側の配列およびDszB
のアミノ末端側の配列とを比較した。その結果、両者の
間に有意の相同性(それぞれ73%、61%)が存在するこ
とが確認された。Rhodococcus sp. IGTS8 の脱硫遺伝子
から構成されるdsz オペロンのDNA 配列との相同性が見
つかったことから、Paenibacillus sp. A11-2株からク
ローニングされたこのDNA 配列をプローブとして用いて
隣接するDNA 配列をさらクローニングすることにした。
【0050】〔実施例2〕全DNA ライブラリーの作製 全DNA の調製方法は上記のPCR の鋳型として用いたDNA
の調製方法と同じである。 ライブラリーの作製方法 Paenibacillus sp. A11-2 株の全DNA ライブラリーは以
下のようにして作製した。Paenibacillus sp. A11-2 株
の全DNA 標品約 2μg を0.1 ユニットのSau3AIで各々20
分、30分、40分消化した後、消化物をフェノール−クロ
ロホルムで抽出しエタノール沈殿により回収した後、遠
心後得られたDNA 断片を8ユニットの子ウシ小腸由来の
アルカリ性ホスファターゼで、37℃60分間処理すること
により脱リン酸化を行った。アルカリ性ホスファターゼ
処理後フェノール−クロロホルム処理によりDNA を抽出
し、エタノール沈殿によりこれを回収した。得られたDN
A断片約 0.2μg をλDASHI/BamHI アーム約2μg と2
ユニットのT4DNA リガーゼ存在下に4℃18時間反応させ
た。反応混合物をGigapack II XL packaging Extractと
反応させることによりin vitroパッケージングを行い、
ファージライブラリーを作製した。パッケージング後の
ファージ液の力価は 2×106 pfu であった。
の調製方法と同じである。 ライブラリーの作製方法 Paenibacillus sp. A11-2 株の全DNA ライブラリーは以
下のようにして作製した。Paenibacillus sp. A11-2 株
の全DNA 標品約 2μg を0.1 ユニットのSau3AIで各々20
分、30分、40分消化した後、消化物をフェノール−クロ
ロホルムで抽出しエタノール沈殿により回収した後、遠
心後得られたDNA 断片を8ユニットの子ウシ小腸由来の
アルカリ性ホスファターゼで、37℃60分間処理すること
により脱リン酸化を行った。アルカリ性ホスファターゼ
処理後フェノール−クロロホルム処理によりDNA を抽出
し、エタノール沈殿によりこれを回収した。得られたDN
A断片約 0.2μg をλDASHI/BamHI アーム約2μg と2
ユニットのT4DNA リガーゼ存在下に4℃18時間反応させ
た。反応混合物をGigapack II XL packaging Extractと
反応させることによりin vitroパッケージングを行い、
ファージライブラリーを作製した。パッケージング後の
ファージ液の力価は 2×106 pfu であった。
【0051】〔実施例3〕全DNA ライブラリーのスクリ
ーニング ファージライブラリーのスクリーニングを行うためのDN
A プローブは以下のようにして作製した。実施例1に記
載したように、Paenibacillus sp. A11-2 株からDBT ス
ルホンを2-(2- ヒドロキシフェニル)ベンゼンスルフィ
ン酸へと変換する活性を有する蛋白質A および 2-(2-ヒ
ドロキシフェニル)ベンゼンスルフィン酸を2-ヒドロキ
シビフェニルへと変換する活性を有する蛋白質B をコー
ドすると考えられるDNA の塩基配列とRhodococcus sp.
IGTS8 株のdsz 遺伝子配列との間には相同性が認められ
る。相同性が高いRhodococcus sp. IGTS8 株のdszAの5'
端側の配列(120 番目から137 番目のヌクレオチド)を
センス鎖に、またdszBコーディング配列の5'端から 169
番目のヌクレオチドから 185番目のヌクレオチドまでの
配列の相補鎖をアンチセンス鎖に選択しPCR プライマー
を作製した。このプライマーを用いてPaenibacillus s
p. A11-2 株から調製したDNA を鋳型としたPCR を行う
ことにより、タンパク質Aをコードする領域の配列を増
幅させた。得られたPCR 産物を鋳型としてランダムプラ
イム法(マルチプライム法)によりジオキシゲニン(DI
G)で標識されたDSZAプローブを調製した。DIG 標識プロ
ーブの調製法は、Boehringer Mannheim 社のプロトコー
ルに従った。DIG 標識プローブの調製方法を以下に示
す。
ーニング ファージライブラリーのスクリーニングを行うためのDN
A プローブは以下のようにして作製した。実施例1に記
載したように、Paenibacillus sp. A11-2 株からDBT ス
ルホンを2-(2- ヒドロキシフェニル)ベンゼンスルフィ
ン酸へと変換する活性を有する蛋白質A および 2-(2-ヒ
ドロキシフェニル)ベンゼンスルフィン酸を2-ヒドロキ
シビフェニルへと変換する活性を有する蛋白質B をコー
ドすると考えられるDNA の塩基配列とRhodococcus sp.
IGTS8 株のdsz 遺伝子配列との間には相同性が認められ
る。相同性が高いRhodococcus sp. IGTS8 株のdszAの5'
端側の配列(120 番目から137 番目のヌクレオチド)を
センス鎖に、またdszBコーディング配列の5'端から 169
番目のヌクレオチドから 185番目のヌクレオチドまでの
配列の相補鎖をアンチセンス鎖に選択しPCR プライマー
を作製した。このプライマーを用いてPaenibacillus s
p. A11-2 株から調製したDNA を鋳型としたPCR を行う
ことにより、タンパク質Aをコードする領域の配列を増
幅させた。得られたPCR 産物を鋳型としてランダムプラ
イム法(マルチプライム法)によりジオキシゲニン(DI
G)で標識されたDSZAプローブを調製した。DIG 標識プロ
ーブの調製法は、Boehringer Mannheim 社のプロトコー
ルに従った。DIG 標識プローブの調製方法を以下に示
す。
【0052】得られたPCR 産物1μg (5μl )を沸騰
した熱湯中で10分間熱変性させ、塩を含んだ氷上で冷却
した。得られた変性DNA 溶液に、10μl のヘキサヌクレ
オチド混合液(0.5M Tris-HCl, 0.1M MgCl2, 1mM Dithi
oerythriol, 2mg/ml BSA, 3.143mg/ml Random Primer,
pH7.2 )、10μl のdNTP標識混合液(1mM dATP, 1mMdCT
P, 1mM dGTP, 0.65mM dTTP, 0.35mM DIG-dUTP, pH7.5
)、70μl の滅菌蒸留水及び5μl のKlenow酵素(10u
nits )を添加して、37℃で18時間反応させた。反応液
に、5μl の0.5M EDTA 溶液を添加して反応を停止させ
た。次に5μl の8M LiCl と275 μl 冷エタノール(−
20℃)を添加して、−80℃で30分間放置したのち、15,0
00rpm で30分間遠心を行い、DNA を沈殿させた。沈殿し
たDNA を冷70%(w/v) エタノールで洗浄後、吸引乾燥し
たのち、50μl のTE緩衝液に溶解して、DIG 標識プロー
ブを調製した。
した熱湯中で10分間熱変性させ、塩を含んだ氷上で冷却
した。得られた変性DNA 溶液に、10μl のヘキサヌクレ
オチド混合液(0.5M Tris-HCl, 0.1M MgCl2, 1mM Dithi
oerythriol, 2mg/ml BSA, 3.143mg/ml Random Primer,
pH7.2 )、10μl のdNTP標識混合液(1mM dATP, 1mMdCT
P, 1mM dGTP, 0.65mM dTTP, 0.35mM DIG-dUTP, pH7.5
)、70μl の滅菌蒸留水及び5μl のKlenow酵素(10u
nits )を添加して、37℃で18時間反応させた。反応液
に、5μl の0.5M EDTA 溶液を添加して反応を停止させ
た。次に5μl の8M LiCl と275 μl 冷エタノール(−
20℃)を添加して、−80℃で30分間放置したのち、15,0
00rpm で30分間遠心を行い、DNA を沈殿させた。沈殿し
たDNA を冷70%(w/v) エタノールで洗浄後、吸引乾燥し
たのち、50μl のTE緩衝液に溶解して、DIG 標識プロー
ブを調製した。
【0053】蛋白質A 遺伝子のスクリーニングは上述の
方法で調製したDIG 標識DSZAプローブを用い、Hybond N
+ メンブレンに転写されたプラークに対するプラークハ
イブリダイゼーションにより行った。ハイブリダイズす
るクローンの検出にはDIG-ELISA (Boehringer Mannhei
m)を用いた。ゲノムライブラリーより約2000個のファー
ジプラークをDSZAプローブを用いてスクリーニングした
ところ、 6個の陽性プラークが検出された。この 6個の
プラークについて単プラーク分離を行い、再度プラーク
ハイブリダイゼーションを行った結果、 4個の陽性プラ
ークが確認された。検出されたDSZAプローブ陽性プラー
クを用いてファージクローンを調製し、それらのクロー
ンからQIAGEN Lambda キットを用いてファージDNA を抽
出した。4個の陽性プラークを用いて調製したファージD
NA をEcoRI 、Notl、HindIII 、SaIIで切断し、図1に
示す制限酵素地図を作成した。さらに、これら 4種のフ
ァージDNA をEcoRI 、NotI、SalI、またはNotIとSalIを
用いて消化して得られたDNA 断片についてDSZAプローブ
を用いたサザーンプロット分析を行ったところ、No.2と
No.4クローンでは、約2kb のNotI-SalI 断片にハイブリ
ダイズすることが確認された。一方、No.3およびNo.6ク
ローンではハイブリダイゼーションは観察されなかっ
た。これらの制限酵素地図およびサザーンブロット分析
の結果から、No.3とNo.6のファージDNA については約6k
b の欠失組換えが起こったものであり、No.4のファージ
DNA の約8.7kb のEcoRI-HindIII 断片にdsz 遺伝子がコ
ードされているものと考えられた。各サブクローンDNA
を有する大腸菌のDBT 分解能を検定するためには以下の
ような培養を行った。サブクローンDNA を保有する大腸
菌XL1-Blue株を、M9培地(Sambrook等の成書Molecular
cloning Laboratory Manual 2nd に記載)に50μg の酵
母抽出物を加えたものに硫黄源としてそれぞれDBT、DBT
O2 、硫酸ナトリウムなどを添加した培地で、37℃で 1
週間培養した。また、対照株としてベクターpBluescrip
t II KS(+)のみを保有するXL1 Blue株を同様の条件で培
養した。LB培地(Sambrook等の成書Molecular cloning
(上述)に記載)で37℃、 1晩前培養を行い、得られた
前培養液を遠心し集菌した後菌体を66mMリン酸緩衝液で
洗浄し、最終的にM9改変培地(M9培地の硫酸塩を塩化物
に替えたもの)に懸濁した。1/100 容量の菌体懸濁液を
検定用の培地(M9改変培地に硫黄源としてDBT もしくは
DBTO2 を添加した培地)に添加し、37℃で48時間培養
後、定法に従い分解産物の抽出を行い、ガスクロマトグ
ラフィー分析を行った。その結果、No.4クローンについ
ては、DBT またはDBTO2 を唯一の硫黄源として含む培地
で培養した場合2-HBP が生成することが確認された。宿
主のXL1 Blue株はそのような変換活性はまったく示さな
かった。このことから、No.4クローンが有するクローン
化DNA はDBT から2-HBP への一連の変換反応を触媒する
活性をすべてコードできる配列を持っていることが証明
された。
方法で調製したDIG 標識DSZAプローブを用い、Hybond N
+ メンブレンに転写されたプラークに対するプラークハ
イブリダイゼーションにより行った。ハイブリダイズす
るクローンの検出にはDIG-ELISA (Boehringer Mannhei
m)を用いた。ゲノムライブラリーより約2000個のファー
ジプラークをDSZAプローブを用いてスクリーニングした
ところ、 6個の陽性プラークが検出された。この 6個の
プラークについて単プラーク分離を行い、再度プラーク
ハイブリダイゼーションを行った結果、 4個の陽性プラ
ークが確認された。検出されたDSZAプローブ陽性プラー
クを用いてファージクローンを調製し、それらのクロー
ンからQIAGEN Lambda キットを用いてファージDNA を抽
出した。4個の陽性プラークを用いて調製したファージD
NA をEcoRI 、Notl、HindIII 、SaIIで切断し、図1に
示す制限酵素地図を作成した。さらに、これら 4種のフ
ァージDNA をEcoRI 、NotI、SalI、またはNotIとSalIを
用いて消化して得られたDNA 断片についてDSZAプローブ
を用いたサザーンプロット分析を行ったところ、No.2と
No.4クローンでは、約2kb のNotI-SalI 断片にハイブリ
ダイズすることが確認された。一方、No.3およびNo.6ク
ローンではハイブリダイゼーションは観察されなかっ
た。これらの制限酵素地図およびサザーンブロット分析
の結果から、No.3とNo.6のファージDNA については約6k
b の欠失組換えが起こったものであり、No.4のファージ
DNA の約8.7kb のEcoRI-HindIII 断片にdsz 遺伝子がコ
ードされているものと考えられた。各サブクローンDNA
を有する大腸菌のDBT 分解能を検定するためには以下の
ような培養を行った。サブクローンDNA を保有する大腸
菌XL1-Blue株を、M9培地(Sambrook等の成書Molecular
cloning Laboratory Manual 2nd に記載)に50μg の酵
母抽出物を加えたものに硫黄源としてそれぞれDBT、DBT
O2 、硫酸ナトリウムなどを添加した培地で、37℃で 1
週間培養した。また、対照株としてベクターpBluescrip
t II KS(+)のみを保有するXL1 Blue株を同様の条件で培
養した。LB培地(Sambrook等の成書Molecular cloning
(上述)に記載)で37℃、 1晩前培養を行い、得られた
前培養液を遠心し集菌した後菌体を66mMリン酸緩衝液で
洗浄し、最終的にM9改変培地(M9培地の硫酸塩を塩化物
に替えたもの)に懸濁した。1/100 容量の菌体懸濁液を
検定用の培地(M9改変培地に硫黄源としてDBT もしくは
DBTO2 を添加した培地)に添加し、37℃で48時間培養
後、定法に従い分解産物の抽出を行い、ガスクロマトグ
ラフィー分析を行った。その結果、No.4クローンについ
ては、DBT またはDBTO2 を唯一の硫黄源として含む培地
で培養した場合2-HBP が生成することが確認された。宿
主のXL1 Blue株はそのような変換活性はまったく示さな
かった。このことから、No.4クローンが有するクローン
化DNA はDBT から2-HBP への一連の変換反応を触媒する
活性をすべてコードできる配列を持っていることが証明
された。
【0054】次に、クローン化されたPaenibacillus s
p. A11-2 株由来のDNA 全体の塩基配列を決定するため
に、欠失DNA のシリーズを作製した。DSZAプローブ陽性
ファージクローンNo.4から調製したDNA 約 0.2μg をEc
oRI とHindIII を用いて二重消化し、生じた二重消化物
の電気泳動を行い約 8.7kbの挿入DNA 断片を精製した。
このDNA 断片と、pBluescript II KS(+)をEcoRI とHind
III で処理して得た二重消化物を脱リン酸化したものと
を連結させ、得られたハイブリッドDNA を用いて大腸菌
XLI Blue株を形質転換した。得られたサブクローン(p4
EH) について制限酵素解析を行ったところ、挿入断片に
はKpnIおよびSacIの制限部位は存在しないことが確認さ
れたので、本挿入断片のシークェンシング用の欠失プラ
スミドの作製にはKpnI-HindIII、SacI-EcoRIの二重消化
の組み合わせを利用し、欠失はエキソヌクレアーゼ II
I、Mung bean nuclease、Klenowフラグメントを作用さ
せて行った。より具体的には、+鎖のシークェンシング
のためにはサブクローンDNA をSacIとEcoRI で切断して
得られたDNA 断片に対し、また−鎖のシークェンシング
のためにはKpnIとHindIII でそれぞれ切断して得られた
DNA 断片に対してエキソヌクレアーゼIII 処理を行った
後、Mung Bean NucleaseおよびDNA ポリメラーゼIのKl
enowフラグメントで処理することにより欠失変異DNA シ
リーズを作製した。欠失変異クローンのシークェンシン
グ反応はThermo Sequenase(Amersham)を用いて行い、AL
Fred(Pharmacia) により塩基配列を決定した。得られた
塩基配列データは、GENETYX-MAC/ATSQ v3.0 およびGENE
TYX-MAC v8.0を用いて解析した。
p. A11-2 株由来のDNA 全体の塩基配列を決定するため
に、欠失DNA のシリーズを作製した。DSZAプローブ陽性
ファージクローンNo.4から調製したDNA 約 0.2μg をEc
oRI とHindIII を用いて二重消化し、生じた二重消化物
の電気泳動を行い約 8.7kbの挿入DNA 断片を精製した。
このDNA 断片と、pBluescript II KS(+)をEcoRI とHind
III で処理して得た二重消化物を脱リン酸化したものと
を連結させ、得られたハイブリッドDNA を用いて大腸菌
XLI Blue株を形質転換した。得られたサブクローン(p4
EH) について制限酵素解析を行ったところ、挿入断片に
はKpnIおよびSacIの制限部位は存在しないことが確認さ
れたので、本挿入断片のシークェンシング用の欠失プラ
スミドの作製にはKpnI-HindIII、SacI-EcoRIの二重消化
の組み合わせを利用し、欠失はエキソヌクレアーゼ II
I、Mung bean nuclease、Klenowフラグメントを作用さ
せて行った。より具体的には、+鎖のシークェンシング
のためにはサブクローンDNA をSacIとEcoRI で切断して
得られたDNA 断片に対し、また−鎖のシークェンシング
のためにはKpnIとHindIII でそれぞれ切断して得られた
DNA 断片に対してエキソヌクレアーゼIII 処理を行った
後、Mung Bean NucleaseおよびDNA ポリメラーゼIのKl
enowフラグメントで処理することにより欠失変異DNA シ
リーズを作製した。欠失変異クローンのシークェンシン
グ反応はThermo Sequenase(Amersham)を用いて行い、AL
Fred(Pharmacia) により塩基配列を決定した。得られた
塩基配列データは、GENETYX-MAC/ATSQ v3.0 およびGENE
TYX-MAC v8.0を用いて解析した。
【0055】次に、クローン化されたPaenibacillus s
p. A11-2 株由来の脱硫酵素遺伝子上流領域(トランス
ポザーゼ下流領域)の塩基配列を決定するために、欠失
DNA のシリーズを作製した。DSZAプローブ陽性ファージ
クローンNo.2から調製したDNA約0.2 μg をNotIを用い
て消化した消化物と、pBluescript II KS(+)をNotIで処
理して得た消化物を脱リン酸化したものを連結させ、得
られたハイブリッドDNAを用いて大腸菌JM109 株を形質
転換した。20個の単コロニー分離を行い、それぞれの形
質転換体よりプラスミドDNA を抽出して、NotI処理によ
る制限解析を行うことにより、約3kb のNotI断片を挿入
したサブクローンpBS2N2及びpBS2N3を取得した。pBS2N2
及びpBS2N3は約3kb のNotI断片の挿入方向が互いに逆の
サブクローンである。pBS2N2及びpBS2N3について、Kpn
I、HpaI、NruI、PstI及びXhoIを用いて欠失DNA シリー
ズを作製した。欠失クローンのシーケンシング反応はTh
ermo Sequenase (Amersham) を用いて行い、ALFred (Ph
armacia)により塩基配列を決定した。得られた塩基配列
データは、GENETYX-MAC/ATSQ v3.0 及びGENETYX-MAC v
8.0を用いて解析した。
p. A11-2 株由来の脱硫酵素遺伝子上流領域(トランス
ポザーゼ下流領域)の塩基配列を決定するために、欠失
DNA のシリーズを作製した。DSZAプローブ陽性ファージ
クローンNo.2から調製したDNA約0.2 μg をNotIを用い
て消化した消化物と、pBluescript II KS(+)をNotIで処
理して得た消化物を脱リン酸化したものを連結させ、得
られたハイブリッドDNAを用いて大腸菌JM109 株を形質
転換した。20個の単コロニー分離を行い、それぞれの形
質転換体よりプラスミドDNA を抽出して、NotI処理によ
る制限解析を行うことにより、約3kb のNotI断片を挿入
したサブクローンpBS2N2及びpBS2N3を取得した。pBS2N2
及びpBS2N3は約3kb のNotI断片の挿入方向が互いに逆の
サブクローンである。pBS2N2及びpBS2N3について、Kpn
I、HpaI、NruI、PstI及びXhoIを用いて欠失DNA シリー
ズを作製した。欠失クローンのシーケンシング反応はTh
ermo Sequenase (Amersham) を用いて行い、ALFred (Ph
armacia)により塩基配列を決定した。得られた塩基配列
データは、GENETYX-MAC/ATSQ v3.0 及びGENETYX-MAC v
8.0を用いて解析した。
【0056】決定された配列中のORF を探索した結果、
8.7kb の挿入DNA の中央部分に 1kb以上の長さのORF が
3個見つかった。これらのORF を5'側からORF 1, 2, 3
と命名した。この他に挿入DNA の端近くに1個ずつ互い
に相同的なORF が存在していた。ORF 1, 2, 3 は、各々
454個、 353個、 414個のアミノ酸をコードする。 ORF
1の翻訳終始コドンTGA とORF 2 の翻訳開始コドンATG
は、部分的に重なっており、5'-ATGA-3'という配列にな
っており、IGTS8 のdsz オペロン中の塩基配列と同様の
構成をしていることが確認された。これらのORF につい
てIGTS8 株のdsz 遺伝子との塩基配列相同性の解析を行
ったところ、ORF 1, 2, 3 は、それぞれIGTS8 株のdsz
A, B, C と約64%、54%、48%の相同性を示した。ま
た、Paenibacillus sp. A11-2 株遺伝子の塩基配列を基
礎としてそれらにコードされる蛋白質のアミノ酸配列を
推定したところ、ORF 1, 2, 3 によりコードされるポリ
ペプチドはそれぞれIGTS8 株のDszA、DszB、DszCと65
