WO1999043628A1 - Corps en ceramique pour appareils sanitaires et son procede de production - Google Patents

Corps en ceramique pour appareils sanitaires et son procede de production Download PDF

Info

Publication number
WO1999043628A1
WO1999043628A1 PCT/JP1999/000832 JP9900832W WO9943628A1 WO 1999043628 A1 WO1999043628 A1 WO 1999043628A1 JP 9900832 W JP9900832 W JP 9900832W WO 9943628 A1 WO9943628 A1 WO 9943628A1
Authority
WO
WIPO (PCT)
Prior art keywords
sanitary ware
less
ceramic body
ceramic
amount
Prior art date
Application number
PCT/JP1999/000832
Other languages
English (en)
French (fr)
Inventor
Naoki Koga
Motoshi Yasuda
Hidemi Ishikawa
Tomoyasu Ichiki
Shozo Tateyama
Masato Otsu
Katsuhiro Kawakami
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Publication of WO1999043628A1 publication Critical patent/WO1999043628A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide

Definitions

  • the present invention relates to a ceramic body for sanitary ware, which has a high strength that enables weight reduction and enlargement of the sanitary ware and has a small deformation during firing, and a method for producing the same.
  • Sanitary ware is a large and complex product among ceramic products, and its wall thickness is smaller than other ceramic products in order to suppress deformation of the product during firing and to obtain sufficient product strength. It has a thick structure.
  • a conventional ceramic body for sanitary ware has a bending strength of 40 to 80 MPa, and a thickness of about 9 to 12 mm is required in consideration of strength and deformation during firing of the body. Therefore, there is a problem that the sanitary ware is heavy, and it is difficult to realize the problem because the increase in size of the product causes a further increase in weight.
  • the conventional ceramic body for sanitary ware has a problem that the deformation of the product during firing becomes large and the strength of the product decreases.
  • the amount of deformation during firing is inversely proportional to the square of the wall thickness and becomes greater as the thickness becomes smaller, and the strength decreases in proportion to the square of the wall thickness and becomes thinner. Therefore, in order to reduce the weight by reducing the thickness, it is necessary to suppress the deformation during firing of the substrate and to increase the substrate strength.
  • Conventional sanitary ware for ceramic green body, quartz, mullite is the main crystalline phase constituents, are composed of these binding phase and Si_ ⁇ 2, A1 2 0 3 glass phase composed mainly.
  • Such a ceramic body for sanitary ware is mainly made of pottery stone, clay and feldspar, and can be obtained by adjusting the particle size of a mixture of these raw materials, molding, drying and firing.
  • sanitary ware is required to be always sanitary in the environment in which it is used, the surface of the product, that is, the surface of the base material, is generally covered with glaze.
  • this glaze layer is formed in the process of producing sanitary ware by glazing and firing after molding, or by firing once after molding, glazing and firing.
  • sanitary ware must have sufficient product strength to prevent damage during transportation and construction of the product, as well as damage due to load and impact under the use environment, in combination with its own weight.
  • thermal shock resistance is also required.
  • ceramic products for sanitary ware are required to have excellent properties such as moldability, cutting resistance during drying, cutting resistance during firing, deformation during firing, and compatibility with glaze in the manufacture of products.
  • high strength and excellent thermal shock resistance are required for product quality.
  • the characteristics related to the production of the product influence the productivity of the product and are very important from an industrial point of view.
  • Conventional ceramic body for sanitary ware is a body designed with an emphasis on product productivity, and is particularly excellent in moldability, cutting resistance during drying, cutting resistance during firing, and heat shock resistance. Is also excellent. These excellent properties are obtained by setting the mineral species in the raw material, its compounding ratio, and the particle size of the raw material.
  • the raw materials used are generally those made mainly of pottery stone, clay, and feldspar.
  • Raw materials containing alkaline earth metal oxides such as dolomite may be used in addition to feldspar.
  • the minerals that make up the raw material are quartz, sericite, kaolinite, dateskite, neurofilite, halloysite, potassium feldspar, and soda feldspar.
  • Minerals such as sericite, kaolinite, dateskite, pyrophyllite and halloysite are called clay minerals, exhibit excellent plasticity, and are the main minerals contained in clay and pottery stone.
  • quartz and feldspar have poor plasticity, and quartz is a major mineral contained in pottery stone, and partly contained in feldspar and clay.
  • the ratio of the plastic mineral in the conventional ceramic body for sanitary ware is 50 to 70 wt% of the whole raw material. It has become. For this reason, the base is excellent in plasticity and good moldability is obtained.
  • the conventional ceramic body for sanitary ware has excellent resistance to drying out. This is because the plasticity of the base material greatly contributes to drying out.
  • the formed product shrinks upon drying, and partial shrinkage distortion may cause the product to dry out. It is said that, when the substrate has plasticity, the substrate is plastically deformed and absorbed and relaxed, and the substrate with excellent plasticity has high resistance to drying out. Products with large and complex shapes, such as sanitary ware, tend to dry out due to shrinkage distortion, which is difficult to dry uniformly. Therefore, the plasticity of the substrate is very important in increasing the resistance to dryness.
  • Quartz in the raw material is a mineral that constitutes the crystal phase of the base material, and greatly contributes to the thermal shock resistance of the base material, and also determines the sinterability of the base material.
  • the quartz in the raw material reacts and melts with the sintering flux such as feldspar in the raw material during the firing process, leaving a part to form a glass phase. Therefore, If the amount of quartz in the raw material is too small, the fire of the raw material becomes high, and the raw material becomes difficult to be sintered.
  • microcracks minute cracks
  • the conventional ceramic body for sanitary ware is an excellent material for producing sanitary ware.
  • the thinning of the sanitary ware which is the aim of the present invention, has problems in the strength of the base and the deformation during firing. To realize this, it is necessary to improve the base strength and reduce the amount of deformation during firing.
  • In the field of porcelain research has been carried out to improve the strength of ceramics by replacing quartz in the body with corundum for a long time. Some of them have already been put into practical use for tableware and insulators.
  • corundum Hiichi alumina
  • corundum Japanese Patent Publication No. 7-68061
  • the mechanical strength is more than lOOMpa in unglazed bending strength. This strength increases as the corundum content increases.
  • the method of atomizing the raw material is also effective for improving the strength of the raw material.
  • One of the mechanisms of strength improvement by atomization of the raw material is to reduce defects such as coarse particles and pores remaining in the raw material, and it is thought that quartz particles in the raw material are involved. .
  • microcracks in the quartz particles decrease as the base material becomes finer. Micro cracks in the substrate It is a kind of defect that reduces the strength of the substrate. Therefore, a decrease in the amount of microcracks leads to an improvement in the strength of the substrate. In addition, due to the decrease in microcracks, the stress that was not released due to the occurrence of microcracks and was caused by the difference in thermal expansion between the quartz and glass phases remains in the quartz particles, and this residual stress works to improve the base strength. It is thought to do.
  • the presence of the quartz particles in the base material brings about an effect of further improving the strength by the fine particles of the base material.
  • this is contrary to the problem of reduced thermal shock resistance.
  • silica sand with a controlled particle size of quartz particles is added afterwards and mixed, resulting in thermal shock resistance.
  • Quartz raw materials such as silica stone and silica sand are non-plastic, so the greater the blending amount, the worse the plasticity. That is, the moldability is deteriorated, and the drying is liable to occur, so that it is difficult to obtain a large-sized complicated-shaped product such as sanitary ware.
  • Quartz raw materials such as silica stone and silica sand whose grain size has been adjusted are more expensive than general ceramic raw materials such as pottery stone, clay and feldspar. Therefore, the larger the blending amount, the higher the raw material cost.
  • An object of the present invention is to solve the above-mentioned conventional problems and to provide a sanitary ware ceramic body capable of thinning, lightening, and increasing the size of a sanitary ware excellent in productivity and a method for producing the same. Disclosure of the invention
  • the present invention deformation amount during firing at 25mm or less, and the thermal expansion coefficient characterized in that it is a 75 X 10- 7 or less is sanitary ware for ceramic green body.
  • the deformation during firing exceeds 25 mm, the deformation during firing of thin and light-weight and large-sized sanitary ware becomes too large, and is not suitable for industrial production.
  • the thermal expansion coefficient exceeds the 75 X 10- 7 Z ° C, stress is generated by a temperature difference occurring in the inside and outside of the thermal shock or product during product cooling, cutting (kiln sharks) occurs Easier to do.
