WO1999049354A1 - Dispositif electro-optique, procede de pilotage associe et procede de fabrication correspondant - Google Patents

Dispositif electro-optique, procede de pilotage associe et procede de fabrication correspondant Download PDF

Info

Publication number
WO1999049354A1
WO1999049354A1 PCT/JP1999/001478 JP9901478W WO9949354A1 WO 1999049354 A1 WO1999049354 A1 WO 1999049354A1 JP 9901478 W JP9901478 W JP 9901478W WO 9949354 A1 WO9949354 A1 WO 9949354A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
light beam
electro
ferroelectric substrate
inverted
Prior art date
Application number
PCT/JP1999/001478
Other languages
English (en)
French (fr)
Inventor
Masahiro Yamada
Toru Domuki
Hitoshi Tamada
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US09/424,443 priority Critical patent/US6411420B1/en
Priority to EP99910673A priority patent/EP0985947A1/en
Priority to KR1019997010840A priority patent/KR20010012874A/ko
Publication of WO1999049354A1 publication Critical patent/WO1999049354A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Definitions

  • the present invention relates to an electro-optical element capable of reducing the coherence of a light beam, a driving method thereof, and a manufacturing method thereof.
  • laser light has a higher frequency than radio waves and therefore has a greater information capacity, and because it has the same wavelength and the same phase, it has excellent monochromaticity and directivity, and is not found in ordinary light beams. It has coherent properties (coherence), and has the features of being able to focus on a very small area so that it can converge extremely finely, and to realize, for example, a high temperature locally and instantaneously. It has been applied to various fields such as communication and information, measurement, application to processing technology, and medical use.
  • laser light has excellent directivity and high intensity and coherence as described above, when laser light is used as illumination light, it is used for, for example, laser display. In such a case, so-called speckle noise, which is a point-like glare caused by its high coherence, becomes a problem.
  • a bundle fiber or a rotating diffuser is known.
  • the bundle fiber has a structure in which a number of multi-mode fibers are bundled, and the beam shape of the coherent light beam is shaped to match the shape of the input end of the bundle fiber.
  • the coherence is reduced by propagating the light beam through the bundle fiber.
  • Each of the optical fibers constituting the bundle fiber is a multi-mode optical fiber, whereby the light beam propagating in the optical fiber propagates in a plurality of modes. .
  • Each mode has a different propagation speed, so that the light beam emitted from the fiber becomes a light beam having various phases. Since a large number of such optical fibers are bundled, the output light beam becomes a light beam having more phases, whereby the coherence is reduced and the speckle noise is reduced. Noise is reduced.
  • phase relationship between the light beams emitted from each optical fiber is always stable in time, and it is difficult to completely eliminate speckle noise.
  • the rotating diffuser is configured so that a coherent light beam passes through the rotating frosted glass.
  • the components of the light beam that is, the position correlation of the light flux constituting the light beam, are determined by the frosted glass.
  • the ground glass is rotated by a motor or the like to change the phase relation of the constituent light beams of the light beam with time. This can be said to be an improvement in the method for reducing noise.
  • the present invention has been made in view of the above-described circumstances, and has as its object to disturb the phase relationship of a light beam having high coherence, such as a laser beam, and to easily reduce the coherence.
  • An object of the present invention is to provide an electro-optical element capable of obtaining a beam, a driving method thereof and a manufacturing method thereof. Disclosure of the invention
  • the electro-optical element according to the present invention has a single strength having electro-optical effect. It is composed of a dielectric substrate or a laminate of a plurality of similar ferroelectric substrates.
  • the electro-optical element composed of one or a plurality of ferroelectric substrates has an incident surface and an exit surface of a light beam, and a light beam propagation path between the incident surface and the exit surface includes: A plurality or a single domain-inverted domain is provided with phase shifting means.
  • the above-described electro-optical element is provided with at least a pair of electrodes for applying an electric field to a region where the polarization inversion domain is formed in the ferroelectric substrate.
  • the domain-inverted domain constitutes a phase displacement means for causing the phases of the light beams constituting the light beam incident on the ferroelectric substrate to be irregularly different from each other.
  • the domain-inverted domain has an irregular shape and Z or arrangement at least in the propagation direction of the light beam.
  • the domain-inverted domain constituting the phase shift means is formed irregularly in a direction substantially orthogonal to the propagation direction of the light beam.
  • the domain-inverted domain constituting the phase shift means has a configuration in which the depth is irregular.
  • the entrance and exit surfaces of the light beam can be specular or, at least, at the same time, the exit surface can be rough, if desired.
  • a part or all of the above-mentioned electrodes can be formed as a transparent electrode having a high transmittance with respect to an incident light beam, and one or both of light incidence and light emission can be performed through the transparent electrode.
  • the driving method according to the present invention provides an electro-optical element having the above-described configuration, wherein an AC signal obtained by superimposing a required electric signal, preferably an AC signal, and more preferably a DC component between at least one pair of electrodes.
  • an AC signal obtained by superimposing a required electric signal, preferably an AC signal, and more preferably a DC component between at least one pair of electrodes.
  • Faith Supply the issue.
  • the refractive index of the domain-inverted domain is different from that of the other part, and the irregularly formed domain-inverted domain causes the light beam constituting the light beam passing through the domain to change.
  • the phase shift is performed so that the phases of the light beams are irregularly different from each other, and thus the coherence of the light beams, that is, the reduction of coherence is performed.
  • the method of manufacturing an electro-optical element according to the present invention includes the steps of: providing a part of the ferroelectric substrate constituting the electro-optical element having the above-described configuration; A first step of forming a first domain-inverted domain with a partially irregular pattern is performed. Next, a second step of reducing the depth of the first domain-inverted domain to a required depth is performed. Next, a second domain-inverted domain is formed on the other part of the ferroelectric substrate from one main surface to all or part of the ferroelectric substrate in the thickness direction. Perform the third step.
  • a fourth step of similarly reducing the depth of each domain-inverted domain to a required depth by maintaining the same at a predetermined temperature equal to or lower than the Curie temperature for a required time is performed.
  • electrodes are provided on both opposing main surfaces of the ferroelectric substrate, and the first and second domain-inverted domains are formed by applying electrodes between these electrodes.
  • the first and third steps may include irradiating the negative or positive side of the spontaneous polarization of the ferroelectric substrate with a charged particle having a negative or positive charge, thereby forming the first and second domain-inverted domains.
  • the second and fourth steps can be performed by maintaining the ferroelectric substrate at a predetermined temperature lower than the Curie temperature.
  • N bx T a!-x 0 (however, 0 ⁇ x ⁇ l), and a step of maintaining the crystal in the air or oxygen atmosphere at a predetermined temperature not higher than the temperature of the crystal is performed.
  • the ferroelectric substrate constituted by crystals of L i N b 0 3, the ferroelectric base body, 3 0 0 ° C
  • FIG. 1 is a schematic perspective view of an electro-optical element according to the present invention
  • FIG. 2 is a schematic plan view thereof
  • FIG. 3 is a schematic cross-sectional view taken along line II-III in FIG.
  • FIG. 4 is a schematic perspective view of the electro-optical element according to the present invention
  • FIG. 5 is a schematic cross-sectional view of the electro-optical element according to the present invention
  • FIG. 6 is based on the manufacturing method of the present invention.
  • FIG. 7 is a schematic perspective view illustrating a method of forming a domain-inverted domain
  • FIG. 7 is a schematic perspective view illustrating a method of forming a domain-inverted domain based on the manufacturing method of the present invention.
  • FIG. 9 is a schematic cross-sectional view of an electro-optical element according to the present invention.
  • FIG. 0 is a schematic sectional view of the electro-optical element according to the present invention
  • FIG. 11 is an electro-optical device according to the present invention.
  • FIG. 12 is a schematic sectional view of an electro-optical element according to the present invention.
  • FIG. 13 is a schematic sectional view of an electro-optical element according to the present invention.
  • FIG. 1 is a schematic sectional view of an electro-optical element according to the present invention.
  • FIG. 15 is a schematic sectional view of an electro-optical element according to the present invention.
  • FIG. 16 is a schematic sectional view of the electro-optical element according to the present invention.
  • FIG. 17 is a schematic sectional view, and FIG. 17 is a schematic sectional view of an electro-optical element according to the present invention.
  • the electro-optical element according to the invention may be singular or plural, e.g. It is composed of a ferroelectric substrate having an electro-optic effect in the shape of a rectangular substrate.
  • the ferroelectric substrate is provided with at least phase shifting means formed by domain-inverted domains irregularly formed in the propagation direction of the light beam.
  • At least a pair of electrodes for applying a required electric field to the formation portion of the phase displacement means are provided.
  • the phase displacement means is configured such that a plurality of domain-inverted domains having irregular shapes are arranged irregularly in the propagation direction of the light beam, or a domain-inverted domain having one irregular shape is arranged. It is configured by doing this.
  • the domain-inverted domain be formed irregularly in the direction orthogonal to the light beam propagation direction.
  • the domain-inverted domain passes through the domain wall at least twice when a light beam constituting a light beam propagating in the ferroelectric substrate enters and exits the domain-inverted domain.
  • a plurality of light fluxes are arranged such that, for example, the number of polarization-reversed domains, the incident angle, the exit angle, the transit distance in the domain, and the like are different from each other with respect to the domain.
  • the domain wall of the domain-inverted domain is formed perpendicularly or almost perpendicularly to the propagation direction.
  • the electro-optical element is made of a rectangular plate-shaped ferroelectric substrate, and the opposing end faces between the two main surfaces are defined as an incident surface and an emitting surface of the light beam, respectively.
  • Ferroelectric substrate When the main surface of the ferroelectric substrate is oriented perpendicular to or substantially perpendicular to the main surface of the ferroelectric substrate, at least one of the domain walls of the domain-inverted domain should be perpendicular to the main surface of the ferroelectric substrate. Pass through at least two of the domain walls. By making the domain wall perpendicular or almost perpendicular to the main surface of the ferroelectric substrate, the space between the incident surface and the outgoing surface of the light beam is stabilized to a plane parallel to the main surface. Can be propagated.
  • the direction of propagation of the light beam in the ferroelectric substrate may be, for example, in the case where the ferroelectric substrate has a plate shape, as described above, in the direction of the plate surface. It can also be a direction.
  • the main propagation direction is a predetermined direction
  • a plate surface direction for example, a reflection surface is formed on a part or all of the two main surfaces or one of the main surfaces to form a light. While reflecting and bending the beam, the beam can be propagated in a predetermined direction to lengthen the optical path length.
  • a plurality of ferroelectric substrates having the above-mentioned domain-inverted domains can be stacked to form a propagation optical path of a light beam over the plurality of ferroelectric substrates, thereby increasing the optical path length.
  • the incident surface and the outgoing surface of the electro-optical element that is, the incident surface and the outgoing surface of the light beam of one or more ferroelectric substrates constituting the electro-optical element are both mirror surfaces so that the incident efficiency can be improved.
  • the driving method according to the present invention provides the electro-optical device according to the present invention as described above, wherein the phase displacement method comprises the above-described domain-inverted domain.
  • the phase shifting means functions to reduce the coherence or coherence of the light beam.
  • a required voltage preferably an AC signal, and more preferably an AC signal obtained by superimposing a DC voltage is supplied between at least a pair of electrodes formed on the electro-optical element.
  • the refractive index of the domain-inverted domain and the other part of the ferroelectric substrate are temporally different according to the applied signal. For this reason, the traveling speed of light is different between the domain-inverted domain and other parts, and this also changes with time, and the incidence of light on the domain-inverted domain
  • the luminous flux that constitutes an optical beam is based on the differences and changes in many factors, such as differences in the angle and emission angle, and differences in the optical path lengths inside and outside the domain of the domain-inverted domain due to irregularities in the domain shape.