%、54%、52%の相同性を示した。
8.7kb の挿入DNA の中央部分に 1kb以上の長さのORF が
3個見つかった。これらのORF を5'側からORF 1, 2, 3
と命名した。この他に挿入DNA の端近くに1個ずつ互い
に相同的なORF が存在していた。ORF 1, 2, 3 は、各々
454個、 353個、 414個のアミノ酸をコードする。 ORF
1の翻訳終始コドンTGA とORF 2 の翻訳開始コドンATG
は、部分的に重なっており、5'-ATGA-3'という配列にな
っており、IGTS8 のdsz オペロン中の塩基配列と同様の
構成をしていることが確認された。これらのORF につい
てIGTS8 株のdsz 遺伝子との塩基配列相同性の解析を行
ったところ、ORF 1, 2, 3 は、それぞれIGTS8 株のdsz
A, B, C と約64%、54%、48%の相同性を示した。ま
た、Paenibacillus sp. A11-2 株遺伝子の塩基配列を基
礎としてそれらにコードされる蛋白質のアミノ酸配列を
推定したところ、ORF 1, 2, 3 によりコードされるポリ
ペプチドはそれぞれIGTS8 株のDszA、DszB、DszCと65
%、54%、52%の相同性を示した。
【0057】Paenibacillus sp. A11-2 株のORF でコー
ドされる蛋白質のアミノ酸配列とRhodococcus sp. IGTS
8 のdsz 配列でコードされる蛋白質のアミノ酸配列とを
比較すると、いくつかの点で特徴的な差異が見いだされ
る。まず、DszAとORF 1 でコードされる蛋白質A では、
アミノ末端およびカルボキシル末端での配列がまったく
異なっており、相同性の比較的高い内部のアミノ酸配列
と比較すると際だった対照を見せている。また、蛋白質
A の方がアミノ末端およびカルボキシル末端の両方で長
くなっている。DszBとORF 2 でコードされる蛋白質B の
アミノ酸配列については、これとまったく異なってお
り、DszBのアミノ末端およびカルボキシル末端の配列の
方が蛋白質B の両末端より延びて長くなっており、特に
アミノ末端側の配列には相同性が認められない。DszCと
ORF 3 でコードされる蛋白質C のアミノ酸配列を比較す
ると、全長のサイズはほとんど同じであるが、アミノ末
端側の配列が全く異なっている。
ドされる蛋白質のアミノ酸配列とRhodococcus sp. IGTS
8 のdsz 配列でコードされる蛋白質のアミノ酸配列とを
比較すると、いくつかの点で特徴的な差異が見いだされ
る。まず、DszAとORF 1 でコードされる蛋白質A では、
アミノ末端およびカルボキシル末端での配列がまったく
異なっており、相同性の比較的高い内部のアミノ酸配列
と比較すると際だった対照を見せている。また、蛋白質
A の方がアミノ末端およびカルボキシル末端の両方で長
くなっている。DszBとORF 2 でコードされる蛋白質B の
アミノ酸配列については、これとまったく異なってお
り、DszBのアミノ末端およびカルボキシル末端の配列の
方が蛋白質B の両末端より延びて長くなっており、特に
アミノ末端側の配列には相同性が認められない。DszCと
ORF 3 でコードされる蛋白質C のアミノ酸配列を比較す
ると、全長のサイズはほとんど同じであるが、アミノ末
端側の配列が全く異なっている。
【0058】塩基配列が決定された約8kb のDNA 中、 O
RF 1、 ORF 2、 ORF 3の一連の配列の上流に 1個のORF
が、下流には 2個のORF が見つかった。上流のORF と最
下流のORF は長さがともに約1kb で、完全な相同性を示
し、それによりコードされるポリペプチドは挿入因子IS
1202中のトランスポザーゼとアミノ酸レベルで約30%の
相同性を有することが確認された。このトランスポザー
ゼをコードするORF は脱硫遺伝子のORF とは逆の方向に
位置していた。挿入因子様の配列で脱硫活性をコードす
る一連の ORFが挟まれている事実は、これらのDNA 配列
が一種のトランスポゾンを形成している可能性を示唆す
るものである。さら、もう一つ最下流の挿入因子様配列
と脱硫活性をコードする一連のORF との間に見つかった
約0.6kbのORF は、炭酸脱水酵素カルボニックアンヒド
ラーゼとの間で約40%の相同性を示すアミノ酸配列をコ
ードすることも分かった。
RF 1、 ORF 2、 ORF 3の一連の配列の上流に 1個のORF
が、下流には 2個のORF が見つかった。上流のORF と最
下流のORF は長さがともに約1kb で、完全な相同性を示
し、それによりコードされるポリペプチドは挿入因子IS
1202中のトランスポザーゼとアミノ酸レベルで約30%の
相同性を有することが確認された。このトランスポザー
ゼをコードするORF は脱硫遺伝子のORF とは逆の方向に
位置していた。挿入因子様の配列で脱硫活性をコードす
る一連の ORFが挟まれている事実は、これらのDNA 配列
が一種のトランスポゾンを形成している可能性を示唆す
るものである。さら、もう一つ最下流の挿入因子様配列
と脱硫活性をコードする一連のORF との間に見つかった
約0.6kbのORF は、炭酸脱水酵素カルボニックアンヒド
ラーゼとの間で約40%の相同性を示すアミノ酸配列をコ
ードすることも分かった。
【0059】〔実施例4〕脱硫能欠損株Paenibacillus
sp. M18 株の分離とその性質の解析 Paenibacillus sp. A11-2 株をアクリジンオレンジで処
理し、DBT 分解能を喪失した変異株M18 株を分離した。
まず、A11-2 株を 2×YT培地で50℃、一夜培養し、得ら
れた終夜培養液0.1ml を30μg/mlのアクリジンオレンジ
を含む5ml の 2×YT培地に植菌し、50℃、一夜培養し
た。菌体を遠心分離で回収し、 A培地で 1回洗浄した。
洗浄菌体を A培地0.1ml に懸濁し、これを 2mlの 2×YT
培地に植菌し、50℃で 4時間培養した。菌液を 2×YT寒
天培地に塗布し、50℃で一夜培養した。生じたコロニー
を、DBT を唯一の硫黄源とした A培地に植菌し、DBT 利
用能を調べ、DBT 利用能欠損株(M18 株)を得た。変異
株M18 がDBT 類に対する分解活性を失っていることは、
DBT および種々のメチルDBT 誘導体を含む培地を用いて
該菌株を培養し、その増殖性を調べることにより確認さ
れた。まず、AYD 培地で一晩培養したM18 および親株の
A11-2 株を集菌後AY培地で 2回洗浄した後、AY培地に懸
濁した。直径18mmのネジ口試験管にAY培地 5mlを入れ、
その上に各有機硫黄化合物を硫黄濃度として50ppm 含む
n-テトラデカン 1mlを重層し、上記の方法で調製した菌
体懸濁液 100μl を加え50℃で 1日培養した。培養後、
6規定の塩酸を 100μl 添加し、攪拌した後酢酸エチル
1mlを用いて抽出処理を行い、得られた酢酸エチル-n-
テトラデカン層についてガスクロマトグラフィーおよび
ガスクロマトグラフィー/質量分析を行った。分析の結
果、調べられた有機硫黄化合物すべてについてM18 株は
唯一の硫黄源として利用できず、また分解性も示さない
ことが確認された。常温脱硫菌のRhodococcus sp. IGTS
8 株ではDBT →DBTO→DBTO2 →2-(2- ヒドロキシフェニ
ル)ベンゼンスルフィン酸→2-HBP +亜硫酸塩という経
路でDBT が分解される(Oldfield, C., Pogrebinsky,
O., Simmonds,J., Olson, E.S. and Kulpa, C. F. Micr
obiology, 143:2961-2973, 1997)。2-(2- ヒドロキシフ
ェニル)ベンゼンスルフィン酸は環状化するとDBT スル
チンを与えることが知られている(Olson, E.S., Stanl
ey, D.C. and Gallagher, J.R.Energy & Fuels 7:159-1
64, 1993)。さらに、Rhodococcus sp. IGTS8 株は、Dsz
Aの酵素作用によりレダクターゼと共同してDBT スルト
ンを2-HBP と亜硫酸塩に変換することも報告されている
(Oldfield, C.,Pogrebinsky, O.,Simmonds, J.,Olson,
E.S. and Kulpa, C.F. Microbiology, 143:2961-2973,
1997) 。この経路の中間代謝物を唯一の硫黄源として
含む培地を用いてM18 株による硫黄源として利用および
生物変換を調べたが、DBTO、DBTO2 、DBT スルチン、DB
T スルトンすべてを硫黄源として利用できず、また変換
する活性も検出されなかった。これらの結果を総合して
考えると、M18 株ではDBT を分解して2-HBP を生成する
分解反応経路に関与する一連の酵素活性がすべて失われ
ていると考えられている。
sp. M18 株の分離とその性質の解析 Paenibacillus sp. A11-2 株をアクリジンオレンジで処
理し、DBT 分解能を喪失した変異株M18 株を分離した。
まず、A11-2 株を 2×YT培地で50℃、一夜培養し、得ら
れた終夜培養液0.1ml を30μg/mlのアクリジンオレンジ
を含む5ml の 2×YT培地に植菌し、50℃、一夜培養し
た。菌体を遠心分離で回収し、 A培地で 1回洗浄した。
洗浄菌体を A培地0.1ml に懸濁し、これを 2mlの 2×YT
培地に植菌し、50℃で 4時間培養した。菌液を 2×YT寒
天培地に塗布し、50℃で一夜培養した。生じたコロニー
を、DBT を唯一の硫黄源とした A培地に植菌し、DBT 利
用能を調べ、DBT 利用能欠損株(M18 株)を得た。変異
株M18 がDBT 類に対する分解活性を失っていることは、
DBT および種々のメチルDBT 誘導体を含む培地を用いて
該菌株を培養し、その増殖性を調べることにより確認さ
れた。まず、AYD 培地で一晩培養したM18 および親株の
A11-2 株を集菌後AY培地で 2回洗浄した後、AY培地に懸
濁した。直径18mmのネジ口試験管にAY培地 5mlを入れ、
その上に各有機硫黄化合物を硫黄濃度として50ppm 含む
n-テトラデカン 1mlを重層し、上記の方法で調製した菌
体懸濁液 100μl を加え50℃で 1日培養した。培養後、
6規定の塩酸を 100μl 添加し、攪拌した後酢酸エチル
1mlを用いて抽出処理を行い、得られた酢酸エチル-n-
テトラデカン層についてガスクロマトグラフィーおよび
ガスクロマトグラフィー/質量分析を行った。分析の結
果、調べられた有機硫黄化合物すべてについてM18 株は
唯一の硫黄源として利用できず、また分解性も示さない
ことが確認された。常温脱硫菌のRhodococcus sp. IGTS
8 株ではDBT →DBTO→DBTO2 →2-(2- ヒドロキシフェニ
ル)ベンゼンスルフィン酸→2-HBP +亜硫酸塩という経
路でDBT が分解される(Oldfield, C., Pogrebinsky,
O., Simmonds,J., Olson, E.S. and Kulpa, C. F. Micr
obiology, 143:2961-2973, 1997)。2-(2- ヒドロキシフ
ェニル)ベンゼンスルフィン酸は環状化するとDBT スル
チンを与えることが知られている(Olson, E.S., Stanl
ey, D.C. and Gallagher, J.R.Energy & Fuels 7:159-1
64, 1993)。さらに、Rhodococcus sp. IGTS8 株は、Dsz
Aの酵素作用によりレダクターゼと共同してDBT スルト
ンを2-HBP と亜硫酸塩に変換することも報告されている
(Oldfield, C.,Pogrebinsky, O.,Simmonds, J.,Olson,
E.S. and Kulpa, C.F. Microbiology, 143:2961-2973,
1997) 。この経路の中間代謝物を唯一の硫黄源として
含む培地を用いてM18 株による硫黄源として利用および
生物変換を調べたが、DBTO、DBTO2 、DBT スルチン、DB
T スルトンすべてを硫黄源として利用できず、また変換
する活性も検出されなかった。これらの結果を総合して
考えると、M18 株ではDBT を分解して2-HBP を生成する
分解反応経路に関与する一連の酵素活性がすべて失われ
ていると考えられている。
【0060】〔実施例5〕組換えDNA 中のORF によりコ
ードされるタンパク質による脱硫活性の証明 クローン化されたDNA が脱硫活性、すなわちDBT の分解
活性を発現するための遺伝的本体であることを確認する
ために、大腸菌内で働く強力なプロモーターであるPtac
の下流にORF 1, 2, 3 すべてを含むDNA 断片および各々
それらの一部を含む配列を配置した組換えプラスミドを
作製し、得られた組換えプラスミドで大腸菌JM109 株を
形質転換した。以下に各種組換えプラスミドの作製方法
を詳細に調べる。Paenibacillus sp. A11-2 株DNA 由来
の8.7kb のEcoRI-HindIII フラグメントをphagemidベク
ターpBleuscriptII KS(+) にクローン化して得られた組
換えDNA p4EHをClaIとSmaIで二重消化し、得られたClaI
-HindIII断片を同様にClaIとHindIII でpBleuscript II
KS(+)を切断して得られた大きな方のフラグメントと連
結し、組換えDNA pB14を作製した。次に、pB14をXbaIと
KpnIで二重消化して、クローン化されたPaenibacillus
sp. A11-2 株由来のDNA 全体を含むDNA 断片を回収し、
これをpHSG298 プラスミドをXbaIとKpnIで二重消化して
得られた大きな断片と連結して組換えDNA pSKR6 を作製
した。このpSKR6 をEcoRI とHindIIIで二重消化し、発
現ベクターのpKK223-3のEcoRI-HindIII 部位に挿入し、
発現プラスミドpSKR7 を作製した。このpSKR7 により大
腸菌JM109 株を形質転換し、形質転換株#121(pSKR7) を
得た。このpSKR7 では、IGTS8 株のdsz オペロンの最も
5'側にあるdszAに相当すると考えられるORF 1 の開始コ
ドンに相当すると推測されるATG 配列がpKK223-3上の発
現プロモーターPtacの下流に配置されているShine-Dalg
arno(SD)配列と約50bp離れている。大腸菌での種々の大
腸菌由来および外来の遺伝子の発現実験の結果、SD配列
と開始コドンATG の間の距離はその遺伝子の翻訳効率に
大きな影響を与えることが分かっている(例えば、Horw
ich, A, Koop, A.H. and Eckhart, W. Mol. Cell. Bio
l. 2:88-92, 1982; Gheysen, D., Iserentant, D., Der
om, C. and Fiers, W. Gene 17:55-63, 1982 に記載さ
れている)。そこで、SD配列とATG 開始コドンの間の距
離を短くするために、dszAのORF の直前にあるClaIサイ
ト(5'-ATCGAT-3'; この3'側にG があり、開始コドンAT
G 配列を構成している)およびEcoRI サイトでプラスミ
ドpSKR7 を切断し、生じた粘着末端をT4DNA ポリメラー
ゼで処理することにより平滑化したのち、ライゲーショ
ンを行い再環状化した。この処理により、SD配列と開始
ATG の間の距離は11bpとなった。この組換えプラスミド
で大腸菌JM109 を形質転換し、得られた形質転換株を#3
61株と命名した。
ードされるタンパク質による脱硫活性の証明 クローン化されたDNA が脱硫活性、すなわちDBT の分解
活性を発現するための遺伝的本体であることを確認する
ために、大腸菌内で働く強力なプロモーターであるPtac
の下流にORF 1, 2, 3 すべてを含むDNA 断片および各々
それらの一部を含む配列を配置した組換えプラスミドを
作製し、得られた組換えプラスミドで大腸菌JM109 株を
形質転換した。以下に各種組換えプラスミドの作製方法
を詳細に調べる。Paenibacillus sp. A11-2 株DNA 由来
の8.7kb のEcoRI-HindIII フラグメントをphagemidベク
ターpBleuscriptII KS(+) にクローン化して得られた組
換えDNA p4EHをClaIとSmaIで二重消化し、得られたClaI
-HindIII断片を同様にClaIとHindIII でpBleuscript II
KS(+)を切断して得られた大きな方のフラグメントと連
結し、組換えDNA pB14を作製した。次に、pB14をXbaIと
KpnIで二重消化して、クローン化されたPaenibacillus
sp. A11-2 株由来のDNA 全体を含むDNA 断片を回収し、
これをpHSG298 プラスミドをXbaIとKpnIで二重消化して
得られた大きな断片と連結して組換えDNA pSKR6 を作製
した。このpSKR6 をEcoRI とHindIIIで二重消化し、発
現ベクターのpKK223-3のEcoRI-HindIII 部位に挿入し、
発現プラスミドpSKR7 を作製した。このpSKR7 により大
腸菌JM109 株を形質転換し、形質転換株#121(pSKR7) を
得た。このpSKR7 では、IGTS8 株のdsz オペロンの最も
5'側にあるdszAに相当すると考えられるORF 1 の開始コ
ドンに相当すると推測されるATG 配列がpKK223-3上の発
現プロモーターPtacの下流に配置されているShine-Dalg
arno(SD)配列と約50bp離れている。大腸菌での種々の大
腸菌由来および外来の遺伝子の発現実験の結果、SD配列
と開始コドンATG の間の距離はその遺伝子の翻訳効率に
大きな影響を与えることが分かっている(例えば、Horw
ich, A, Koop, A.H. and Eckhart, W. Mol. Cell. Bio
l. 2:88-92, 1982; Gheysen, D., Iserentant, D., Der
om, C. and Fiers, W. Gene 17:55-63, 1982 に記載さ
れている)。そこで、SD配列とATG 開始コドンの間の距
離を短くするために、dszAのORF の直前にあるClaIサイ
ト(5'-ATCGAT-3'; この3'側にG があり、開始コドンAT
G 配列を構成している)およびEcoRI サイトでプラスミ
ドpSKR7 を切断し、生じた粘着末端をT4DNA ポリメラー
ゼで処理することにより平滑化したのち、ライゲーショ
ンを行い再環状化した。この処理により、SD配列と開始
ATG の間の距離は11bpとなった。この組換えプラスミド
で大腸菌JM109 を形質転換し、得られた形質転換株を#3
61株と命名した。
【0061】直径18mmのねじ口試験管にLB-Amp-DBT培地
(1L中にBacto polypeptone 10g 、Bacto 酵母抽出物5
g、NaCl 10g、アンピシリン50mg、DBT 100mg を含む)6
ml を分注して、同培地で終夜培養した#361株懸濁液を
1%接種した後、37℃で培養した。培養開始後 2時間毎
に計2本の試験管を取り出し、それぞれ 1本の試験管に
含まれる培養液全体を酢酸エチル1.2ml で抽出しガスク
ロマトグラフィーを用いて分析・定量した。培養液の濁
度も培養開始後 2時間おきに分光光度計を用いて測定し
た。その結果、 4〜8 時間の培養の間DBT の減少が確認
され、培地中にDBT の代謝産物である2-HBP が生成して
いることも確認された。図3は、この培養におけるDBT
の減少およびDBT 代謝産物の生成を示し、各数値は2本
の試験管について得られた分析値の平均で示してある。
培養 4〜6 時間DBT の減少が顕著なことから、 6時間お
よび 8時間培養した菌体を使用して、無細胞抽出系での
活性の検討を行うことにした。
(1L中にBacto polypeptone 10g 、Bacto 酵母抽出物5
g、NaCl 10g、アンピシリン50mg、DBT 100mg を含む)6
ml を分注して、同培地で終夜培養した#361株懸濁液を
1%接種した後、37℃で培養した。培養開始後 2時間毎
に計2本の試験管を取り出し、それぞれ 1本の試験管に
含まれる培養液全体を酢酸エチル1.2ml で抽出しガスク
ロマトグラフィーを用いて分析・定量した。培養液の濁
度も培養開始後 2時間おきに分光光度計を用いて測定し
た。その結果、 4〜8 時間の培養の間DBT の減少が確認
され、培地中にDBT の代謝産物である2-HBP が生成して
いることも確認された。図3は、この培養におけるDBT
の減少およびDBT 代謝産物の生成を示し、各数値は2本
の試験管について得られた分析値の平均で示してある。
培養 4〜6 時間DBT の減少が顕著なことから、 6時間お
よび 8時間培養した菌体を使用して、無細胞抽出系での
活性の検討を行うことにした。
【0062】無細胞抽出液の調製は以下のようにして行
った。50mg/ml のアンピシリンを含むLB培地(LB-Amp培
地)100ml に同培地を用いて作製した 1mlの#361株の終
夜培養液を接種して、37℃で 6時間または 8時間培養し
た。培養菌体を集菌・洗浄した後、OD660 が25となるよ
うにTH緩衝液(50mM Tris-HCl, 1mM PMSF, 10%グリセロ
ール, pH7.0)に懸濁した。菌体懸濁液を超音波破砕機で
10分間2回処理し、得られた菌体破砕液を11,000rpm 、
60分遠心分離し、無細胞抽出液を調製した。無細胞抽出
液系の反応は以下のようにして行った。調製した無細胞
抽出液0.7ml に脱硫活性を示さないPaenibacillus sp.
A11-2 株の変異株M18 株を用いて同様に調製した無細胞
抽出液0.3ml 、3mM NADH、10μM FMN 、DBT ( 約50ppm)
を添加して、37℃または50℃で 4時間回転振盪を行うこ
とにより反応を行った。得られた反応液を定法に従って
抽出し、ガスクロマトグラフィーによりDBT およびDBT
代謝物の分析を行った。また、OD660 25に調整した菌体
懸濁液の一部を使用して休止菌体反応も行った。休止菌
体反応は1ml の菌体懸濁液に終濃度約50ppm のDBTを添
加して、37℃で 5時間反応を行った。得られた反応液を
定法に従って抽出しガスクロマトグラフィーにより分析
した。
った。50mg/ml のアンピシリンを含むLB培地(LB-Amp培
地)100ml に同培地を用いて作製した 1mlの#361株の終
夜培養液を接種して、37℃で 6時間または 8時間培養し
た。培養菌体を集菌・洗浄した後、OD660 が25となるよ
うにTH緩衝液(50mM Tris-HCl, 1mM PMSF, 10%グリセロ
ール, pH7.0)に懸濁した。菌体懸濁液を超音波破砕機で
10分間2回処理し、得られた菌体破砕液を11,000rpm 、
60分遠心分離し、無細胞抽出液を調製した。無細胞抽出
液系の反応は以下のようにして行った。調製した無細胞
抽出液0.7ml に脱硫活性を示さないPaenibacillus sp.