  • the unglazed bending strength is less than lOOMPa, if the thickness and weight are reduced or the size is increased, the required strength of sanitary ware may not be reached, and there is a possibility that the product may be damaged during transportation or construction, or during use.
  • the reason why the coefficient of thermal expansion is 75 X 1CT 7 Z ° C or less is as described above.
  • the ceramic body for sanitary ware is characterized by having a heat shock resistance of a 00 ° C or more. If the thermal shock resistance is less than 100 ° C, there is a problem that, for example, when hot water is poured into a wash basin, breakage due to heat shock occurs.
  • the water absorption of these sanitary ware ceramic bodies is 3% or less. If the water absorption exceeds 3%, moisture is absorbed into the product, and there is a problem of freezing damage that the water is frozen in a cold region and the product is cut, and the water absorption is preferably 3% or less.
  • Si_ ⁇ the 2 exceeds 55 wt% or less than A1> 3 force S40wt%, component vitrified during firing Al. 0 3 becomes difficult firing too rich, and Al 2 ⁇ 3 is less than 25 wt%, the plasticity of the green body becomes less clay mineral amount in the matrix material is deteriorated. Further, quartz in the matrix when Si_ ⁇ 2 exceeds 69 wt%
  • the total crystal content exceeds 40 wt% or the corundum content exceeds 10 wt%, non-plastic raw materials such as corundum and quartz become too large, and the plasticity of the base material deteriorates, and large products such as sanitary ware can be obtained. It will be difficult. If the amount of corundum exceeds 10% by weight, the specific gravity of the substrate increases, and the effect of reducing the thickness and weight decreases. Furthermore, the high raw material cost makes it unsuitable for industrial production.
  • the sanitary ware ceramic body is characterized by having a mullite capacity of lOwt% or more.
  • the amount of mullite is less than 10 wt%, sufficient strength and thermal shock resistance cannot be obtained.
  • the molar ratio of the alkaline earth oxide to the total amount of the alkali oxide and the alkaline earth oxide is at least 40 mol%.
  • the molar ratio of the alkaline earth oxide to the total amount of the alkaline oxide and the alkaline earth oxide is less than 40 mol%, sufficient strength and thermal shock resistance cannot be obtained.
  • the above-mentioned ceramic body for sanitary ware includes a ceramic material for sanitary ware selected from porcelain stone, kaolin, quartzite, silica sand, corundum-containing raw material, clay, sintered flux material, etc.
  • the raw material for sanitary ware is pulverized so that the average particle size is less than 6.5 m, molded, dried, and dried. It is manufactured by firing at a temperature of 1300 ° C.
  • a ceramic material for sanitary ware selected from ceramic stone, kaolin, silica stone, silica sand, sand shale, clay, sintered flux material, etc., such that the amount of quartz contained in the whole material is 32 wt% or less. Further, the mixture is mixed so that the amount of corundum in the base material after firing is less than 10 wt%, and the mixture is ground, shaped, and dried so that the average particle size of the ceramic material for sanitary ware is 6.5 ⁇ or less. Thereafter, it is manufactured by firing at a temperature of 1100 to 1300 ° C.
  • the amount of quartz in all raw materials exceeds 32 wt%, the coefficient of thermal expansion becomes too large, and kiln sharks are likely to occur.
  • the problem when the amount of corundum exceeds 10 wt% is as described above. If the average particle size of the ceramic raw material for sanitary ware exceeds 6.5 ⁇ m, the sinterability of the base material deteriorates, and the amount of added flux becomes too large. It is no longer suitable for production. Further, a sufficient effect of improving the strength cannot be obtained.
  • corundum-containing raw materials such as alumina, electrofused alumina and calcined bauxite which are refined by the Bayer method are available. Particularly preferred from the viewpoint.
  • the advantage of using the calcined sand shale is that the calcined sand shale contains an appropriate amount of mullite in addition to corundum, so that the effect of improving the thermal shock resistance of the substrate can be expected. .
  • calcined sand shale or sand shale as a raw material, it is preferable to use one having an Al 2 ⁇ 3 content of 50 wt% or more. If the content of Al 2 ⁇ 3 is less than 50 wt%, it is necessary to increase the mixing amount of these raw materials in order to secure a predetermined amount of corundum in the base material, and the amount of other raw materials required to ensure moldability is limited. It is because it is done.
  • corundum-containing raw materials are preferably ground before use to 100 mesh or less. This is because the raw material containing corundum is very hard to pulverize with other raw materials.
  • the size of the corundum particles contained in the substrate is important for the substrate strength, and the finer the particles, the higher the strength. Therefore, it is preferable to use the corundum-containing raw material by pulverizing it in advance so that it is as fine as possible, at least 100 mesh or less.
  • the ceramic raw material for sanitary ware is mixed so that the total amount of clay minerals contained in all the raw materials is 50 wt% or more.
  • the plasticity of the base material will be poorly reversible and the productivity will be poor, such as large breakage during drying.
  • clay mineral sericite, kaolinite, dateskite, pyrophyllite, halloysite and the like are preferable.
  • the ceramic body for sanitary ware according to the present invention is manufactured by injection molding.
  • the molding method is not particularly limited, such as extrusion molding, potter's wheel molding, press molding, etc., but usually, molding is used for large and complicated-shaped products such as sanitary ware.
  • molding is used for large and complicated-shaped products such as sanitary ware.
  • a powdered raw material having a preferable particle size distribution is not available (for example, when using a raw material in the form of stone such as pottery stone).
  • a step of pulverizing the raw raw material using a ball mill or the like must be provided. This place In this case, it is easier to grind all the raw materials at once as a process. In some cases, it is preferable to remove some raw materials, grind them, and add the raw materials after the grinding is completed. In some cases.
  • a deflocculant in order to manufacture a slurry for injection molding, it is necessary to add a deflocculant and to disperse the base particles well, and water glass, sodium carbonate, sodium humate, quebracho, sodium polyacrylate, A conventionally known peptizer such as an acrylic acid oligomer ammonium salt can be used. If the strength of the molded product is particularly required, the binder can be added to the slurry to improve the strength. Sodium carboxymethylcellulose, polybutyl alcohol, dextrin, gum arabic, gum tragagant, methylcellulose, peptone, soluble starch Conventionally known binders such as various emulsion binders and colloidal silica can be used. Further, other additives such as a lubricant, a release agent, a plasticizer, and an antifoaming agent can be added to the slurry. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a front view and a plan view of a sanitary ware (stool toilet) manufactured using the ceramic body for sanitary ware of the present invention.
  • FIG. 2 is a front view and a plan view of a sanitary ware (wash basin) manufactured using the sanitary ware ceramic body of the present invention.
  • FIG. 3 is a graph showing the relationship between the bending strength and the deformation amount in the course of drying of the green specimen before firing of the present invention and the conventional green specimen before firing.
  • FIG. 4 is a schematic view of an apparatus for measuring the return of a test piece by applying vibration to a water-containing base test piece.
  • Table 1 shows the chemical composition of the raw materials used in the examples. Except for alumina, it is a natural raw material, and the chemical compositions shown are representative. (wt%)
  • Table 2 shows the chemical composition of the Bristol glaze used.
  • Tables 3 to 9 show the raw materials used, the amount of minerals contained in the raw materials, the physical properties of the raw materials, the results of trial production of products using the raw materials, and the like, in Comparative Examples and the present invention.
  • Crystalline phase ⁇ . ⁇ Z4.O. Glass phase y .o /U.O / 4.0 / . ⁇
  • Table 5 to Table 9 No.3-l to No.3-6, No.4-l to No.4-4, No.5_l to No.-5, No.6-l to No .6-4, No.7-l to No.7-6 indicate test substrates.
  • Table 10 shows the relationship between the strength measurement test piece shape and strength of the ceramic body of the example of the present invention.
  • Table 13 shows the wall thickness settings of the product base of Figs. 1 and 2 and the wall thickness settings of the same conventional product. Table 13
  • fired sand shale obtained by once firing purified alumina and sand shale manufactured by Sumitomo Chemical Co., Ltd. was used.
  • the crushed Masuda silica stone was used as the quartz raw material whose particle size was adjusted.
  • Fig. 1 shows a prototype toilet seat product.
  • the base material is 30% thinner on average than conventional products.
  • Figure 2 shows a prototype of a washbasin product.
  • the base material is 30% thinner on average than conventional products.
  • Figure 3 compares the plasticity of the substrates, and shows the relationship between the strength and the amount of deformation associated with the progress of drying (decreasing the water content) of the test piece formed by injection molding.