  • the phases are different from each other, and this causes a phase variation, which can cause a decrease in coherence, that is, a decrease in coherence.
  • the irregularity of the domain of the domain-inverted domain of the electro-optical element according to the present invention refers to the irregularity of the phase of the light beams incident on the domain, for example, the light beams constituting the laser light, and the coherence of the light. It means a decline.
  • the electric signal applied to the electro-optical element be an AC signal in order to obtain the above-described effect of temporally changing the phase. Then, the moment when the refractive index of the polarization reversal domain coincides with that of the other part occurs, and at this time, the effect of the decrease in coherence is lost, and the moment when speckle noise is generated occurs. Therefore, in order to avoid such inconveniences, it is desirable to supply an AC signal superimposed on a DC signal. Further, a method for manufacturing an electro-optical element according to the present invention is for manufacturing an electro-optical element having the above-described configurations according to the present invention. In the first step, a first domain-inverted domain is formed.
  • the depth of the first domain-inverted domain is controlled, and in a third step, a second domain-inverted domain is formed. Further, for example, in a fourth step, the depth of the domain-inverted domain is controlled to form a plurality of irregular domain-inverted domains.
  • the domain-inverted domain is formed in the first and third steps by providing electrodes on both opposing main surfaces of the strong dielectric, and applying a voltage between these opposing electrodes.
  • the irradiation can be performed by irradiating the negative or positive surface of the spontaneous polarization of the ferroelectric substrate with charged particles having a negative or positive charge.
  • the second and fourth steps can be performed by maintaining the ferroelectric substrate at a temperature lower than its curable temperature.
  • the ferroelectric substrate is L i N b x T ai - x 0 3 (where, 0 ⁇ ⁇ ⁇ 1) be comprised of crystals, air in the ferroelectric substrate in the queue rie temperature below or It is desirable to carry out by keeping it in an oxygen atmosphere.
  • the ferroelectric substrate is made of LiNb03 crystals
  • the second and fourth steps are carried out by changing the ferroelectric substrate from 300 to 1150 for an instant to 30 hours. Perform by maintaining in air or oxygen atmosphere o
  • a method for producing a domain-inverted domain with a depth over the entire thickness of the ferroelectric substrate includes, for example, applying a voltage directly to the substrate. And a method of irradiating charged particles such as an electron beam.
  • a method of directly applying a voltage to, for example, a plate-shaped ferroelectric substrate 41 will be described.
  • the direction of the electric field application is conceptually shown in FIG. 6, for example, the z-plane (+ c) of the ferroelectric substrate 41 composed of z-plate of lithium niobate (LiNb0a).
  • An electrode 46 corresponding to the shape of the domain to be formed is formed on the surface.
  • the electrode 46 is formed, for example, by depositing an A1 conductive film on the entire surface and then forming the electrode 46 into a predetermined shape by pattern etching using a normal photolithography technique.
  • the plane electrode 44 is formed entirely on the other surface of the z-plane 41, that is, on one z-plane ( ⁇ c-plane). Then, an electric field of, for example, 20 kVZmm or more is applied at room temperature by the power supply 47 so that the potential on the electrode 46 on the + z plane becomes higher than that on the electrode 44 on the + z plane. . As a result, a plurality of polarization-inverted domains 42 are formed immediately below the electrode 46 in substantially the same pattern as the electrode 46.
  • a flat electrode 49 is formed on the + z plane (+ c plane) of the ferroelectric substrate 41 with a z-plate of lithium niobate to deposit an aluminum film, for example.
  • the domain 42 is to be formed on the 1 Z plane (1 C plane) with this grounded, for example, 20 kV (acceleration voltage)
  • X t thickness of the substrate 41 (Mm)
  • the above electron beam 48 is scanned and irradiated at room temperature.
  • a domain-inverted domain can be formed over the entire thickness of the ferroelectric substrate. Next, this domain-inverted domain is formed on one side of the ferroelectric substrate. A method of processing the main surface to have a random depth in the thickness direction will be described.
  • strong part of the induced electroconductive substrate 4 1 made of, for example, lithium niobate has a thickness t in the depth direction (L i N b O 3) , for example,
  • a domain-inverted domain 42 a having a depth extending from one main surface 31 to almost the entire thickness t of the substrate 41 is formed (first step).
  • annealing is performed at a temperature equal to or lower than the temperature of the catalyst, desirably at 300 to 115 ° C., in the air or an oxygen atmosphere for a predetermined time.
  • This anneal forms a domain of any depth
  • the annealing time is selected from 0 minutes (instantaneous) to 30 hours. In this way, as shown in FIG. 8B, a domain 32a having a reduced depth is formed (second step).
  • the ferroelectric substrate 41 was placed in another part other than the part where the domain-inverted domain 32a was formed, as described above.
  • a domain-inverted domain 42b having a depth substantially extending over the entire thickness t of the base 41 from one main surface is formed by a method similar to the one step.
  • the formation position of the polarization domain 42b may partially overlap with the formation position of the domain-inverted domain 32a.
  • Anneal at a temperature of up to 115 ° C. in the air or an oxygen atmosphere for a predetermined time is within 30 hours from the instant, depending on how deep the domain is to be formed.
  • the depth d, of the domain 32a is reduced to a depth d!
  • the domain 32 b of ' is reduced, and at the same time, the depth of the domain 42 b is reduced to form a domain 32 b of depth d 2 (fourth step).
  • the depth of the domain-inverted domain after each annealing in the second and fourth steps tends to be smaller as the temperature is higher and the annealing time is longer.
  • the annealing temperature is 10 25 °
  • the depth of the domain-inverted domain becomes about 1 Z 2 of the thickness t of the ferroelectric substrate in 3 hours.
  • the conditions of the annealing treatment in the first step and the third step, that is, the annealing temperature and time may be different from each other or may be the same.
  • a plurality of domain-inverted domains having different depths can be formed into a ferroelectric substance. Can be formed in the substrate Wear.
  • the shape of the polarization-inverted domain is not limited to a rectangular parallelepiped, but can be, for example, a triangular prism or a cylinder by selecting the shape of the electrode 46 or the irradiation pattern of the charged particles. Can be similarly formed into various shapes.
  • the shape and number of the domain walls are not limited to those described above.
  • each domain can be formed.
  • an electro-optical element 1 is composed of, for example, a plate-shaped ferroelectric substrate 3 such as lithium niobate or lithium tannate.
  • the ferroelectric substrate 3 includes a domain-inverted domain 2 having a predetermined shape and two electrodes 4 and 5 formed on both main surfaces of the ferroelectric substrate 3.
  • FIG. 2 is a top plan view when the electrodes 4 and 5 are removed.
  • a required electric signal for controlling a light beam is applied from a power supply 8 between the electrode 4 and the electrode 5.
  • the incident light beam A is incident on one side surface (end surface) perpendicular to the main surface of the ferroelectric substrate 3 as a light incident surface 6 and is input from the incident surface 6 in the direction of arrow X in the figure.
  • the other side surface (end surface) facing the other side is set as a light emitting surface 7, and the light beam B is output from the incident surface 7.
  • Both end faces 6 and 7 are optically mirror-polished Have been.
  • the domain-inverted domain 2 is irregularly formed in the propagation direction of the light beam A (X direction in FIG. 1). As shown in the figure and FIG. 2, it is also irregularly formed in the direction perpendicular to the propagation direction of the light beam A (the y direction in FIG. 1). Therefore, the light beam A passes through some domain walls while propagating through the ferroelectric substrate 3. The number passing through the domain wall, the angle of incidence on the domain wall, and the propagation distance in the domain are different for each light beam constituting the light beam. In this example, the domain wall is almost perpendicular to the main surface of the base 3.
  • the light beam propagating through the electro-optical element 1 is required.
  • the phase relationship may be disturbed in time for each constituent light beam. Because if
  • the interference condition ie, the interference pattern Or the speckle pattern changes over time. Therefore, when viewed by the human eye, the change is temporally integrated by the integration effect of the amount of light, which is a characteristic of the eye, and the apparent interference effect, that is, speckle noise is eliminated.
  • a ferroelectric substrate is formed.
  • the luminous flux constituting the light beam A propagating in 3 has different numbers of times of passing through the domain wall, angles of incidence on the domain wall, and propagation distances in the domain.
  • the refractive index difference between the other part and the other part changes according to the signal electric field applied between the electrodes 4 and 5 of the electro-optical element 1, so that the light beam B after passing through the electro-optical element 1
  • the phase relationship between the constituent light beams changes with time according to the signal electric field, and speckle noise is reduced.
  • the domain-inverted domain 2 for example, domains 2a, 2b and 2c in FIG. 3 and other parts, that is, the part of the ferroelectric substrate 3,
  • the refractive index between 3a, 3b, 3c, and 3d in FIG. 3 there is no difference in the refractive index between 3a, 3b, 3c, and 3d in FIG. 3, and the phases of the constituent light beams of the light beam are completely aligned.
  • the domain-inverted domain 2 is formed, for example, by locally applying an electric field to a ferroelectric substrate having a uniform spontaneous polarization in one direction in the thickness direction (z direction in FIG. 1). For such spontaneous polarization, a spontaneous polarization having the opposite characteristic can be locally produced.
  • a method for producing a domain-inverted domain in a crystal of a ferroelectric substrate 3, such as lithium niobate extending from one main surface of the substrate to the entire thickness of the substrate or a depth in the middle of the thickness.
  • the electrodes 4 and 5 constituting the ferroelectric substrate 3 are formed on the opposing main surfaces by gold, copper or aluminum by pVD (physical vapor deposition) method such as vapor deposition and sputtering. of It is formed by depositing a conductor. It is desirable that the electrodes 4 and 5 formed on these two main surfaces be formed over an area that sandwiches a portion of the optical beam propagating in the ferroelectric substrate 3 where the noise is to be reduced. .
  • an electrode may be formed for each domain-inverted domain, and a different electric signal may be applied to each domain.
  • the ferroelectric substrate 3 has a function of disturbing the phase relationship of each constituent light beam of the light beam passing through the inside according to the signal level of the control signal applied to these electrodes 4 and 5. I do. Therefore, even if the light beam A is a light beam with high coherence, the emitted light beam B is a light beam with reduced coherence and little speckle noise.
  • an electro-optical element 11 has a ferroelectric substrate 1 such as lithium niobate / lithium tantalate.
  • a required electric signal for controlling a light beam is applied from a power supply 18.
  • the incident light beam A is input from one light incident surface 16 perpendicular to the main surface of the ferroelectric substrate 13 in the direction of arrow X in FIG. 4 and propagates through the ferroelectric substrate 13.
  • the light is output from the other light exit surface 17.
  • the light incident surface 16 is optically mirror-polished.
  • the other light emitting surface 17 has fine irregularities.
  • the domain-inverted domain 12 is irregularly formed in the propagation direction of the light beam A (the X direction in FIG. 4) and is orthogonal to the propagation direction of the light beam A (the fourth direction). (Y direction in the figure). Therefore, the light beam A passes through several domain walls while propagating through the ferroelectric substrate 13. The number passing through the domain wall, the angle of incidence on the domain wall, and the propagation distance in the domain are different for each light beam constituting the light beam.
  • the domain wall is substantially perpendicular to the main surface of the base 13.
  • the light beam propagating through the element 11 What is necessary is just to temporally disturb the phase relationship for each constituent light beam. That is, as described above, even if the constituent light beams of the light beam interfere with each other, which would otherwise cause speckle noise, the phase relationship of the respective light beams at the place where the interference occurs is considered. This is because the interference condition, that is, the interference pattern or the speckle pattern changes with time due to the temporal change, and when viewed by a human eye, the speckle noise is eliminated by the characteristics of the eye.
  • the wavefront of each part of the light wave is disturbed by the irregularities.
  • An AC signal that is not superimposed can also be used.
  • a method similar to that of the first embodiment can be used. That is, in the domain-inverted domain 12, for example, an electric field is locally applied to the ferroelectric substrate 13 having a uniform spontaneous polarization in one direction in the thickness direction (z direction in FIG. 4). Thus, a spontaneous polarization having a characteristic opposite to the uniform spontaneous polarization can be locally produced.
  • a domain-inverted domain extending from one main surface of the substrate to the thickness of the substrate or to a thickness in the middle thereof in the crystal of the strong dielectric substrate 3, such as lithium niobate or lithium tantalate.