A11-2 株の変異株M18 株を用いて同様に調製した無細胞
抽出液0.3ml 、3mM NADH、10μM FMN 、DBT ( 約50ppm)
を添加して、37℃または50℃で 4時間回転振盪を行うこ
とにより反応を行った。得られた反応液を定法に従って
抽出し、ガスクロマトグラフィーによりDBT およびDBT
代謝物の分析を行った。また、OD660 25に調整した菌体
懸濁液の一部を使用して休止菌体反応も行った。休止菌
体反応は1ml の菌体懸濁液に終濃度約50ppm のDBTを添
加して、37℃で 5時間反応を行った。得られた反応液を
定法に従って抽出しガスクロマトグラフィーにより分析
した。
【0063】6時間および 8時間培養した#361株菌体か
ら得られた無細胞抽出液を用いて37℃および50℃でDBT
を基質として反応を行ったときの結果を図4に示す。ま
た、8時間培養菌体については、同時に調べた休止菌体
反応系でのDBT 分解活性も示してある。図4に示すよう
に、37℃での反応において、無細胞抽出液系および休止
菌体系の両方でDBT を基質として2-HBP が生成する反応
が進行していることが認められ脱硫活性が確認された。
また、無細胞抽出液反応系では、50℃でのDBTからの2-H
BP の生成、すなわち脱硫活性も明瞭に確認された。こ
れにより、クローニングされたPaenibacillus sp. A11-
2 株DNA 由来のDNA フラグメントが実際に高温における
DBT 分解活性を担っていることが証明された。親株のJM
109 株およびベクターpBluescript II KS(+)のみを含む
JM109 株を用いて#361株の場合と同様の方法で調製され
た無細胞抽出液を用いた場合は、2-HBP の生成はまった
く認められなかった。また、この♯361 株の無細胞抽出
物を用いると、50℃でもベンゾチオフェンからその脱硫
物であるo-ヒドロキシスチレンへの変換が確認された。
このことは高温におけるベンゾチオフェン分解活性も大
腸菌に導入されたA11-2 株のDNA に担われていることを
示している。
ら得られた無細胞抽出液を用いて37℃および50℃でDBT
を基質として反応を行ったときの結果を図4に示す。ま
た、8時間培養菌体については、同時に調べた休止菌体
反応系でのDBT 分解活性も示してある。図4に示すよう
に、37℃での反応において、無細胞抽出液系および休止
菌体系の両方でDBT を基質として2-HBP が生成する反応
が進行していることが認められ脱硫活性が確認された。
また、無細胞抽出液反応系では、50℃でのDBTからの2-H
BP の生成、すなわち脱硫活性も明瞭に確認された。こ
れにより、クローニングされたPaenibacillus sp. A11-
2 株DNA 由来のDNA フラグメントが実際に高温における
DBT 分解活性を担っていることが証明された。親株のJM
109 株およびベクターpBluescript II KS(+)のみを含む
JM109 株を用いて#361株の場合と同様の方法で調製され
た無細胞抽出液を用いた場合は、2-HBP の生成はまった
く認められなかった。また、この♯361 株の無細胞抽出
物を用いると、50℃でもベンゾチオフェンからその脱硫
物であるo-ヒドロキシスチレンへの変換が確認された。
このことは高温におけるベンゾチオフェン分解活性も大
腸菌に導入されたA11-2 株のDNA に担われていることを
示している。
【0064】Paenibacillus sp. A11-2 株由来の脱硫活
性を担っているDNA フラグメントは、 3つのORF を含み
その塩基配列からRhodococcus sp. のIGTS8 株およびRh
odococcus erythropolis KA2-5-1株からクローン化され
た脱硫遺伝子群と同様の遺伝子構成をしていることが推
測された。そこで、次に、#361株が有する組換えプラス
ミドを用いて種々の欠失DNA フラグメントを作製し、各
ORF のDBT 分解系における活性との関連性を調べた。OR
F 2 のATG 開始コドンの12bp上流にあるBsrIサイトとSD
配列の下流にあるEcoRI サイトで#121プラスミドを切断
して得られた線状DNA をT4DNA ポリメラーゼで処理し、
ついでT4DNA リガーゼを作用させて再環状化した組換え
プラスミドを作製した。このプラスミドで大腸菌JM109
を形質転換し、得られたPaenibacillus sp. A11-2 株由
来のクローン化DNA 上のORF 2 と3 を含む形質転換株を
#233と命名した。同様に、ORF 3 の直前にあるSacII サ
イトとSD配列の下流にあるEcoRI サイトを利用して、OR
F 3 のみを含む形質転換株#234を、また、BsrG1 サイト
とPstIサイトを利用してORF 2 のみを含む形質転換株#3
91を作製した。更に、♯361 形質転換株のORF3の内部に
あるPstIサイトとベクター由来のPstIサイトを利用して
ORF1とORF2を含む形質転換体株♯401 を作製した。これ
らの欠失DNA を有する形質転換株をそれぞれLB-Amp培地
で終夜培養し、その培養液50μl を終濃度50mg/lになる
ようにDBT またはDBTO2 またはDBT-スルチンを添加した
5mlのLB-Amp培地に接種し、一晩37℃で培養した。得ら
れた終夜培養液を 1mlの酢酸エチルで抽出し抽出物をガ
スクロマトグラフィーで分析・定量した。その結果を、
表3に示す。
性を担っているDNA フラグメントは、 3つのORF を含み
その塩基配列からRhodococcus sp. のIGTS8 株およびRh
odococcus erythropolis KA2-5-1株からクローン化され
た脱硫遺伝子群と同様の遺伝子構成をしていることが推
測された。そこで、次に、#361株が有する組換えプラス
ミドを用いて種々の欠失DNA フラグメントを作製し、各
ORF のDBT 分解系における活性との関連性を調べた。OR
F 2 のATG 開始コドンの12bp上流にあるBsrIサイトとSD
配列の下流にあるEcoRI サイトで#121プラスミドを切断
して得られた線状DNA をT4DNA ポリメラーゼで処理し、
ついでT4DNA リガーゼを作用させて再環状化した組換え
プラスミドを作製した。このプラスミドで大腸菌JM109
を形質転換し、得られたPaenibacillus sp. A11-2 株由
来のクローン化DNA 上のORF 2 と3 を含む形質転換株を
#233と命名した。同様に、ORF 3 の直前にあるSacII サ
イトとSD配列の下流にあるEcoRI サイトを利用して、OR
F 3 のみを含む形質転換株#234を、また、BsrG1 サイト
とPstIサイトを利用してORF 2 のみを含む形質転換株#3
91を作製した。更に、♯361 形質転換株のORF3の内部に
あるPstIサイトとベクター由来のPstIサイトを利用して
ORF1とORF2を含む形質転換体株♯401 を作製した。これ
らの欠失DNA を有する形質転換株をそれぞれLB-Amp培地
で終夜培養し、その培養液50μl を終濃度50mg/lになる
ようにDBT またはDBTO2 またはDBT-スルチンを添加した
5mlのLB-Amp培地に接種し、一晩37℃で培養した。得ら
れた終夜培養液を 1mlの酢酸エチルで抽出し抽出物をガ
スクロマトグラフィーで分析・定量した。その結果を、
表3に示す。
【0065】
【表3】
【0066】この表に示した各形質転換株によるDBT 代
謝産物の生成に関するデータからPaenibacillu sp A11-
2 株からクローン化されたDNA 中に存在していた 3つの
ORFのDBT 分解への関与が分かる。まず、#361、#233、#
234でDBT からDBTO2 が生成し、#391、#401、#421でDBT
からDBTO2 の生成が見られないことから、0RF 3 がDBT
からDBT02 を生成する活性を示すオキシゲナーゼをコ
ードすることが分かる。次に、#361、#401、#421でDBTO
2 からDBT-スルチンが生成し、#233、#234、#391でDBTO
2 からDBT-スルチンの生成が見られてないことから、OR
F1がDBTO2 からDBT-スルチンを生成する活性を示すオキ
シゲナーゼをコードすることが分かる。DBT-スルチンか
らの2-HBP の生成は、菌体を加えずにDBT-スルチンを唯
一の硫黄源として含む LB-Amp 培地のみを組換えクロー
ンと同様の条件で振とうした対照実験でもわずかである
が観察される。本発明者らは、種々の対照実験を行い、
これが酵素あるいは菌体が存在しない条件でも起こる自
発的な反応であることを確認している。従って、blank
で観察された程度の2-HBP の生成量をそれぞれの形質転
換体株を用いて測定された生成量から差し引いて補正す
る必要がある。このような補正を行った結果、#361、#2
33、#391、#401でDBT-スルチンから2-HBP が生成し、#2
34、#421でDBT-スルチンから2-HBP の生成がみられなか
った。このことから、ORF2がDBT-スルチンから2-HBP を
生成する活性を示すデスルフィナーゼをコードすること
がわかる。
謝産物の生成に関するデータからPaenibacillu sp A11-
2 株からクローン化されたDNA 中に存在していた 3つの
ORFのDBT 分解への関与が分かる。まず、#361、#233、#
234でDBT からDBTO2 が生成し、#391、#401、#421でDBT
からDBTO2 の生成が見られないことから、0RF 3 がDBT
からDBT02 を生成する活性を示すオキシゲナーゼをコ
ードすることが分かる。次に、#361、#401、#421でDBTO
2 からDBT-スルチンが生成し、#233、#234、#391でDBTO
2 からDBT-スルチンの生成が見られてないことから、OR
F1がDBTO2 からDBT-スルチンを生成する活性を示すオキ
シゲナーゼをコードすることが分かる。DBT-スルチンか
らの2-HBP の生成は、菌体を加えずにDBT-スルチンを唯
一の硫黄源として含む LB-Amp 培地のみを組換えクロー
ンと同様の条件で振とうした対照実験でもわずかである
が観察される。本発明者らは、種々の対照実験を行い、
これが酵素あるいは菌体が存在しない条件でも起こる自
発的な反応であることを確認している。従って、blank
で観察された程度の2-HBP の生成量をそれぞれの形質転
換体株を用いて測定された生成量から差し引いて補正す
る必要がある。このような補正を行った結果、#361、#2
33、#391、#401でDBT-スルチンから2-HBP が生成し、#2
34、#421でDBT-スルチンから2-HBP の生成がみられなか
った。このことから、ORF2がDBT-スルチンから2-HBP を
生成する活性を示すデスルフィナーゼをコードすること
がわかる。
【0067】〔実施例6〕 Paenibacillus sp. A11-2
株の培養 実施例1で使用したA培地と同様の組成の培地(150ml
)を500ml 容バッフル付き密栓ネジ口三角フラスコに
入れ、50mg/lのDBTとA11-2 株の培養菌液を加え、50℃
で回転振盪(120 rpm)をおこなった。一夜培養後、培
養液を4℃で遠心(5,000rpm、10min )して集菌した。
株の培養 実施例1で使用したA培地と同様の組成の培地(150ml
)を500ml 容バッフル付き密栓ネジ口三角フラスコに
入れ、50mg/lのDBTとA11-2 株の培養菌液を加え、50℃
で回転振盪(120 rpm)をおこなった。一夜培養後、培
養液を4℃で遠心(5,000rpm、10min )して集菌した。
【0068】〔実施例7〕 (1)蛋白質Aの精製 菌体(湿重量30g)を緩衝液A (20mM トリス塩酸, pH7.
5, 10%グリセロール、1mM ジチオスレイトール、1mMフ
ェニルメチルスルフォニルフルオライド)に懸濁し、超
音波破砕機(ブランソン、モデル450)で4℃で15分間、
3回破砕をおこなった。5,000g , 10分の遠心で未破砕菌
体を除いたのち、上清を100,000gで60分間遠心をおこな
った。得られた上清をフィルター濾過(0.22u孔径)し、
緩衝液B(20mMトリス塩酸、pH7.5, 10%グリセロール、
1mM ジチオスレイトール)で平衡化した陰イオン交換カ
ラム(ファルマシア社、ハイロードQ 26/10)にアプラ
イした。緩衝液Bで洗浄後、0.5M塩化ナトリウムを含む
緩衝液Bまでの塩化ナトリウムによるリニアグラジエン
ト溶出をおこなった。活性画分(0.35-0.4M塩化ナトリ
ウム溶出画分)を集めて限外濾過により濃縮した。緩衝
液Aで希釈後、硫酸アンモニウムを加えて、30%飽和とし
た。この溶液を硫酸アンモニウムを加えて30%飽和とし
た緩衝液Bで平衡化した疎水クロマトカラム(ファルマ
シア社、ハイロードフェニルセファロースHP)にアプラ
イした。活性画分を集めて限外濾過(ミリポア社、ウル
トラフリー15,分子量1万カット)により濃縮し、脱塩カ
ラム(ファルマシア社、PD-10)で脱塩した後、緩衝液
Bで平衡化した陰イオン交換カラム(バイオラッド社、
プロテインパックDEAE)にアプライした。活性画分を集
めて限外濾過により濃縮し、脱塩カラムで脱塩した後、
緩衝液C(10mMリン酸カリウム、pH7.1, 10%グリセロー
ル、1mMジチオスレイトール)で平衡化したヒドロキシ
アパタイトカラム(バイオラッド社、バイオゲルHPHT)
にアプライした。緩衝液Cで洗浄後、0.2Mまでのリン酸
カリウムによるリニアグラジエントで溶出された活性画
分を集めた。この結果、活性画分は電気泳動的に均一で
あることが確認された。
5, 10%グリセロール、1mM ジチオスレイトール、1mMフ
ェニルメチルスルフォニルフルオライド)に懸濁し、超
音波破砕機(ブランソン、モデル450)で4℃で15分間、
3回破砕をおこなった。5,000g , 10分の遠心で未破砕菌
体を除いたのち、上清を100,000gで60分間遠心をおこな
った。得られた上清をフィルター濾過(0.22u孔径)し、
緩衝液B(20mMトリス塩酸、pH7.5, 10%グリセロール、
1mM ジチオスレイトール)で平衡化した陰イオン交換カ
ラム(ファルマシア社、ハイロードQ 26/10)にアプラ
イした。緩衝液Bで洗浄後、0.5M塩化ナトリウムを含む
緩衝液Bまでの塩化ナトリウムによるリニアグラジエン
ト溶出をおこなった。活性画分(0.35-0.4M塩化ナトリ
ウム溶出画分)を集めて限外濾過により濃縮した。緩衝
液Aで希釈後、硫酸アンモニウムを加えて、30%飽和とし
た。この溶液を硫酸アンモニウムを加えて30%飽和とし
た緩衝液Bで平衡化した疎水クロマトカラム(ファルマ
シア社、ハイロードフェニルセファロースHP)にアプラ
イした。活性画分を集めて限外濾過(ミリポア社、ウル
トラフリー15,分子量1万カット)により濃縮し、脱塩カ
ラム(ファルマシア社、PD-10)で脱塩した後、緩衝液
Bで平衡化した陰イオン交換カラム(バイオラッド社、
プロテインパックDEAE)にアプライした。活性画分を集
めて限外濾過により濃縮し、脱塩カラムで脱塩した後、
緩衝液C(10mMリン酸カリウム、pH7.1, 10%グリセロー
ル、1mMジチオスレイトール)で平衡化したヒドロキシ
アパタイトカラム(バイオラッド社、バイオゲルHPHT)
にアプライした。緩衝液Cで洗浄後、0.2Mまでのリン酸
カリウムによるリニアグラジエントで溶出された活性画
分を集めた。この結果、活性画分は電気泳動的に均一で
あることが確認された。
【0069】(2)酵素活性の測定 3mM NADH, 10μM FMNを含む緩衝液(50mMトリス塩酸、p
H7.0)に酵素溶液を加え、さらにA11-2株をキュアリング
処理をおこなったDBT利用能欠損株M18株の無細胞抽出液
0.4mlを加えた。50℃で2分間プレインキュベーション
した後、DBTO2溶液(ジメチルホルムアミド溶液)を終
濃度50mg/lとなるように加えた(全溶液量1ml)。反応終
了後、6規定塩酸を10μlと酢酸エチル0.4mlを加え、よ
く混合した後、12000回転で3分間遠心し、上層(酢酸エ
チル層)をガスクロマトグラフィーによる分析に供し
た。各精製段階における酵素活性を表4に、また、種々
のpH及び温度における活性を図6及び図7に示す。
H7.0)に酵素溶液を加え、さらにA11-2株をキュアリング
処理をおこなったDBT利用能欠損株M18株の無細胞抽出液
0.4mlを加えた。50℃で2分間プレインキュベーション
した後、DBTO2溶液(ジメチルホルムアミド溶液)を終
濃度50mg/lとなるように加えた(全溶液量1ml)。反応終
了後、6規定塩酸を10μlと酢酸エチル0.4mlを加え、よ
く混合した後、12000回転で3分間遠心し、上層(酢酸エ
チル層)をガスクロマトグラフィーによる分析に供し
た。各精製段階における酵素活性を表4に、また、種々
のpH及び温度における活性を図6及び図7に示す。
【0070】
【表4】
【0071】〔実施例8〕 (1)蛋白質Bの精製 菌体(湿重量13g )を緩衝液A(20mM トリス塩酸, pH7.
5, 10%グリセロール、1mM ジチオスレイトール、1mMフ
ェニルメチルスルフォニルフルオライド)に懸濁し、超
音波破砕機(ブランソン、モデル450)で4℃で15分間、
3回破砕をおこなった。5,000g, 10分間の遠心で未破砕
菌体を除いた後、上清を100,000gで60分間遠心をおこな
った。得られた上清をフィルター濾過(ミリポアマイレ
クスGV,0.22μm,孔径)し、緩衝液B(20mMトリス塩酸、
pH7.5, 10%グリセロール、1mMジチオスレイトール)で
平衡化した陰イオン交換カラム(ファルマシア社、ハイ
ロードQ26/10)にアプライした。緩衝液Bで洗浄後、0.5
M塩化ナトリウムを含む緩衝液Bまでの塩化ナトリウムに
よるリニアグラジエント溶出をおこなった。活性画分
(0.15-0.2M塩化ナトリウム溶出画分)を集めて限外濾
過(ミリポア社、ウルトラフリー15, 分子量5000カッ
ト)により濃縮した。緩衝液Aで希釈後、硫酸アンモニ
ウムを加えて30%飽和とした。この溶液を、硫酸アンモ
ニウムを加えて30%飽和とした緩衝液Bで平衡化した疎
水クロマトカラム(ファルマシア社、ハイロードフェニ
ルセファロースHP)にアプライした。活性画分を集めて
限外濾過により濃縮し、脱塩カラム(ファルマシア社、
PD-10)で脱塩した後、緩衝液Bで平衡化した陰イオン
交換カラム(バイオラッド社、バイオスケールDEAE)に
アプライした。活性画分を濃縮脱塩後、緩衝液C(10mM
リン酸カリウム, pH7.1, 10%グリセロール、1mM ジチオ
スレイトール)で平衡化したヒドロキシアパタイトカラ
ム(バイオラッド社、バイオゲルHPHT)にアプライし
た。緩衝液Cで洗浄後、0.2Mまでのリン酸カリウムによ
るリニアグラジエント溶出により溶出された活性画分を
集め、緩衝液Bで平衡化した陰イオン交換カラム(ファ
ルマシア社、モノQHR5/5)にアプライした。緩衝液Bで
洗浄後、0.5M塩化ナトリウムを含む緩衝液Bまでの塩化
ナトリウムによるリニアグラジエント溶出をおこなっ
た。この結果、活性画分は電気泳動的に均一であること
が確認された。
5, 10%グリセロール、1mM ジチオスレイトール、1mMフ
ェニルメチルスルフォニルフルオライド)に懸濁し、超
音波破砕機(ブランソン、モデル450)で4℃で15分間、
3回破砕をおこなった。5,000g, 10分間の遠心で未破砕
菌体を除いた後、上清を100,000gで60分間遠心をおこな
った。得られた上清をフィルター濾過(ミリポアマイレ
クスGV,0.22μm,孔径)し、緩衝液B(20mMトリス塩酸、
pH7.5, 10%グリセロール、1mMジチオスレイトール)で
平衡化した陰イオン交換カラム(ファルマシア社、ハイ
ロードQ26/10)にアプライした。緩衝液Bで洗浄後、0.5
M塩化ナトリウムを含む緩衝液Bまでの塩化ナトリウムに
よるリニアグラジエント溶出をおこなった。活性画分
(0.15-0.2M塩化ナトリウム溶出画分)を集めて限外濾
過(ミリポア社、ウルトラフリー15, 分子量5000カッ
ト)により濃縮した。緩衝液Aで希釈後、硫酸アンモニ
ウムを加えて30%飽和とした。この溶液を、硫酸アンモ
ニウムを加えて30%飽和とした緩衝液Bで平衡化した疎
水クロマトカラム(ファルマシア社、ハイロードフェニ
ルセファロースHP)にアプライした。活性画分を集めて
限外濾過により濃縮し、脱塩カラム(ファルマシア社、
PD-10)で脱塩した後、緩衝液Bで平衡化した陰イオン
交換カラム(バイオラッド社、バイオスケールDEAE)に
アプライした。活性画分を濃縮脱塩後、緩衝液C(10mM
リン酸カリウム, pH7.1, 10%グリセロール、1mM ジチオ
スレイトール)で平衡化したヒドロキシアパタイトカラ
ム(バイオラッド社、バイオゲルHPHT)にアプライし
た。緩衝液Cで洗浄後、0.2Mまでのリン酸カリウムによ
るリニアグラジエント溶出により溶出された活性画分を
集め、緩衝液Bで平衡化した陰イオン交換カラム(ファ
ルマシア社、モノQHR5/5)にアプライした。緩衝液Bで
洗浄後、0.5M塩化ナトリウムを含む緩衝液Bまでの塩化
ナトリウムによるリニアグラジエント溶出をおこなっ
た。この結果、活性画分は電気泳動的に均一であること
が確認された。
【0072】(2)酵素活性の測定 緩衝液D(50mMトリス塩酸、pH7.0)の酵素溶液を加え、
50℃で2分間プレインキュベーションした後、スルチン
(N,Nジメチルフォルムアミド溶液)を終濃度50mg/lと
なるように加えた(全溶液量1ml)。反応終了後、6規
定塩酸を10μlと酢酸エチル0.4mlを加え、よく混合した
後、上層(酢酸エチル層)をガスクロマトグラフィー分
析に供した。活性の測定は精製した2-HBP を定量するこ
とによりおこなった。2-HBP による阻害をみるために
は、基質として2-フェニルベンゼンスルフィン酸ナトリ
ウム(エタノール溶液、終濃度50mg/l)を用い、生成す
るビフェニルを定量することにより活性を測定した。各
精製段階における酵素活性を表5に、また、種々のpH及
び温度における活性を図8及び図9に示す。
50℃で2分間プレインキュベーションした後、スルチン
(N,Nジメチルフォルムアミド溶液)を終濃度50mg/lと
なるように加えた(全溶液量1ml)。反応終了後、6規
定塩酸を10μlと酢酸エチル0.4mlを加え、よく混合した
後、上層(酢酸エチル層)をガスクロマトグラフィー分
析に供した。活性の測定は精製した2-HBP を定量するこ
とによりおこなった。2-HBP による阻害をみるために
は、基質として2-フェニルベンゼンスルフィン酸ナトリ
ウム(エタノール溶液、終濃度50mg/l)を用い、生成す
るビフェニルを定量することにより活性を測定した。各
精製段階における酵素活性を表5に、また、種々のpH及
び温度における活性を図8及び図9に示す。
【0073】
【表5】
【0074】
【発明の効果】本発明は、脱硫に関与する新規な遺伝子
及び酵素を提供する。これらの遺伝子及び酵素を利用す
ることにより、化石燃料中の硫黄を容易に遊離させるこ
とができるようになる。
及び酵素を提供する。これらの遺伝子及び酵素を利用す
ることにより、化石燃料中の硫黄を容易に遊離させるこ
とができるようになる。
【0075】
【配列表】 SEQUENCE LISTING <110> PETOLEUM ENERGY CENTER <120> DATSURYU KOUSOGUN WO KOHDOSURU IDENSHI <130> P98-0513 <160> 9 <170> PatentIn Ver. 2.0 <210> 1 <211> 9775 <212> DNA <213> Paenibacillus sp. <220> <221> CDS <222> (3031)..(4410) <400> 1 gcggccgcgt catcttgccg ccgctcgatg cggtttatcc gatcaatgca aaggacgcaa 60 ttcctccttc gcattcctgc ggggtcgaac cgtatcagcc gcaacggatg atttccaatg 120 aaatggccgc gatgctgatt tcgaccgtcg tgaatgagct gttttcgtcg aacgccattc 180 tcgtccatta tgtcaatttt aatgcaaaga ccgggaactg caggccggtt tatgcagaag 240 atgtggccgg cgccaataac gattccgctt cggtagcagc tgcgccgtat gaccaggaag 300 ctgactccgg actgcaatca agcgagagtg gccaactcca acatgatccg gacaatgctg 360 tatccccgtc tacaaaagag gaggacgctg aaatcctttc tgccgaggag cttcctgcgg 420 aacagggggg cgccgaggta gaggtcccgg aaagtggagt ggccggcgtt cgggagaatg 480 gtatcagggt aattcgcatc gaaccacttg acgagaaaca cgagaagacg caacacggat 540 acggggtacc tgtgctttat catctggaag acgggtccac gctccgtaag ttaattacgg 600 ggactcgact gagggacgct aaagcccgtg ttgaaaggct cagtcgcgat cctggcgacc 660 ggtggattga acgcaccgaa aacggactcg tgattgaaaa atcgtcgatc ggtcttgtcg 720 ggtaaggaaa attgggggcg tattttatgc ccctttttct ttttttataa gggtggaaat 780 atcgcgcaag ttaaggggga gcttgagcaa atgaaggtgg ataccgcaaa aattttcaag 840 aagtttaaga aggtcattga tacccgcgac atcaatcaca tggacaagca gctttacaat 900 tatttgcatc ttcatgcagg cttcatcgcg cattatgaca tctatggctt caaagagaca 960 tattccgata aagggtttct tgatttcatt gagcattttg agcagtgcta ttatttgtgc 1020 tacggtgaat acggagagtt taaccgcgaa ctgaaggaat atgtgctgca acatgcggag 1080 cagatccgcg ctgaatttgc ttataaggcg cagcaacatg aattgaaact gctccagaag 1140 ctggcggcaa agcacggcaa aatcatttcc gacgttgcga tgaaccaaga tcaagacatg 1200 acggctgctg tggtaccgat gtcgcttgcc gcgaacgggc aattggaatt tgcgctgtga 1260 taaatgggaa gggtggagca ttccactctt cctatttatc ttttcaaatt tcggcagcat 1320 accacaattt tagagttttg gttggacaat ggctgggtaa tatgtcaagc gtctgtgaaa 1380 atgtcaggtt aactgttcta tgaaaatgtc agggatgata gttgattaaa cagccgccgt 1440 cctcttgcag actagccgga tgctgtgcta cgctgtaact gcttgctgga gaatggtttt 1500 ctccagggat ggtttgcagc gggcttgcgg ggggacgcag gcgccgcttc ttttttggcc 1560 gttgttggcg ccggggtctg tgtggcctgt gtctccacac aaggccaggc ccgcccttga 1620 tcccacagcc acacttgtcc atccatgccg acacgcactt cgacgacgct cttcgcttcc 1680 cagcgcggaa caccggggac gggctttggc atgtagcatt tccctttcca gaagaacgtc 1740 tgcccgccgc tgatgcgccg gtattcccga cgcgtgaaga tatgctccaa aggcgtttcg 1800 ggcagcggcc ggtaggccgg ttcagcttct tgcggcgcga cggcaaactg acgattgtgc 1860 ttggcgataa gttccggtaa cacgcgattg gcttcctcca tcgtgcacac gttgcgcagc 1920 ctaagttcga tcaccaggcg atcctgaaag gtttgccaga gccgttcgat ccgtcctttg 1980 gcttggggtg acagcgcctc gatatgggta atgcccagat cggcgagggc ctgtccgaag 2040 gtggaaagcg acggcggctc accggccaat tcctgctcga gggttggctt gcccttgggc 2100 gggtgaaaaa tggagtgttg gtcgctgtag agcgcaagcg gtacgccttt gcgcctaagt 2160 ccctcgatca tgacggtcac gtagccctcc agtgtttcgg tcgggcggaa ggtggccgcg 2220 accacttccc cggtggcgtc atcgatgatg ccgtgcaggg tgagcatggg accgcgatcc 2280 tccagccagg catagggaga agcatcgatc tgccacagca tgcccgcctg aggtttgcgg 2340 ggccggggtc ggtgagcctt cggacgacgg cgcagccgcg cgggacgcaa cccgccttcc 2400 agcagaatgc ggcggaccga agagacgctt aaatggatgt tttcgtgttc ggccaacagc 2460 tcggcaaagt gggtggcatt gcttccgaag tagcgctcct gatacaggag cataacgcgt 2520 tgtttgagcg aatcggtcaa ggtgtgagcc ggcttacggc cccgattccc atgtgcgatc 2580 gcttgtgcac ctccgtgacg atatttggcc ttgagccgat acgcttgacg gacactgatg 2640 cccaggttgc gtgcaacatc ctgttccgtg agatggccgt cgatccattt ttcaatgacc 2700 ataacgcgtt tcagttcgtt ctttgtcaag gtgatctgct ccttgctcat actgacattt 2760 tctcggatca gttacaccct gacaatatca cagaacaaca acatgagtga ttgcgacggg 2820 ttgacaaaat gaatcctgaa cggtatactc cgattcataa atactaatca atttaatcgg 2880 gtttacctcg gctgactgga ccaccagagg ccctctgact ttgcggtaat tttgccggaa 2940 agcggggggc tttttctttt gcagaggagg gccgaaaaac agttttctgc tcctggatga 3000 ccattgaaga acattcacgc aggaacatac atg gga ggt gtt caa tcg atg cgt 3054 Met Gly Gly Val Gln Ser Met Arg 1 5 caa atg cat ctt gcc ggt ttt ttt gca gcg ggt aat gtg acc cat cac 3102 Gln Met His Leu Ala Gly Phe Phe Ala Ala