  • the raw material slurry was poured into a gypsum mold for molding a test piece, and after the meat was formed, the mold was removed to form a test piece.
  • the molded test piece was dried and fired at 1200 ° C.
  • the particle size of the raw material was measured by a particle size distribution measuring device of a laser scattering method (Microtrac FRA manufactured by Nikkiso Co., Ltd.).
  • the green strength was measured by a three-point bending method using a ⁇ 13 X 130 mm test piece (test piece) at a span of 100 mm and a crosshead speed of 2.5 mm / min.
  • Table 5 and Table 6 show the experimental results on the relationship between the shape of the test piece and the strength, because the strength of the ceramic material depends on the shape of the test piece.
  • the results shown in FIG. 3 were measured by the following method.
  • a test piece with a width of 15 mm, a thickness of 15 mm, and a length of 120 mm is formed, and in each process of decreasing the moisture content by drying from the moisture content immediately after demolding, the bending strength of the base material of the test piece and the amount of deflection at that time (deformation) Amount) was measured.
  • the strength and the amount of deflection were measured by a three-point bending method under the conditions of a span of 50 mm and a crosshead speed of 2.5 mmZmin.
  • the amount of deformation during firing was measured by measuring the amount of deflection and thickness of the fired specimen after supporting an unfired test specimen having a width of 30 mm, a thickness of 15 mm, and a length of 260 mm with a span of 200 mm during firing. did. Since the amount of deflection at this time is inversely proportional to the square of the thickness of the test piece after firing, the amount of deflection converted when the thickness is 1 Omm in the following equation was defined as the amount of firing deformation.
  • Firing deformation Deflection measured value X (Thickness of test specimen after firing) io 2
  • Glaze matching was performed by applying a bristol glaze as shown in Table 2 to the outer periphery of a semicircular test piece called a ring (diameter 100 mm, wall thickness 4 mm, width 30 mm). It was fired after glazing to a thickness of 0.5 mm, and the percentage is shown based on the diameter of the comparative base 1-1 in Table 3. A larger value indicates better glaze matching.
  • the thermal shock resistance was evaluated by holding a baked test specimen having a width of 25 x a thickness of 10 x a length of 110 mm at a predetermined temperature for 1 hour or more, then thrown into water and quenched to check for the occurrence of cracks. Cracking force S did not occur, showing the maximum temperature difference.
  • the amount of deformation during reheating is as follows: fired specimens of 25 mm width, 5 mm thickness, and 230 mm length are supported at two points with a span of 200 mm, heated to 1000 ° C in 4 hours, and further heated to a predetermined temperature for 1 hour. The temperature of the test piece was raised at 100 ° C per hour, kept at that temperature for 1 hour, and allowed to cool to room temperature.
  • the amount of deflection was inversely proportional to the thickness of the test piece, so the corrected value was used as the amount of deformation upon reheating.
  • the correction method is to measure the amount of deformation at the time of reheating with two types of test pieces of different thickness, calculate n by the following formula, and further calculate the amount of deformation at the time of reheating when the thickness of the test piece is 5 mm I asked.
  • Deformation amount 2 Deformation amount IX (Thickness 1 ⁇ Thickness 2) n
  • Deformation amount 1 Deformation amount when reheating a test piece with a thickness of 1
  • Deformation amount 2 Deformation amount at the time of reheating with test piece of thickness 2
  • n constant for correction
  • Table 12 shows the relationship between the firing deformation of the base and the deformation when the same base is further reheated.
  • the inking rate constant was obtained by filtering the raw material slurry under a pressure of 0.3 MPa using a filter paper for 20 minutes, measuring the thickness of the substrate inlaid on the filter paper, and obtaining the following formula.
  • Inking rate constant (mm- 2 sec) ⁇ thickness (mm) ⁇ 2/20 X 60 (sec) X 100
  • the return is when the wet body obtained by the measurement of the inking rate constant is cut into test pieces 10 mm in width and 50 mm in length and subjected to vibration for 5 seconds by the method shown in Fig. 4.
  • the length of the test piece was determined by the following equation.
  • the prototype of the product (the product shown in Fig. 1 and Fig. 2) was made by the following method.
  • gypsum molds were used for molding.
  • the raw material slurry was poured into the gypsum mold, and after a predetermined thickness was formed, the sludge was discharged, demolded, and finished. Then, it was dried, glazed and fired.
  • the wall thickness of the prototype product is about 30% thinner than similar products that have been produced in the past. Due to the characteristics of the slurry injection molding and the structure of the product, the base material thickness of the product depends on the shape of the base material (double part) formed from the molds on both sides, and the base material formed with only one force (single part). Part), and the thickness of the green part of the double part is generally set to be thicker than that of the single part.
  • Table 13 shows the wall thickness setting values of the product base in Figs. 1 and 2 and the wall thickness setting values of the same product as before.
  • plasticity and workability are characteristics relating to the finish workability after the product is released from the mold.
  • Plasticity is a measure of the ease of correcting irregularities on the ground and of the adhesive line on the adhesive surface
  • workability is a measure of the ease of drilling and grinding. It was evaluated by.
  • the crystalline composition mineral refers to the total amount of non-plastic minerals such as corundum, mullite, and quartz (quartz) in the raw material.
  • Kaolinites include decite, pyrophyllite and halloysite in addition to kaolinite, and the total amount of kaolinites and sericite is the amount of clay minerals contained in all raw materials.
  • the alkaline earth molar ratio in the base composition indicates the molar ratio (mol%) of the amount of alkaline earth oxides such as Mg ⁇ and CaO to the amount of sintering flux when the sintering flux is 100.
  • the coefficient of thermal expansion in the physical properties means the coefficient of thermal expansion from 50 ° C to 600 ° C.
  • the raw material cost during productivity is an index when the raw material cost of No. 1-1 is 100.
  • the rate of drying breakage during productivity refers to the breakage that occurs due to shrinkage strain from molding to drying completion, and indicates the rate of occurrence of 10 prototypes of the product in Fig. 1.
  • the kiln shark occurrence rate during productivity is the breakage caused by the heat shock that cools the product during the cooling process of firing, and indicates the incidence rate when 10 products in Fig. 1 are prototyped.
  • the deformation of the product during the productivity is the deformation of the product caused by the softening of the substrate during firing, If the deformation (firing deformation) due to softening of the product is large, the product will be deformed by the load of the product's own weight.
  • the rapid heat test pass rate indicates the pass rate at which no break occurs due to thermal shock when 10 wash basins in Fig. 2 are manufactured and a temperature difference of 80 ° C is applied to the product. A temperature difference of 80 ° C is applied to the bowl of the basin 1
  • No. 1-1 is a general substrate conventionally used for the production of sanitary ware.
  • the product shown in Fig. 1 is prototyped, the product deforms greatly and is not suitable for production.
  • No. 1 and 2 are the base materials of the prior art in which the base was strengthened by adding a large amount of corundum, and the deformation of firing was reduced by further reducing the size of the raw material.
  • the total amount of clay minerals such as sericite, kaolinite, dilite, pyrophyllite, and halloysite contained in all the raw materials that can be produced without deforming the product of Fig. 1 is small.
  • productivity is poor due to poor plasticity and processability of the base material, large reversion, and large occurrence of dry cutting.
  • Nos. 1-3 are conventional technology base materials that reduce the firing deformation by strengthening the base material by atomizing the raw material of a general base material such as No. 1-1 in order to secure productivity. is there. With such a substrate, the product shown in Fig. 1 can be made without deformation, but it is not suitable for production due to the occurrence of kiln sharks.
  • No. 2— :! to 6 are the base of the present invention. All the base materials contain 50% by weight or more of clay minerals in all raw materials, have low reversion, have excellent plasticity and workability, and have excellent resistance to dryness.
  • No. 2— :! to 3 are aimed at strengthening the base and reducing firing deformation by atomizing the raw materials without using corundum raw materials, and further optimizing the base characteristics to prevent the occurrence of kiln sharks. I am trying.
  • the thermal shock resistance and coefficient of thermal expansion of the substrate greatly affect the occurrence of kiln sharks.
  • thermal shock resistance due to the effect of the thickness of the base material of the product, in order to produce a product with a thinner base thickness like the product in Fig. 1 so as not to generate sharks, it is necessary to improve the thermal shock resistance, shall thermal expansion coefficient below 75 X 10- 7 / ° C.
  • the amount of quartz in the raw material is adjusted in accordance with the particle size of the raw material and the firing conditions when preparing the base.