  • the method of fabricating the electrode include a method of holding the substrate crystal near the Curie temperature for a long time, a method of diffusing titanium or protons into the substrate, and a method of applying a voltage between the electrodes formed on both main surfaces of the substrate. And a method of irradiating at least one principal surface of the substrate with charged particles.
  • the electrodes 14 and 15 constituting the ferroelectric substrate 13 are formed by applying a conductor such as gold, copper, or aluminum to the opposing main surfaces by a PVD method such as vapor deposition or sputtering. It is formed by adhering. It is desirable that the electrodes 14 and 15 formed on both of these main surfaces be formed so as to cover a wide area of the light beam propagating in the ferroelectric substrate 13 that sandwiches a portion where speckle noise is to be reduced.
  • the ferroelectric substrate 13 functions to disturb the phase relationship of the light beam passing therethrough in accordance with the signal level of the control signal applied to these electrodes 14 and 15. Therefore, even if the light beam A is a light beam with high coherence, the emitted light beam B is an optical beam 7 with reduced coherence and low speckle noise.
  • the light emitting surface 17 of the electro-optical element 11 is provided with fine irregularities, which can be formed by polishing the light emitting surface 17 with relatively coarse particles. .
  • an electro-optical element 21 is made of a ferroelectric substrate 2 such as lithium niobate or lithium tantalate.
  • a predetermined electric signal for controlling a light beam is configured to be applied from a power supply (not shown).
  • the incident light beam A is input from the light incident surface 26 on one side surface perpendicular to the main surface of the ferroelectric substrate 23, propagates through the ferroelectric substrate 23, and then emits light on the other side surface.
  • the light beam B is output from the surface 27.
  • the light incident surface and the light exit surfaces 26 and 27 are optically mirror-polished.
  • the domain-inverted domains 22a, 22b, 22c and 22d are irregularly formed in the propagation direction of the light beam A, and are also irregularly formed in a direction (not shown) orthogonal to the propagation direction of the light beam A and in a depth direction. Therefore, the light beam A passes through some domain walls while propagating through the ferroelectric substrate 23. The number passing through the domain wall, the angle of incidence on the domain wall, and the propagation distance in the domain differ for each light beam constituting the light beam. Further, this domain wall is substantially perpendicular to the main surface of the base 23.
  • the domain-inverted domain 22 a has a length and a depth d 1
  • the domain-inverted domain 22 b has a length w 2 and a depth d 2
  • inversion domains Lee down 2 2 c, the length w 3, the depth d 3, poled domain 2 2 d, as they have a length w 4, the depth d 4, the polarization inversion domains Lee down 22a, 22b, 22c and 22d have different lengths w and depths d in the light beam propagation direction, and also have different widths (not shown).
  • the phase of each of the constituent light beams of the propagating light beam is required. Disrupt the relationship over time. That is, as in the above-described embodiment, even when the constituent light beams of the light beam interfere with each other and would normally cause speckle noise, the light beams of the respective light beams at the place where they interfere with each other are generated. Due to the temporal change of the phase relationship, the interference condition, that is, the interference pattern or the speckle pattern changes with time, and when viewed by a human eye, the peculiarities of the eye eliminate the pecking noise.
  • the electro-optical element 21 As in this embodiment, if the domain-inverted domains 22 a, 22 b, 22 c and 22 d having random shapes are randomly formed in the electro-optical element 21, a strong Light propagating in dielectric substrate 23
  • the luminous flux of the beam differs in the number of times it passes through the domain wall, the angle of incidence on the domain wall, and the propagation distance in the domain. Because of this, and the difference in the refractive index between these domain parts and the other parts changes according to the signal electric field applied between the electrodes 24 and 25 of the electro-optical element 21, the electro-optical element 2
  • the phase relationship between the constituent light beams of the light beam after passing through 1 changes with time according to the signal electric field, and speckle noise is reduced.
  • the domain-inverted domain has a depth from one main surface of the ferroelectric substrate to the other main surface.
  • the phase relationship may be uniform.
  • fine irregularities are formed on at least one of the input and output end faces of the electro-optical element as in the second embodiment, it is possible to suppress the alignment of the phase relation.
  • the depth d of each domain 22 formed in the ferroelectric substrate 23 is irregularly formed.
  • the refractive index difference can be varied also in the depth direction of the ferroelectric substrate 23, it is possible to avoid that the phase relations of the constituent light beams in the depth direction of the light beam are aligned.
  • the domain-inverted domain reverses the uniform spontaneous polarization by locally applying an electric field to a ferroelectric substrate having a uniform spontaneous polarization in one direction in the thickness direction.
  • the spontaneous polarization of the characteristic can be created locally.
  • the method shown in FIGS. 6 to 8 described above is applied. it can.
  • the electrodes that make up the ferroelectric substrate are also formed by depositing a conductor such as gold, copper, or aluminum on the opposing main surface by the pVD method such as evaporation and sputtering as described above. Is done.
  • the electrodes formed on both of these principal surfaces be formed over a wide area that sandwiches a portion of the optical beam propagating in the ferroelectric substrate where the speckle noise is to be reduced.
  • an electrode can be formed for each domain-inverted domain, and a different electric signal can be applied to each domain.
  • the ferroelectric substrate 23 has these electrodes 24 and
  • the emitted light beam B is an optical beam with reduced coherent light and little noise.
  • At least one of the light input / output end face and the light output face of the electro-optical element can be a fine uneven surface.
  • the phase relationship in the light beam is temporally disturbed, the coherence of the light beam is effectively reduced, and the scattering is sufficiently eliminated.
  • the size of the apparatus can be reduced, and the power consumption can be suppressed sufficiently.
  • a light beam with reduced coherence can be used as, for example, a light source such as an illumination light for a projector device or a laser display. Available.
  • the electro-optical element is constituted by a single ferroelectric substrate, the opposing end faces are defined as the incident face and the exit face of the light beam, and the propagation direction of the light beam is determined.
  • the direction is the main surface direction, the electro-optical element according to the present invention is not limited to this configuration.
  • both main surfaces of a ferroelectric substrate on which a domain-inverted domain is formed are a light beam incident surface and a light beam exit surface.
  • One main surface is used as an entrance surface and an exit surface for a light beam.
  • a plurality of ferroelectric substrates each forming a domain-inverted domain are stacked to form one electro-optical element. Embodiments can be employed.
  • both main surfaces of a ferroelectric substrate 51 on which a domain-inverted domain (not shown) is formed, for example, a transparent material such as an IT0 (indium tin oxide) film.
  • Counter electrodes 52 and 5 made of conductive film
  • the electrodes 52 and 53 are used as an incident surface of the incident light beam A and an exit surface of the emitted light beam B. That is, in this case, the propagation direction of light in the ferroelectric substrate 51 is a thickness direction of the ferroelectric substrate 51 or a direction substantially along the thickness direction.
  • an electrode 52 of a transparent electrode is formed on one main surface of a ferroelectric substrate 51 on which a domain-inverted domain (not shown) is formed.
  • the electrode 52 side is defined as a light beam incident surface and an output light beam B output surface.
  • an electrode 53 having high reflectivity, for example, A 1 is formed on the other main surface, and the incident beam is reflected by the electrode 53 in the ferroelectric substrate 51, thereby reducing the optical path length.
  • both electrodes 52 are made of, for example, A 1 having high reflectivity, and electrode 52 is made of a ferroelectric material. It is formed on a part of one main surface of the base body 51, and on both sides of the portion where the electrode 52 is disposed, a light beam A incidence surface and a light beam B emission surface are provided, respectively. That is, in this case, the light beams incident on the ferroelectric substrate 51 are reflected by the inner surfaces of both electrodes 52 and 53, and two or more reciprocations are performed in the thickness direction of the ferroelectric substrate 51. In this case, the optical path length is increased by reciprocating.
  • the opposing side surface adjacent to the main surface of the ferroelectric substrate 51 is defined as a slope, for example, a trapezoidal cross section, and each slope is defined as an entrance surface and an emission surface. This is the case. Also in this case, the light beam incident on the ferroelectric substrate 51 is reflected by the inner surfaces of both electrodes 52 and 53, and the optical path length is made longer than that in the case of FIG. It is.
  • the driving method described above is used. That is, by applying the above-described required electric signal between the electrodes 51 and 52, the light beam B in which the coherence of the light beam A is reduced can be extracted.
  • electro-optics are performed by a laminate 60 in which a plurality of ferroelectric substrates 51 each having a domain-inverted domain (not shown) are formed. This is a case where an element is formed.
  • the transparent electrodes 52 and 5 are provided on the outer main surfaces of the ferroelectric substrate 51 located on both outer sides of the laminate 60 in which a plurality of ferroelectric substrates 51 are laminated, respectively. 3 and an intermediate electrode 54 made of a transparent electrode between each ferroelectric substrate 51.
  • the electrode 52 side is set as the incident surface of the light beam A, and the other electrode
  • FIG. 14 shows the configuration of FIG. 13 in which the electrode 53 is an electrode having a high reflectivity, and the electrode 52 side is an incident surface of the light beam A and In this case, light is reciprocated in the stacking direction of the stacked body 60 by reflection on the inner surface of the electrode 53 as an emission surface of the light beam B.
  • the electrodes 51 and 52 on both sides of the laminate 60 are both electrodes having a high reflectance, for example, electrodes made of A 1, and the electrode 52 is formed of the ferroelectric substrate 51. Formed on a part of one main surface, this electrode 5
  • FIG. 16 shows a case where, in the configuration of FIG. 15, the opposing side surfaces of the laminated body 60 are inclined surfaces, for example, trapezoidal cross-sections, and each inclined surface is an entrance surface and an exit surface.
  • the light beam incident on the ferroelectric substrate 51 is reflected by the inner surfaces of the electrodes 52 and 53 to extend the optical path length.
  • FIG. 17 shows a case where the opposing side surfaces of the laminate 60 are a light incident surface and a light exit surface, respectively.
  • each electrode is a transparent electrode.
  • the electro-optical element, the driving method and the manufacturing method thereof according to the present invention are not limited to the examples described above.
  • the predetermined electric signal applied to the electrode is, as described above, an AC signal with a DC component superimposed thereon, a normal AC signal, for example, a pulse signal or a DC signal. It may be a signal. It may be.
  • the frequency of the electrical signal is such that it is no longer discernible to the human eye, for example, 30 Hz or higher, and it can handle the current number of frames of the NTSC system (30 frames Z seconds). Can be. It need not be a single frequency.
  • the voltage of the applied electric signal is not particularly limited.
  • the shape of the domain-inverted domain is not limited to the columnar or columnar shape as described above, but may be, for example, a polygonal shape such as a triangular columnar shape or a star-shaped columnar shape.
  • a polarizer may be arranged on the light beam incident side and an analyzer may be arranged on the light beam exit side, or only one of them may be arranged.
  • the electro-optical element according to the present invention in series as a transmission type wavelength filter and a light intensity modulator, phase matching and intensity modulation of a light beam can be performed simultaneously.
  • the lithium niobate used as the ferroelectric substrate was Li i A compound represented by N b 0, L i N b x T ai - X (where, 0 ⁇ X ⁇ 1) but is made of crystal, the other, and with the ferroelectric substrate , it may be a known ferroelectric crystal such as lithium tantalate (L i T i T a 0 3) and TP (KT i 0 P 0) .
  • the phase displacement means for randomly varying the phases of the light beams constituting the light beam in the cross section of the light beam passing through the ferroelectric substrate.
  • the optical beam having high coherence propagating through the ferroelectric substrate is caused to have a refractive index difference between the domain-inverted domain and the ferroelectric substrate by the driving method according to the present invention.
  • the phase is effectively changed to a mutually different phase for each light beam constituting the light beam by changing over time. Therefore, it is possible to effectively obtain a light beam in which the coherence of the incident light beam is reduced.
  • speckle noise can be sufficiently reduced, and further, since a moving part such as a motor is not required, the size of the apparatus can be reduced, and power consumption can be sufficiently reduced. Is possible.
  • a first domain-inverted domain is formed on a ferroelectric substrate and reduced to a predetermined depth. Then, by forming a second domain-inverted domain again, an electro-optical element having a domain-inverted domain in the depth direction can be manufactured with good reproducibility.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