Gly Asn Val Thr His His 10 15 20 cac ggg gca tgg cgt cac ccg aaa act gat aat ggt ttt ttg tct att 3150 His Gly Ala Trp Arg His Pro Lys Thr Asp Asn Gly Phe Leu Ser Ile 25 30 35 40 tct tgg tat caa cac atc gcc cgt aca ctc gag cgc ggc cgc ttt gac 3198 Ser Trp Tyr Gln His Ile Ala Arg Thr Leu Glu Arg Gly Arg Phe Asp 45 50 55 ctg ctc ttt ctg cct gac ggt ttg gct att tgg gat agc tac gga aac 3246 Leu Leu Phe Leu Pro Asp Gly Leu Ala Ile Trp Asp Ser Tyr Gly Asn 60 65 70 aat ctt gat gct gga ttg aga ttt gga ggc caa gga gcc gct ttt ctg 3294 Asn Leu Asp Ala Gly Leu Arg Phe Gly Gly Gln Gly Ala Ala Phe Leu 75 80 85 gat ccc gtc ccc gtg ctc gcc acc atg gct gcg gcc acg gag aga ctg 3342 Asp Pro Val Pro Val Leu Ala Thr Met Ala Ala Ala Thr Glu Arg Leu 90 95 100 ggc ctg ggg gcc acg att tcg aca acc tac tat cct cct tac cat gtg 3390 Gly Leu Gly Ala Thr Ile Ser Thr Thr Tyr Tyr Pro Pro Tyr His Val 105 110 115 120 gca aga gtg ttt gct acg ctg gat cac tta aca aaa gga agg gca gcc 3438 Ala Arg Val Phe Ala Thr Leu Asp His Leu Thr Lys Gly Arg Ala Ala 125 130 135 tgg aat gtc gtg acc tca ctc aac aac gcc gag gcc agg aac ttt ggg 3486 Trp Asn Val Val Thr Ser Leu Asn Asn Ala Glu Ala Arg Asn Phe Gly 140 145 150 tat gag gaa cac ctg gat cac gat agt cgg tac gac cgt gcc gat gag 3534 Tyr Glu Glu His Leu Asp His Asp Ser Arg Tyr Asp Arg Ala Asp Glu 155 160 165 ttt ctt gag att aca gat aaa ttg tgg agg agt tgg gat cag gat gca 3582 Phe Leu Glu Ile Thr Asp Lys Leu Trp Arg Ser Trp Asp Gln Asp Ala 170 175 180 ttg ctc ctc gac aaa aaa cag ggt ctt ttt gct gat ccc aga aag gtc 3630 Leu Leu Leu Asp Lys Lys Gln Gly Leu Phe Ala Asp Pro Arg Lys Val 185 190 195 200 cac tat att gat cac tcc gga acc tgg ttc tcc gtc cgg ggc ccg tta 3678 His Tyr Ile Asp His Ser Gly Thr Trp Phe Ser Val Arg Gly Pro Leu 205 210 215 caa gtc ccg cgg tcg cca cag ggt cgt cct gtc atc att cag gcg gga 3726 Gln Val Pro Arg Ser Pro Gln Gly Arg Pro Val Ile Ile Gln Ala Gly 220 225 230 tcc tcc gcc cgt gga aag aca ttt gct gct cgg tgg gca gaa gcc gtt 3774 Ser Ser Ala Arg Gly Lys Thr Phe Ala Ala Arg Trp Ala Glu Ala Val 235 240 245 ttc acc att gcg ccg aac cga gtc gcg atg cgg gcg ttt tac gaa gac 3822 Phe Thr Ile Ala Pro Asn Arg Val Ala Met Arg Ala Phe Tyr Glu Asp 250 255 260 ttg aaa aaa cag gta atc gcc gca gga cgc cgt ccc gag aat tgc aaa 3870 Leu Lys Lys Gln Val Ile Ala Ala Gly Arg Arg Pro Glu Asn Cys Lys 265 270 275 280 ata ctc cct gcc gtc att ccg att ctt ggc gat acg gag aag gaa gcg 3918 Ile Leu Pro Ala Val Ile Pro Ile Leu Gly Asp Thr Glu Lys Glu Ala 285 290 295 cgc gag cgg cag gaa gaa gtg aat cag cta gtg ata cca gaa gct ggt 3966 Arg Glu Arg Gln Glu Glu Val Asn Gln Leu Val Ile Pro Glu Ala Gly 300 305 310 ctc tct acc ctg tca agc cat tgc gga gtg gat ttt tcc cgc tat cct 4014 Leu Ser Thr Leu Ser Ser His Cys Gly Val Asp Phe Ser Arg Tyr Pro 315 320 325 ttg gat gct cca att cgt gag gtg ctg gat gcg gtc ggt gag gtg ggt 4062 Leu Asp Ala Pro Ile Arg Glu Val Leu Asp Ala Val Gly Glu Val Gly 330 335 340 ggg acg aga ggt ctt tta gag atg gtg gtg aaa ctg aca gag aca gaa 4110 Gly Thr Arg Gly Leu Leu Glu Met Val Val Lys Leu Thr Glu Thr Glu 345 350 355 360 aac tta acg ttg cgc gac cta ggg gtt cgc tat ggc tgg gta ctc gta 4158 Asn Leu Thr Leu Arg Asp Leu Gly Val Arg Tyr Gly Trp Val Leu Val 365 370 375 ccg cag ttg gtt gga acc ccg gag cag gtg gca ggg gag ttg gaa tct 4206 Pro Gln Leu Val Gly Thr Pro Glu Gln Val Ala Gly Glu Leu Glu Ser 380 385 390 ctg ttc aat gaa ccg gcg gcc gac ggc ttc gtg atc tct ccc tac tat 4254 Leu Phe Asn Glu Pro Ala Ala Asp Gly Phe Val Ile Ser Pro Tyr Tyr 395 400 405 ctg ccc ggc gct tac gag gaa ttt gtc gac aaa gtg gtt cct att ttg 4302 Leu Pro Gly Ala Tyr Glu Glu Phe Val Asp Lys Val Val Pro Ile Leu 410 415 420 cag gac cgg ggt ctt ttc aga cgg gag tat gaa ggg gat acc ttg cgc 4350 Gln Asp Arg Gly Leu Phe Arg Arg Glu Tyr Glu Gly Asp Thr Leu Arg 425 430 435 440 cag cat ctc ggt ctg gaa gac gtt agc gaa gcc gaa gaa gct gta cag 4398 Gln His Leu Gly Leu Glu Asp Val Ser Glu Ala Glu Glu Ala Val Gln 445 450 455 ggg gtg agc gaa tgagcacgct ctcagccatt ggcccgaccc gcgttgcgta 4450 Gly Val Ser Glu 460 tagtaattgt ccggttgcaa acgctttgct cgtggcctca cggacgggga agctagagcg 4510 tcaaggtgtt cttctctcgc agatcgcctt tgcccaaggg gcgacacatt ttgcgtatga 4570 tcatgcagcc tacacccgat ttggcggcga gataccaccg ctggtgagcg aagggctgcg 4630 tgctccgggg cggacacgtt tgttgggaat cacggttctg aagcctcgcc aagggtttta 4690 tgtgcattct gccggtaaga ttgcttcacc atcggatctt agagggcgcc gcatcggcct 4750 gagccgagct gcacagagga tccttttcgg ccatctgggc gaggaatatc ggaaccttgg 4810 cccttgggag caaacgctcg tcgccctggg atcgtgggaa gttcgagcgc tcaagcatac 4870 gttggcggcc ggcggtttga gactgaatga cgtcattgtt gaagatgttg aaaacccatg 4930 ggtggatgtc ccgcgaccta aactggatga cagtagggac ttcagctccc gagagttgtt 4990 tgctacggcg gttgaatggc agagtcaaca gttgaaaagc gggcaggtag acgccctgtt 5050 ttcctggctt ccctatgctg ccgagcttga acttcaaggt gtggctaagc cggtctttgc 5110 gttgacagga gaggagaatg cctgggcgag cgtttggacg gtcagcgcgg ctctagtgga 5170 gcgcaggccg gagatcgtcc aacgcttggt cgactccgtc gtggaggctg cgtcctgggc 5230 aaccgatcac gccaaggaga ccattgaaat ccatgccttg aaccttgggg tttccgtgaa 5290 ggccgtggag acgggatttg gcgaagggtt tcatagggac ctgcgaccgc ggctggatca 5350 ggcggctctg cgcattctgg agcagaccca gcaatttctt ttcgaccacg ggctgatcga 5410 ccggttggtg gatatagagc gttgggcggc ccccgaattt ctggacaacg catctttgtg 5470 aggaggagtt tttctaatga gaacaatcca tgccaattca tctgcagtcc gtgaagatca 5530 tcgtgcttta gacgtggcga cagaactggc caagacgttt cgtgtgaccg ttcgggaaag 5590 ggagcgtgcg gggggaaccc cgaaggcgga gcgcgacgcg attcgccgta gtggcctcct 5650 tactctactt atcagtaaag agcgcggggg actcggagaa agttggccga ccgtatacga 5710 agccatcgct gagattgcca gcgccgacgc ctcccttggg cacctgtttg gttatcattt 5770 ttcaaatttt gcctatgtgg atctctttgc ttcacctgag cagaaggctc gttggtatcc 5830 acaggctgtc cgcgagcgtt ggttccttgg gaatgcatcc agcgaaaaca atgcgcacgt 5890 tctggattgg cgtgtgacgg cgaccccgtt accggacggc agttatgaga tcaacgggac 5950 caaggccttt tgcagcggct cggccgatgc ggacaggttg cttgtgtttg ccgtcaccag 6010 cagggatcca aacggagatg gcaggatcgt cgcggcactc atcccctcgg atcgtgctgg 6070 ggttcaggta aatggcgatt gggacagcct gggtatgcgt caaaccgata gtgggagcgt 6130 tacattttcg ggtgtggtgg tctatcccga cgagttgctg gggacacccg gccaagtgac 6190 ggatgcgttt gcttccggtt cgaagcccag tctttggaca cccatcaccc aactgatctt 6250 tacccacctg tacctcggca ttgcccgtgg cgctcttgaa gaggccgctc actactcgag 6310 gtcccattcg agaccattta cactcgcagg ggtggagaaa gccaccgagg atccttatgt 6370 gctagcgatt tatggggaat ttgctgcaca acttcaggtc gcggaggctg gagcccgaga 6430 ggtggcgttg cgggttcagg aattgtggga gcggaatcac gtcactcctg agcagcgggg 6490 gcagttaatg gtacaagtgg ccagtgccaa aatcgtcgcc acgcgtttgg tgatcgaact 6550 gacaagccgt ctatatgaag cgatgggggc acgggctgca gcgagccgcc aattcggctt 6610 tgaccgcttt tggcgcgacg cgcgcacgca taccttacat gacccggtag cctataagat 6670 acgcgaagta ggaaactggt tcctcaatca ccggtttcca acccccagct tttactcttg 6730 aaatttagtg tgaatagatt tatttgagga tgggattggg ggtaacgccg gatgagatcg 6790 acattccagt tccacaaaat gtatctccaa cagatcggcc agcaacaccc ccgtcgcatc 6850 ctcgcgcaga tggaacgtgc tgtgactctc aagcattttc gcccagtagt aaagggtccg 6910 cttctcgatg tcccaacggt tccacgtcga acaacagggg atggccggaa tcttcaaaca 6970 ccacgttgag aaaatggacc aggaccgaag cctctcggtt ccatcatacc ccgggccgga 7030 caggttcact ctagtgccgg ataaataccg aagggctgcc ccttggatgt gaggcagccc 7090 gaaaaacatt ttccctgacg ggagttttca tcggcgtttc tcttatctcc gcccgagcag 7150 ttcgtcgcgg gtattcaccc ggcggctcaa taattggtgc gggcggcgca ggcggtttgt 7210 ctccacttca tatatatatc cgttgatgat ggtgtccttc ggaatcagcg ggtggttgcg 7270 caggtattcg acttgggcca cggtcgcctc gtccacattg tcaaaggtac ggaaccattt 7330 ttcgaaagct gccggctcgc tcagtaccag ctcggggagg gagggatcca acggaacccg 7390 ttccacgtct atgttgagtt tggcccggag accgtcgaca acttcccggc cgccggcggt 7450 catcatgccg cattcggtgt gattgatcac gatgatttct ttcgtcccga agaagttcag 7510 ggtgagggcc gccgagcgga tgacgtcgtc ggtcacaacc cctccggcat tgcggaacac 7570 atgggcatcc ccgggctgca gcccgagaat gtcttccacc ggaagtcgtt catccatgca 7630 ggccaggaca aacagccgca ggttattggg aatccccttc tgcctccgga gcacccattc 7690 ctcatgattt cggatcgctt cgtcaattcg ctcgctcaaa ctcatgatag ttccccctgt 7750 caagcgtctg tgaaaatgtc aggttaactg ttctatgaaa atgtcaggga tgatagttga 7810 ttaaacagcc gccgtcctct tgcagactag ccggatgctg tgctacgctg taactgcttg 7870 ctggagaatg gttttctcca gggatggttt gcagcgggct tgcgggggga cgcaggcgcc 7930 gcttcttttt tggccgttgt tggcgccggg gtctgtgtgg cctgtgtctc cacacaaggc 7990 caggcccgcc cttgatccca cagccacact tgtccatcca tgccgacacg cacttcgacg 8050 acgctcttcg cttcccagcg cggaacaccg gggacgggct ttggcatgta gcatttccct 8110 ttccagaaga acgtctgccc gccgctgatg cgccggtatt cccgacgcgt gaagatatgc 8170 tccaaaggcg tttcgggcag cggccggtag gccggttcag cttcttgcgg cgcgacggca 8230 aactgacgat tgtgcttggc gataagttcc ggtaacacgc gattggcttc ctccatcgtg 8290 cacacgttgc gcagcctaag ttcgatcacc aggcgatcct gaaaggtttg ccagagccgt 8350 tcgatccgtc ctttggcttg gggtgacagc gcctcgatat gggtaatgcc cagatcggcg 8410 agggcctgtc cgaaggtgga aagcgacggc ggctcaccgg ccaattcctg ctcgagggtt 8470 ggcttgccct tgggcgggtg aaaaatggag tgttggtcgc tgtagagcgc aagcggtacg 8530 cctttgcgcc taagtccctc gatcatgacg gtcacgtagc cctccagtgt ttcggtcggg 8590 cggaaggtgg ccgcgaccac ttccccggtg gcgtcatcga tgatgccgtg cagggtgagc 8650 atgggaccgc gatcctccag ccaggcatag ggagaagcat cgatctgcca cagcatgccc 8710 gcctgaggtt tgcggggccg gggtcggtga gccttcggac gacggcgcag ccgcgcggga 8770 cgcaacccgc cttccagcag aatgcggcgg accgaagaga cgcttaaatg gatgttttcg 8830 tgttcggcca acagctcggc aaagtgggtg gcattgcttc cgaagtagcg ctcctgatac 8890 aggagcataa cgcgttgttt gagcgaatcg gtcaaggtgt gagccggctt acggccccga 8950 ttcccatgtg cgatcgcttg tgcacctccg tgacgatatt tggccttgag ccgatacgct 9010 tgacggacac tgatgcccag gttgcgtgca acatcctgtt ccgtgagatg gccgtcgatc 9070 catttttcaa tgaccataac gcgtttcagt tcgttctttg tcaaggtgat ctgctccttg 9130 ctcatactga cattttctcg gatcagttac accctgacaa tatcacagaa caacaacaac 9190 aatggctggg taatattgac gatttttttt gcaaatgata cattaatagt attacaagct 9250 gttgtgattt tctttgtcgt tattaattcg acaaagaagg ggaatgtcgg tacgcttcaa 9310 ccgacgtata aataatgggc tttatttagc cgtggagaca ataggacacc taatttggtg 9370 tctttttgtg tttccgcggt ttttttatgc ccaaaaaagg aggtaatcga tattggcttc 9430 aaatcgtgaa gaagtgcgga gcgcggaaca gtatgtgttg gcggagctgc cccaagaatt 9490 gctcgatatt cgctcttatg atgagtacca catcaatttt tcgggcgggg cagacagctt 9550 ggccgtagcc attttgatga aatacggcta taaagtgccg ccggagaagc ttatcgatac 9610 cgtcgacctc gagggggggc ccggtaccca gcttttgttc cctttagtga gggttaattg 9670 cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa 9730 ttccacacaa catacgagcc gggagcataa agtgtaaagc ctggg 9775 <210> 2 <211> 460 <212> PRT <213> Paenibacillus sp. <400> 2 Met Gly Gly Val Gln Ser Met Arg Gln Met His Leu Ala Gly Phe Phe 1 5 10 15 Ala Ala Gly Asn Val Thr His His His Gly Ala Trp Arg His Pro Lys 20 25 30 Thr Asp Asn Gly Phe Leu Ser Ile Ser Trp Tyr Gln His Ile Ala Arg 35 40 45 Thr Leu Glu Arg Gly Arg Phe Asp Leu Leu Phe Leu Pro Asp Gly Leu 50 55 60 Ala Ile Trp Asp Ser Tyr Gly Asn Asn Leu Asp Ala Gly Leu Arg Phe 65 70 75 80 Gly Gly Gln Gly Ala Ala Phe Leu Asp Pro Val Pro Val Leu Ala Thr 85 90 95 Met Ala Ala Ala Thr Glu Arg Leu Gly Leu Gly Ala Thr Ile Ser Thr 100 105 110 Thr Tyr Tyr Pro Pro Tyr His Val Ala Arg Val Phe Ala Thr Leu Asp 115 120 125 His Leu Thr Lys Gly Arg Ala Ala Trp Asn Val Val Thr Ser Leu Asn 130 135 140 Asn Ala Glu Ala Arg Asn Phe Gly Tyr Glu Glu His Leu Asp His Asp 145 150 155 160 Ser Arg Tyr Asp Arg Ala Asp Glu Phe Leu Glu Ile Thr Asp Lys Leu 165 170 175 Trp Arg Ser Trp Asp Gln Asp Ala Leu Leu Leu Asp Lys Lys Gln Gly 180 185 190 Leu Phe Ala Asp Pro Arg Lys Val His Tyr Ile Asp His Ser Gly Thr 195 200 205 Trp Phe Ser Val Arg Gly Pro Leu Gln Val Pro Arg Ser Pro Gln Gly 210 215 220 Arg Pro Val Ile Ile Gln Ala Gly Ser Ser Ala Arg Gly Lys Thr Phe 225 230 235 240 Ala Ala Arg Trp Ala Glu Ala Val Phe Thr Ile Ala Pro Asn Arg Val 245 250 255 Ala Met Arg Ala Phe Tyr Glu Asp Leu Lys Lys Gln Val Ile Ala Ala 260 265 270 Gly Arg Arg Pro Glu Asn Cys Lys Ile Leu Pro Ala Val Ile Pro Ile 275 280 285 Leu Gly Asp Thr Glu Lys Glu Ala Arg Glu Arg Gln Glu Glu Val Asn 290 295 300 Gln Leu Val Ile Pro Glu Ala Gly Leu Ser Thr Leu Ser Ser His Cys 305 310 315 320 Gly Val Asp Phe Ser Arg Tyr Pro Leu Asp Ala Pro Ile Arg Glu Val 325 330 335 Leu Asp Ala Val Gly Glu Val Gly Gly Thr Arg Gly Leu Leu Glu Met 340 345 350 Val Val Lys Leu Thr Glu Thr Glu Asn Leu Thr Leu Arg Asp Leu Gly 355 360 365 Val Arg Tyr Gly Trp Val Leu Val Pro Gln Leu Val Gly Thr Pro Glu 370 375 380 Gln Val Ala Gly Glu Leu Glu Ser Leu Phe Asn Glu Pro Ala Ala Asp 385 390 395 400 Gly Phe Val Ile Ser Pro Tyr Tyr Leu Pro Gly Ala Tyr Glu Glu Phe 405 410 415 Val Asp Lys Val Val Pro Ile Leu Gln Asp Arg Gly Leu Phe Arg Arg 420 425 430 Glu Tyr Glu Gly Asp Thr Leu Arg Gln His Leu Gly Leu Glu Asp Val 435 440 445 Ser Glu Ala Glu Glu Ala Val Gln Gly Val Ser Glu 450 455 460 <210> 3 <211> 9775 <212> DNA <213> Paenibacillus sp. <221> CDS <222> (4410)..