  • the No. 2-1 substrate cannot be used for products that have a quality standard of a rapid heat test like the product in Fig. 2 because of a problem in the rapid heat test.
  • No. 2-2-3 are base materials that have improved the problem Has been improved.
  • No. 2-2 is a substrate improved by adjusting the sintering flux composition, specifically, by increasing the composition ratio of alkaline earth oxides in the sintering flux.
  • This is a base material that has been improved by adjusting the particle size of the raw material, specifically, by coarsening the raw material particle size from No. 2-2.
  • the thermal shock resistance is improved by adjusting the sintering flux composition, and the base strength is also improved.
  • the alkali earth molar ratio must be at least 40 mol%, preferably at least 50 mol%.
  • the amount of sintering flux due to the relationship of sintering deformation, in order to suppress sintering deformation to 25 mm or less, the amount of sintering flux should be 5 wt% or less, and the raw material particle size and sintering should be such that sintering of the substrate proceeds sufficiently. Conditions need to be adjusted.
  • the practical firing temperature range is 1100 to 1300 ° C, and the average particle diameter of the raw material must be 6.5 ⁇ m or less.
  • the finer the raw material particle size the lower the power productivity that can improve the sinterability of the base material.
  • both of the products shown in FIGS. 1 and 2 have low strength of the base material which can be manufactured with high productivity and a relatively large firing deformation.
  • Nos. 2-4 to 6 are further improvements of the base material of No. 2-3, and corundum is used as a raw material.
  • the use of corundum strengthens the base material, and the effect is reflected in the improvement of thermal shock resistance. Further, with respect to thermal shock resistance, it is more advantageous to use calcined clay shale than to use purified alumina as a corundum raw material.
  • corundum raw materials leads to the problem of high raw material costs and poor productivity, as seen with conventional technologies.
  • the relationship between the amount of corundum raw material used and its effects and adverse effects is not uniform.By setting the corundum amount to less than 10 wt%, the effect of corundum strengthening the base material can be efficiently extracted, raw material costs can be reduced, and furthermore, A substrate with excellent productivity can be obtained.
  • Figure 3 shows that for the substrates No. 1-2 and No. 2_5 in Tables 3 and 4, the moisture content decreased from the moisture content immediately after demolding. It shows the relationship between the amounts of deformation. This relationship is considered to be an indicator of the plasticity of the substrate.
  • the magnitude of this plastic deformation is a measure of the plasticity of the substrate. Therefore, a comparison of plasticity between the substrates can be seen from the difference in the amount of deformation at the same strength, and it is considered that a substrate with a larger amount of deformation has better plasticity.
  • No. 2-5 has better plasticity. This result is in good agreement with the evaluation result by tactile sensation.
  • Tables 5 to 9 are examples showing the basis of the features of the base of the present invention in Table 4.
  • Nos. 3— :! to 6 are examples showing the effect of the raw material particle size. While the base strength is improved as the particles become finer, the thermal expansion coefficient increases and the thermal shock resistance deteriorates. In addition, sintering deformation is reduced by atomization and flux adjustment.
  • Nos. 4 to 1 are examples showing the effect of the amount of quartz in the raw material.
  • the thermal expansion coefficient decreases and the thermal shock resistance does not change as the amount of quartz decreases.
  • Nos. 5— :! to 5 are examples showing the effect of the alkaline earth oxide molar ratio, and as the alkaline earth oxide molar ratio increases, the thermal shock resistance improves, and further the base strength improves. ing.