明 細 書
電気光学素子とその駆動方法および製造方法 技術分野
この発明は、 光ビームのコヒ一レン ト性を低めることのできる 電気光学素子とその駆動方法および製造方法に関する。
背景技術
レーザ光は、 一般に電波より も周波数が高いので情報収容能力 が大き く 、 また、 波長が同一であり位相が揃っているので単色性 や、 指向性にすぐれ、 通常の光ビームにはみられないコヒーレン ト性 (可干渉性) を有しており、 更に、 極めて細く収束できるた めに微小面積にエネルギーを集中して、 局部的、 瞬間的に例えば 高温を実現できる等の特徴を有しており、 通信および情報関係、 計測関係、 加工技術への応用、 医学面への利用など多方面への応 用がなされている。
しかしな力くら、 このように、 レーザ光は、 指向性にすぐれてい ると共に、 高い強度、 コヒーレン ト性を有するがために、 レーザ 光を照明光と して用いる場合、 、 例えばレーザディ スプレイに用 いる場合、 そのコ ヒ一 レン 卜性が高いこ とによつて発生する点状 のぎらつき、 いわゆるスペックルノイズが問題となる。
このようなスペックルノィズを低減させるための光学装置とし ては、 例えばバン ドルフ ァイバ一や、 回転拡散板が知られている o
バン ドルフ ァイバ一は、 多数本のマルチモ一 ドファイバ一を束 ねた構造を有し、 コヒ一レン トな光ビームのビーム形状をバン ド ルファイバ一の入力端の形状に合うように整形し、 このバン ドル ファイバ一中に光ビームを伝搬させることによって、 そのコヒ— レン ト性を低減させるものである。 バン ドルファイバ一を構成する各光ファイバ一は、 それぞれマ ルチモー ド光フ ァイバ一であり、 これによつて、 この光ファイバ 一中を伝搬する光ビームは、 複数のモー ドに分かれて伝搬する。 そして、 各モー ドは、 伝搬速度が互いに異なるので、 ファイバー から出射された光ビームは、 いろいろな位相を有する光ビームに なる。 そして、 このような光ファイバ一が多数束ねられているの で、 出力された光ビームは、 更に多くの位相を有する光ビームと なり、 これによつてコ ヒ一レンス性が緩和され、 スペッ クルノィ ズが低減する。
しかしながら、 各光ファイバ一から出射される光ビーム同士の 位相関係は、 時間的に常に安定しており、 したがって、 スペック ルノイズを完全に消し去ることは、 困難である。
一方、 回転拡散板は、 コヒーレン トな光ビームが回転するすり ガラスを透過すように構成されており、 まず、 すりガラスによつ て光ビームの構成成分すなわち光ビームを構成する光束の位相関 係を空間的に乱し、 次に、 このすりガラスをモータ一等により回 転させるこ とによって、 光ビームの構成光束の位相関係を時間的 に変化させるものであり、 上述したバン ドルファイバーによるス ペッ クルノ ィズ低減方法を改良したものと言える。
しかしながら、 この方法では、 回転拡散板を回転させるための モーター等の可動部が必要となるために装置が大型化し、 また消 費電力も大き く なるという問題がある。
本発明は、 上述した実情に鑑みてなされたものであり、 その目 的は、 レーザ光等のコヒ一レン ト性の高い光ビームの位相関係を 乱し、 容易にコヒーレン 卜性の低減した光ビームが得られる電気 光学素子とその駆動方法および製造方法を提供することにある。 発明の開示
本発明による電気光学素子は、 電気光学効果を有する単数の強 誘電性基体、 あるいは複数の同様の強誘電性基体の積層体によつ て構成される。
この単数もしく は複数の強誘電性基体より成る電気光学素子は 、 光ビームの入射面と出射面とを有して成り、 その入射面と出射 面との間の光ビームの伝搬通路に、 複数もしく は単数の分極反転 ドメ ィ ンによる位相変位手段が設けられる。
また、 上述した電気光学素子には、 その強誘電性基体の分極反 転ドメ イ ンの形成領域に電界を印加する少なく とも対の電極が設 けられる。
分極反転 ドメ イ ンは、 強誘電性基体に入射させた光ビームを構 成する光束の位相が相互に不規則に異なるようにする位相変位手 段を構成するものであり、 このために、 この分極反転ドメインは 、 少なく とも光ビームの伝搬方向に不規則な形状および Zまたは 配置とする。
また、 位相変位手段を構成する分極反転ドメ イ ンは、 光ビーム の伝搬方向とほぼ直交する方向にも不規則に形成することが望ま しい。
更にまた、 位相変位手段を構成する分極反転ドメイ ンは、 その 深さが不規則とされた構成とすることが望ま しい。
光ビームの入射面と出射面は、 鏡面とすることも、 あるいはそ の少なく とも一方、 望ま し く は出射面を粗面とすることができる o
また、 上述の電極の一部もしく は全部を、 入射光ビームに対し て透過率の高い透明電極と して、 この透明電極を通じて光の入射 または出射の一方もし く は双方を行うことができる。
本発明による駆動方法は、 上述した各構成による電気光学素子 において、 その少なく とも 1対の電極間に所要の電気信号、 望ま しく は交流信号、 さ らに望ま しく は、 直流成分を重畳した交流信 号を供給する。 このようにするとによって、 分極反転ドメイ ンと 、 他部との屈折率を異なら しめ、 この不規則に形成された分極反 転ドメ イ ンによって、 これを通過する光ビームを構成する光束に 関して位相変位を行って光束相互の位相が不規則に異なるように 、 したがって、 光ビームのコ ヒーレン トすなわち干渉性の低減化 を行う。
本発明による電気光学素子の製造方法は、 上述の各構成による 電気光学素子を構成する強誘電性基体の一部に、 その一方の主面 から強誘電性基体の厚さ方向の全てもしく は一部に不規則パター ンをもって第 1 の分極反転ドメ イ ンを形成する第 1工程を行う。 次に、 第 1 の分極反転ドメィ ンの深さを所要の深さに縮小する 第 2工程を行う。 次に、 強誘電性基体の他の一部に、 その一方の 主面から上記強誘電性基体の厚さ方向の全てもしく は一部に渡つ て第 2 の分極反転ドメイ ンを形成する第 3工程を行う。
更に必要に応じて、 同様にキュ リー温度以下の所定の温度に所 要時間保持して、 各分極反転ドメィ ンの深さを所要の深さに縮小 する第 4工程とを行う。
第 1および第 3工程は、 強誘電性基体の対向した両主面に電極 をそれぞれ設け、 これら電極間に電極を印加することによって、 第 1および第 2 の分極反転ドメ ィ ンを形成する。
あるいは第 1および第 3工程は、 強誘電性基体の自発分極の負 側または正側の面に、 負または正の電荷を有する電荷粒子を照射 することによって、 第 1および第 2の分極反転ドメインを形成す る。
また、 第 2および第 4工程は、 強誘電性基体をそのキュリー温 度より低い所定の温度に保持することによって行うことができる 上述の各電気光学素子において、 その強誘電性基体を、 L i N b x T a ! - x 0 (但し、 0 ≤ x≤ l ) の結晶によって構成し、 キユ リ一温度以下の所定の温度で、 大気中または酸素雰囲気中に 保持する工程を行う。
また、 上述の各電気光学素子において、 その強誘電性基体を L i N b 0 3 の結晶によって構成し、 該強誘電性基体を、 3 0 0 °C
〜 1 1 5 0 °Cで瞬時から 3 0時間以内、 大気中または酸素雰囲気 中に保持する工程を行う。
図面の簡単な説明
第 1図は、 本発明による電気光学素子の概略斜視図であり、 第 2図は、 その概略平面図であり、 第 3図は、 第 2図の I II一 III 線上の概略断面図であり、 第 4図は、 本発明による電気光学素子 の概略斜視図であり、 第 5図は、 本発明による電気光学素子のの 概略断面図であり、 第 6図は、 本発明の製造方法に基く分極反転 ドメイ ンの形成方法を説明する概略斜視図であり、 第 7図は、 本 発明の製造方法に基く分極反転ドメィ ンの形成方法を説明する概 略斜視図であり、 第 8図 (A ) 〜 (D ) は、 本発明の製造方法に 基く分極反転ドメ イ ンの形成方法を説明する概略図であり、 第 9 図は、 本発明による電気光学素子の概略断面図であり、 第 1 0図 は、 本発明による電気光学素子の概略断面図であり、 第 1 1図は 、 本発明による電気光学素子の概略断面図であり、 第 1 2図は、 本発明による電気光学素子の概略断面図であり、 第 1 3図は、 本 発明による電気光学素子の概略断面図であり、 第 1 4図は、 本発 明による電気光学素子の概略断面図であり、 第 1 5図は、 本発明 による電気光学素子の概略断面図であり、 第 1 6図は、 本発明に よる電気光学素子の概略断面図であり、 第 1 7図は、 本発明によ る電気光学素子の概略断面図である。
発明を実施するための最良の形態
本発明による電気光学素子は、 単数もしく は複数の、 例えば直 方形基板状をなす電気光学効果を有する強誘電性基体によつて構 成される。
この強誘電性基体には、 少なく とも光ビームの伝搬方向に不規 則に形成された分極反転ドメ イ ンによる位相変位手段が形成され る。
また、 この位相変位手段の形成部に所要の電界を印加する少な く とも対の電極が設けられる。
位相変位手段は、 光ビームの伝搬方向に、 不規則形状を有する 分極反転ドメ イ ンを複数個、 不規則に配置された構成、 あるいは 1個の不規則形状を有する分極反転ドメ イ ンを配置するこ とによ つて構成する。
分極反転ドメ イ ンは、 光ビームの伝搬方向と直交する方向に関 しても不規則に形成することが望ま しい。
すなわち、 分極反転ドメ イ ンは、 強誘電性基体中を伝搬する光 ビームを構成する光束が、 分極反転ドメ イ ン中に入射および出射 することによつて少なく とも ドメイ ン壁を 2度通過するように配 置され、 複数の光束が、 分極反転ドメ イ ンに対し互いに例えば分 極反転ドメ イ ンの通過個数、 入射角、 出射角、 分極反転ドメ イ ン 中の通過距離等について相違するようにする。
そして、 光ビームが強誘電性基体中を所定の一方向に伝搬させ る構成とするときは、 この伝搬方向と垂直もしく はほぼ垂直に、 分極反転ドメ イ ンの ドメイ ン壁が形成されるようにすることによ つて ドメィ ンによる光ビームの伝搬方向以外の方向への屈折散乱 を効果的に回避して光ビームを所定の一方向に安定して伝搬させ る こ とができ る。
すなわち、 例えば電気光学素子が、 直方形の板状強誘電性基体 より成り、 その両主面間の相対向する端面をそれぞれ光ビームの 入射面および出射面と し、 光ビームの伝搬方向を、 強誘電性基体 の主面、 すなわち板面方向とするときは、 分極反転ドメ イ ンの ド メ イ ン壁の少なく とも 1つが、 強誘電性基体の主面に垂直もしく はほぼ垂直と し、 かつ光ビームがドメィ ン壁の少なく とも 2つを 通過する構成とされる。 そして、 このように、 ドメ イ ン壁を、 強 誘電性基体の主面と垂直もしく はほぼ垂直とすることにより、 光 ビームの入射面および出射面間を主面と平行な面に安定して伝搬 させるこ とができる。
また、 光ビームの強誘電性基体中の伝搬方向は、 例えばこの強 誘電性基体が板状である場合、 上述したように、 その板面方向と することもできるが、 その伝搬方向例えば厚さ方向とすることも できる。
また、 例えばその主たる伝搬方向が所定の方向例えば板面方向 とする場合においても、 例えばその両主面もしく は一方の主面の 、 一部もしく は全面に反射面を形成して、 光ビームを反射屈曲さ せながら、 所定の方向に伝搬させて、 その光路長を長くすること もできる。
更に、 上述した分極反転ドメ イ ンを有する強誘電性基体を複数 枚積層して、 複数の強誘電性基体に渡って光ビームの伝搬光路を 形成して光路長の増大化を図ることもできる。
また、 電気光学素子の入射面および出射面、 すなわちこの電気 光学素子を構成する単数もしく は複数の強誘電性基体の光ビーム の入射面および出射面は、 共に鏡面とすることによってその入射 効率および出射効率を高める構成とすることができるが、 入射面 および出射面のいずれか一方、 特に出射面を、 光の散乱を生じる ような粗面とすることによって、 よりコヒ一レン ト性の低減化を 図ることができる。
本発明による駆動方法は、 上述した本発明による電気光学素子 において、 上述の分極反転ドメィ ンによって構成した位相変位手 段に、 所要の電界を印加することによって、 位相変位手段を機能 させて、 光ビームの可干渉性すなわちコヒ一レン ト性を低減させ る。
すなわち、 電気光学素子に形成した少なく とも対の電極間に、 所要の電圧、 望ま しく は交流信号、 更に好ま しく は直流電圧を重 畳した交流信号を供給する。