(5468) <400> 3 gcggccgcgt catcttgccg ccgctcgatg cggtttatcc gatcaatgca aaggacgcaa 60 ttcctccttc gcattcctgc ggggtcgaac cgtatcagcc gcaacggatg atttccaatg 120 aaatggccgc gatgctgatt tcgaccgtcg tgaatgagct gttttcgtcg aacgccattc 180 tcgtccatta tgtcaatttt aatgcaaaga ccgggaactg caggccggtt tatgcagaag 240 atgtggccgg cgccaataac gattccgctt cggtagcagc tgcgccgtat gaccaggaag 300 ctgactccgg actgcaatca agcgagagtg gccaactcca acatgatccg gacaatgctg 360 tatccccgtc tacaaaagag gaggacgctg aaatcctttc tgccgaggag cttcctgcgg 420 aacagggggg cgccgaggta gaggtcccgg aaagtggagt ggccggcgtt cgggagaatg 480 gtatcagggt aattcgcatc gaaccacttg acgagaaaca cgagaagacg caacacggat 540 acggggtacc tgtgctttat catctggaag acgggtccac gctccgtaag ttaattacgg 600 ggactcgact gagggacgct aaagcccgtg ttgaaaggct cagtcgcgat cctggcgacc 660 ggtggattga acgcaccgaa aacggactcg tgattgaaaa atcgtcgatc ggtcttgtcg 720 ggtaaggaaa attgggggcg tattttatgc ccctttttct ttttttataa gggtggaaat 780 atcgcgcaag ttaaggggga gcttgagcaa atgaaggtgg ataccgcaaa aattttcaag 840 aagtttaaga aggtcattga tacccgcgac atcaatcaca tggacaagca gctttacaat 900 tatttgcatc ttcatgcagg cttcatcgcg cattatgaca tctatggctt caaagagaca 960 tattccgata aagggtttct tgatttcatt gagcattttg agcagtgcta ttatttgtgc 1020 tacggtgaat acggagagtt taaccgcgaa ctgaaggaat atgtgctgca acatgcggag 1080 cagatccgcg ctgaatttgc ttataaggcg cagcaacatg aattgaaact gctccagaag 1140 ctggcggcaa agcacggcaa aatcatttcc gacgttgcga tgaaccaaga tcaagacatg 1200 acggctgctg tggtaccgat gtcgcttgcc gcgaacgggc aattggaatt tgcgctgtga 1260 taaatgggaa gggtggagca ttccactctt cctatttatc ttttcaaatt tcggcagcat 1320 accacaattt tagagttttg gttggacaat ggctgggtaa tatgtcaagc gtctgtgaaa 1380 atgtcaggtt aactgttcta tgaaaatgtc agggatgata gttgattaaa cagccgccgt 1440 cctcttgcag actagccgga tgctgtgcta cgctgtaact gcttgctgga gaatggtttt 1500 ctccagggat ggtttgcagc gggcttgcgg ggggacgcag gcgccgcttc ttttttggcc 1560 gttgttggcg ccggggtctg tgtggcctgt gtctccacac aaggccaggc ccgcccttga 1620 tcccacagcc acacttgtcc atccatgccg acacgcactt cgacgacgct cttcgcttcc 1680 cagcgcggaa caccggggac gggctttggc atgtagcatt tccctttcca gaagaacgtc 1740 tgcccgccgc tgatgcgccg gtattcccga cgcgtgaaga tatgctccaa aggcgtttcg 1800 ggcagcggcc ggtaggccgg ttcagcttct tgcggcgcga cggcaaactg acgattgtgc 1860 ttggcgataa gttccggtaa cacgcgattg gcttcctcca tcgtgcacac gttgcgcagc 1920 ctaagttcga tcaccaggcg atcctgaaag gtttgccaga gccgttcgat ccgtcctttg 1980 gcttggggtg acagcgcctc gatatgggta atgcccagat cggcgagggc ctgtccgaag 2040 gtggaaagcg acggcggctc accggccaat tcctgctcga gggttggctt gcccttgggc 2100 gggtgaaaaa tggagtgttg gtcgctgtag agcgcaagcg gtacgccttt gcgcctaagt 2160 ccctcgatca tgacggtcac gtagccctcc agtgtttcgg tcgggcggaa ggtggccgcg 2220 accacttccc cggtggcgtc atcgatgatg ccgtgcaggg tgagcatggg accgcgatcc 2280 tccagccagg catagggaga agcatcgatc tgccacagca tgcccgcctg aggtttgcgg 2340 ggccggggtc ggtgagcctt cggacgacgg cgcagccgcg cgggacgcaa cccgccttcc 2400 agcagaatgc ggcggaccga agagacgctt aaatggatgt tttcgtgttc ggccaacagc 2460 tcggcaaagt gggtggcatt gcttccgaag tagcgctcct gatacaggag cataacgcgt 2520 tgtttgagcg aatcggtcaa ggtgtgagcc ggcttacggc cccgattccc atgtgcgatc 2580 gcttgtgcac ctccgtgacg atatttggcc ttgagccgat acgcttgacg gacactgatg 2640 cccaggttgc gtgcaacatc ctgttccgtg agatggccgt cgatccattt ttcaatgacc 2700 ataacgcgtt tcagttcgtt ctttgtcaag gtgatctgct ccttgctcat actgacattt 2760 tctcggatca gttacaccct gacaatatca cagaacaaca acatgagtga ttgcgacggg 2820 ttgacaaaat gaatcctgaa cggtatactc cgattcataa atactaatca atttaatcgg 2880 gtttacctcg gctgactgga ccaccagagg ccctctgact ttgcggtaat tttgccggaa 2940 agcggggggc tttttctttt gcagaggagg gccgaaaaac agttttctgc tcctggatga 3000 ccattgaaga acattcacgc aggaacatac atgggaggtg ttcaatcgat gcgtcaaatg 3060 catcttgccg gtttttttgc agcgggtaat gtgacccatc accacggggc atggcgtcac 3120 ccgaaaactg ataatggttt tttgtctatt tcttggtatc aacacatcgc ccgtacactc 3180 gagcgcggcc gctttgacct gctctttctg cctgacggtt tggctatttg ggatagctac 3240 ggaaacaatc ttgatgctgg attgagattt ggaggccaag gagccgcttt tctggatccc 3300 gtccccgtgc tcgccaccat ggctgcggcc acggagagac tgggcctggg ggccacgatt 3360 tcgacaacct actatcctcc ttaccatgtg gcaagagtgt ttgctacgct ggatcactta 3420 acaaaaggaa gggcagcctg gaatgtcgtg acctcactca acaacgccga ggccaggaac 3480 tttgggtatg aggaacacct ggatcacgat agtcggtacg accgtgccga tgagtttctt 3540 gagattacag ataaattgtg gaggagttgg gatcaggatg cattgctcct cgacaaaaaa 3600 cagggtcttt ttgctgatcc cagaaaggtc cactatattg atcactccgg aacctggttc 3660 tccgtccggg gcccgttaca agtcccgcgg tcgccacagg gtcgtcctgt catcattcag 3720 gcgggatcct ccgcccgtgg aaagacattt gctgctcggt gggcagaagc cgttttcacc 3780 attgcgccga accgagtcgc gatgcgggcg ttttacgaag acttgaaaaa acaggtaatc 3840 gccgcaggac gccgtcccga gaattgcaaa atactccctg ccgtcattcc gattcttggc 3900 gatacggaga aggaagcgcg cgagcggcag gaagaagtga atcagctagt gataccagaa 3960 gctggtctct ctaccctgtc aagccattgc ggagtggatt tttcccgcta tcctttggat 4020 gctccaattc gtgaggtgct ggatgcggtc ggtgaggtgg gtgggacgag aggtctttta 4080 gagatggtgg tgaaactgac agagacagaa aacttaacgt tgcgcgacct aggggttcgc 4140 tatggctggg tactcgtacc gcagttggtt ggaaccccgg agcaggtggc aggggagttg 4200 gaatctctgt tcaatgaacc ggcggccgac ggcttcgtga tctctcccta ctatctgccc 4260 ggcgcttacg aggaatttgt cgacaaagtg gttcctattt tgcaggaccg gggtcttttc 4320 agacgggagt atgaagggga taccttgcgc cagcatctcg gtctggaaga cgttagcgaa 4380 gccgaagaag ctgtacaggg ggtgagcga atg agc acg ctc tca gcc att ggc 4433 Met Ser Thr Leu Ser Ala Ile Gly 1 5 ccg acc cgc gtt gcg tat agt aat tgt ccg gtt gca aac gct ttg ctc 4481 Pro Thr Arg Val Ala Tyr Ser Asn Cys Pro Val Ala Asn Ala Leu Leu 10 15 20 gtg gcc tca cgg acg ggg aag cta gag cgt caa ggt gtt ctt ctc tcg 4529 Val Ala Ser Arg Thr Gly Lys Leu Glu Arg Gln Gly Val Leu Leu Ser 25 30 35 40 cag atc gcc ttt gcc caa ggg gcg aca cat ttt gcg tat gat cat gca 4577 Gln Ile Ala Phe Ala Gln Gly Ala Thr His Phe Ala Tyr Asp His Ala 45 50 55 gcc tac acc cga ttt ggc ggc gag ata cca ccg ctg gtg agc gaa ggg 4625 Ala Tyr Thr Arg Phe Gly Gly Glu Ile Pro Pro Leu Val Ser Glu Gly 60 65 70 ctg cgt gct ccg ggg cgg aca cgt ttg ttg gga atc acg gtt ctg aag 4673 Leu Arg Ala Pro Gly Arg Thr Arg Leu Leu Gly Ile Thr Val Leu Lys 75 80 85 cct cgc caa ggg ttt tat gtg cat tct gcc ggt aag att gct tca cca 4721 Pro Arg Gln Gly Phe Tyr Val His Ser Ala Gly Lys Ile Ala Ser Pro 90 95 100 tcg gat ctt aga ggg cgc cgc atc ggc ctg agc cga gct gca cag agg 4769 Ser Asp Leu Arg Gly Arg Arg Ile Gly Leu Ser Arg Ala Ala Gln Arg 105 110 115 120 atc ctt ttc ggc cat ctg ggc gag gaa tat cgg aac ctt ggc cct tgg 4817 Ile Leu Phe Gly His Leu Gly Glu Glu Tyr Arg Asn Leu Gly Pro Trp 125 130 135 gag caa acg ctc gtc gcc ctg gga tcg tgg gaa gtt cga gcg ctc aag 4865 Glu Gln Thr Leu Val Ala Leu Gly Ser Trp Glu Val Arg Ala Leu Lys 140 145 150 cat acg ttg gcg gcc ggc ggt ttg aga ctg aat gac gtc att gtt gaa 4913 His Thr Leu Ala Ala Gly Gly Leu Arg Leu Asn Asp Val Ile Val Glu 155 160 165 gat gtt gaa aac cca tgg gtg gat gtc ccg cga cct aaa ctg gat gac 4961 Asp Val Glu Asn Pro Trp Val Asp Val Pro Arg Pro Lys Leu Asp Asp 170 175 180 agt agg gac ttc agc tcc cga gag ttg ttt gct acg gcg gtt gaa tgg 5009 Ser Arg Asp Phe Ser Ser Arg Glu Leu Phe Ala Thr Ala Val Glu Trp 185 190 195 200 cag agt caa cag ttg aaa agc ggg cag gta gac gcc ctg ttt tcc tgg 5057 Gln Ser Gln Gln Leu Lys Ser Gly Gln Val Asp Ala Leu Phe Ser Trp 205 210 215 ctt ccc tat gct gcc gag ctt gaa ctt caa ggt gtg gct aag ccg gtc 5105 Leu Pro Tyr Ala Ala Glu Leu Glu Leu Gln Gly Val Ala Lys Pro Val 220 225 230 ttt gcg ttg aca gga gag gag aat gcc tgg gcg agc gtt tgg acg gtc 5153 Phe Ala Leu Thr Gly Glu Glu Asn Ala Trp Ala Ser Val Trp Thr Val 235 240 245 agc gcg gct cta gtg gag cgc agg ccg gag atc gtc caa cgc ttg gtc 5201 Ser Ala Ala Leu Val Glu Arg Arg Pro Glu Ile Val Gln Arg Leu Val 250 255 260 gac tcc gtc gtg gag gct gcg tcc tgg gca acc gat cac gcc aag gag 5249 Asp Ser Val Val Glu Ala Ala Ser Trp Ala Thr Asp His Ala Lys Glu 265 270 275 280 acc att gaa atc cat gcc ttg aac ctt ggg gtt tcc gtg aag gcc gtg 5297 Thr Ile Glu Ile His Ala Leu Asn Leu Gly Val Ser Val Lys Ala Val 285 290 295 gag acg gga ttt ggc gaa ggg ttt cat agg gac ctg cga ccg cgg ctg 5345 Glu Thr Gly Phe Gly Glu Gly Phe His Arg Asp Leu Arg Pro Arg Leu 300 305 310 gat cag gcg gct ctg cgc att ctg gag cag acc cag caa ttt ctt ttc 5393 Asp Gln Ala Ala Leu Arg Ile Leu Glu Gln Thr Gln Gln Phe Leu Phe 315 320 325 gac cac ggg ctg atc gac cgg ttg gtg gat ata gag cgt tgg gcg gcc 5441 Asp His Gly Leu Ile Asp Arg Leu Val Asp Ile Glu Arg Trp Ala Ala 330 335 340 ccc gaa ttt ctg gac aac gca tct ttg tgaggaggag tttttctaat 5488 Pro Glu Phe Leu Asp Asn Ala Ser Leu 345 350 gagaacaatc catgccaatt catctgcagt ccgtgaagat catcgtgctt tagacgtggc 5548 gacagaactg gccaagacgt ttcgtgtgac cgttcgggaa agggagcgtg cggggggaac 5608 cccgaaggcg gagcgcgacg cgattcgccg tagtggcctc cttactctac ttatcagtaa 5668 agagcgcggg ggactcggag aaagttggcc gaccgtatac gaagccatcg ctgagattgc 5728 cagcgccgac gcctcccttg ggcacctgtt tggttatcat ttttcaaatt ttgcctatgt 5788 ggatctcttt gcttcacctg agcagaaggc tcgttggtat ccacaggctg tccgcgagcg 5848 ttggttcctt gggaatgcat ccagcgaaaa caatgcgcac gttctggatt ggcgtgtgac 5908 ggcgaccccg ttaccggacg gcagttatga gatcaacggg accaaggcct tttgcagcgg 5968 ctcggccgat gcggacaggt tgcttgtgtt tgccgtcacc agcagggatc caaacggaga 6028 tggcaggatc gtcgcggcac tcatcccctc ggatcgtgct ggggttcagg taaatggcga 6088 ttgggacagc ctgggtatgc gtcaaaccga tagtgggagc gttacatttt cgggtgtggt 6148 ggtctatccc gacgagttgc tggggacacc cggccaagtg acggatgcgt ttgcttccgg 6208 ttcgaagccc agtctttgga cacccatcac ccaactgatc tttacccacc tgtacctcgg 6268 cattgcccgt ggcgctcttg aagaggccgc tcactactcg aggtcccatt cgagaccatt 6328 tacactcgca ggggtggaga aagccaccga ggatccttat gtgctagcga tttatgggga 6388 atttgctgca caacttcagg tcgcggaggc tggagcccga gaggtggcgt tgcgggttca 6448 ggaattgtgg gagcggaatc acgtcactcc tgagcagcgg gggcagttaa tggtacaagt 6508 ggccagtgcc aaaatcgtcg ccacgcgttt ggtgatcgaa ctgacaagcc gtctatatga 6568 agcgatgggg gcacgggctg cagcgagccg ccaattcggc tttgaccgct tttggcgcga 6628 cgcgcgcacg cataccttac atgacccggt agcctataag atacgcgaag taggaaactg 6688 gttcctcaat caccggtttc caacccccag cttttactct tgaaatttag tgtgaataga 6748 tttatttgag gatgggattg ggggtaacgc cggatgagat cgacattcca gttccacaaa 6808 atgtatctcc aacagatcgg ccagcaacac ccccgtcgca tcctcgcgca gatggaacgt 6868 gctgtgactc tcaagcattt tcgcccagta gtaaagggtc cgcttctcga tgtcccaacg 6928 gttccacgtc gaacaacagg ggatggccgg aatcttcaaa caccacgttg agaaaatgga 6988 ccaggaccga agcctctcgg ttccatcata ccccgggccg gacaggttca ctctagtgcc 7048 ggataaatac cgaagggctg ccccttggat gtgaggcagc ccgaaaaaca ttttccctga 7108 cgggagtttt catcggcgtt tctcttatct ccgcccgagc agttcgtcgc gggtattcac 7168 ccggcggctc aataattggt gcgggcggcg caggcggttt gtctccactt catatatata 7228 tccgttgatg atggtgtcct tcggaatcag cgggtggttg cgcaggtatt cgacttgggc 7288 cacggtcgcc tcgtccacat tgtcaaaggt acggaaccat ttttcgaaag ctgccggctc 7348 gctcagtacc agctcgggga gggagggatc caacggaacc cgttccacgt ctatgttgag 7408 tttggcccgg agaccgtcga caacttcccg gccgccggcg gtcatcatgc cgcattcggt 7468 gtgattgatc acgatgattt ctttcgtccc gaagaagttc agggtgaggg ccgccgagcg 7528 gatgacgtcg tcggtcacaa cccctccggc attgcggaac acatgggcat ccccgggctg 7588 cagcccgaga atgtcttcca ccggaagtcg ttcatccatg caggccagga caaacagccg 7648 caggttattg ggaatcccct tctgcctccg gagcacccat tcctcatgat ttcggatcgc 7708 ttcgtcaatt cgctcgctca aactcatgat agttccccct gtcaagcgtc tgtgaaaatg 7768 tcaggttaac tgttctatga aaatgtcagg gatgatagtt gattaaacag ccgccgtcct 7828 cttgcagact agccggatgc tgtgctacgc tgtaactgct tgctggagaa tggttttctc 7888 cagggatggt ttgcagcggg cttgcggggg gacgcaggcg ccgcttcttt tttggccgtt 7948 gttggcgccg gggtctgtgt ggcctgtgtc tccacacaag gccaggcccg cccttgatcc 8008 cacagccaca cttgtccatc catgccgaca cgcacttcga cgacgctctt cgcttcccag 8068 cgcggaacac cggggacggg ctttggcatg tagcatttcc ctttccagaa gaacgtctgc 8128 ccgccgctga tgcgccggta ttcccgacgc gtgaagatat gctccaaagg cgtttcgggc 8188 agcggccggt aggccggttc agcttcttgc ggcgcgacgg caaactgacg attgtgcttg 8248 gcgataagtt ccggtaacac gcgattggct tcctccatcg tgcacacgtt gcgcagccta 8308 agttcgatca ccaggcgatc ctgaaaggtt tgccagagcc gttcgatccg tcctttggct 8368 tggggtgaca gcgcctcgat atgggtaatg cccagatcgg cgagggcctg tccgaaggtg 8428 gaaagcgacg gcggctcacc ggccaattcc tgctcgaggg ttggcttgcc cttgggcggg 8488 tgaaaaatgg agtgttggtc gctgtagagc gcaagcggta cgcctttgcg cctaagtccc 8548 tcgatcatga cggtcacgta gccctccagt gtttcggtcg ggcggaaggt ggccgcgacc 8608 acttccccgg tggcgtcatc gatgatgccg tgcagggtga gcatgggacc gcgatcctcc 8668 agccaggcat agggagaagc atcgatctgc cacagcatgc ccgcctgagg tttgcggggc 8728 cggggtcggt gagccttcgg acgacggcgc agccgcgcgg gacgcaaccc gccttccagc 8788 agaatgcggc ggaccgaaga gacgcttaaa tggatgtttt cgtgttcggc caacagctcg 8848 gcaaagtggg tggcattgct tccgaagtag cgctcctgat acaggagcat aacgcgttgt 8908 ttgagcgaat cggtcaaggt gtgagccggc ttacggcccc gattcccatg tgcgatcgct 8968 tgtgcacctc cgtgacgata tttggccttg agccgatacg cttgacggac actgatgccc 9028 aggttgcgtg caacatcctg ttccgtgaga tggccgtcga tccatttttc aatgaccata 9088 acgcgtttca gttcgttctt tgtcaaggtg atctgctcct tgctcatact gacattttct 9148 cggatcagtt acaccctgac aatatcacag aacaacaaca acaatggctg ggtaatattg 9208 acgatttttt ttgcaaatga tacattaata gtattacaag ctgttgtgat tttctttgtc 9268 gttattaatt cgacaaagaa ggggaatgtc ggtacgcttc aaccgacgta taaataatgg 9328 gctttattta gccgtggaga caataggaca cctaatttgg tgtctttttg tgtttccgcg 9388 gtttttttat gcccaaaaaa ggaggtaatc gatattggct tcaaatcgtg aagaagtgcg 9448 gagcgcggaa cagtatgtgt tggcggagct gccccaagaa ttgctcgata ttcgctctta 9508 tgatgagtac cacatcaatt tttcgggcgg ggcagacagc ttggccgtag ccattttgat 9568 gaaatacggc tataaagtgc cgccggagaa gcttatcgat accgtcgacc tcgagggggg 9628 gcccggtacc cagcttttgt tccctttagt gagggttaat tgcgcgcttg gcgtaatcat 9688 ggtcatagct gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag 9748 ccgggagcat aaagtgtaaa gcctggg 9775 <210> 4 <211> 353 <212> PRT <213> Paenibacillus sp. <400> 4 Met Ser Thr Leu Ser Ala Ile Gly Pro Thr Arg Val Ala Tyr Ser Asn 1 5 10 15 Cys Pro Val Ala Asn Ala Leu Leu Val Ala Ser Arg Thr Gly Lys Leu 20 25 30 Glu Arg Gln Gly Val Leu Leu Ser Gln Ile Ala Phe Ala Gln Gly Ala 35 40 45 Thr His Phe Ala Tyr Asp His Ala Ala Tyr Thr Arg Phe Gly Gly Glu 50 55 60 Ile Pro Pro Leu Val Ser Glu Gly Leu Arg Ala Pro Gly Arg Thr Arg 65 70 75 80 Leu Leu Gly Ile Thr Val Leu Lys Pro Arg Gln Gly Phe Tyr Val His 85 90 95 Ser Ala Gly Lys Ile Ala Ser Pro Ser Asp Leu Arg Gly Arg Arg Ile 100 105 110 Gly Leu Ser Arg Ala Ala Gln Arg Ile Leu Phe Gly His Leu Gly Glu 115 120 125 Glu Tyr Arg Asn Leu Gly Pro Trp Glu Gln Thr Leu Val Ala Leu Gly 130 135 140 Ser Trp Glu Val Arg Ala Leu Lys His Thr Leu Ala Ala Gly Gly Leu 145 150 155 160 Arg Leu Asn Asp Val Ile Val Glu Asp Val Glu Asn Pro Trp Val Asp 165 170 175 Val Pro Arg Pro Lys Leu Asp Asp Ser Arg Asp Phe Ser Ser Arg Glu 180 185 190 Leu Phe Ala Thr Ala Val Glu Trp Gln Ser Gln Gln Leu Lys Ser Gly 195 200 205 Gln Val Asp Ala Leu Phe Ser Trp Leu Pro Tyr Ala Ala Glu Leu Glu 210 215 220 Leu Gln Gly Val Ala Lys Pro Val Phe Ala Leu Thr Gly Glu Glu Asn 225 230 235 240 Ala Trp Ala Ser Val Trp Thr Val Ser Ala Ala Leu Val Glu Arg Arg 245 250 255 Pro Glu Ile Val Gln Arg Leu Val Asp Ser Val Val Glu Ala Ala Ser 260 265 270 Trp Ala Thr Asp His Ala Lys Glu Thr Ile Glu Ile His Ala Leu Asn 275 280 285 Leu Gly Val Ser Val Lys Ala Val Glu Thr Gly Phe Gly Glu Gly Phe 290 295 300 His Arg Asp Leu Arg Pro Arg Leu Asp Gln Ala Ala Leu Arg Ile Leu 305 310 315 320 Glu Gln Thr Gln Gln Phe Leu Phe Asp His Gly Leu Ile Asp Arg Leu 325 330 335 Val Asp Ile Glu Arg Trp Ala Ala Pro Glu Phe Leu Asp Asn Ala Ser 340 345 350 Leu <210> 5 <211> 9775 <212> DNA <213> Paenibacillus sp. <221> CDS <222> (5487)..