  • No. 6— :! to 4 are examples showing the effect of the corundum amount. As the amount of corundum increases, the strength of the corundum amount is less than 10 wt%. Is less than 10 wt%, the effect is reduced.
  • No. 7— :! to 6 show the effect of the alkaline earth oxide molar ratio on the difference in corundum amount. Up to corundum content of less than 10 wt%, the effect of increasing the strength by increasing the alkaline earth oxide molar ratio.When corundum amount is 10 wt% or more, improving the strength by increasing the alkaline earth oxide molar ratio. Effect is reduced. Industrial applicability
  • the ceramic body for sanitary ware according to the present invention As described above, according to the ceramic body for sanitary ware according to the present invention and the method for producing the same, characteristics with high base strength, small firing deformation and excellent thermal shock resistance can be obtained with a small amount of corundum. In addition, it is possible to manufacture sanitary ware with high productivity.
  • the sanitary ware can be made thinner and lighter, and the sanitary ware can be increased in size while suppressing an increase in weight, which is extremely industrially advantageous (excellent in productivity and low in cost).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明細書 衛生陶器用陶磁器素地及びその製造方法 技術分野
本発明は衛生陶器の軽量化や大型化を可能にする強度が高ぐまた焼成時の変形量が小 さい衛生陶器用陶磁器素地及びその製造方法に関するものである。 背景技術
衛生陶器は陶磁器製品の中では大型で複雑な形状を持つ製品であり、焼成時における製 品の変形を抑えるため、また充分な製品強度を得るために他の陶磁器製品と比べ、素地肉厚 が厚めの構造となっている。従来の衛生陶器用陶磁器素地においては、その曲げ強度は 40 〜80Mpaであり、強度及び素地の焼成時の変形量との兼ね合いから、 9〜: 12mm程度の肉 厚が必要である。そのため、衛生陶器は重いという問題があり、また、製品の大型化はさらなる 重量増加を招くことから、その実現を困難なものとしている。
そこで、衛生陶器軽量化の方法として、素地肉厚の薄肉化の試みが行われている。肉厚を 薄くした場合、従来の衛生陶器用陶磁器素地では、焼成時の製品の変形が大きくなること、ま た、製品の強度低下が問題となる。通常、焼成時の変形量は肉厚の二乗に反比例し薄くなる ほど大きくなり、強度は肉厚の二乗に比例し薄くなる程低下する。従って、薄肉化による軽量 化には、素地の焼成時の変形量を抑えることと、素地強度を高めることが必要である。
従来の衛生陶器用陶磁器素地は、石英、ムライトが主な結晶相構成物質であり、これらの結 晶相と Si〇2、 A1203を主成分とするガラス相から構成されている。このような衛生陶器用陶磁 器素地は、陶石、粘土、長石を主な原料としており、これらの原料混合物を粒度調整した後、 成形、乾燥、焼成することで得られる。
衛生陶器の成形は、その構造の複雑さ故に泥漿鎵込み成形で行われることが一般的である。 また、衛生陶器は、その使用環境下で常に衛生的であることが要求されることから、製品の表 面、つまり素地の表面は釉薬で覆われることが一般的である。この釉薬層は、衛生陶器を生 産する過程で、成形後に施釉し焼成する方法か、成形後一度焼成した後、施釉し更に焼成 する方法で形成されるのが一般的である。またさらに、衛生陶器は、その自重と相まって製品 の搬送、施工での破損、そして使用環境下における荷重及び衝撃による破損を起こさないた めに充分な製品強度が要求される。さらに、洗面器のような製品では熱湯が使用されることか ら、耐熱衝撃性も要求される。
従って、衛生陶器用陶磁器素地には、製品の製造において、成形性、乾燥時の切れ抵抗 性、焼成時の切れ抵抗性、焼成時の変形量、釉薬との相性などに優れた特性が要求され、ま た、製品の品質において、高い強度と優れた耐熱衝撃性が要求される。特に製品の製造に 関わる特性は、製品の生産性を左右し、工業的な見地において非常に重要なものである。 従来の衛生陶器用陶磁器素地は製品の生産性を重視して設計された素地であり、特に成 形性、乾燥時の切れ抵抗性、焼成時の切れ抵抗性に優れ、また、耐熱衝撃性にも優れてい る。これらの優れた特性は、素地原料中の鉱物種とその配合比率、そして素地原料の粒度の 設定によって得られたものである。使用原料は、陶石、粘土、長石を主な原料としているもの が一般的であり、石英を導入する原料として陶石の他に珪石、もしくは珪砂を使用する場合、 更に焼結フラックス原料として、長石以外にドロマイト等のアルカリ土類金属酸化物含有原料 が使用される場合もある。
素地原料を構成する鉱物は、石英の他にセリサイト、カオリナイト、デイツカイト、ノ イロフイラ イト、ハロイサイト、カリ長石、ソーダ長石などである。セリサイト、カオリナイト、デイツカイト、パイ ロフイライト、ハロイサイトといった鉱物は、粘土鉱物と呼ばれるものであり、優れた可塑性を示 し、粘土、陶石に含まれる主要鉱物である。一方、石英、長石は可塑性に乏しく、石英は陶石 に含まれる主要鉱物であり、長石、粘土にも一部含まれている。前者の優れた可塑性を示す 鉱物を可塑性鉱物、後者の可塑性に乏しい鉱物を非可塑性鉱物とすると、従来の衛生陶器 用陶磁器素地では、素地原料全体に対し可塑性鉱物の構成比率が 50〜70wt%となってい る。このため素地の可塑性に優れ、良好な成形性が得られる。
また、従来の衛生陶器用陶磁器素地は、乾燥切れに対する抵抗性にも優れている。これは 素地の可塑性が、乾燥切れに対しても大きく寄与しているためである。成形された製品は乾 燥によって収縮し、部分的な収縮の歪みによって、製品に乾燥切れが発生する場合がある。 この収縮の歪みは、素地に可塑性がある場合、素地が可塑変形をすることで吸収緩和される こと力 、可塑性に優れた素地は乾燥切れに対する抵抗性が高いと言われている。衛生陶器 のように大型で複雑な形状の製品は、均一に乾燥させるのが難しぐ収縮歪みによる乾燥切 れが発生し易い。したがって、乾燥切れに対する抵抗性を高める上で、素地の可塑性は非常 に重要である。
素地原料中の石英は、素地の結晶相を構成する鉱物であり、素地の耐熱衝撃性に大きく寄 与していると共に、素地の焼結性も左右する。素地原料中の石英は、焼成過程において原料 中の長石といった焼結フラックスと反応溶融し、一部を残しガラス相を形成する。したがって、 素地原料中の石英量が少なすぎると素地の火度が高くなり、焼結が困難な素地となる。
一方、素地中に残留する石英粒子には、焼成の冷却過程において石英とガラス相の熱膨 張差によって、ガラス相との界面で大きな引張り応力が生じる。この応力によって石英粒子内 もしくは界面に微小なクラック(マイクロクラック)が形成される。従来の衛生陶器用陶磁器素地 では、マイクロクラックを伴う石英粒子が多数存在しており、このマイクロクラックが熱衝撃応力 を緩和する働きをすることで、優れた耐熱衝撃性を示すものと考えられてレ、る。
上述したように、従来の衛生陶器用陶磁器素地は、衛生陶器を生産するための優れた材料 である。しかし、本発明のねらいとしている衛生陶器の素地薄肉化には、素地強度と焼成時の 変形に問題があり、その実現には素地強度の向上と焼成時の変形量の低減が必要である。 素地の強度向上に対しては、磁器の分野では古くから素地中の石英をコランダムに置換す ることで強度向上を図る研究が行われている。既に、食器や碍子等の用途では一部実用化さ れている。具体的には、磁器原料中にコランダム(ひ一アルミナ)を 10〜60wt%程度配合し ており(特公平 7— 68061号公報)、機械的強度は無釉曲げ強度で lOOMpa以上となる。こ の強度は、コランダム含有量が多レ、ものほど高くなる。
素地の焼成変形量の低減に対しては、比較的その研究例は少なレ、。その一つの方法として、 前述のようなコランダムを配合した素地において、素地原料を微粒化させる方法 (特開平 6 _ 56516号公報)が開示されている。この方法では、素地原料の微粒化により素地の焼結性が 向上することを利用して、添加する焼結フラックス量を減らし焼結の際の素地の軟化による変 形を低減させている。