このようにすると、 印加信号に応じて、 強誘電性基体において 、 その分極反転ドメィ ンと他部との屈折率が、 時間的に相違して 来る。 このために、 分極反転ドメ イ ン中と、 それ以外の部分とで 、 光の進行速度が相違し、 さ らに、 これが時間的にも変化し、 ま たその分極反転ドメイ ンに対する光の入射角、 出射角等の相違、 ドメ ィ ンの形状の不規則性等による分極反転ドメィンの内外での 各光路長の相違等の多く の要因の相違および変化によって、 光ビ —ムを構成する光束の位相が相互に異なり、 これにより位相のば らっきを発生させて、 可干渉性すなわちコヒーレン ト性の低下を 生じさせることができる。
すなわち、 本発明による電気光学素子の、 分極反転ドメ イ ンの 不規則性とは、 これに入射させた光ビーム、 例えばレーザ光を構 成する光束相互の位相を不規則化させてコヒーレン 卜の低下を生 じさせることを意味する。
そして、 電気光学素子の駆動時において、 これに印加する電気 信号は、 上述した位相変化を時間的に与える効果を得るために、 交流信号とすることが望ま しいが、 この場合、 0 Vの時点で、 分 極反転ドメ イ ンの屈折率が他部と一致する瞬間が発生し、 このと きコヒーレン ト性の低下の効果が喪失して、 スペックルノィズを 発生する瞬間が生じる。 そこで、 このような不都合を回避するた めに、 交流信号を直流信号に重畳させて供給することが望ま しい ものである。 また、 本発明による電気光学素子の製造方法は、 上述した本発 明による各構成による電気光学素子を製造するものであり、 第 1 工程で、 第 1 の分極反転ドメ イ ンの形成を行い、 その後第 2工程 で、 この第 1 の分極反転ドメイ ンの深さの制御を行い、 第 3工程 で、 第 2 の分極反転ドメイ ンを形成する。 そして更に例えば第 4 工程で、 分極反転ドメ イ ンの深さの制御をおこなって、 不規則性 の複数の分極反転ドメ ィ ンを形成するという方法である。
また、 この場合、 第 1および第 2工程の作業を繰り返し行うこ とによってより複雑で不規則な分極反転ドメイ ンの形成を行うこ とができる。
第 1 および第 3工程における分極反転ドメ イ ンの形成は、 強誘 電性体の対向した両主面に電極をそれぞれ設け、 これらの対向電 極間に電圧を印加することによって行う。 あるいは、 強誘電性基 体の自発分極の負側または正側の面に、 負または正の電荷を有す る荷電粒子を照射することによつて行うことができる。
また、 第 2および第 4工程は、 強誘電性基体を、 そのキュ リ ー 温度より低い温度に保持することによって行う ことができる。 例 えば、 強誘電性基体が L i N b x T a ix 0 3 (但し、 0 ≤ χ ≤ 1 ) の結晶からなる場合、 この強誘電性基体をそのキュ リ ー温度 以下で大気中または酸素雰囲気中に保持することによって行うこ とが望ま しい。 因みにこの L i N b x T a 0 3 のキュ リ ー温 度は X = 0で約 6 0 0 °C、 X = 1で 1 2 0 0 °C以下である。 そし て、 強誘電性基体が L i N b 0 3 の結晶からなる場合、 第 2およ び第 4の工程は、 強誘電性基体を 3 0 0〜 1 1 5 0 で瞬時〜 3 0時間、 大気中または酸素雰囲気中に保持することによって行う o
第 6図〜第 8図を参照して本発明の製造方法について詳細に説 明する。
ミ αー A冊まず、 強誘電性基体の厚さ方向の全体 (基板厚さ全体) に亘る 深さの分極反転ドメィ ンを作製する方法には、 例えば、 直接に基 体に電圧を印加する方法と、 電子線等荷電粒子を照射する方法と が挙げられる。
まず、 直接例えば板状の強誘電性基体 4 1 に電圧を印加する方 法について説明する。 この場合、 例えば第 6図にその電界印加方 向を概念的に示すように、 例えばニオブ酸リチウム ( L i N b 0 a ) の z板ほり成る強誘電性基体 4 1 の z面 (+ c面) 上に、 形 成しようとする ドメイ ンの形状に対応する電極 4 6を被着形成す る。 この電極 4 6の形成は、 例えば A 1導電膜を全面に被着し、 その後通常のフ ォ 卜 リ ソグラフィ技術によるパターンエッチング によって所定の形状に形成する。 また、 z面 4 1の他方の面、 す なわち一 z面 (― c面) に全面的に平面電極 4 4を形成する。 そ して、 + z面上の電極 4 6力く一 z面上の電極 4 4 より高電位にな るように、 電源 4 7 によって例えば 2 0 k V Z m m以上の電界を 室温中で印加する。 これによつて、 電極 4 6の直下には、 分極反 転された複数の ドメイ ン 4 2が電極 4 6 とほぼ同一パ夕一ンに形 成される。
尚、 第 6図で説明した外部電界印加による ドメィ ン形成方法と 類似の方法が、 特開平 2 — 1 8 7 7 3 5号公報や、 文献 (山田正 裕等、 "類似位相整合導波路型 S H G素子" 、 電子情報通信学会 文誌 C _ I 、 Vol. J 77-C-I 、 No. 5、 pp. 206- 213 ( 1994) ) にも 述べられており、,これらの方法を本発明の製造方法に適用するこ とができる。
次に、 電子線等の電荷粒子の照射によって分極反転ドメ イ ンを 形成する方法を、 第 7図の概念図を参照して説明する。 この場合 、 例えばニオブ酸リ チウムの z板による強誘電性基体 4 1 の + z 面 (+ c面) 上に平面電極 4 9を例えばアルミニウム膜の被着に より形成し、 これを接地した状態で一 Z面 (一 C面) 上の ドメィ ン 4 2を形成したい部分に、 例えば 2 0 k V (加速電圧) X t ( t : 基板 4 1の厚さ (mm) ) 以上の電子線 4 8を室温中で走査 して照射する。
これによつて、 基板 4 1 中には分極反転された複数の ドメイン
4 2を所定のパター ンに形成することができる。
尚、 電子線照射による ドメィ ン形成方法は、 特開平 4 — 2 7 0 3 2 2号公報、 特開平 4 一 2 7 0 3 2 3号公報や、 文献 (M. Yama da and K. Kishima> 'fabrication of periodically reversed do mein structuref or SHG in LiNb03 by direct beam lithography at room temperature" 、 Electron, lett. ヽ Vol.27, No.10, p p.828- 829(1991))における分極反転ドメィンの形成方法を適用で きる o
上述した 2種類の ドメィ ン形成方法は、 L i N b x T a ^ 0 3 (但し、 0 ≤ x≤ l ) や K T P (K T i O P 04 ) などの強誘 電性基体に対して有効な方法である。
以上に例示した方法で、 強誘電性基体の厚さ方向の全体に亘る 分極反転ドメ イ ンを形成することができるが、 次に、 この分極反 転ドメ イ ンを強誘電性基体の一方の主面からその厚み方向にラン ダムな深さを有するように加工する方法を説明する。
この場合、 例えば、 第 8図 Aに示すように、 深さ方向に厚さ t を有する例えばニオブ酸リチウム ( L i N b O 3) からなる強誘 電性基体 4 1の一部に、 例えば前述した方法によって、 その一方 の主面 3 1から基体 4 1厚さ tのほぼ全体に亘る深さの分極反転 ドメ イ ン 4 2 aを形成する (第 1工程) 。
次いで、 例えば、 キユ リ一温度以下の温度、 望ま しく は 3 0 0 〜 1 1 5 0 °Cで、 大気中あるいは酸素雰囲気中で所定時間ァニー ルする。 このァニールは、 どの程度の深さの ドメイ ンを形成する かによつて、 ァニール時間を 0分 (瞬時) 〜 3 0時間の間で選定 する。 このようにすると、 第 8図 Bに示すように、 縮小された深 さ の ドメ イ ン 3 2 aが形成される (第 2工程) 。
次いで、 第 8図 Cに示すように、 強誘電性基体 4 1 の分極反転 ドメ イ ン 3 2 aを形成した部位とは別の他の部位に、 上述した第
1工程と同様の方法等によって、 その一方の主面から基体 4 1 の 厚さ t のほぼ全体に亘る深さの分極反転ドメ イ ン 4 2 bを形成す る。 尚、 この分極ドメイ ン 4 2 bの形成位置は、 分極反転ドメィ ン 3 2 a の形成位置と一部重なつてもよい。
次いで、 例えば、 キュ リー温度以下の温度、 望ま しく は 3 0 0
〜 1 1 5 0 °Cで、 大気中あるいは酸素雰囲気中で所定時間にわた つてァニールする (第 3工程) 。 この場合も、 そのァニール時間 は、 どの程度の深さの ドメイ ンを形成したいかによるが、 瞬時か ら 3 0時間以内とする。
このよ う にすると、 第 8図 Dに示すよ う に、 ドメ イ ン 3 2 a の 深さ d , が縮小して、 深さ d ! ' の ドメ イ ン 3 2 a ' となり、 こ れと同時に ドメ イ ン 4 2 bの深さが縮小して、 深さ d 2 の ドメイ ン 3 2 bが形成される (第 4工程) 。
尚、 第 2および第 4工程の各ァニール後の分極反転ドメ イ ンの 深さは、 温度が高いほどまたァニール時間が長いほど小さ く なる 傾向があり、 例えば、 ァニール温度が 1 0 2 5 °Cのときには、 3 時間で分極反転ドメイ ンの深さは強誘電性基体の厚さ tの 1 Z 2 程度になる。 また、 第 1工程および第 3工程の各ァニール処理の 条件、 すなわちァニール温度および時間は、 互いに異なっていて もよいし、 同じであってもよい。 更に、 上述した ドメィンの形成 とァニール処理すなわち第 1 および第 3工程と第 2および第 4ェ 程を複数回繰り返し行う ことによって、 複数の互いに異なる深さ を有する分極反転ドメ イ ンを強誘電性基体中に形成することがで きる。
分極反転 ドメ イ ンの形状は直方体のみならず、 電極 4 6 の形状 や荷電粒子の照射パターン等の選定によって例えば三角柱、 円柱 等の形状にすることができるし、 電極 4 4, 4 9の形状も同様に 種々の形状とすることができる。 ドメイ ン壁の形状や個数も上述 したものに限定されない。
また、 上述した電子線以外の負電荷を有する荷電粒子を照射し たり、 あるいは、 ドメ イ ンの自発分極の正側の面に、 正電荷を有 する荷電粒子例えば陽子を照射することによつてそれぞれの ドメ イ ンを形成することができる。
次に、 本発明の望ま しい実施の形態例を説明する。
〔第 1の実施の形態〕
第 1図から第 3図を参照に、 本発明に基づき第 1 の実施の形態 を説明する。
く電気光学素子の構成〉
第 1図〜第 3図に示すように、 本実施の形態に基づく電気光学 素子 1 は、 ニオブ酸リチウムやタン夕ル酸リチゥム等の例えば板 状の強誘電性基体 3 と、 この強誘電性基体 3中に作製された所定 の形状の分極反転ドメ イ ン 2 と、 強誘電性基体 3の両主面に作製 された 2つの電極 4および電極 5 とから構成されている。 第 2図 は、 電極 4および 5を除いたときの上部平面図である。
電極 4および電極 5間には、 光ビームを制御するための所要の 電気信号が電源 8から印加されるように構成されている。
入射する光ビーム Aは、 強誘電性基体 3の主面に垂直な一方の 側面 (端面) を光入射面 6 と して、 この入射面 6から図中矢印 X 方向に入力され、 強誘電性基体 3中を伝搬したのち、 対向する他 方の側面 (端面) を光出射面 7 と してこの入射面 7から光ビーム Bとして出力される。 この両端面 6および 7 は光学的に鏡面研磨 されている。
また、 分極反転ドメ イ ン 2 は、 第 1図および第 3図に示すよう に、 光ビーム Aの伝搬方向 (第 1図中 X方向) に不規則に形成さ れており、 かつ、 第 1図および第 2図に示すように、 光ビーム A の伝搬方向と直交する方向 (第 1図中 y方向) にも、 不規則に形 成されている。 したがって、 光ビーム Aは、 強誘電性基体 3を伝 搬する間に、 いくつかの ドメイン壁を通過する。 ドメイン壁を通 過する数、 ドメ イ ン壁に入射する角度、 ドメ イ ン中の伝搬距離は 、 光ビームの構成光束毎に異なる。 また、 この例では ドメ イ ン壁 は基体 3 の主面にほぼ垂直である。
〈電気光学素子の動作〉
コヒーレ ン 卜性の高い光ビーム Aのコ ヒ一 レ ン ト性を低減させ 、 スぺッ クルノィズの低減して光ビーム Bを出射させるためには 、 電気光学素子 1中を伝搬する光ビームのそれぞれの構成光束ご とにその位相関係を時間的に乱せばよい。 なぜなら、 もし、 光ビ