(6728) <400> 5 gcggccgcgt catcttgccg ccgctcgatg cggtttatcc gatcaatgca aaggacgcaa 60 ttcctccttc gcattcctgc ggggtcgaac cgtatcagcc gcaacggatg atttccaatg 120 aaatggccgc gatgctgatt tcgaccgtcg tgaatgagct gttttcgtcg aacgccattc 180 tcgtccatta tgtcaatttt aatgcaaaga ccgggaactg caggccggtt tatgcagaag 240 atgtggccgg cgccaataac gattccgctt cggtagcagc tgcgccgtat gaccaggaag 300 ctgactccgg actgcaatca agcgagagtg gccaactcca acatgatccg gacaatgctg 360 tatccccgtc tacaaaagag gaggacgctg aaatcctttc tgccgaggag cttcctgcgg 420 aacagggggg cgccgaggta gaggtcccgg aaagtggagt ggccggcgtt cgggagaatg 480 gtatcagggt aattcgcatc gaaccacttg acgagaaaca cgagaagacg caacacggat 540 acggggtacc tgtgctttat catctggaag acgggtccac gctccgtaag ttaattacgg 600 ggactcgact gagggacgct aaagcccgtg ttgaaaggct cagtcgcgat cctggcgacc 660 ggtggattga acgcaccgaa aacggactcg tgattgaaaa atcgtcgatc ggtcttgtcg 720 ggtaaggaaa attgggggcg tattttatgc ccctttttct ttttttataa gggtggaaat 780 atcgcgcaag ttaaggggga gcttgagcaa atgaaggtgg ataccgcaaa aattttcaag 840 aagtttaaga aggtcattga tacccgcgac atcaatcaca tggacaagca gctttacaat 900 tatttgcatc ttcatgcagg cttcatcgcg cattatgaca tctatggctt caaagagaca 960 tattccgata aagggtttct tgatttcatt gagcattttg agcagtgcta ttatttgtgc 1020 tacggtgaat acggagagtt taaccgcgaa ctgaaggaat atgtgctgca acatgcggag 1080 cagatccgcg ctgaatttgc ttataaggcg cagcaacatg aattgaaact gctccagaag 1140 ctggcggcaa agcacggcaa aatcatttcc gacgttgcga tgaaccaaga tcaagacatg 1200 acggctgctg tggtaccgat gtcgcttgcc gcgaacgggc aattggaatt tgcgctgtga 1260 taaatgggaa gggtggagca ttccactctt cctatttatc ttttcaaatt tcggcagcat 1320 accacaattt tagagttttg gttggacaat ggctgggtaa tatgtcaagc gtctgtgaaa 1380 atgtcaggtt aactgttcta tgaaaatgtc agggatgata gttgattaaa cagccgccgt 1440 cctcttgcag actagccgga tgctgtgcta cgctgtaact gcttgctgga gaatggtttt 1500 ctccagggat ggtttgcagc gggcttgcgg ggggacgcag gcgccgcttc ttttttggcc 1560 gttgttggcg ccggggtctg tgtggcctgt gtctccacac aaggccaggc ccgcccttga 1620 tcccacagcc acacttgtcc atccatgccg acacgcactt cgacgacgct cttcgcttcc 1680 cagcgcggaa caccggggac gggctttggc atgtagcatt tccctttcca gaagaacgtc 1740 tgcccgccgc tgatgcgccg gtattcccga cgcgtgaaga tatgctccaa aggcgtttcg 1800 ggcagcggcc ggtaggccgg ttcagcttct tgcggcgcga cggcaaactg acgattgtgc 1860 ttggcgataa gttccggtaa cacgcgattg gcttcctcca tcgtgcacac gttgcgcagc 1920 ctaagttcga tcaccaggcg atcctgaaag gtttgccaga gccgttcgat ccgtcctttg 1980 gcttggggtg acagcgcctc gatatgggta atgcccagat cggcgagggc ctgtccgaag 2040 gtggaaagcg acggcggctc accggccaat tcctgctcga gggttggctt gcccttgggc 2100 gggtgaaaaa tggagtgttg gtcgctgtag agcgcaagcg gtacgccttt gcgcctaagt 2160 ccctcgatca tgacggtcac gtagccctcc agtgtttcgg tcgggcggaa ggtggccgcg 2220 accacttccc cggtggcgtc atcgatgatg ccgtgcaggg tgagcatggg accgcgatcc 2280 tccagccagg catagggaga agcatcgatc tgccacagca tgcccgcctg aggtttgcgg 2340 ggccggggtc ggtgagcctt cggacgacgg cgcagccgcg cgggacgcaa cccgccttcc 2400 agcagaatgc ggcggaccga agagacgctt aaatggatgt tttcgtgttc ggccaacagc 2460 tcggcaaagt gggtggcatt gcttccgaag tagcgctcct gatacaggag cataacgcgt 2520 tgtttgagcg aatcggtcaa ggtgtgagcc ggcttacggc cccgattccc atgtgcgatc 2580 gcttgtgcac ctccgtgacg atatttggcc ttgagccgat acgcttgacg gacactgatg 2640 cccaggttgc gtgcaacatc ctgttccgtg agatggccgt cgatccattt ttcaatgacc 2700 ataacgcgtt tcagttcgtt ctttgtcaag gtgatctgct ccttgctcat actgacattt 2760 tctcggatca gttacaccct gacaatatca cagaacaaca acatgagtga ttgcgacggg 2820 ttgacaaaat gaatcctgaa cggtatactc cgattcataa atactaatca atttaatcgg 2880 gtttacctcg gctgactgga ccaccagagg ccctctgact ttgcggtaat tttgccggaa 2940 agcggggggc tttttctttt gcagaggagg gccgaaaaac agttttctgc tcctggatga 3000 ccattgaaga acattcacgc aggaacatac atgggaggtg ttcaatcgat gcgtcaaatg 3060 catcttgccg gtttttttgc agcgggtaat gtgacccatc accacggggc atggcgtcac 3120 ccgaaaactg ataatggttt tttgtctatt tcttggtatc aacacatcgc ccgtacactc 3180 gagcgcggcc gctttgacct gctctttctg cctgacggtt tggctatttg ggatagctac 3240 ggaaacaatc ttgatgctgg attgagattt ggaggccaag gagccgcttt tctggatccc 3300 gtccccgtgc tcgccaccat ggctgcggcc acggagagac tgggcctggg ggccacgatt 3360 tcgacaacct actatcctcc ttaccatgtg gcaagagtgt ttgctacgct ggatcactta 3420 acaaaaggaa gggcagcctg gaatgtcgtg acctcactca acaacgccga ggccaggaac 3480 tttgggtatg aggaacacct ggatcacgat agtcggtacg accgtgccga tgagtttctt 3540 gagattacag ataaattgtg gaggagttgg gatcaggatg cattgctcct cgacaaaaaa 3600 cagggtcttt ttgctgatcc cagaaaggtc cactatattg atcactccgg aacctggttc 3660 tccgtccggg gcccgttaca agtcccgcgg tcgccacagg gtcgtcctgt catcattcag 3720 gcgggatcct ccgcccgtgg aaagacattt gctgctcggt gggcagaagc cgttttcacc 3780 attgcgccga accgagtcgc gatgcgggcg ttttacgaag acttgaaaaa acaggtaatc 3840 gccgcaggac gccgtcccga gaattgcaaa atactccctg ccgtcattcc gattcttggc 3900 gatacggaga aggaagcgcg cgagcggcag gaagaagtga atcagctagt gataccagaa 3960 gctggtctct ctaccctgtc aagccattgc ggagtggatt tttcccgcta tcctttggat 4020 gctccaattc gtgaggtgct ggatgcggtc ggtgaggtgg gtgggacgag aggtctttta 4080 gagatggtgg tgaaactgac agagacagaa aacttaacgt tgcgcgacct aggggttcgc 4140 tatggctggg tactcgtacc gcagttggtt ggaaccccgg agcaggtggc aggggagttg 4200 gaatctctgt tcaatgaacc ggcggccgac ggcttcgtga tctctcccta ctatctgccc 4260 ggcgcttacg aggaatttgt cgacaaagtg gttcctattt tgcaggaccg gggtcttttc 4320 agacgggagt atgaagggga taccttgcgc cagcatctcg gtctggaaga cgttagcgaa 4380 gccgaagaag ctgtacaggg ggtgagcgaa tgagcacgct ctcagccatt ggcccgaccc 4440 gcgttgcgta tagtaattgt ccggttgcaa acgctttgct cgtggcctca cggacgggga 4500 agctagagcg tcaaggtgtt cttctctcgc agatcgcctt tgcccaaggg gcgacacatt 4560 ttgcgtatga tcatgcagcc tacacccgat ttggcggcga gataccaccg ctggtgagcg 4620 aagggctgcg tgctccgggg cggacacgtt tgttgggaat cacggttctg aagcctcgcc 4680 aagggtttta tgtgcattct gccggtaaga ttgcttcacc atcggatctt agagggcgcc 4740 gcatcggcct gagccgagct gcacagagga tccttttcgg ccatctgggc gaggaatatc 4800 ggaaccttgg cccttgggag caaacgctcg tcgccctggg atcgtgggaa gttcgagcgc 4860 tcaagcatac gttggcggcc ggcggtttga gactgaatga cgtcattgtt gaagatgttg 4920 aaaacccatg ggtggatgtc ccgcgaccta aactggatga cagtagggac ttcagctccc 4980 gagagttgtt tgctacggcg gttgaatggc agagtcaaca gttgaaaagc gggcaggtag 5040 acgccctgtt ttcctggctt ccctatgctg ccgagcttga acttcaaggt gtggctaagc 5100 cggtctttgc gttgacagga gaggagaatg cctgggcgag cgtttggacg gtcagcgcgg 5160 ctctagtgga gcgcaggccg gagatcgtcc aacgcttggt cgactccgtc gtggaggctg 5220 cgtcctgggc aaccgatcac gccaaggaga ccattgaaat ccatgccttg aaccttgggg 5280 tttccgtgaa ggccgtggag acgggatttg gcgaagggtt tcatagggac ctgcgaccgc 5340 ggctggatca ggcggctctg cgcattctgg agcagaccca gcaatttctt ttcgaccacg 5400 ggctgatcga ccggttggtg gatatagagc gttgggcggc ccccgaattt ctggacaacg 5460 catctttgtg aggaggagtt tttcta atg aga aca atc cat gcc aat tca tct 5513 Met Arg Thr Ile His Ala Asn Ser Ser 1 5 gca gtc cgt gaa gat cat cgt gct tta gac gtg gcg aca gaa ctg gcc 5561 Ala Val Arg Glu Asp His Arg Ala Leu Asp Val Ala Thr Glu Leu Ala 10 15 20 25 aag acg ttt cgt gtg acc gtt cgg gaa agg gag cgt gcg ggg gga acc 5609 Lys Thr Phe Arg Val Thr Val Arg Glu Arg Glu Arg Ala Gly Gly Thr 30 35 40 ccg aag gcg gag cgc gac gcg att cgc cgt agt ggc ctc ctt act cta 5657 Pro Lys Ala Glu Arg Asp Ala Ile Arg Arg Ser Gly Leu Leu Thr Leu 45 50 55 ctt atc agt aaa gag cgc ggg gga ctc gga gaa agt tgg ccg acc gta 5705 Leu Ile Ser Lys Glu Arg Gly Gly Leu Gly Glu Ser Trp Pro Thr Val 60 65 70 tac gaa gcc atc gct gag att gcc agc gcc gac gcc tcc ctt ggg cac 5753 Tyr Glu Ala Ile Ala Glu Ile Ala Ser Ala Asp Ala Ser Leu Gly His 75 80 85 ctg ttt ggt tat cat ttt tca aat ttt gcc tat gtg gat ctc ttt gct 5801 Leu Phe Gly Tyr His Phe Ser Asn Phe Ala Tyr Val Asp Leu Phe Ala 90 95 100 105 tca cct gag cag aag gct cgt tgg tat cca cag gct gtc cgc gag cgt 5849 Ser Pro Glu Gln Lys Ala Arg Trp Tyr Pro Gln Ala Val Arg Glu Arg 110 115 120 tgg ttc ctt ggg aat gca tcc agc gaa aac aat gcg cac gtt ctg gat 5897 Trp Phe Leu Gly Asn Ala Ser Ser Glu Asn Asn Ala His Val Leu Asp 125 130 135 tgg cgt gtg acg gcg acc ccg tta ccg gac ggc agt tat gag atc aac 5945 Trp Arg Val Thr Ala Thr Pro Leu Pro Asp Gly Ser Tyr Glu Ile Asn 140 145 150 ggg acc aag gcc ttt tgc agc ggc tcg gcc gat gcg gac agg ttg ctt 5993 Gly Thr Lys Ala Phe Cys Ser Gly Ser Ala Asp Ala Asp Arg Leu Leu 155 160 165 gtg ttt gcc gtc acc agc agg gat cca aac gga gat ggc agg atc gtc 6041 Val Phe Ala Val Thr Ser Arg Asp Pro Asn Gly Asp Gly Arg Ile Val 170 175 180 185 gcg gca ctc atc ccc tcg gat cgt gct ggg gtt cag gta aat ggc gat 6089 Ala Ala Leu Ile Pro Ser Asp Arg Ala Gly Val Gln Val Asn Gly Asp 190 195 200 tgg gac agc ctg ggt atg cgt caa acc gat agt ggg agc gtt aca ttt 6137 Trp Asp Ser Leu Gly Met Arg Gln Thr Asp Ser Gly Ser Val Thr Phe 205 210 215 tcg ggt gtg gtg gtc tat ccc gac gag ttg ctg ggg aca ccc ggc caa 6185 Ser Gly Val Val Val Tyr Pro Asp Glu Leu Leu Gly Thr Pro Gly Gln 220 225 230 gtg acg gat gcg ttt gct tcc ggt tcg aag ccc agt ctt tgg aca ccc 6233 Val Thr Asp Ala Phe Ala Ser Gly Ser Lys Pro Ser Leu Trp Thr Pro 235 240 245 atc acc caa ctg atc ttt acc cac ctg tac ctc ggc att gcc cgt ggc 6281 Ile Thr Gln Leu Ile Phe Thr His Leu Tyr Leu Gly Ile Ala Arg Gly 250 255 260 265 gct ctt gaa gag gcc gct cac tac tcg agg tcc cat tcg aga cca ttt 6329 Ala Leu Glu Glu Ala Ala His Tyr Ser Arg Ser His Ser Arg Pro Phe 270 275 280 aca ctc gca ggg gtg gag aaa gcc acc gag gat cct tat gtg cta gcg 6377 Thr Leu Ala Gly Val Glu Lys Ala Thr Glu Asp Pro Tyr Val Leu Ala 285 290 295 att tat ggg gaa ttt gct gca caa ctt cag gtc gcg gag gct gga gcc 6425 Ile Tyr Gly Glu Phe Ala Ala Gln Leu Gln Val Ala Glu Ala Gly Ala 300 305 310 cga gag gtg gcg ttg cgg gtt cag gaa ttg tgg gag cgg aat cac gtc 6473 Arg Glu Val Ala Leu Arg Val Gln Glu Leu Trp Glu Arg Asn His Val 315 320 325 act cct gag cag cgg ggg cag tta atg gta caa gtg gcc agt gcc aaa 6521 Thr Pro Glu Gln Arg Gly Gln Leu Met Val Gln Val Ala Ser Ala Lys 330 335 340 345 atc gtc gcc acg cgt ttg gtg atc gaa ctg aca agc cgt cta tat gaa 6569 Ile Val Ala Thr Arg Leu Val Ile Glu Leu Thr Ser Arg Leu Tyr Glu 350 355 360 gcg atg ggg gca cgg gct gca gcg agc cgc caa ttc ggc ttt gac cgc 6617 Ala Met Gly Ala Arg Ala Ala Ala Ser Arg Gln Phe Gly Phe Asp Arg 365 370 375 ttt tgg cgc gac gcg cgc acg cat acc tta cat gac ccg gta gcc tat 6665 Phe Trp Arg Asp Ala Arg Thr His Thr Leu His Asp Pro Val Ala Tyr 380 385 390 aag ata cgc gaa gta gga aac tgg ttc ctc aat cac cgg ttt cca acc 6713 Lys Ile Arg Glu Val Gly Asn Trp Phe Leu Asn His Arg Phe Pro Thr 395 400 405 ccc agc ttt tac tct tgaaatttag tgtgaataga tttatttgag gatgggattg 6768 Pro Ser Phe Tyr Ser 410 ggggtaacgc cggatgagat cgacattcca gttccacaaa atgtatctcc aacagatcgg 6828 ccagcaacac ccccgtcgca tcctcgcgca gatggaacgt gctgtgactc tcaagcattt 6888 tcgcccagta gtaaagggtc cgcttctcga tgtcccaacg gttccacgtc gaacaacagg 6948 ggatggccgg aatcttcaaa caccacgttg agaaaatgga ccaggaccga agcctctcgg 7008 ttccatcata ccccgggccg gacaggttca ctctagtgcc ggataaatac cgaagggctg 7068 ccccttggat gtgaggcagc ccgaaaaaca ttttccctga cgggagtttt catcggcgtt 7128 tctcttatct ccgcccgagc agttcgtcgc gggtattcac ccggcggctc aataattggt 7188 gcgggcggcg caggcggttt gtctccactt catatatata tccgttgatg atggtgtcct 7248 tcggaatcag cgggtggttg cgcaggtatt cgacttgggc cacggtcgcc tcgtccacat 7308 tgtcaaaggt acggaaccat ttttcgaaag ctgccggctc gctcagtacc agctcgggga 7368 gggagggatc caacggaacc cgttccacgt ctatgttgag tttggcccgg agaccgtcga 7428 caacttcccg gccgccggcg gtcatcatgc cgcattcggt gtgattgatc acgatgattt 7488 ctttcgtccc gaagaagttc agggtgaggg ccgccgagcg gatgacgtcg tcggtcacaa 7548 cccctccggc attgcggaac acatgggcat ccccgggctg cagcccgaga atgtcttcca 7608 ccggaagtcg ttcatccatg caggccagga caaacagccg caggttattg ggaatcccct 7668 tctgcctccg gagcacccat tcctcatgat ttcggatcgc ttcgtcaatt cgctcgctca 7728 aactcatgat agttccccct gtcaagcgtc tgtgaaaatg tcaggttaac tgttctatga 7788 aaatgtcagg gatgatagtt gattaaacag ccgccgtcct cttgcagact agccggatgc 7848 tgtgctacgc tgtaactgct tgctggagaa tggttttctc cagggatggt ttgcagcggg 7908 cttgcggggg gacgcaggcg ccgcttcttt tttggccgtt gttggcgccg gggtctgtgt 7968 ggcctgtgtc tccacacaag gccaggcccg cccttgatcc cacagccaca cttgtccatc 8028 catgccgaca cgcacttcga cgacgctctt cgcttcccag cgcggaacac cggggacggg 8088 ctttggcatg tagcatttcc ctttccagaa gaacgtctgc ccgccgctga tgcgccggta 8148 ttcccgacgc gtgaagatat gctccaaagg cgtttcgggc agcggccggt aggccggttc 8208 agcttcttgc ggcgcgacgg caaactgacg attgtgcttg gcgataagtt ccggtaacac 8268 gcgattggct tcctccatcg tgcacacgtt gcgcagccta agttcgatca ccaggcgatc 8328 ctgaaaggtt tgccagagcc gttcgatccg tcctttggct tggggtgaca gcgcctcgat 8388 atgggtaatg cccagatcgg cgagggcctg tccgaaggtg gaaagcgacg gcggctcacc 8448 ggccaattcc tgctcgaggg ttggcttgcc cttgggcggg tgaaaaatgg agtgttggtc 8508 gctgtagagc gcaagcggta cgcctttgcg cctaagtccc tcgatcatga cggtcacgta 8568 gccctccagt gtttcggtcg ggcggaaggt ggccgcgacc acttccccgg tggcgtcatc 8628 gatgatgccg tgcagggtga gcatgggacc gcgatcctcc agccaggcat agggagaagc 8688 atcgatctgc cacagcatgc ccgcctgagg tttgcggggc cggggtcggt gagccttcgg 8748 acgacggcgc agccgcgcgg gacgcaaccc gccttccagc agaatgcggc ggaccgaaga 8808 gacgcttaaa tggatgtttt cgtgttcggc caacagctcg gcaaagtggg tggcattgct 8868 tccgaagtag cgctcctgat acaggagcat aacgcgttgt ttgagcgaat cggtcaaggt 8928 gtgagccggc ttacggcccc gattcccatg tgcgatcgct tgtgcacctc cgtgacgata 8988 tttggccttg agccgatacg cttgacggac actgatgccc aggttgcgtg caacatcctg 9048 ttccgtgaga tggccgtcga tccatttttc aatgaccata acgcgtttca gttcgttctt 9108 tgtcaaggtg atctgctcct tgctcatact gacattttct cggatcagtt acaccctgac 9168 aatatcacag aacaacaaca acaatggctg ggtaatattg acgatttttt ttgcaaatga 9228 tacattaata gtattacaag ctgttgtgat tttctttgtc gttattaatt cgacaaagaa 9288 ggggaatgtc ggtacgcttc aaccgacgta taaataatgg gctttattta gccgtggaga 9348 caataggaca cctaatttgg tgtctttttg tgtttccgcg gtttttttat gcccaaaaaa 9408 ggaggtaatc gatattggct tcaaatcgtg aagaagtgcg gagcgcggaa cagtatgtgt 9468 tggcggagct gccccaagaa ttgctcgata ttcgctctta tgatgagtac cacatcaatt 9528 tttcgggcgg ggcagacagc ttggccgtag ccattttgat gaaatacggc tataaagtgc 9588 cgccggagaa gcttatcgat accgtcgacc tcgagggggg gcccggtacc cagcttttgt 9648 tccctttagt gagggttaat tgcgcgcttg gcgtaatcat ggtcatagct gtttcctgtg 9708 tgaaattgtt atccgctcac aattccacac aacatacgag ccgggagcat aaagtgtaaa 9768 gcctggg 9775 <210> 6 <211> 414 <212> PRT <213> Paenibaillus sp. <400> 6 Met Arg Thr Ile His Ala Asn Ser Ser Ala Val Arg Glu Asp His Arg 1 5 10 15 Ala Leu Asp Val Ala Thr Glu Leu Ala Lys Thr Phe Arg Val Thr Val 20 25 30 Arg Glu Arg Glu Arg Ala Gly Gly Thr Pro Lys Ala Glu Arg Asp Ala 35 40 45 Ile Arg Arg Ser Gly Leu Leu Thr Leu Leu Ile Ser Lys Glu Arg Gly 50 55 60 Gly Leu Gly Glu Ser Trp Pro Thr Val Tyr Glu Ala Ile Ala Glu Ile 65 70 75 80 Ala Ser Ala Asp Ala Ser Leu Gly His Leu Phe Gly Tyr His Phe Ser 85 90 95 Asn Phe Ala Tyr Val Asp Leu Phe Ala Ser Pro Glu Gln Lys Ala Arg 100 105 110 Trp Tyr Pro Gln Ala Val Arg Glu Arg Trp Phe Leu Gly Asn Ala Ser 115 120 125 Ser Glu Asn Asn Ala His Val Leu Asp Trp Arg Val Thr Ala Thr Pro 130 135 140 Leu Pro Asp Gly Ser Tyr Glu Ile Asn Gly Thr Lys Ala Phe Cys Ser 145 150 155 160 Gly Ser Ala Asp Ala Asp Arg Leu Leu Val Phe Ala Val Thr Ser Arg 165 170 175 Asp Pro Asn Gly Asp Gly Arg Ile Val Ala Ala Leu Ile Pro Ser Asp 180 185 190 Arg Ala Gly Val Gln Val Asn Gly Asp Trp Asp Ser Leu Gly Met Arg 195 200 205 Gln Thr Asp Ser Gly Ser Val Thr Phe Ser Gly Val Val Val Tyr Pro 210 215 220 Asp Glu Leu Leu Gly Thr Pro Gly Gln Val Thr Asp Ala Phe Ala Ser 225 230 235 240 Gly Ser Lys Pro Ser Leu Trp Thr Pro Ile Thr Gln Leu Ile Phe Thr 245 250 255 His Leu Tyr Leu Gly Ile Ala Arg Gly Ala Leu Glu Glu Ala Ala His 260 265 270 Tyr Ser Arg Ser His Ser Arg Pro Phe Thr Leu Ala Gly Val Glu Lys 275 280 285 Ala Thr Glu Asp Pro Tyr Val Leu Ala Ile Tyr Gly Glu Phe Ala Ala 290 295 300 Gln Leu Gln Val Ala Glu Ala Gly Ala Arg Glu Val Ala Leu Arg Val 305 310 315 320 Gln Glu Leu Trp Glu Arg Asn His Val Thr Pro Glu Gln Arg Gly Gln 325 330 335 Leu Met Val Gln Val Ala Ser Ala Lys Ile Val Ala Thr Arg Leu Val 340 345 350 Ile Glu Leu Thr Ser Arg Leu Tyr Glu Ala Met Gly Ala Arg Ala Ala 355 360 365 Ala Ser Arg Gln Phe Gly Phe Asp Arg Phe Trp Arg Asp Ala Arg Thr 370 375 380 His Thr Leu His Asp Pro Val Ala Tyr Lys Ile Arg Glu Val Gly Asn 385 390 395 400 Trp Phe Leu Asn His Arg Phe Pro Thr Pro Ser Phe Tyr Ser 405 410 <210> 7 <211> 9775 <212> DNA <213> Paenibacillus sp. <221> CDS <222> (641)..