しかし、この方法では素地中の石英粒子も微粒になるため、石英粒子に発生するマイクロク ラック量が減少し、素地の耐熱衝撃性が低下する。石英粒子が小さくなるとマイクロクラックが 発生しなくなる理由は、ガラス相との熱膨張差により発生する応力も小さくなるためだと考えら れている。この耐熱衝撃性の低下を防ぐ方法として、粒径が調整された珪砂等の石英原料を 後添加して混合することにより、素地中の石英粒子の微粒化を防ぐ方法(特開平 6— 56516 号公報)が開示されている。
また、素地原料を微粒化する方法は、素地の強度向上にも効果があることが知られている。 素地原料の微粒化による強度向上のメカニズムについては、素地中に残留する粗大粒子や 気孔等の欠陥が減少することによるものがひとつであり、さらに、素地中の石英粒子の関与が 考えられている。
陶石、粘土、長石を原料にする素地のように、素地中に石英を含む素地においては、素地 原料の微粒化に伴い石英粒子中のマイクロクラックが減少する。マイクロクラックは素地中に 存在する一種の欠陥であり、素地強度を低下させるものである。従って、マイクロクラック量の 減少は素地強度の向上につながる。また、マイクロクラックの減少によって、マイクロクラックの 発生によって解放されなかった、石英とガラス相の熱膨張差によって生じた応力が石英粒子 に残留することになり、この残留応力が素地強度を向上させる働きをするものと考えられてい る。
従って、素地中の石英粒子の存在は、素地原料の微粒ィ匕によってより一層の強度向上の効 果をもたらす。ただし、これは耐熱衝撃性の低下という問題と裏腹の効果である。
上述のような、コランダム配合による強度向上技術では、コランダム配合量が多いほど強度 は向上する反面、次のような問題が生じる。
① コランダムを含む原料(ばん土頁岩、ボーキサイト、ホワイトボーキサイト、ダイァスポア等 を焼成又はか焼したものや精製アルミナ等)は非可塑性であるため、コランダム配合量が多い ほど素地の可塑性が悪化する。すなわち成形性が悪くなり、また、乾燥切れが発生しやすくな ることから、衛生陶器のような大型複雑形状品を得ることが困難となる。更に、コランダムの比 重が他の原料に比べて大きいため、コランダム配合量の増加に伴い素地比重が増し、薄肉軽 量化の効果が少なくなる。
② コランダムを含む原料(ばん土頁岩、ボーキサイト、ホワイトボーキサイト、ダイァスポア等 を焼成又はか焼したものや精製アルミナ等)は、陶石、粘土、長石等の一般的な陶磁器原料 と比較して高価であるため、コランダム配合量が多いほど原料コストが高くなる。
又、原料の微粒化とフラックス量の調整によって、強度の向上及び焼成時の変形量を低下さ せる方法において、石英粒子の粒径をコントロールした珪砂を後添加して混合することにより 耐熱衝撃性を向上させる技術には、次のような問題が生じる。
① 珪石、珪砂等の石英原料は非可塑性であるため、その配合量が多いほど可塑性が悪化 する。すなわち成形性が悪くなり、また、乾燥切れが発生しやすくなることから、衛生陶器のよ うな大型複雑形状品を得ることが困難となる。
② 粒度調整された珪石、珪砂等の石英原料は、陶石、粘土、長石等の一般的な陶磁器原 料と比較して高価であるため、その配合量が多いほど原料コストが高くなる。
さらに、陶石、粘土、長石を主な原料とする陶磁器素地において、素地原料を微粒化し素地 強度の向上と焼成時の変形量を低減させる方法には、次のような問題がある。
① 耐熱衝撃性が悪い。
② 焼成時に、冷却過程におけるヒートショックによる切れ (窯サメ)が発生しやすい。
③ コランダム配合素地のような高い強度向上の効果が得られない。 以上、何れの従来技術においても、まだ問題が残されている。
本発明は上記従来の問題点を解決し、生産性に優れた衛生陶器の薄肉軽量化及び大型 化を可能とする衛生陶器用陶磁器素地及びその製造方法を提供することを目的とする。 発明の開示
本発明は、焼成時の変形量が 25mm以下で、且つ、熱膨張係数が 75 X 10— 7以下である衛 生陶器用陶磁器素地であることを特徴とする。
焼成時の変形量が 25mmを超えると、薄肉軽量化や大型化の衛生陶器の焼成中の変形量 が大きくなりすぎるため、工業的な生産には適さなくなる。熱膨張係数が 75 X 10—7Z°Cを超え ると焼成の降温過程において、製品の冷却時の熱衝撃あるいは製品の内外に生じる温度差 によって応力が発生し、切れ (窯サメ)が発生しやすくなる。
また、無釉曲げ強度が lOOMPa以上で、且つ、熱膨張係数が 75 X 10—7以下である衛生陶 器用陶磁器素地であることを特徴とする。
無釉曲げ強度が lOOMPa未満では薄肉軽量化や大型化した場合、衛生陶器の必要強度 に達せず、製品の輸送や施工において、あるいは使用中に破壊する問題が発生する可能性 がある。熱膨張係数が 75 X 1CT7Z°C以下である理由は、上記に述べた通りである。
また、更に焼成時の変形量が 25mm以下で、且つ、熱膨張係数が 75 X 10— 7以下で、更に、 無釉曲げ強度力^ OOMPa以上である衛生陶器用陶磁器素地であることを特徴とする。
また、これらの衛生陶器用陶磁器素地の耐熱衝撃性力 a 00°C以上であることを特徴とする。 耐熱衝撃性が 100°C未満では、例えば洗面器に熱湯を注ぐときにヒートショックによる切れ が発生する問題がある。
また、これらの衛生陶器用陶磁器素地の吸水率が 3%以下であることを特徴とする。 吸水 率が 3%を超えると水分が製品中に吸収され、その水分が寒冷地等で凍結し製品に切れが 発生する凍害の問題があり、吸水率が 3%以下であることが好ましい。
また、このような衛生陶器用陶磁器素地は衛生陶器用陶磁器素地を構成する主成分の組 成力 S、 Si〇2 : 55〜69wt%、 Al2O3 : 25〜40wt%であり、 Na2〇 、 K2〇、 Li2〇からなる群から 選ばれた少なくとも 1種の成分と Ca〇、 MgO、 BaO、 Be〇からなる群から選ばれた少なくとも 1 種の成分との和: 3〜5wt%であり、結晶として石英とムライトを、或いは石英、ムライトとコラン ダムを含み、全結晶量が 40wt%以下で、且つ、コランダム量が石英と、ムライト 10wt0/。未満 である衛生陶器用陶磁器素地であることを特徴とする。
Si〇2が 55wt%未満もしくは A1 >3力 S40wt%を超えると、焼成時にガラス化する成分が Al。 03リッチになりすぎて焼成が困難となり、 Al23が 25wt%未満となると、素地原料中の粘土鉱 物量が少なくなり素地の可塑性が悪化する。また、 Si〇2が 69wt%を超えると素地中の石英
(熱膨張係数が他の結晶よりかなり大きい)量が多くなりすぎて、素地の熱膨張係数が大きくな り窯サメが発生しやすくなる。 Na20 、 K20、 Li2〇からなる群から選ばれた少なくとも 1種の成 分と、 CaO、 MgO、 BaO、 BeO力 なる群力 選ばれた少なくとも 1種の成分との和が 3wt% 未満では、焼成温度が高くなり過ぎて工業的な生産には適さなくなり、 5wt%を超えると焼成 時の変形量が大きくなり過ぎる。全結晶量が 40wt%、あるいはコランダム量が 10wt%を超え るとコランダムや石英等の非可塑性原料が多くなりすぎて、素地の可塑性が悪くなり、衛生陶 器のような大型品を得ることが困難となる。また、コランダム量が 10wt%を超えると、素地の比 重が大きくなり、薄肉軽量化の効果が少なくなる。またさらに、原料コストが高くなるため工業 的な生産には適さなくなる。
また、前記衛生陶器用陶磁器素地のムライト量力 lOwt%以上であることを特徴とする。
ムライト量が 10wt%未満では十分な強度と耐熱衝撃性が得られない。
また、衛生陶器用陶磁器素地の構成成分の内、アルカリ酸化物とアルカリ土類酸化物の総 量に対するアルカリ土類酸化物のモル比が 40mol%以上であることを特徴とする。
アルカリ酸化物とアルカリ土類酸化物の総量に対するアルカリ土類酸化物のモル比が 40m ol%未満では十分な強度と耐熱衝撃性が得られない。
また、上記衛生陶器用陶磁器素地は、陶石、カオリン、珪石、珪砂、コランダム含有原料、粘 土、焼結フラックス原料等から選ばれた衛生陶器用陶磁器原料を、その全原料中に含まれる 石英量を 32wt%以下、コランダム量を 10wt%未満になるように混合し、該衛生陶器用陶磁 器原料の平均粒径が 6. 5 m以下となるよう粉砕し、成形し、乾燥後、 1100〜1300°Cの温 度で焼成することにより製造することを特徴とする。
あるいは、陶石、カオリン、珪石、珪砂、ばん土頁岩、粘土、焼結フラックス原料等から選ば れた衛生陶器用陶磁器原料を、その全原料中に含まれる石英量を 32wt%以下になるように、 さらに、焼成したときの素地中のコランダム量が 10wt%未満になるように混合し、該衛生陶器 用陶磁器原料の平均粒径が 6. 5 μ π以下となるよう粉碎し、成形し、乾燥後、 1100〜: 130 0°Cの温度で焼成することにより製造することを特徴とする。
全原料中の石英量が、 32wt%を超えると熱膨張係数が大きくなりすぎ窯サメが発生しやす くなる。また、コランダム量が 10wt%を超えた場合の問題点は上述したとおりである。衛生陶 器用陶磁器原料の平均粒径が 6. 5 μ mを超えると素地の焼結性が悪くなり、添加するフラッ クス量が多くなりすぎるため、焼成時の変形量が大きくなりすぎ工業的な生産には適さなくなる。 また、充分な強度向上の効果が得られない。
前記のような衛生陶器用陶磁器素地は 1100°C以下の温度で焼成すると吸水率が 3%以下 の素地が得られなレ、。また、 1300°C以下の温度で焼成するとコストが高くなる。