—ムのそれぞれの構成光束が干渉し、 本来ならばスペックルノィ ズを生ぜしめるような場合でも、 干渉するその場所でそれぞれの 光ビームの位相関係が時間的に変化すれば、 干渉条件すなわち干 渉パター ン、 または、 スペッ クルパター ンが時間的に変化する。 したがって、 人の眼で見たときには、 眼の持つ特性である光量の 積分効果によって、 その変化が時間的に積分されるので、 見かけ 上の干渉の効果すなわちスペックルノィズが無く なるからである o
例えば、 電気光学素子 1中に、 上述したように、 ラ ンダムな形 状の分極反転ドメ イ ン 2をランダムに形成すると、 強誘電性基体
3中を伝搬する光ビーム Aを構成する光束は、 ドメ イ ン壁を通過 する回数、 ドメイ ン壁に入射する角度、 およびドメイン中の伝搬 距離がそれぞれ異なることになる。 このためと、 これらの ドメイ ン部分とのその他の部分の屈折率差は、 電気光学素子 1の電極 4 および 5間に印加された信号電界に応じて変化するために、 電気 光学素子 1 を通過した後の光ビーム Bの各構成光束の位相関係が 信号電界に応じて時間的に変化することになり、 スペックルノィ ズが低減することになる。
そして、 印加電圧が零のときは、 分極反転ドメ イ ン 2 (例えば 第 3図の ドメ イン 2 a , 2 bおよび 2 c ) と、 その他の部分、 す なわち強誘電性基体 3の部分、 例えば第 3図の 3 a , 3 b , 3 c および 3 d との屈折率差が無く なり、 光ビームの構成光束の位相 が完全に揃う ことになる。 このため、 スペックルノイズをより効 果的に低減するためには、 前述したように零ボル トにならないよ うに選ばれた信号電界、 すなわち、 直流成分が重畳された交流信 号を印加することが望ま しい。
く電気光学素子の作製方法〉
分極反転ドメ イ ン 2 は、 例えば、 板厚方向 (第 1図中 z方向) について、 一方向に一様な自発分極を有する強誘電性基体に局所 的に電界を印加することによって、 この一様な自発分極に対して 逆特性の自発分極を局所的に作製できる。
また、 例えばニオブ酸リチウム等の強誘電性基体 3の結晶中に 、 基体の一方の主面から基体の全厚さあるいはその途中の厚さま での深さにわたる分極反転ドメイ ンの作製方法としては、 基板結 晶をキュ リ一温度近傍で長時間保持する方法、 プロ ト ンを基板中 に拡散させる方法、 あるいは前述した基板の両主面に形成された 電極間に電圧を印加する方法、 基板の少なく とも一方の主面に電 荷を帯びた荷電粒子を照射する方法などを適用できる。
強誘電性基体 3を構成する電極 4および 5 は、 蒸着、 スパッタ リ ング等の p V D法 ( physical vapor deposi tion : 物理的成膜 法) によって、 対向する主面に、 金、 銅またはアルミニウム等の 導電体を付着させることによって形成される。 これら両主面に形 成された電極 4および 5 は、 強誘電性基体 3中を伝搬する光ビー ムのうち、 スぺッ クルノィズを低減したい部分を挟み込むだけの 面積にわたって形成することが望ま しい。 しかしながら、 それぞ れの分極反転ドメィ ンごとに電極を形成し、 各ドメィン毎に異な る電気信号を印加してもよい。
これによつて、 強誘電性基体 3は、 これらの電極 4および 5に 印加される制御信号の信号レベルに応じて、 内部を通過する光ビ 一ムの各構成光束の位相関係を乱す働きをする。 したがって、 光 ビーム Aがコヒ一レン ト性の高い光ビームであっても、 出射する 光ビーム Bはコヒ一レン トの低減されたスペックルノイズの少な い光ビームとなる。
〔第 2の実施の形態〕
次に、 第 4図を参照に、 本発明に基づく第 2の実施の形態を説 明する。
く電気光学素子の構成〉
第 4図に示すように、 本実施の形態に基づく電気光学素子 1 1 は、 ニオブ酸リチウムゃタンタル酸リチウム等の強誘電性基体 1
3 と、 この強誘電性基体 1 3中に作製された所定の形状の分極反 転ドメ イ ン 1 2 と、 強誘電性基体 1 3の両主面に作製された 2つ の電極 1 4および電極 1 5 とから構成されている。
また、 電極 1 4および電極 1 5間には、 光ビームを制御するた めの所要の電気信号が電源 1 8から印加されるように構成されて いる。
入射する光ビーム Aは、 強誘電性基体 1 3の主面に垂直な一方 の光入射面 1 6から第 4図中矢印 X方向に入力され、 強誘電性基 体 1 3中を伝搬したのち、 他方の光出射面 1 7から出力される。 本実施の形態では、 光入射面 1 6が光学的に鏡面研磨されており 、 他方の光出射面 1 7 には微細な凹凸が形成されている。
また、 分極反転ドメ イ ン 1 2 は、 光ビーム Aの伝搬方向 (第 4 図中 X方向) に不規則に形成されており、 かつ、 光ビーム Aの伝 搬方向と直交する方向 (第 4図中 y方向) にも、 不規則に形成さ れている。 したがって、 光ビーム Aは、 強誘電性基体 1 3を伝搬 する間に、 いくつかの ドメ イ ン壁を通過する。 ドメ イ ン壁を通過 する数、 ドメ イ ン壁に入射する角度、 ドメ イ ン.中の伝搬距離は、 光ビームの構成光束毎に異なる。 また、 この ドメ イ ン壁は基体 1 3の主面にほぼ垂直である。
く電気光学素子の動作〉
上述したように、 コヒ一レン ト性の高い光ビーム Aのコヒーレ ン ト性を低減させ、 スペックルノイズを低減させるためには、 前 述したように、 素子 1 1中を伝搬する光ビームのそれぞれの構成 光束ごとに位相関係を時間的に乱せばよい。 すなわち、 前述した ように、 も し、 光ビームのそれぞれの構成光束が干渉し、 本来な らばスペッ クルノィズが生ぜしめるような場合でも、 干渉するそ の場所でのそれぞれの光ビームの位相関係が時間的に変化するこ とによって干渉条件すなわち干渉パターン、 または、 スペックル パターンが時間的に変化して、 人の眼で見たときには、 眼の持つ 特性によってスペッ クルノイズが無くなるからである。
そして、 この実施の形態においても電気光学素子 1 1中に、 上 述したようなラ ンダムな形状の分極反転ドメイ ン 1 2をランダム に形成すると、 強誘電性基体 1 3中を伝搬する光ビームの構成光 束は、 ドメ イ ン壁を通過する回数、 ドメ イ ン壁に入射する角度、 および、 ドメイ ン中の伝搬距離がそれぞれ異なることになる。 こ のためと、 これらの ドメイ ン部分とその他の部分の屈折率差は、 電気光学素子 1 1 の電極 1 4 と 1 5 との間に印加された信号電界 に応じて変化するために、 電気光学素子 1 1 を通過したあとの光 ビームの各構成光束の位相関係が信号電界に応じて時間的に変化 することになり、 スペックルノイズが低減することになる。
尚、 この第 2の実施の形態では、 電気光学素子 1 1の光出射面 1 7 に微細な凹凸を施したことにより、 この凹凸によって光波の 各部分の波面が乱されるので、 直流成分が重畳されない交流信号 とすることもできる。
く電気光学素子の作製方法〉
第 1 の実施の形態と同様の方法によることができる。 すなわち 分極反転ドメ イ ン 1 2 は、 例えば、 板厚方向 (第 4図中 z方向) について、 一方向に一様な自発分極を有する強誘電性基体 1 3に 局所的に電界を印加することによって、 この一様な自発分極に対 して逆特性の自発分極を局所的に作製することができる。
また、 例えばニオブ酸リチウム、 タンタル酸リチウム等の強誘 電体性基体 3の結晶中に、 基体の一方の主面から基板の厚さまた はその途中の厚さまでの深さに亘る分極反転ドメイ ンの作製法と しては、 基板結晶をキュ リー温度近傍で長時間保持する方法、 チ タンやプロ ト ンを基板中に拡散させる方法、 基板の両主面に形成 された電極間に電圧を印加する方法、 基板の少なく とも一方の主 面に電荷を帯びた荷電粒子を照射する方法などを適用できる。
強誘電性基体 1 3を構成する電極 1 4および 1 5の形成も前述 したように、 蒸着、 スパッタ リ ング等の P V D法によって、 対向 する主面に、 金、 銅またはアルミニウム等の導電体を付着せしめ ることによって形成される。 これら両主面に形成された電極 1 4 および 1 5 は、 強誘電性基体 1 3中を伝搬する光ビームのうち、 スペックルノィズを低減したい部分を挟み込むだけの広い面積に わたつて形成することが望ま しいが、 それぞれの分極反転ドメイ ンごとに電極を形成し、 各ドメイ ン毎に印加する電気信号を異な る電気信号とするこもできる。 これによつて、 強誘電性基体 1 3 は、 これらの電極 1 4および 1 5 に印加される制御信号の信号レベルに応じて、 内部を通過す る光ビームの位相関係を乱す働きをする。 したがって、 光ビーム Aがコヒーレン ト性の高い光ビームであっても、 出射する光ビ一 ム Bはコヒ一レン トの低減されたスペックルノイズの少ない光ビ ームと 7よる。
また、 電気光学素子 1 1の光出射面 1 7 には微細な凹凸が施さ れているが、 この微細な凹凸は、 光出射面 1 7を比較的荒い粒子 で研磨することによつて形成できる。
〔第 3の実施の形態〕
次に、 第 5図を参照に、 本発明に基づく第 3の実施の形態を説 明する。
く電気光学素子の構成〉
第 5図に示すように、 本実施の形態に基づく電気光学素子 2 1 は、 ニオブ酸リチウムやタ ンタル酸リチウム等の強誘電性基体 2
3 と、 この強誘電性基体 2 3中に作製された所定の形状の分極反 転ドメ イ ン 2 2 a, 2 2 b, 2 2 cおよび 2 2 dと、 強誘電性基 体 2 3の両主面に作製された 2つの電極 2 および電極 2 5 とか ら構成されている。
また、 電極 2 4および電極 2 5間には、 光ビームを制御するた めの所定の電気信号が電源 (図示せず) から印加されるように構 成されている。
入射する光ビーム Aは、 強誘電性基体 2 3の主面に垂直な一方 の側面における光入射面 2 6から入力され、 強誘電性基体 2 3中 を伝搬したのち、 他方の側面の光出射面 2 7から光ビーム Bとし て出力される。 また、 これら光入射面および出射面 2 6および 2 7は光学的に鏡面研磨されている。
また、 分極反転ドメ イ ン 2 2 a , 2 2 b, 2 2 cおよび 2 2 d は、 光ビーム Aの伝搬方向に不規則に形成されており、 かつ、 光 ビーム Aの伝搬方向と直交する方向 (図示せず) および深さ方向 にも、 不規則に形成されている。 したがって、 光ビーム Aは、 強 誘電性基体 2 3 を伝搬する間に、 いく つかの ドメィ ン壁を通過す る。 ドメ イ ン壁を通過する数、 ドメ イ ン壁に入射する角度、 ドメ イ ン中の伝搬距離は、 光ビームの構成光束毎に異なる。 また、 こ の ドメ イ ン壁は基体 2 3の主面にほぼ垂直である。 つまり、 例え ば、 図示の如く 、 分極反転 ドメ イ ン 2 2 aは、 長さ 、 深さ d 1 を、 分極反転 ドメ イ ン 2 2 bは、 長さ w 2 、 深さ d 2 を、 分極 反転 ドメ イ ン 2 2 c は、 長さ w 3 、 深さ d 3 を、 分極反転ドメイ ン 2 2 dは、 長さ w 4 、 深さ d 4 を有するというように、 分極反 転 ドメ イ ン 2 2 a, 2 2 b , 2 2 cおよび 2 2 dは、 それぞれ光 ビームの伝搬方向の長さ w、 深さ d、 更に図示しないが横幅も異 なっている、 つま り ラ ンダムに形成さ ήている。
く電気光学素子の動作〉
コ ヒー レン ト性の高い光ビーム Αのコ ヒーレン ト性を低減させ 、 スぺッ クルノ ィズの低減した光ビーム Bを出射させるためには 、 伝搬する光ビームのそれぞれの構成光束ごとに位相関係を時間 的に乱す。 すなわち、 前述した実施形態におけると同様に、 光ビ —ムのそれぞれの構成光束が干渉し、 本来ならばスペッ クルノィ ズを生ぜしめるような場合でも、 千渉するその場所でのそれぞれ の光ビームの位相関係の時間的変化によって、 干渉条件すなわち 干渉パターン、 または、 スペッ クルパターンが時間的に変化して 、 人の眼で見たときに、 眼の持つ特性によってペッ クルノイズが 無く なる。
この実施の形態におけるように、 電気光学素子 2 1 中に、 ラ ン ダムな形状の分極反転 ドメ イ ン 2 2 a, 2 2 b , 2 2 cおよび 2 2 dをラ ンダムに形成すると、 強誘電性基体 2 3中を伝搬する光 ビームの構成光束は、 ドメ イ ン壁を通過する回数、 ドメイ ン壁に 入射する角度、 および、 ドメイ ン中の伝搬距離がそれぞれ異なる ことになる。 このためと、 これらの ドメイ ン部分とその他の部分 の屈折率差は、 電気光学素子 2 1 の電極 2 4および 2 5間に印加 された信号電界に応じて変化するために、 電気光学素子 2 1を通 過したあとの光ビームの各構成光束の位相関係が信号電界に応じ て時間的に変化することになり、 スペックルノィズが低減するこ とになる。