(1936) <221> CDS <222> (7026)..(8321) <400> 7 cccaggcttt acactttatg ctcccggctc gtatgttgtg tggaattgtg agcggataac 60 aatttcacac aggaaacagc tatgaccatg attacgccaa gcgcgcaatt aaccctcact 120 aaagggaaca aaagctgggt accgggcccc ccctcgaggt cgacggtatc gataagcttc 180 tccggcggca ctttatagcc gtatttcatc aaaatggcta cggccaagct gtctgccccg 240 cccgaaaaat tgatgtggta ctcatcataa gagcgaatat cgagcaattc ttggggcagc 300 tccgccaaca catactgttc cgcgctccgc acttcttcac gatttgaagc caatatcgat 360 tacctccttt tttgggcata aaaaaaccgc ggaaacacaa aaagacacca aattaggtgt 420 cctattgtct ccacggctaa ataaagccca ttatttatac gtcggttgaa gcgtaccgac 480 attccccttc tttgtcgaat taataacgac aaagaaaatc acaacagctt gtaatactat 540 taatgtatca tttgcaaaaa aaatcgtcaa tattacccag ccattgttgt tgttgttctg 600 tgatattgtc agggtgtaac tgatccgaga aaatgtcagt atg agc aag gag cag 655 Met Ser Lys Glu Gln 1 5 atc acc ttg aca aag aac gaa ctg aaa cgc gtt atg gtc att gaa aaa 703 Ile Thr Leu Thr Lys Asn Glu Leu Lys Arg Val Met Val Ile Glu Lys 10 15 20 tgg atc gac ggc cat ctc acg gaa cag gat gtt gca cgc aac ctg ggc 751 Trp Ile Asp Gly His Leu Thr Glu Gln Asp Val Ala Arg Asn Leu Gly 25 30 35 atc agt gtc cgt caa gcg tat cgg ctc aag gcc aaa tat cgt cac gga 799 Ile Ser Val Arg Gln Ala Tyr Arg Leu Lys Ala Lys Tyr Arg His Gly 40 45 50 ggt gca caa gcg atc gca cat ggg aat cgg ggc cgt aag ccg gct cac 847 Gly Ala Gln Ala Ile Ala His Gly Asn Arg Gly Arg Lys Pro Ala His 55 60 65 acc ttg acc gat tcg ctc aaa caa cgc gtt atg ctc ctg tat cag gag 895 Thr Leu Thr Asp Ser Leu Lys Gln Arg Val Met Leu Leu Tyr Gln Glu 70 75 80 85 cgc tac ttc gga agc aat gcc acc cac ttt gcc gag ctg ttg gcc gaa 943 Arg Tyr Phe Gly Ser Asn Ala Thr His Phe Ala Glu Leu Leu Ala Glu 90 95 100 cac gaa aac atc cat tta agc gtc tct tcg gtc cgc cgc att ctg ctg 991 His Glu Asn Ile His Leu Ser Val Ser Ser Val Arg Arg Ile Leu Leu 105 110 115 gaa ggc ggg ttg cgt ccc gcg cgg ctg cgc cgt cgt ccg aag gct cac 1039 Glu Gly Gly Leu Arg Pro Ala Arg Leu Arg Arg Arg Pro Lys Ala His 120 125 130 cga ccc cgg ccc cgc aaa cct cag gcg ggc atg ctg tgg cag atc gat 1087 Arg Pro Arg Pro Arg Lys Pro Gln Ala Gly Met Leu Trp Gln Ile Asp 135 140 145 gct tct ccc tat gcc tgg ctg gag gat cgc ggt ccc atg ctc acc ctg 1135 Ala Ser Pro Tyr Ala Trp Leu Glu Asp Arg Gly Pro Met Leu Thr Leu 150 155 160 165 cac ggc atc atc gat gac gcc acc ggg gaa gtg gtc gcg gcc acc ttc 1183 His Gly Ile Ile Asp Asp Ala Thr Gly Glu Val Val Ala Ala Thr Phe 170 175 180 cgc ccg acc gaa aca ctg gag ggc tac gtg acc gtc atg atc gag gga 1231 Arg Pro Thr Glu Thr Leu Glu Gly Tyr Val Thr Val Met Ile Glu Gly 185 190 195 ctt agg cgc aaa ggc gta ccg ctt gcg ctc tac agc gac caa cac tcc 1279 Leu Arg Arg Lys Gly Val Pro Leu Ala Leu Tyr Ser Asp Gln His Ser 200 205 210 att ttt cac ccg ccc aag ggc aag cca acc ctc gag cag gaa ttg gcc 1327 Ile Phe His Pro Pro Lys Gly Lys Pro Thr Leu Glu Gln Glu Leu Ala 215 220 225 ggt gag ccg ccg tcg ctt tcc acc ttc gga cag gcc ctc gcc gat ctg 1375 Gly Glu Pro Pro Ser Leu Ser Thr Phe Gly Gln Ala Leu Ala Asp Leu 230 235 240 245 ggc att acc cat atc gag gcg ctg tca ccc caa gcc aaa gga cgg atc 1423 Gly Ile Thr His Ile Glu Ala Leu Ser Pro Gln Ala Lys Gly Arg Ile 250 255 260 gaa cgg ctc tgg caa acc ttt cag gat cgc ctg gtg atc gaa ctt agg 1471 Glu Arg Leu Trp Gln Thr Phe Gln Asp Arg Leu Val Ile Glu Leu Arg 265 270 275 ctg cgc aac gtg tgc acg atg gag gaa gcc aat cgc gtg tta ccg gaa 1519 Leu Arg Asn Val Cys Thr Met Glu Glu Ala Asn Arg Val Leu Pro Glu 280 285 290 ctt atc gcc aag cac aat cgt cag ttt gcc gtc gcg ccg caa gaa gct 1567 Leu Ile Ala Lys His Asn Arg Gln Phe Ala Val Ala Pro Gln Glu Ala 295 300 305 gaa ccg gcc tac cgg ccg ctg ccc gaa acg cct ttg gag cat atc ttc 1615 Glu Pro Ala Tyr Arg Pro Leu Pro Glu Thr Pro Leu Glu His Ile Phe 310 315 320 325 acg cgt cgg gaa tac cgg cgc atc agc ggc ggg cag acg ttc ttc tgg 1663 Thr Arg Arg Glu Tyr Arg Arg Ile Ser Gly Gly Gln Thr Phe Phe Trp 330 335 340 aaa ggg aaa tgc tac atg cca aag ccc gtc ccc ggt gtt ccg cgc tgg 1711 Lys Gly Lys Cys Tyr Met Pro Lys Pro Val Pro Gly Val Pro Arg Trp 345 350 355 gaa gcg aag agc gtc gtc gaa gtg cgt gtc ggc atg gat gga caa gtg 1759 Glu Ala Lys Ser Val Val Glu Val Arg Val Gly Met Asp Gly Gln Val 360 365 370 tgg ctg tgg gat caa ggg cgg gcc tgg cct tgt gtg gag aca cag gcc 1807 Trp Leu Trp Asp Gln Gly Arg Ala Trp Pro Cys Val Glu Thr Gln Ala 375 380 385 aca cag acc ccg gcg cca aca acg gcc aaa aaa gaa gcg gcg cct gcg 1855 Thr Gln Thr Pro Ala Pro Thr Thr Ala Lys Lys Glu Ala Ala Pro Ala 390 395 400 405 tcc ccc cgc aag ccc gct gca aac cat ccc tgg aga aaa cca ttc tcc 1903 Ser Pro Arg Lys Pro Ala Ala Asn His Pro Trp Arg Lys Pro Phe Ser 410 415 420 agc aag cag tta cag cgt agc aca gca tcc ggc tagtctgcaa gaggacggcg 1956 Ser Lys Gln Leu Gln Arg Ser Thr Ala Ser Gly 425 430 gctgtttaat caactatcat ccctgacatt ttcatagaac agttaacctg acattttcac 2016 agacgcttga cagggggaac tatcatgagt ttgagcgagc gaattgacga agcgatccga 2076 aatcatgagg aatgggtgct ccggaggcag aaggggattc ccaataacct gcggctgttt 2136 gtcctggcct gcatggatga acgacttccg gtggaagaca ttctcgggct gcagcccggg 2196 gatgcccatg tgttccgcaa tgccggaggg gttgtgaccg acgacgtcat ccgctcggcg 2256 gccctcaccc tgaacttctt cgggacgaaa gaaatcatcg tgatcaatca caccgaatgc 2316 ggcatgatga ccgccggcgg ccgggaagtt gtcgacggtc tccgggccaa actcaacata 2376 gacgtggaac gggttccgtt ggatccctcc ctccccgagc tggtactgag cgagccggca 2436 gctttcgaaa aatggttccg tacctttgac aatgtggacg aggcgaccgt ggcccaagtc 2496 gaatacctgc gcaaccaccc gctgattccg aaggacacca tcatcaacgg atatatatat 2556 gaagtggaga caaaccgcct gcgccgcccg caccaattat tgagccgccg ggtgaatacc 2616 cgcgacgaac tgctcgggcg gagataagag aaacgccgat gaaaactccc gtcagggaaa 2676 atgtttttcg ggctgcctca catccaaggg gcagcccttc ggtatttatc cggcactaga 2736 gtgaacctgt ccggcccggg gtatgatgga accgagaggc ttcggtcctg gtccattttc 2796 tcaacgtggt gtttgaagat tccggccatc ccctgttgtt cgacgtggaa ccgttgggac 2856 atcgagaagc ggacccttta ctactgggcg aaaatgcttg agagtcacag cacgttccat 2916 ctgcgcgagg atgcgacggg ggtgttgctg gccgatctgt tggagataca ttttgtggaa 2976 ctggaatgtc gatctcatcc ggcgttaccc ccaatcccat cctcaaataa atctattcac 3036 actaaatttc aagagtaaaa gctgggggtt ggaaaccggt gattgaggaa ccagtttcct 3096 acttcgcgta tcttataggc taccgggtca tgtaaggtat gcgtgcgcgc gtcgcgccaa 3156 aagcggtcaa agccgaattg gcggctcgct gcagcccgtg cccccatcgc ttcatataga 3216 cggcttgtca gttcgatcac caaacgcgtg gcgacgattt tggcactggc cacttgtacc 3276 attaactgcc cccgctgctc aggagtgacg tgattccgct cccacaattc ctgaacccgc 3336 aacgccacct ctcgggctcc agcctccgcg acctgaagtt gtgcagcaaa ttccccataa 3396 atcgctagca cataaggatc ctcggtggct ttctccaccc ctgcgagtgt aaatggtctc 3456 gaatgggacc tcgagtagtg agcggcctct tcaagagcgc cacgggcaat gccgaggtac 3516 aggtgggtaa agatcagttg ggtgatgggt gtccaaagac tgggcttcga accggaagca 3576 aacgcatccg tcacttggcc gggtgtcccc agcaactcgt cgggatagac caccacaccc 3636 gaaaatgtaa cgctcccact atcggtttga cgcataccca ggctgtccca atcgccattt 3696 acctgaaccc cagcacgatc cgaggggatg agtgccgcga cgatcctgcc atctccgttt 3756 ggatccctgc tggtgacggc aaacacaagc aacctgtccg catcggccga gccgctgcaa 3816 aaggccttgg tcccgttgat ctcataactg ccgtccggta acggggtcgc cgtcacacgc 3876 caatccagaa cgtgcgcatt gttttcgctg gatgcattcc caaggaacca acgctcgcgg 3936 acagcctgtg gataccaacg agccttctgc tcaggtgaag caaagagatc cacataggca 3996 aaatttgaaa aatgataacc aaacaggtgc ccaagggagg cgtcggcgct ggcaatctca 4056 gcgatggctt cgtatacggt cggccaactt tctccgagtc ccccgcgctc tttactgata 4116 agtagagtaa ggaggccact acggcgaatc gcgtcgcgct ccgccttcgg ggttcccccc 4176 gcacgctccc tttcccgaac ggtcacacga aacgtcttgg ccagttctgt cgccacgtct 4236 aaagcacgat gatcttcacg gactgcagat gaattggcat ggattgttct cattagaaaa 4296 actcctcctc acaaagatgc gttgtccaga aattcggggg ccgcccaacg ctctatatcc 4356 accaaccggt cgatcagccc gtggtcgaaa agaaattgct gggtctgctc cagaatgcgc 4416 agagccgcct gatccagccg cggtcgcagg tccctatgaa acccttcgcc aaatcccgtc 4476 tccacggcct tcacggaaac cccaaggttc aaggcatgga tttcaatggt ctccttggcg 4536 tgatcggttg cccaggacgc agcctccacg acggagtcga ccaagcgttg gacgatctcc 4596 ggcctgcgct ccactagagc cgcgctgacc gtccaaacgc tcgcccaggc attctcctct 4656 cctgtcaacg caaagaccgg cttagccaca ccttgaagtt caagctcggc agcataggga 4716 agccaggaaa acagggcgtc tacctgcccg cttttcaact gttgactctg ccattcaacc 4776 gccgtagcaa acaactctcg ggagctgaag tccctactgt catccagttt aggtcgcggg 4836 acatccaccc atgggttttc aacatcttca acaatgacgt cattcagtct caaaccgccg 4896 gccgccaacg tatgcttgag cgctcgaact tcccacgatc ccagggcgac gagcgtttgc 4956 tcccaagggc caaggttccg atattcctcg cccagatggc cgaaaaggat cctctgtgca 5016 gctcggctca ggccgatgcg gcgccctcta agatccgatg gtgaagcaat cttaccggca 5076 gaatgcacat aaaacccttg gcgaggcttc agaaccgtga ttcccaacaa acgtgtccgc 5136 cccggagcac gcagcccttc gctcaccagc ggtggtatct cgccgccaaa tcgggtgtag 5196 gctgcatgat catacgcaaa atgtgtcgcc ccttgggcaa aggcgatctg cgagagaaga 5256 acaccttgac gctctagctt ccccgtccgt gaggccacga gcaaagcgtt tgcaaccgga 5316 caattactat acgcaacgcg ggtcgggcca atggctgaga gcgtgctcat tcgctcaccc 5376 cctgtacagc ttcttcggct tcgctaacgt cttccagacc gagatgctgg cgcaaggtat 5436 ccccttcata ctcccgtctg aaaagacccc ggtcctgcaa aataggaacc actttgtcga 5496 caaattcctc gtaagcgccg ggcagatagt agggagagat cacgaagccg tcggccgccg 5556 gttcattgaa cagagattcc aactcccctg ccacctgctc cggggttcca accaactgcg 5616 gtacgagtac ccagccatag cgaaccccta ggtcgcgcaa cgttaagttt tctgtctctg 5676 tcagtttcac caccatctct aaaagacctc tcgtcccacc cacctcaccg accgcatcca 5736 gcacctcacg aattggagca tccaaaggat agcgggaaaa atccactccg caatggcttg 5796 acagggtaga gagaccagct tctggtatca ctagctgatt cacttcttcc tgccgctcgc 5856 gcgcttcctt ctccgtatcg ccaagaatcg gaatgacggc agggagtatt ttgcaattct 5916 cgggacggcg tcctgcggcg attacctgtt ttttcaagtc ttcgtaaaac gcccgcatcg 5976 cgactcggtt cggcgcaatg gtgaaaacgg cttctgccca ccgagcagca aatgtctttc 6036 cacgggcgga ggatcccgcc tgaatgatga caggacgacc ctgtggcgac cgcgggactt 6096 gtaacgggcc ccggacggag aaccaggttc cggagtgatc aatatagtgg acctttctgg 6156 gatcagcaaa aagaccctgt tttttgtcga ggagcaatgc atcctgatcc caactcctcc 6216 acaatttatc tgtaatctca agaaactcat cggcacggtc gtaccgacta tcgtgatcca 6276 ggtgttcctc atacccaaag ttcctggcct cggcgttgtt gagtgaggtc acgacattcc 6336 aggctgccct tccttttgtt aagtgatcca gcgtagcaaa cactcttgcc acatggtaag 6396 gaggatagta ggttgtcgaa atcgtggccc ccaggcccag tctctccgtg gccgcagcca 6456 tggtggcgag cacggggacg ggatccagaa aagcggctcc ttggcctcca aatctcaatc 6516 cagcatcaag attgtttccg tagctatccc aaatagccaa accgtcaggc agaaagagca 6576 ggtcaaagcg gccgcgctcg agtgtacggg cgatgtgttg ataccaagaa atagacaaaa 6636 aaccattatc agttttcggg tgacgccatg ccccgtggtg atgggtcaca ttacccgctg 6696 caaaaaaacc ggcaagatgc atttgacgca tcgattgaac acctcccatg tatgttcctg 6756 cgtgaatgtt cttcaatggt catccaggag cagaaaactg tttttcggcc ctcctctgca 6816 aaagaaaaag ccccccgctt tccggcaaaa ttaccgcaaa gtcagagggc ctctggtggt 6876 ccagtcagcc gaggtaaacc cgattaaatt gattagtatt tatgaatcgg agtataccgt 6936 tcaggattca ttttgtcaac ccgtcgcaat cactcatgtt gttgttctgt gatattgtca 6996 gggtgtaact gatccgagaa aatgtcagt atg agc aag gag cag atc acc ttg 7049 Met Ser Lys Glu Gln Ile Thr Leu 435 440 aca aag aac gaa ctg aaa cgc gtt atg gtc att gaa aaa tgg atc gac 7097 Thr Lys Asn Glu Leu Lys Arg Val Met Val Ile Glu Lys Trp Ile Asp 445 450 455 ggc cat ctc acg gaa cag gat gtt gca cgc aac ctg ggc atc agt gtc 7145 Gly His Leu Thr Glu Gln Asp Val Ala Arg Asn Leu Gly Ile Ser Val 460 465 470 cgt caa gcg tat cgg ctc aag gcc aaa tat cgt cac gga ggt gca caa 7193 Arg Gln Ala Tyr Arg Leu Lys Ala Lys Tyr Arg His Gly Gly Ala Gln 475 480 485 gcg atc gca cat ggg aat cgg ggc cgt aag ccg gct cac acc ttg acc 7241 Ala Ile Ala His Gly Asn Arg Gly Arg Lys Pro Ala His Thr Leu Thr 490 495 500 gat tcg ctc aaa caa cgc gtt atg ctc ctg tat cag gag cgc tac ttc 7289 Asp Ser Leu Lys Gln Arg Val Met Leu Leu Tyr Gln Glu Arg Tyr Phe 505 510 515 520 gga agc aat gcc acc cac ttt gcc gag ctg ttg gcc gaa cac gaa aac 7337 Gly Ser Asn Ala Thr His Phe Ala Glu Leu Leu Ala Glu His Glu Asn 525 530 535 atc cat tta agc gtc tct tcg gtc cgc cgc att ctg ctg gaa ggc ggg 7385 Ile His Leu Ser Val Ser Ser Val Arg Arg Ile Leu Leu Glu Gly Gly 540 545 550 ttg cgt ccc gcg cgg ctg cgc cgt cgt ccg aag gct cac cga ccc cgg 7433 Leu Arg Pro Ala Arg Leu Arg Arg Arg Pro Lys Ala His Arg Pro Arg 555 560 565 ccc cgc aaa cct cag gcg ggc atg ctg tgg cag atc gat gct tct ccc 7481 Pro Arg Lys Pro Gln Ala Gly Met Leu Trp Gln Ile Asp Ala Ser Pro 570 575 580 tat gcc tgg ctg gag gat cgc ggt ccc atg ctc acc ctg cac ggc atc 7529 Tyr Ala Trp Leu Glu Asp Arg Gly Pro Met Leu Thr Leu His Gly Ile 585 590 595 600 atc gat gac gcc acc ggg gaa gtg gtc gcg gcc acc ttc cgc ccg acc 7577 Ile Asp Asp Ala Thr Gly Glu Val Val Ala Ala Thr Phe Arg Pro Thr 605 610 615 gaa aca ctg gag ggc tac gtg acc gtc atg atc gag gga ctt agg cgc 7625 Glu Thr Leu Glu Gly Tyr Val Thr Val Met Ile Glu Gly Leu Arg Arg 620 625 630 aaa ggc gta ccg ctt gcg ctc tac agc gac caa cac tcc att ttt cac 7673 Lys Gly Val Pro Leu Ala Leu Tyr Ser Asp Gln His Ser Ile Phe His 635 640 645 ccg ccc aag ggc aag cca acc ctc gag cag gaa ttg gcc ggt gag ccg 7721 Pro Pro Lys Gly Lys Pro Thr Leu Glu Gln Glu Leu Ala Gly Glu Pro 650 655 660 ccg tcg ctt tcc acc ttc gga cag gcc ctc gcc gat ctg ggc att acc 7769 Pro Ser Leu Ser Thr Phe Gly Gln Ala Leu Ala Asp Leu Gly Ile Thr 665 670 675 680 cat atc gag gcg ctg tca ccc caa gcc aaa gga cgg atc gaa cgg ctc 7817 His Ile Glu Ala Leu Ser Pro Gln Ala Lys Gly Arg Ile Glu Arg Leu 685 690 695 tgg caa acc ttt cag gat cgc ctg gtg atc gaa ctt agg ctg cgc aac 7865 Trp Gln Thr Phe Gln Asp Arg Leu Val Ile Glu Leu Arg Leu Arg Asn 700 705 