前記衛生陶器用陶磁器原料の内コランダム含有原料としては、バイヤー法で精製されたァ ルミナ、電融アルミナ、焼成したボーキサイトなど各種利用が可能である力 焼成したばん土 頁岩の使用がコスト面と特性面から特に好ましい。焼成したばん土頁岩を使用することの特性 面での利点は、焼成したばん土頁岩にはコランダム以外にムライトが適当量含まれることから、 素地の耐熱衝撃性を向上させる効果が期待できることである。
焼成したばん土頁岩、もしくはばん土頁岩を原料として使用する場合には、 Al23含有量が 50wt%以上である物を使用することが好ましレ、。 Al23含有量が 50wt%未満では、素地中 のコランダム量を所定量確保するために、これら原料の混合量を増やす必要があり、成形性 確保のため必要な他原料の使用量が制限されてしまうためである。
前記衛生陶器用陶磁器素地原料の内コランダム含有原料については 100メッシュ以下に事 前に粉砕して使用することが好ましい。これはコランダム含有原料が他原料に対し非常に堅く 粉砕され難いためである。素地中に含まれるコランダム粒子の大きさは素地強度上重要であ り、微粒なほど高い強度が得られる。従って、コランダム含有原料についてはできるだけ微粒、 最低でも 100メッシュ以下になるよう事前に粉砕して使用することが好ましい。
また、前記衛生陶器用陶磁器原料を、その全原料中に含まれる粘土鉱物の総量が 50wt% 以上になるように混合することを特徴とする。
全原料中の粘土鉱物の総量が 50wt%未満であると、素地の可塑性'加工性が悪 戻りが 大きく、更に乾燥時の切れの発生が大きレ、等生産性が悪くなる。
粘土鉱物としては、セリサイト、カオリナイト、デイツカイト、パイロフイライト、ハロイサイトなどが 好ましい。
本発明における衛生陶器用陶磁器素地を铸込成形により製造することを特徴とする。
成形方法としては、押出成形、ろくろ成形、プレス成形等特に制限はないが衛生陶器等の 大形 ·複雑形状品には通常、铸込成形が用いられる。铸込成形用の泥漿 (粉体原料を水中に 分散させたもの)を製造する場合、好ましい粒度分布の粉体を入手することができれば、それ らを混合'攪拌するだけで良ぐこの方法は各成分の粒度分布を独立してコントロールできる ため、最も簡便な方法である。
一方、好ましい粒度分布の粉体原料が入手できないとき(陶石等の石塊状の原料を用いる 場合等)には、ボールミル等を用いた素地原料の粉砕工程を設けなければならない。この場 合には、全原料を一括して粉砕する方が工程としては簡単である力 場合によっては一部の 原料を除レ、て粉碎し、粉砕終了後にその原料を添加する方が好ましレ、場合もある。
尚、铸込成形用の泥漿を製造するためには、解膠剤を加えて、素地粒子を良く分散させる 必要があり、水ガラス、炭酸ナトリウム、フミン酸ナトリウム、ケブラッチョ、ポリアクリル酸ナトリウ ム、アクリル酸オリゴマーアンモニゥム塩等の従来知られた解膠剤を用レ、る事ができる。又、成 形品の強度が特に必要な場合には、泥漿にバインダーを加えて強度を向上させる事もでき、 カルボキシルメチルセルロースナトリウム、ポリビュルアルコール、デキストリン、アラビアゴム、 トラガガントゴム、メチルセルロース、ペプトン、溶性デンプン、各種ェマルジヨン系バインダー、 コロイダルシリカ等の従来知られたバインダーを用いる事ができる。又、その他の添加剤として 滑剤、離型剤、可塑剤、消泡剤等を泥漿に加えることもできる。 図面の簡単な説明
図 1は、発明の衛生陶器用陶磁器素地により作製した衛生陶器 (腰掛便器)の正面図及び平 面図である。
図 2は、本発明の衛生陶器用陶磁器素地により作製した衛生陶器 (洗面器)の正面図及び平 面図である。
図 3は、本発明の焼成前素地試験片と従来の焼成前素地試験片の乾燥の進行過程における 曲げ強度と変形量の関係を示すグラフである。
図 4は、含水状態の素地の試験片に振動を与えて、試験片の戻りを測定する装置の概略図 である。 発明を実施するための最良の形態
以下に本発明の実施例を説明する。
表 1は、実施例で使用した原料の化学組成を示す。アルミナ以外は天然原料であり、示した 化学組成は代表値である。 (wt%)
Figure imgf000011_0001
1)微量鉱物、ガラス質のものは除く 表 2は、使用したブリストル釉の化学組成を示す。
Figure imgf000011_0002
表 3乃至表 9は、比較例及び本発明にかかる素地の使用原料、原料中の含有鉱物量、素地 の物性、素地を用いた製品の試作結果等を示す。
素地 No カオリノ リ
原冲 口 ?^ 粘土
(〇;有) ; 成はん土貞石
精製ァ ナ リ
注妙
コランダ、ム u
ムフィ卜 u u u
-— fc- 原科中鉱物組成 央 z.oy oc 力オリナイ卜類 6 . ( Δし 4.o
(wt%) セリサイト Zo その他 U
結晶組成鉱物 όΔ.θν ¾)
原料半均 子径 ( π l) o. 4 焼成温度( C) I UU ϋϋ l UU
/i o
結晶相 4 ί .4
ガラス相 ί i4
Si02
A1203 4 b. <3 素地の Na20 n U U. Ό 妄她銷 κ2ο AZ
化学組成 MgO U u.y U
(wt%) CaO U.D その他 . (J
焼結フラックス量
アル力リ土類モル比(mol%) ί O.U 00. 含有鉱物 コランダム U u ムラ
石英 ί . (
吸水率(%)
焼成収縮率(%) u Q
強度(MPa)
*t^i o o 焼成変形 (mm) /. z
耐熱衝撃性 (°c) n yu 釉薬のマッチング(%) ί
熱膨張係数 (/°C)
原料代
着肉速度常数(ω m-Vs)
戻り (%) 23 112 3 可塑性 良 不良 良 生産性 加工性 良 不良 良 乾燥切れの発生率 (%) 0 40 0 窯サメの発生率(%) 0 0 20 製品の変形 大 小 小 急熱試験合格率 (%) 100 100 0 表 4
素地 No -1 2—2 2-4
o o π n 0
カオリン o o ο 〇 0 0 原料調合有無 粘土 n o o 0 n 長石 n o η o 0 n (〇;有) ドロマイ卜 o o O
焼成ばん土頁岩
精製アルミナ o コランダム o o ο 9,97 3.84 7.6 ムライト o 0 0 1 原料中鉱物組成 石英 23.95 27.57 27.51 26.37 29.01 27 4 カオリナイト類 A
(wt%) セリサイト 1 fil 19#73 19·δ1 19#73
その他 u. u . u 4 4.4 結晶組成鉱物
原料平均粒子径( πι)
焼成温度 (°c) 1 9ΠΓ) 1 ΠΠ 1 ΠΠ 1 00 1 900 素地組成 結晶相 91 u 0,0
ガラス相 74 7Q 74
Si02 fifi 41 fin fi4 41
A1203
素地の Na20 n *¾ 0.2了 0 9 0 9^ κ2ο 0 47
化学組成 MgO 0 71 \J.OO (wt%) CaO 0.74 1.09 1.16 1.06 1.03 l .( その他 1 1 >a 焼結フラックス量 4 Λ 0リ アルカリ土類モル比(mol%) 40 Q
含有鉱物 コランダム o π o
ムライト 16.4 13 15 13.7 15.4 16.1 石英 » 7 8.2 Q 9 素地物性 吸水率(%) 0.04 0.03 0.03 0.03 0.03 0.04 焼成収縮率(%) 11.1 10.8 11.2 10.6 11.3 11.2 強度(MPa) 122 132 114 149 133 143 焼成変形 (腿) 15.4 15.4 19.5 16.8 17.1 17. β 耐熱衝撃性 (°c) 100 130 140 130 130 140 釉薬のマッチング(%) 95 90 95 96 95 93 熱膨張係数 (/°C) 68 67 71 65 70 68 生産性 原料代 118 109 109 141 114 114 着肉速度常数 (mnT2/s) 7.7 5.8 7.2 6.3 6.5 7.4 戻り(%) 28 7 45 48 36 9 可塑性 良 良 良 良 良 良 加工性 良 良 良 良 良 良 乾燥切れの発生率 (%) 0 0 0 0 0 0 窯サメの発生率(%) 0 0 0 0 0 0 製品の変形 小 小 小 小 小 小 急熱試験合格率 (%) 0 80 100 100 100 100 尚、表 3において、 No. 1一:!〜 No. 1—3は比較例 (従来素地)を示し、表 4において、 No.- l~No. 2— 6は試験素地を示す。
表 5
3-1 3-2 3-3 3-4 3-5 3-6 陶石 〇 〇 〇 〇 〇 〇 カオリン 〇 〇 〇 〇 〇 〇 原料調合有無 粘土 〇 〇 〇 〇 〇 〇
長石 〇 〇 〇 〇 〇 〇 (〇;有) ド-ロマィ卜 U U u U U U
Λ¾Ρ乂ばん丄 +只百
精製アルミナ
珪砂
コランダム 0 0 0 0 0 0 ムライト 0 0 0 0 0 0 原料中鉱物組成 石英 32.63 32.46 32.33 33.7 33.13 33.95 カオリナイト類 30.67 31.66 30.92 31.47 34.03 35.3
(wt%) セリサイト 24.17 24.36 24.48 24.68 25.24 25.88 その他 12.53 11.52 12.27 10.15 7.6 4.87 結晶組成鉱物 32.63 32.46 32.33 33.7 33.13 33.95 原料平均粒子径 m) 8.3 7 6 5.4 5 4.5 焼成温度 (°C) 1200 1200 1200 1200 1200 1200 素地組成 ,吉曰曰 ¾ 23.5 23.7 24.9 26 25.4 25.7 ガラス相 76.5 76.3 75.1 74 74.6 74.3
Si〇2 69.847 69.69 69.603 70.138 69.674 69.764