前述した実施の形態では分極反転ドメ イ ンを、 強誘電性基体の 一方の主面から、 他方の主面に達する深さと した場合であり、 こ の場合、 光ビームの各構成光束のうちで強誘電性基体の深さ方向 に関しては位相関係がそろってしまう ことがある。 但し、 第 2の 実施例のように、 電気光学素子の入出射端面の少なく とも一方に 微細な凹凸を施すときは、 この位相関係が揃う ことを抑制はでき る。
これに対して、 本実施の形態における分極反転ドメ イ ンは、 上 述したように、 強誘電性基体 2 3内に形成された各ドメ イ ン 2 2 の深さ dを不規則に形成したものでこの場合、 強誘電性基体 2 3 の深さ方向にも屈折率差に変化をつけることができることから光 ビームの深さ方向の各構成光束の位相関係が揃ってしまうことを 回避できる。
〈電気光学素子の作製方法〉
分極反転ドメ イ ンは、 板厚方向について、 一方向に一様な自発 分極を有する強誘電性基体に局所的に電界を印加することによつ て、 この一様な自発分極に対して逆特性の自発分極を局所的に作 製することができる。 尚、 本実施の形態のように、 強誘電性基体 の深さ方向にランダムな深さを有する分極反転ドメインを作製す るには、 前述の第 6図〜第 8図に示した方法を適用できる。 強誘電性基体を構成する電極も、 前述したような蒸着、 スパッ 夕 リ ング等の p V D法によって、 対向する主面に、 金、 銅、 アル ミ ニゥム等の導電体を付着せしめることによって形成される。 こ れら両主面に形成された電極は、 強誘電体基体中を伝搬する光ビ ームのうち、 スペッ クルノ イズを低減したい部分を挟み込むだけ の広い面積にわたって形成するこ とが望ま しいが、 分極反転ドメ ィ ンを複数個形成する場合は、 それぞれの分極反転ドメ イ ンごと に電極を形成し、 各 ドメ イ ン毎に異なる電気信号を印加すること もできる。
これによつて、 強誘電性基体 2 3 は、 これらの電極 2 4および
2 5 に印加される制御信号の信号レベルに応じて、 内部を通過す る光ビームの位相関係を乱す働きをする。 したがって、 光ビーム Aがコ ヒ一 レン ト性の高い光ビームであっても、 出射する光ビー ム Bはコ ヒー レン 卜の低減されたスぺッ クルノィズの少ない光ビ —ムとなる。
また、 本実施の形態においても、 電気光学素子の光入出射端面 と光出射面とのうち少なく と も一方の端面を微細な凹凸面とする こ とができる。
上述の各実施の形態によれば、 光ビーム内の位相関係を時間的 に乱し、 光ビームのコ ヒ一レ ン ト性を効果的に低減して、 スぺッ クルの十分に消し去ることができ、 さ らに、 モータ一等の可動ぶ 必要と しないので装置の小型化が可能であって、 また、 消費電力 も十分に小さ く抑えることが可能である。
したがって、 レーザ光等のコ ヒ一レ ン ト性の高い光ビームの位 相関係を乱し、 コ ヒーレ ン ト性の低減した光ビームが、 簡易な構 成の光学素子によつて容易に得られることになる。 このように、 コ ヒ一レ ン ト性の低減した光ビーム、 特にレーザ光は、 例えば、 'プロジェクタ装置等の照明光やレーザディ スプレイなどの光源に 利用できる。
上述した各実施の形態においては、 単一の強誘電性基体によつ て電気光学素子を構成し、 相対向する端面を光ビームの入射面お よび出射面と し、 光ビームの伝搬方向を主面方向とした場合であ るが、 本発明による電気光学素子は、 この構成に限られるもので はない。
すなわち、 例えば第 9図〜第 1 7図にその概略断面図を示すよ うに、 分極反転ドメイ ンを形成した強誘電性基体の両主面側を光 ビームの入射面および出射面とするとか、 一方の主面を光ビーム の入射面および出射面とするとか、 例えばそれぞれ分極反転ドメ ィ ンを形成した複数の強誘電性基体を積層して 1つの電気光学素 子を構成するなど、 種々の実施の形態を採ることができる。
例えば、 第 9図に示すように、 分極反転ドメイ ン (図示せず) が形成された強誘電性基体 5 1 の両主面に、 例えば I T 0 (イ ン ジゥム錫酸化物) 膜等の透明導電膜による対向電極 5 2および 5
3を被着形成し、 これら電極 5 2および 5 3を、 入射光ビーム A の入射面および出射光ビーム Bの出射面とする。 すなわち、 この 場合、 強誘電性基体 5 1 中の光の伝搬方向は、 強誘電性基体 5 1 の厚さ方向もしく は厚さ方向にほぼ沿う方向とする。
あるいは、 第 1 0図に示すように、 分極反転ドメ イ ン (図示せ ず) が形成された強誘電性基体 5 1の一方の主面に透明電極によ る電極 5 2を形成して、 この電極 5 2側を光ビームの入射面およ び出射光ビーム Bの出射面とする。 そして、 他方の主面に反射率 の高い例えば A 1 による電極 5 3を被着形成し、 入射ビームを強 誘電性基体 5 1中で、 電極 5 3 によって反射させて、 光路長を第
9図の場合に比し長くする構成とすることもできる。
また、 あるいは、 第 1 1 図に示すように、 両電極 5 2を共に、 反射率の高い例えば A 1 による電極と し、 電極 5 2を、 強誘電性 基体 5 1 の一主面の一部に形成して、 この電極 5 2の配置部の両 側において、 それぞれ光ビーム Aの入射面と光ビーム Bの出射面 とする。 すなわち、 この場合においては、 両電極 5 2および 5 3 の内面で、 強誘電性基体 5 1中に入射された光ビームを反射させ て、 強誘電性基体 5 1 の厚さ方向に 2往復以上往復させて、 その 光路長を長くする構成した場合である。
また、 第 1 2図に示す例では、 強誘電性基体 5 1 の主面と隣接 する相対向する側面を斜面と して、 例えば断面台形と して、 各斜 面を入射面および出射面と した場合である。 この場合においても 両電極 5 2および 5 3 の内面で、 強誘電性基体 5 1中に入射され た光ビームを反射させて、 その光路長を第 9図の場合に比し長く する構成した場合である。
これら第 9図〜第 1 2図の各例において、 前述した駆動方法を 用いる。 すなわち、 両電極 5 1および 5 2間に、 前述した所要の 電気信号を印加するこ とによって、 光ビーム Aのコ ヒ一レン 卜性 が低減した光ビーム Bを取り出すことができる。
更に、 第 1 3図〜第 1 7図に示す例では、 それぞれ分極反転ド メ イ ン (図示せず) が形成された強誘電性基体 5 1を、 複数積層 した積層体 6 0 によって電気光学素子を形成した場合である。 第 1 3図に示した例では、 複数の強誘電性基体 5 1 を積層した 積層体 6 0の両外側に位置する強誘電性基体 5 1の外側の主面に それぞれ透明電極 5 2および 5 3を配置するとともに、 各強誘電 性基体 5 1間に透明電極による中間電極 5 4を配置した場合であ る。
そして、 電極 5 2側を、 光ビーム Aの入射面と し、 他方の電極
5 3側を光ビーム Bの出射面と したものである。
また、 第 1 4図は、 第 1 3図の構成において、 電極 5 3を高反 射率を有する電極と して、 電極 5 2側を光ビーム Aの入射面およ び光ビーム Bの出射面と し電極 5 3の内面での反射によつて積層 体 6 0の積層方向に光を往復させるようにした場合である。
第 1 5図に示した例では、 積層体 6 0の両面の電極 5 1および 5 2を共に反射率の高い電極例えば A 1 による電極と し、 電極 5 2を、 強誘電性基体 5 1の一主面の一部に形成して、 この電極 5
2の配置部の両側において、 それぞれ光ビーム Aの入射面と光ビ ーム Bの出射面と した場合である。 この場合においても、 両電極 の内面で光ビームを反射させて、 積層体 6 0の厚さ方向に光ビー ムを 2往復以上往復させることができるようにした場合である。
また、 第 1 6図は、 第 1 5図の構成において、 積層体 6 0の相 対向する側面を斜面、 例えば断面台形として、 各斜面を入射面お よび出射面と した場合である。 この場合においても両電極 5 2お よび 5 3 の内面で、 強誘電性基体 5 1中に入射された光ビームを 反射させて、 その光路長を長くする構成した場合である。
更に、 第 1 7図は積層体 6 0の相対向する側面をそれぞれ光の 入射面および出射面と した場合である。 そして、 この場合、 各電 極は透明電極する。
第 1 3図〜第 1 7図で示した積層構造を採るときは、 各強誘電 性基体 5 1 の両面に、 上述した電気信号を順次逆極性に印加する 。 このようにすれば、 前述したように、 光ビームの構成光束を相 互に位相ずれが生じるようにすることができ、 光ビーム Aに比し 光ビーム Bのコヒーレン ト性を低めることができる。
尚、 本発明による電気光学素子、 駆動方法およびその製造方法 は、 上述した例に限られるものではない。
尚、 本発明による駆動方法において、 前記電極に印加する所定 の電気信号は、 上述の如く したように、 直流成分が重畳した交流 信号、 通常の交流信号の他、 例えば、 パルス状の信号や直流信号 であってもよい。 であってもよい。
電気信号の周波数は、 例えば 3 0 H z以上の人間の目ではもは や識別できない速さであり、 また現行の N T S C方式のフ レーム 数 ( 3 0 フ レーム Z秒) に対応できる周波数とすることのできる 。 また単一周波数である必要はない。 また、 印加する電気信号に おける電圧は特に制限はないが、 最低電圧の目安として、
( 1 / λ ) X Ε X η 3 x r x
{ ( ドメ イ ン部分の伝搬距離が最も長い光束の ドメイ ン部分の 伝搬距離)
- ( ドメイ ン部分の伝搬距離が最も短い光束の ドメィン部分の 伝搬距離) }
> 1 / 2 · · · · ( 1 )
(但し、 λ 光の波長
Ε 印加電界 (=印加電圧 Ζ基板の厚さ)
η 基板の屈折率
電気光学定数)
で表される式 ( 1 ) を満たすものであることが望ま しい。 これは 、 素子における各光ビームを構成する光束の最大位相差が、 λ Ζ 2 ( = 7Γ ) 以上になるような電圧を印加することを意味する。 また、 分極反転ドメィ ンの形状は、 上述したような円柱状や柱 状のものではなく、 例えば、 三角柱状や星型柱状等の多角形状で あってもよい。
さ らに、 光ビーム入射側に偏光子、 光ビーム出射側に検光子を 配置するとか、 いずれか一方のみを配置することもできる。
また、 本発明による電気光学素子を透過型波長フィ ルタおよび 光強度変調器と して直列に並べることによって、 光ビームの位相 整合と強度変調とを同時に行う ことができる。
さらに、 強誘電性基体と して用いたニオブ酸リチウムは、 L i N b 0 で表される化合物であり、 L i N b x T a i-X (但し、 0 ≤ x≤ 1 ) の結晶からなるものであるが、 この他、 前記強誘電 性基体と しては、 タンタル酸リチウム ( L i T i T a 03 ) や T P (K T i 0 P 0 ) などの公知の強誘電性結晶を用いること ができる。
上述したように、 本発明の電気光学素子によれば、 強誘電性基 体における光ビームの通過断面内で光ビームを構成する光束の位 相を互いにランダムに異ならせるための位相変位手段を設けるも のであり、 強誘電性基体を伝搬するコヒ一レン ト性の高い光ビ一 ムを、 本発明による駆動方法によつて分極反転ドメイ ンと強誘電 性基体との間に屈折率差を生起し、 かつ時間的に変化させて光ビ —ムの構成光束ごとにそれぞれ互いに異なる位相に効果的に変化 させるものである。 したがって、 効果的に入射光ビームのコヒ一 レン 卜性を低減した光ビームを得ることができる。
これによつて、 スペックルノィズを十分に低減することができ 、 さ らに、 モーター等の可動部を必要と しないので装置の小型化 が可能であって、 また、 消費電力も十分に小さ く抑えることが可 能である。
また、 本発明の製造方法によれば、 上述した本発明による電気 光学素子を製造するに際し、 強誘電性基体に、 第 1の分極反転ド メ イ ンを形成し、 これを所定深さに縮小し、 その後、 再び第 2の 分極反転ドメ イ ンを形成するという工程によることにより、 深さ 方向に不規則な分極反転ドメイ ンを有する電気光学素子を再現性 良く製造できるものである。