710 gtg tgc acg atg gag gaa gcc aat cgc gtg tta ccg gaa ctt atc gcc 7913 Val Cys Thr Met Glu Glu Ala Asn Arg Val Leu Pro Glu Leu Ile Ala 715 720 725 aag cac aat cgt cag ttt gcc gtc gcg ccg caa gaa gct gaa ccg gcc 7961 Lys His Asn Arg Gln Phe Ala Val Ala Pro Gln Glu Ala Glu Pro Ala 730 735 740 tac cgg ccg ctg ccc gaa acg cct ttg gag cat atc ttc acg cgt cgg 8009 Tyr Arg Pro Leu Pro Glu Thr Pro Leu Glu His Ile Phe Thr Arg Arg 745 750 755 760 gaa tac cgg cgc atc agc ggc ggg cag acg ttc ttc tgg aaa ggg aaa 8057 Glu Tyr Arg Arg Ile Ser Gly Gly Gln Thr Phe Phe Trp Lys Gly Lys 765 770 775 tgc tac atg cca aag ccc gtc ccc ggt gtt ccg cgc tgg gaa gcg aag 8105 Cys Tyr Met Pro Lys Pro Val Pro Gly Val Pro Arg Trp Glu Ala Lys 780 785 790 agc gtc gtc gaa gtg cgt gtc ggc atg gat gga caa gtg tgg ctg tgg 8153 Ser Val Val Glu Val Arg Val Gly Met Asp Gly Gln Val Trp Leu Trp 795 800 805 gat caa ggg cgg gcc tgg cct tgt gtg gag aca cag gcc aca cag acc 8201 Asp Gln Gly Arg Ala Trp Pro Cys Val Glu Thr Gln Ala Thr Gln Thr 810 815 820 ccg gcg cca aca acg gcc aaa aaa gaa gcg gcg cct gcg tcc ccc cgc 8249 Pro Ala Pro Thr Thr Ala Lys Lys Glu Ala Ala Pro Ala Ser Pro Arg 825 830 835 840 aag ccc gct gca aac cat ccc tgg aga aaa cca ttc tcc agc aag cag 8297 Lys Pro Ala Ala Asn His Pro Trp Arg Lys Pro Phe Ser Ser Lys Gln 845 850 855 tta cag cgt agc aca gca tcc ggc tagtctgcaa gaggacggcg gctgtttaat 8351 Leu Gln Arg Ser Thr Ala Ser Gly 860 caactatcat ccctgacatt ttcatagaac agttaacctg acattttcac agacgcttga 8411 catattaccc agccattgtc caaccaaaac tctaaaattg tggtatgctg ccgaaatttg 8471 aaaagataaa taggaagagt ggaatgctcc acccttccca tttatcacag cgcaaattcc 8531 aattgcccgt tcgcggcaag cgacatcggt accacagcag ccgtcatgtc ttgatcttgg 8591 ttcatcgcaa cgtcggaaat gattttgccg tgctttgccg ccagcttctg gagcagtttc 8651 aattcatgtt gctgcgcctt ataagcaaat tcagcgcgga tctgctccgc atgttgcagc 8711 acatattcct tcagttcgcg gttaaactct ccgtattcac cgtagcacaa ataatagcac 8771 tgctcaaaat gctcaatgaa atcaagaaac cctttatcgg aatatgtctc tttgaagcca 8831 tagatgtcat aatgcgcgat gaagcctgca tgaagatgca aataattgta aagctgcttg 8891 tccatgtgat tgatgtcgcg ggtatcaatg accttcttaa acttcttgaa aatttttgcg 8951 gtatccacct tcatttgctc aagctccccc ttaacttgcg cgatatttcc acccttataa 9011 aaaaagaaaa aggggcataa aatacgcccc caattttcct tacccgacaa gaccgatcga 9071 cgatttttca atcacgagtc cgttttcggt gcgttcaatc caccggtcgc caggatcgcg 9131 actgagcctt tcaacacggg ctttagcgtc cctcagtcga gtccccgtaa ttaacttacg 9191 gagcgtggac ccgtcttcca gatgataaag cacaggtacc ccgtatccgt gttgcgtctt 9251 ctcgtgtttc tcgtcaagtg gttcgatgcg aattaccctg ataccattct cccgaacgcc 9311 ggccactcca ctttccggga cctctacctc ggcgcccccc tgttccgcag gaagctcctc 9371 ggcagaaagg atttcagcgt cctcctcttt tgtagacggg gatacagcat tgtccggatc 9431 atgttggagt tggccactct cgcttgattg cagtccggag tcagcttcct ggtcatacgg 9491 cgcagctgct accgaagcgg aatcgttatt ggcgccggcc acatcttctg cataaaccgg 9551 cctgcagttc ccggtctttg cattaaaatt gacataatgg acgagaatgg cgttcgacga 9611 aaacagctca ttcacgacgg tcgaaatcag catcgcggcc atttcattgg aaatcatccg 9671 ttgcggctga tacggttcga ccccgcagga atgcgaagga ggaattgcgt cctttgcatt 9731 gatcggataa accgcatcga gcggcggcaa gatgacgcgg ccgc 9775 <210> 8 <211> 432 <212> PRT <213> Paenibacillus sp. <400> 8 Met Ser Lys Glu Gln Ile Thr Leu Thr Lys Asn Glu Leu Lys Arg Val 1 5 10 15 Met Val Ile Glu Lys Trp Ile Asp Gly His Leu Thr Glu Gln Asp Val 20 25 30 Ala Arg Asn Leu Gly Ile Ser Val Arg Gln Ala Tyr Arg Leu Lys Ala 35 40 45 Lys Tyr Arg His Gly Gly Ala Gln Ala Ile Ala His Gly Asn Arg Gly 50 55 60 Arg Lys Pro Ala His Thr Leu Thr Asp Ser Leu Lys Gln Arg Val Met 65 70 75 80 Leu Leu Tyr Gln Glu Arg Tyr Phe Gly Ser Asn Ala Thr His Phe Ala 85 90 95 Glu Leu Leu Ala Glu His Glu Asn Ile His Leu Ser Val Ser Ser Val 100 105 110 Arg Arg Ile Leu Leu Glu Gly Gly Leu Arg Pro Ala Arg Leu Arg Arg 115 120 125 Arg Pro Lys Ala His Arg Pro Arg Pro Arg Lys Pro Gln Ala Gly Met 130 135 140 Leu Trp Gln Ile Asp Ala Ser Pro Tyr Ala Trp Leu Glu Asp Arg Gly 145 150 155 160 Pro Met Leu Thr Leu His Gly Ile Ile Asp Asp Ala Thr Gly Glu Val 165 170 175 Val Ala Ala Thr Phe Arg Pro Thr Glu Thr Leu Glu Gly Tyr Val Thr 180 185 190 Val Met Ile Glu Gly Leu Arg Arg Lys Gly Val Pro Leu Ala Leu Tyr 195 200 205 Ser Asp Gln His Ser Ile Phe His Pro Pro Lys Gly Lys Pro Thr Leu 210 215 220 Glu Gln Glu Leu Ala Gly Glu Pro Pro Ser Leu Ser Thr Phe Gly Gln 225 230 235 240 Ala Leu Ala Asp Leu Gly Ile Thr His Ile Glu Ala Leu Ser Pro Gln 245 250 255 Ala Lys Gly Arg Ile Glu Arg Leu Trp Gln Thr Phe Gln Asp Arg Leu 260 265 270 Val Ile Glu Leu Arg Leu Arg Asn Val Cys Thr Met Glu Glu Ala Asn 275 280 285 Arg Val Leu Pro Glu Leu Ile Ala Lys His Asn Arg Gln Phe Ala Val 290 295 300 Ala Pro Gln Glu Ala Glu Pro Ala Tyr Arg Pro Leu Pro Glu Thr Pro 305 310 315 320 Leu Glu His Ile Phe Thr Arg Arg Glu Tyr Arg Arg Ile Ser Gly Gly 325 330 335 Gln Thr Phe Phe Trp Lys Gly Lys Cys Tyr Met Pro Lys Pro Val Pro 340 345 350 Gly Val Pro Arg Trp Glu Ala Lys Ser Val Val Glu Val Arg Val Gly 355 360 365 Met Asp Gly Gln Val Trp Leu Trp Asp Gln Gly Arg Ala Trp Pro Cys 370 375 380 Val Glu Thr Gln Ala Thr Gln Thr Pro Ala Pro Thr Thr Ala Lys Lys 385 390 395 400 Glu Ala Ala Pro Ala Ser Pro Arg Lys Pro Ala Ala Asn His Pro Trp 405 410 415 Arg Lys Pro Phe Ser Ser Lys Gln Leu Gln Arg Ser Thr Ala Ser Gly 420 425 430 <210> 9 <211> 432 <212> PRT <213> Paenibacillus sp. <400> 9 Met Ser Lys Glu Gln Ile Thr Leu Thr Lys Asn Glu Leu Lys Arg Val 1 5 10 15 Met Val Ile Glu Lys Trp Ile Asp Gly His Leu Thr Glu Gln Asp Val 20 25 30 Ala Arg Asn Leu Gly Ile Ser Val Arg Gln Ala Tyr Arg Leu Lys Ala 35 40 45 Lys Tyr Arg His Gly Gly Ala Gln Ala Ile Ala His Gly Asn Arg Gly 50 55 60 Arg Lys Pro Ala His Thr Leu Thr Asp Ser Leu Lys Gln Arg Val Met 65 70 75 80 Leu Leu Tyr Gln Glu Arg Tyr Phe Gly Ser Asn Ala Thr His Phe Ala 85 90 95 Glu Leu Leu Ala Glu His Glu Asn Ile His Leu Ser Val Ser Ser Val 100 105 110 Arg Arg Ile Leu Leu Glu Gly Gly Leu Arg Pro Ala Arg Leu Arg Arg 115 120 125 Arg Pro Lys Ala His Arg Pro Arg Pro Arg Lys Pro Gln Ala Gly Met 130 135 140 Leu Trp Gln Ile Asp Ala Ser Pro Tyr Ala Trp Leu Glu Asp Arg Gly 145 150 155 160 Pro Met Leu Thr Leu His Gly Ile Ile Asp Asp Ala Thr Gly Glu Val 165 170 175 Val Ala Ala Thr Phe Arg Pro Thr Glu Thr Leu Glu Gly Tyr Val Thr 180 185 190 Val Met Ile Glu Gly Leu Arg Arg Lys Gly Val Pro Leu Ala Leu Tyr 195 200 205 Ser Asp Gln His Ser Ile Phe His Pro Pro Lys Gly Lys Pro Thr Leu 210 215 220 Glu Gln Glu Leu Ala Gly Glu Pro Pro Ser Leu Ser Thr Phe Gly Gln 225 230 235 240 Ala Leu Ala Asp Leu Gly Ile Thr His Ile Glu Ala Leu Ser Pro Gln 245 250 255 Ala Lys Gly Arg Ile Glu Arg Leu Trp Gln Thr Phe Gln Asp Arg Leu 260 265 270 Val Ile Glu Leu Arg Leu Arg Asn Val Cys Thr Met Glu Glu Ala Asn 275 280 285 Arg Val Leu Pro Glu Leu Ile Ala Lys His Asn Arg Gln Phe Ala Val 290 295 300 Ala Pro Gln Glu Ala Glu Pro Ala Tyr Arg Pro Leu Pro Glu Thr Pro 305 310 315 320 Leu Glu His Ile Phe Thr Arg Arg Glu Tyr Arg Arg Ile Ser Gly Gly 325 330 335 Gln Thr Phe Phe Trp Lys Gly Lys Cys Tyr Met Pro Lys Pro Val Pro 340 345 350 Gly Val Pro Arg Trp Glu Ala Lys Ser Val Val Glu Val Arg Val Gly 355 360 365 Met Asp Gly Gln Val Trp Leu Trp Asp Gln Gly Arg Ala Trp Pro Cys 370 375 380 Val Glu Thr Gln Ala Thr Gln Thr Pro Ala Pro Thr Thr Ala Lys Lys 385 390 395 400 Glu Ala Ala Pro Ala Ser Pro Arg Lys Pro Ala Ala Asn His Pro Trp 405 410 415 Arg Lys Pro Phe Ser Ser Lys Gln Leu Gln Arg Ser Thr Ala Ser Gly 420 425 430
【図1】DSZプローブ陽性クローンの挿入DNAの制限酵素
地図を示す。
地図を示す。
【図2】発現プラスミドpSKR7の構築工程を示す。
【図3】♯361株によるDBT分解の結果を示す。
【図4】♯361株無細胞抽出液系でのDBT分解反応の
結果を示す。
結果を示す。
【図5】欠失発現プラスミドの構造を示す。
【図6】温度と蛋白質Aの酵素活性との関係を示す。
【図7】pHと蛋白質Aの酵素活性との関係を示す。
【図8】温度と蛋白質Bの酵素活性との関係を示す。
【図9】pHと蛋白質Bの酵素活性との関係を示す。
フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:01) (C12N 9/02 C12R 1:19) (72)発明者 岡田 秀樹 埼玉県北葛飾郡栗橋町大字中里506番地85 街区6−1 (72)発明者 鈴木 正則 静岡県清水市西久保136−1−1−134
Claims (12)
- 【請求項1】 以下の(a) 又は(b) のタンパク質をコー
ドする遺伝子。 (a) 配列番号2記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号2記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつジベンゾチオフェンスルホンを
2−(2’−ヒドロキシフェニル)ベンゼンスルフィン
酸に変換する機能を有するタンパク質 - 【請求項2】 以下の(a) 又は(b) のタンパク質をコー
ドする遺伝子。 (a) 配列番号4記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号4記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつ2−(2’−ヒドロキシフェニ
ル)ベンゼンスルフィン酸を2−ヒドロキシビフェニル
に変換する機能を有するタンパク質 - 【請求項3】 以下の(a) 又は(b) のタンパク質をコー
ドする遺伝子。 (a) 配列番号6記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号6記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつジベンゾチオフェンをジベンゾ
チオフェンスルホンに変換する機能を有するタンパク質 - 【請求項4】 請求項1、2又は3に記載の遺伝子を含
むベクター。 - 【請求項5】 請求項4記載のベクターを含有する形質
転換体。 - 【請求項6】 以下の(a) 又は(b) に示すタンパク質。 (a) 配列番号2記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号2記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつジベンゾチオフェンスルホンを
2−(2’−ヒドロキシフェニル)ベンゼンスルフィン
酸に変換する機能を有するタンパク質 - 【請求項7】 以下の(a) 又は(b) に示すタンパク質。 (a) 配列番号4記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号4記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつ2−(2−ヒドロキシフェニ
ル)ベンゼンスルフィン酸を2−ヒドロキシビフェニル
に変換する機能を有するタンパク質 - 【請求項8】 以下の(a) 又は(b) に示すタンパク質。 (a) 配列番号6記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号6記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列からなり、かつジベンゾチオフェンをジベンゾ
チオフェンスルホンに変換する機能を有するタンパク質 - 【請求項9】 以下の(a) 、(b) 又は(c) のタンパク質
をコードする遺伝子。 (a) 配列番号8記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号9記載のアミノ酸配列により表されるタン
パク質 (c) 配列番号8記載のアミノ酸配列又は配列番号9記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつトランスポザーゼ活性を有するタンパク質 - 【請求項10】 以下の(a) 、(b) 又は(c) に示すタン
パク質。 (a) 配列番号8記載のアミノ酸配列により表されるタン
パク質 (b) 配列番号9記載のアミノ酸配列により表されるタン
パク質 (c) 配列番号8記載のアミノ酸配列又は配列番号9記載
のアミノ酸配列において1若しくは複数個のアミノ酸が
欠失、置換若しくは付加されたアミノ酸配列からなり、
かつトランスポザーゼ活性を有するタンパク質 - 【請求項11】 以下の性質を有するタンパク質。 (1) 作用:ジベンゾチオフェンスルホンを2−(2’−
ヒドロキシフェニル)ベンゼンスルフィン酸にする (2) 至適pH:5.5 、安定pH:5〜10 (3) 至適温度:45℃ (4) 分子量:120,000 (ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:NADH、FMN が必要、NADPH はNADH
の代替になるが、FAD はFMN の代替にならない - 【請求項12】 以下の性質を有するタンパク質。 (1) 作用:2−(2’−ヒドロキシフェニル)ベンゼン
スルフィン酸を2−ヒドロキシビフェニルにする (2) 至適pH:8、安定pH:5.5 〜9.5 (3) 至適温度:55℃ (4) 分子量:31,000(ゲル濾過法による) (5) 活性阻害:キレート剤、SH阻害剤によって阻害され
るが、2-HBP 、硫酸塩によっては阻害されない (6) 補酵素の要求性:補酵素は必要としない
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10310545A JPH11341987A (ja) | 1998-04-02 | 1998-10-30 | 脱硫酵素群をコードする遺伝子 |
EP99910826A EP1069186A4 (en) | 1998-04-02 | 1999-04-02 | GENE ENCODING DESULFURASES |
US09/647,540 US6420158B1 (en) | 1998-04-02 | 1999-04-02 | Gene encoding desulfurases |
PCT/JP1999/001756 WO1999051747A1 (fr) | 1998-04-02 | 1999-04-02 | Gene codant des desulfurases |
US10/119,651 US6607903B2 (en) | 1998-04-02 | 2002-04-10 | Genes encoding desulfurization enzymes |
US10/119,600 US6479271B1 (en) | 1998-04-02 | 2002-04-10 | Genes encoding desulfurization enzymes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-90387 | 1998-04-02 | ||
JP9038798 | 1998-04-02 | ||
JP10310545A JPH11341987A (ja) | 1998-04-02 | 1998-10-30 | 脱硫酵素群をコードする遺伝子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11341987A true JPH11341987A (ja) | 1999-12-14 |
Family
ID=26431876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10310545A Pending JPH11341987A (ja) | 1998-04-02 | 1998-10-30 | 脱硫酵素群をコードする遺伝子 |
Country Status (4)
Country | Link |
---|---|
US (3) | US6420158B1 (ja) |
EP (1) | EP1069186A4 (ja) |
JP (1) | JPH11341987A (ja) |
WO (1) | WO1999051747A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPS282802A0 (en) * | 2002-06-07 | 2002-06-27 | Commonwealth Scientific And Industrial Research Organisation | Novel enzymes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE210726T1 (de) * | 1992-07-10 | 2001-12-15 | Energy Biosystems Corp | Für einen entschwefelungs-biokatalysator kodierende, rekombinante dna |
JPH1036859A (ja) * | 1996-07-30 | 1998-02-10 | Sekiyu Sangyo Kasseika Center | 微生物による高温脱硫 |
US5952208A (en) * | 1997-04-07 | 1999-09-14 | Energy Biosystems Corporation | Dsz gene expression in pseudomonas hosts |
US6133016A (en) * | 1997-04-07 | 2000-10-17 | Energy Biosystems Corporation | Sphingomonas biodesulfurization catalyst |
-
1998
- 1998-10-30 JP JP10310545A patent/JPH11341987A/ja active Pending
-
1999
- 1999-04-02 EP EP99910826A patent/EP1069186A4/en not_active Withdrawn
- 1999-04-02 US US09/647,540 patent/US6420158B1/en not_active Expired - Fee Related
- 1999-04-02 WO PCT/JP1999/001756 patent/WO1999051747A1/ja not_active Application Discontinuation
-
2002
- 2002-04-10 US US10/119,600 patent/US6479271B1/en not_active Expired - Fee Related
- 2002-04-10 US US10/119,651 patent/US6607903B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1069186A4 (en) | 2004-07-28 |
WO1999051747A1 (fr) | 1999-10-14 |
US6479271B1 (en) | 2002-11-12 |
US20030032100A1 (en) | 2003-02-13 |
US6607903B2 (en) | 2003-08-19 |
US6420158B1 (en) | 2002-07-16 |
EP1069186A1 (en) | 2001-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5578478A (en) | Recombinant DNA encoding a desulfurization biocatalyst | |
US6071738A (en) | Conversion of organosulfur compounds to oxyorganosulfur compounds for desulfurization of fossil fuels | |
US5952208A (en) | Dsz gene expression in pseudomonas hosts | |
JPH11341987A (ja) | 脱硫酵素群をコードする遺伝子 | |
WO1998045447A9 (en) | Dsz gene expression in pseudomonas hosts | |
US6337204B1 (en) | Biological culture containing Rhodococcus erythropolis erythropolis and/or Rhodococcus rhodnii and process for desulfurization of petroleum fraction | |
US5846813A (en) | DszD utilization in desulfurization of DBT by rhodococcus sp. IGTS8 | |
US6133016A (en) | Sphingomonas biodesulfurization catalyst | |
JP4296255B2 (ja) | アルキルベンゾチオフェンおよびアルキルジベンゾチオフェンを分解する微生物脱硫法 | |
US5804433A (en) | Rhodococcus flavin reductase complementing DszA and DszC activity | |
JP4129494B2 (ja) | ジベンゾチオフェン類を分解する微生物脱硫法 | |
JP2004283120A (ja) | 脱硫関連酸化還元酵素をコードする遺伝子および取得方法 | |
JP4150763B2 (ja) | 脱硫酵素発現抑制遺伝子の特定方法、並びに脱硫酵素の発現抑制を解除された脱硫微生物及びその作出方法 | |
Konishi et al. | Comparison of the substrate specificity of the two bacterial desulfurization systems | |
KR100343398B1 (ko) | 탈황효소를 발현하는 재조합 대장균 및 이를 이용한 생물학적 탈 | |
JP2002253247A (ja) | 耐熱性脱硫酵素とそれをコードする遺伝子 | |
JP2000224991A (ja) | 酸化還元酵素をコードする遺伝子 | |
JP2000245478A (ja) | 酸化還元酵素遺伝子 | |
JP2001309788A (ja) | 有機硫黄化合物を分解する酵素及び遺伝子 | |
MXPA98002175A (es) | Utilizacion de dszd en el desazuframiento de dbt por rhodococcus sp. igts8 | |
JP2000245477A (ja) | 脱硫酵素をコードする遺伝子 | |
JP2002223767A (ja) | 組換え脱硫菌 | |
JP2004113040A (ja) | 新規なフラビンレダクターゼ及び該酵素をコードするdnaおよび該dnaで形質転換された形質転換細胞 | |
JP2000093180A (ja) | 有機硫黄化合物の酸化反応に関与する蛋白質及びそれをコードする遺伝子 |