Claims

請求の範囲
. 電気光学効果を有する強誘電性基体と、
この強電性基体に電界を印加する少なく とも対の電極とを有 し、
面とが形成され、
上記強誘電性基体の、 上記光ビームの入射面と出射面との間 の上記強誘電性基体中の光ビーム伝搬通路に、 複数の分極反転 ドメイ ンが形成され、
上記分極反転ドメ イ ンによって、 上記光ビームを構成する光 束の位相を相互に不規則に異ならしめる位相変位手段を構成し たことを特徴とする電気光学素子。
. 電気光学効果を有する複数の強誘電性基体が積層されて成る 積層体と、
上記積層体の各強誘電性基体の積層間と、 上記積層体の最外 側面とにそれぞれ電極が形成され、 少なく とも上記積層間に配 置された電極が透明電極より成り、
上記積層体に、 光ビームの入射面と出射面とが形成され、 上記光ビームの入射面と出射面との間の上記各強誘電性基体 中の光ビーム伝搬通路に、 複数の分極反転ドメィ ンが形成され 、
上記分極反転ドメ イ ンによって、 上記光ビームを構成する光 束の位相を相互に不規則に異ならしめる位相変位手段を構成し たことを特徴とする電気光学素子。
. 上記複数の分極反転ドメインが、 少なく とも上記光ビームの 伝搬方向に不規則に形成されて成ることを特徴とする請求項 1 または 2に記載の電気光学素子。
. 上記複数の分極反転ドメ イ ンが、 上記光ビームの伝搬方向と ほぼ直交する方向に不規則に形成されて成ることを特徴とする 請求項 1 または 2 に記載の電気光学素子。
5 . 上記複数の分極反転ドメィ ンの深さが不規則に形成されて成 ることを特徴とする請求項 1 または 2に記載の電気光学素子。
6 . 上記光ビームが、 上記分極反転ドメ イ ンの ドメィ ン壁を少な く とも 2つ通過するようにしたことを特徴とする請求項 1 また は 2 に記載の電気光学素子。
7 . 上記分極反転ドメイ ンの ドメ イ ン壁の少なく とも 1つが電極 形成面に垂直ないしはほぼ垂直に形成されたことを特徴とする 請求項 1 または 2に記載の電気光学素子。
8 . 上記光ビームの入射面と出射面の一方もしく は双方が粗面と された成ることを特徴とする請求項 1 または 2 に記載の電気光 学素子。
9 . 上記電極の少なく とも一方が透明電極より成り、 該透明電極 を通じて上記光ビームの入射および出射の少なく とも一方を行 うようにしたことを特徴とする請求項 1 に記載の電気光学素子 o
10. 上記積層体の最外側に配置された電極の少なく とも一方が透 明電極より成り、 該透明電極を通じて上記光ビームの入射およ び出射の少なく とも一方を行うようにしたことを特徴とする請 求項 2に記載の電気光学素子。
11. 上記強誘電性基体表面の少なく とも一部に反射面が形成され て成ることを特徴とする請求項 1 または 2に記載の電気光学素 子。
12. 電気光学効果を有する強誘電性基体と、 この強誘電性基体に 電界を印加する少なく とも対の電極とを有し、 上記強誘電性基 体に、 光ビームの入射面と出射面とが形成され、 強誘電性基体 の、 上記光ビームの入射面と出射面との間の上記強誘電性基体 中の光ビーム伝搬通路に、 複数の分極反転ドメインが形成され 、 上記分極反転ドメ イ ンによって、 上記光ビームを構成する各 部分部分光束の位相を相互に不規則に異ならしめる位相変位手 段を構成した電気光学素子であって、
上記電極間に所要の電気信号を供給することを特徴とする電 気光学素子の駆動方法。
13. 電気光学効果を有する複数の強誘電性基体が積層されて成る 積層体と、 上記積層体の各強誘電性基体の積層間と、 上記積層 体の最外側面とにそれぞれ電極が形成され、 少なく とも上記積 層間に配置された電極が透明電極より成り、 上記積層体に、 光 ビームの入射面と出射面とが形成され、 上記光ビームの入射面 と出射面との間の上記各強誘電性基体中の光ビーム伝搬通路に 、 複数の分極反転ドメ イ ンが形成され、 上記分極反転ドメ イ ン によって、 上記光ビームを構成する部分光束の位相を相互に不 規則に異ならしめる位相変位手段を構成した電気光学素子であ つて、
上記電極間に所要の電気信号を供給することを特徴とする電 気光学素子の駆動方法。
14. 上記電極に交流信号を供給することを特徴とする請求項 1 2 または 1 3に記載の電気光学素子の駆動方法。
15. 上記電極に直流成分を重畳した交流信号を供給することを特 徴とする請求項 1 2 または 1 3 に記載の電気光学素子の駆動方 法 o
16. 電気光学効果を有する強誘電性基体と、 この強誘電性基体に 電界を印加する少なく とも対の電極とを有し、 上記強誘電性基 体に、 光ビームの入射面と出射面とが形成され、 強誘電性基体 の、 上記光ビームの入射面と出射面との間の上記強誘電性基体 中の光ビーム伝搬通路に、 複数の分極反転ドメインが形成され 、 上記分極反転ドメ イ ンによって、 上記光ビームを構成する各 部分光束の位相を相互に不規則に異ならしめる位相変位手段を 構成した電気光学素子の製造方法であって、
上記強誘電性基体の一部に、 その一方の主面から上記強誘電 性基体の厚さ方向の全てもしく は一部に渡って第 1の分極反転 ドメ イ ンを形成する第 1工程と、
上記強誘電性基体を、 そのキユ リ—温度以下の所定の温度に 所定時間保持して前記第 1 の分極反転ドメィンの深さを、 縮小 する第 2工程と、
上記強誘電性基体の他の一部に、 その一方の主面から上記強 誘電性基体の厚さ方向の全てもしく は一部に渡って第 2の分極 反転ドメィ ンを形成する第 3工程とを有することを特徴とする 電気光学素子の製造方法。
17. 電気光学効果を有する複数の強誘電性基体が積層されて成る 積層体と、 上記積層体の各強誘電性基体の積層間と、 上記積層 体の最外側面とにそれぞれ電極が形成され、 少なく とも上記積 層間に配置された電極が透明電極より成り、 上記積層体に、 光 ビームの入射面と出射面とが形成され、 上記光ビームの入射面 と出射面との間の上記各強誘電性基体中の光ビーム伝搬通路に 、 複数の分極反転ドメイ ンが形成され、 上記分極反転ドメイン によって、 上記光ビームを構成する部分光束の位相を相互に不 規則に異ならしめる位相変位手段を構成した電気光学素子の製 造方法であつて、
上記強誘電性基体の一部に、 その一方の主面から上記強誘電 性基体の厚さ方向の全てもしく は一部に渡って第 1の分極反転 ドメイ ンを形成する第 1工程と、
上記強誘電性基体を、 そのキユ リ一温度以下の所定の温度に 所定時間保持して前記第 1 の分極反転ドメ イ ンの深さを、 縮小 する第 2工程と、 上記強誘電性基体の他の一部に、 その一方の主面から上記強 誘電性基体の厚さ方向の全てもしく は一部に渡って第 2の分極 反転ドメイ ンを形成する第 3工程とを有することを特徴とする 電気光学素子の製造方法。
18. 上記第 1 および第 3工程において、 上記強誘電性基体の対向 した両主面に電極をそれぞれ設け、 これら電極間に電極を印加 することによって、 上記第 1 および第 2の分極反転ドメインを 形成することを特徴とする請求項 1 6または 1 7に記載の電気 光学素子の製造方法。
19. 上記第 1 および第 3工程において、 上記強誘電性基体の自発 分極の負側または正側の面に、 負または正の電荷を有する電荷 粒子を照射することによって、 上記第 1および第 2の分極反転 ドメ イ ンを形成することを特徴とする請求項 1 6 または 1 7に 記載の電気光学素子の製造方法。
20. 上記第 2工程において、 上記強誘電性基体をそのキュリー温 度より低い所定の温度に保持することを特徵とする請求項 1 6 または 1 7 に記載の電気光学素子の製造方法。
21. 上記強誘電性基体を L i N b x T a 0 3 (但し、 0 ≤ x ≤ 1 ) の結晶によって構成し、 キュ リー温度以下の所定の温度 で、 大気中または酸素雰囲気中に保持することを特徴とする請 求項 1 6 または 1 7に記載の電気光学素子の製造方法。
22. 上記強誘電性基体を L i N b 0 の結晶によって構成し、 該 強誘電性基体を、 3 0 0 °C〜 1 1 5 0 で瞬時から 3 0時間以 内、 大気中または酸素雰囲気中に保持することを特徴とする請 求項 1 6 または 1 7に記載の電気光学素子の製造方法。
23. 上記第 1および第 2 の分極反転ドメイ ンを、 少なく とも上記 光ビームの伝搬方向に不規則に形成されて成ることを特徴とす る請求項 1 6 または 1 7に記載の電気光学素子の製造方法。
24. 上記複数の分極反転ドメ イ ンを、 上記光ビームの伝搬方向と 直交する方向に不規則に形成されて成ることを特徴とする請求 項 1 6 または 1 7 に記載の電気光学素子の製造方法。
25. 上記複数の分極反転ドメィ ンの深さが不規則に形成されて成 ることを特徴とする請求項 1 6 または 1 7に記載の電気光学素 子の製造方法。
26. 上記光ビームが、 上記分極反転ドメ イ ンの ドメ イ ン壁を少な く とも 2つ通過するようにしたことを特徴とする請求項 1 6ま たは 1 7 に記載の電気光学素子の製造方法。
27. 上記分極反転ドメ イ ンの ドメ イ ン壁の少なく と も 1 つが電極 形成面に垂直ないしはほぼ垂直に形成されたことを特徴とする 請求項 1 6 または 1 7 に記載の電気光学素子の製造方法。
PCT/JP1999/001478 1998-03-24 1999-03-24 Dispositif electro-optique, procede de pilotage associe et procede de fabrication correspondant WO1999049354A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/424,443 US6411420B1 (en) 1998-03-24 1999-03-24 Electro-optical element, and method of driving and method of manufacturing the same
EP99910673A EP0985947A1 (en) 1998-03-24 1999-03-24 Electrooptic device, driving method thereof, and manufacture thereof
KR1019997010840A KR20010012874A (ko) 1998-03-24 1999-03-24 전기 광학 소자와 그 구동 방법 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/75346 1998-03-24
JP7534698 1998-03-24

Publications (1)

Publication Number Publication Date
WO1999049354A1 true WO1999049354A1 (fr) 1999-09-30

Family

ID=13573608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001478 WO1999049354A1 (fr) 1998-03-24 1999-03-24 Dispositif electro-optique, procede de pilotage associe et procede de fabrication correspondant

Country Status (4)

Country Link
US (1) US6411420B1 (ja)
EP (1) EP0985947A1 (ja)
KR (1) KR20010012874A (ja)
WO (1) WO1999049354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095181A (ja) * 2009-10-30 2011-05-12 Sysmex Corp 粒子分析装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791739B2 (en) * 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
WO2005065340A2 (en) * 2003-12-31 2005-07-21 E Ink Corporation Electro-optic displays
JP5158319B2 (ja) * 2007-03-26 2013-03-06 株式会社リコー 波長変換素子、レーザ装置、画像形成装置及び表示装置
US20130182311A1 (en) * 2012-01-12 2013-07-18 Visitret Displays Ou Electrophoretic display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189634A (ja) * 1989-12-19 1991-08-19 Sony Corp レーザーディスプレイ用スクリーン
JPH09146128A (ja) * 1995-11-24 1997-06-06 Sony Corp 電気光学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE206532T1 (de) * 1992-07-30 2001-10-15 Canon Kk Flüssigkristall-anzeigevorrichtung
GB2287327A (en) * 1994-03-02 1995-09-13 Sharp Kk Electro-optic apparatus
JP3189634B2 (ja) 1994-07-04 2001-07-16 住友電気工業株式会社 酸化物薄膜の作製方法
DE69531917T2 (de) * 1994-08-31 2004-08-19 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Herstellung von invertierten Domänen und eines optischen Wellenlängenkonverters mit denselben
JPH1039346A (ja) * 1996-07-26 1998-02-13 Sony Corp 電気光学素子
KR100277976B1 (ko) * 1998-07-02 2001-03-02 구자홍 강유전체 비휘발성 메모리의 정보 기록 및 재생방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189634A (ja) * 1989-12-19 1991-08-19 Sony Corp レーザーディスプレイ用スクリーン
JPH09146128A (ja) * 1995-11-24 1997-06-06 Sony Corp 電気光学素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095181A (ja) * 2009-10-30 2011-05-12 Sysmex Corp 粒子分析装置
US8675196B2 (en) 2009-10-30 2014-03-18 Sysmex Corporation Analyzer and particle imaging method

Also Published As

Publication number Publication date
US6411420B1 (en) 2002-06-25
KR20010012874A (ko) 2001-02-26
EP0985947A1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5615041A (en) Fabrication of patterned poled dielectric structures and devices
US5544268A (en) Display panel with electrically-controlled waveguide-routing
JPH10507846A (ja) 電気的に制御できる格子反射鏡を備えたレーザ
WO1996007943A1 (en) Projection display with electrically-controlled waveguide-routing
JPH10509246A (ja) 極化構造を使用する制御可能なビーム・ディレクタ
Gui Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions
JPH05333395A (ja) 光波長変換装置
JP2010026079A (ja) 光デバイス
US6175578B1 (en) Optical device
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
US20090130476A1 (en) Method of Forming Polarization Reversal Area, Apparatus thereof and Device Using it
JP3059080B2 (ja) 分極反転領域の製造方法ならびにそれを利用した光波長変換素子及び短波長光源
US7317860B2 (en) Optical device having photonic crystal structure
US5247601A (en) Arrangement for producing large second-order optical nonlinearities in a waveguide structure including amorphous SiO2
JPH0296121A (ja) 波長変換素子
JPH09304800A (ja) 光波長変換素子および分極反転の製造方法
WO1999049354A1 (fr) Dispositif electro-optique, procede de pilotage associe et procede de fabrication correspondant
EP1180717A2 (en) Optical harmonic generator
JPH06110095A (ja) ミリ波・サブミリ波発生方法ならびにその装置
Ito et al. Phase-matched guided, optical second-harmonic generation in nonlinear ZnS thin-film waveguide deposited on nonlinear LiNbO3 substrate
JP3883613B2 (ja) 電気光学素子
JPH06342177A (ja) 光導波路装置の製造方法と光周波数逓倍装置
JP2643735B2 (ja) 波長変換素子
JPH0627427A (ja) 光機能素子
JP2982366B2 (ja) 導波路型波長変換素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999910673

Country of ref document: EP

Ref document number: 1019997010840

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09424443

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999910673

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010840

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999910673

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997010840

Country of ref document: KR