Al203 24.004 24.337 24.556 24.137 25.038 25.349 素地の Na20 0.4964 0.4693 0.4546 0.4378 0.3704 0.302 κ2ο 3.4977 3.3962 3.3435 3.2509 3.0056 2.7317 化学組成 MgO 0.4565 0.4345 0.4083 0.3994 0.3429 0.3113
(wt%) CaO 0.7503 0.7088 0.6621 0.656 0.5481 0.488 その他 0.948 0.9635 0.9723 0.9811 1.0207 1.0543 焼結フラックス量 5.20 5.01 4.87 4.74 4.27 3.83 アルカリ土類モル比(mol%) 35.39 34.95 33.89 34.22 32.57 32.68 含有鉱物 コランダム 0 0 0 0 0 0
ムライト 11.6 11.9 12.7 13.5 14.4 13.6 石英 11.9 11.8 12.2 12.5 11 12.1 素地物性 吸水率(%) 0.04 0.04 0.03 0.07 0.03 0.07 焼成収縮率(%) 9.7 9.9 10.1 10.5 10.8 11 強度(MPa) 78 92 103 111 107 112 焼成変形 (誦) 32.5 27.8 21.5 17.9 18 14.8 耐熱衝撃性 (°C) 130 120 110 100 90 90 釉薬のマッチング(%) 104 100 103 101 100 102 熱膨張係数 (/°C) 73 75 78 79 81 81 表 6
4-1 4-2 4-3 4-4 原料調合有無 陶石 〇 〇 〇 〇 カオリン 〇 〇 〇 〇 粘土 〇 〇 〇 〇 長石 〇 〇 〇 〇
(〇;有) ドロマイ卜 〇 〇 〇 〇 焼成ばん土頁岩
精製アルミナ
珪砂
原料中鉱物組成 コランタム n W π u π u
ムライト n 0 yj o u o 石英 OQ Qp
Figure imgf000015_0001
ΠΟ カオリナイト類 OA AQ 1 丄,
(wt%) セリサイト 11
^<J.丄丄 on ( A - 7 AQ
丄 i ,^±0 10. その他 7 Q7 711 Q Qfi 丄丄,οο 結晶組成鉱物 zy.yo
原料平均粒子径 m) 0 4.0 0 0 焼成温度 (°C) 1 ΛΛ
丄 zuu 丄 UU 1丄 ΟΠUΠli 丄 UU 結日日お on 7 1
ΔΔ.1 Z .Z ΔΌ.丄
ガラス相 77 o ΠΛ Q 7Q ί 1. i D.o
Si02 co i n
DO.丄 0 00.01 ΌΟ.ΟΟ O^t.O i 素地組成 A1203 OQ 1
ΔΌ.ΟΟ rO. 丄 素地の Na20 Λ Π QQ
U.oD U. U. O
κ2ο 0 7Q 0 QQ
Δ,Ό
化学組成 MgO Ό. 1
(wt%) CaO n 71 A 7 A 0 U.7 ί fi
その他 1 n? 1 1 1 lj 焼結フラックス量 Λ OC A r>n A AQ
'ί.Δ
アルカリ土類モル比(mol%) ΛΛ
4:丄, 7 i1 AC)
含有鉱物 コランダム π n π
ムライト 1 7
丄 O, 丄1 ±,o I丄fi u 4 石英 q Q A Q 7
o.u 吸水率(%) 0 no 0 ()A 004 O 焼成収縮率(%) 10.7 10.8 11.1 11.5 強度(MPa) 122 132 122 114 素地物性
焼成変形 (mm) 15.5 14.2 15.4 16.5 耐熱衝撃性 (°C) 100 110 100 110 釉薬 。マッチング (%) 100 95 95 93 熱膨張係数 (/°C) 76 70 68 62 表 7
5-1 5-2 5-3 5-4 5-5 原料調合有無 陶石 〇 〇 〇 〇 〇 カオリン 〇 〇 〇 〇 〇 粘土 〇 〇 〇 〇 〇 長石 〇 〇 〇 〇 〇 (〇;有) ドロマイ卜 〇 〇 〇 〇 〇 焼成ばん土頁岩
精製アルミナ
珪砂
、ノ/ J K π U υ u u π U ムライト U υ u U π u 原料中鉱物組成 石英 3丄. .y4 丄.丄 0
カオリナイト類 D.y4 4θ. ( 4Z.0Z 0 ί .4 A丄
(wt%) セリサイト OA c ZU. (0≥4Λ OA QO A n
14. ί
その他 丄丄,丄 y o. 4 丄丄. K 結晶組成鉱物 丄.丄 U 丄 原料平均粒子怪 m) 4.y 4.0 0 0 焼成温度 (°C) 丄 UU 丄 UU 丄
結晶相 つ 丄 Δό.Δ Z4. O. ( ガラス相 y .o /U.O / 4.0 / .ο
Si02 o. o O .D4 00.0
Al23 b.丄 ί Zo.ob O. i丄 . t)8 0 ( , QQ 素地組成 素地の Na20 U.44 U.o 11. z丄 U.
K20 丄 ί .oo .Zo Z.U 丄. y 化学組成 MgO U. U.44 U.OO u.y o丄 1.Z1 (wt%) CaO U u.yo .Uo
その他 u.yo 丄, 丄. 丄, 丄. 焼結フラックス量 4.4丄 4.丄 U 4.UU 4.DZ 0.4U アルカリ土類モル比(mol%) 71 jr on a Q7
o.OO 4丄, ΌΌ.Ο ί ί .Zo 含有鉱物 コランダム u U π U π U u ムラィ卜 - Λ Q 7 丄 U 丄 JD.O lo. I 丄 i 石英 Q
丄 Π Q
U.D O. ί
吸水率(%) u.u U.UO U.UZ Π U. ΠU7 ( Π U. ΠU7 ( 焼成収縮率(%) 11 108 106 11 1 11 1 強度(MPa) 115 132 144 127 130 素地物性
焼成変形 (腿) 18.5 14.2 17.5 13.4 14.8 耐熱衝撃性 (°C) 100 110 120 120 130 釉薬のマッチング(o/o) 98 95 97 91 93 熱膨張係数 (/°C) 77 70 75 62 69
Figure imgf000017_0001
Figure imgf000018_0001
表 5乃至表 9ίこおレヽて、 No.3-l~No.3— 6、 No.4-l~No.4— 4、 No.5_l〜No.-5, No.6-l~No.6-4, No.7-l~No.7— 6は試験素地を示す。 表 10は、本発明の実施例の陶磁器素地での強度測定試験片形状と強度の関係を示す。 表 10
Figure imgf000019_0001
*)本陶磁器素地で衛生陶器を製造し、その衛生陶器より切り出した試験片 表 11は、従来の陶磁器素地での各形状の試験片における強度を示す。
表 11
Figure imgf000019_0002
*)本陶磁器素地で衛生陶器を製造し、その衛生陶器より切り出した試験片 表 12は、本発明の実施例の陶磁器素地の焼成変形量と再加熱時変形量を示す。
表 12
Figure imgf000019_0003
*)再加熱温度 1200°C 表 13は、図 1、図 2の製品素地の肉厚設定値と従来の同一製品の肉厚設定値を示す。 表 13
Figure imgf000020_0001
コランダム含有原料としては、住友化学工業 (株)製の精製アルミナとばん土頁岩を一度焼 成した焼成ばん土頁岩を使用した。
粒径を調整した石英原料としては益田珪石を粉砕したものを使用した。
図 1は試作した腰掛便器の製品であり、素地の肉厚は平均で従来より 30%薄くなつている。 図 2は試作した洗面器の製品であり、素地の肉厚は平均で従来より 30%薄くなつている。 図 3は素地の可塑性を比較したもので、铸込み成形した試験片の乾燥の進行 (含水率の減 少)に伴う強度と変形量の関係を示した。
先ず、素地原料に水と解膠剤として適量の水ガラスを添加し、ボールミルで粉砕して原料泥 漿を得た。
次に、この原料泥漿を試験片の成形用石膏型に流し込み、着肉形成された後に脱型し、試 験片を成形した。
成形した試験片は乾燥後、 1200°Cで焼成した。原料粒径は、レーザー散乱法式の粒度分 布測定装置(日機装 (株)製 マイクロトラック FRA)で測定した。
素地強度は、 φ 13 X 130mmのテストピース(試験片)により、スパン 100mm、クロスヘッド スピード 2. 5mm/minの条件で 3点曲げ方法で測定した。
陶磁器材料の強度は試験片の形状によって異なるので、表 5及び表 6に試験片の形状と強 度との関係についての実験結果を示す。
図 3に示す結果は、次のような方法で測定した。幅 15mm、厚み 15mm、長さ 120mmの試験 片を成形し、脱型直後の含水状態から乾燥により含水率が減少していく各過程で、試験片の 素地の曲げ強度とその時のたわみ量 (変形量)を測定した。強度及びたわみ量の測定は、ス パン 50mm、クロスヘッドスピード 2. 5mmZminの条件で 3点曲げ方法で行った。
焼成変形量(焼成時の変形量)は、幅 30mm、厚み 15mm、長さ 260mmの未焼成の試験片 を焼成時にスパン 200mmで支持しておき、焼成後のたわみ量と試験片の厚みを測定した。 このときのたわみ量は焼成後の試験片の厚みの二乗に反比例するので、次の式で、厚みが 1 Ommの時に換算したたわみ量を焼成変形量とした。 焼成変形量 =たわみ量測定値 X (焼成後の試験片の厚み) io2
釉薬のマッチング(釉めくれ、ビーディングの発生)は、リング(直径 100mm、肉厚 4mm、幅 30mm)と呼ぶ半円状の試験片の外周部に、表 2に示すようなブリストル釉を、約 0. 5mm厚 になるように施釉後焼成し、表 3の比較素地 1—1の直径を基準に百分率で示した。この値が 大きいほど釉薬のマッチングが良いことを示す。
耐熱衝撃性は、幅 25 X厚み 10 X長さ 110mmの焼成した試験片を、所定温度で 1時間以 上保持した後、水中に投入して急冷し、クラック発生の有無をチェックし評価した。クラック力 S 生じなレ、最大温度差を示した。
再加熱時の変形量は、幅 25mm、厚み 5mm、長さ 230mmの焼成した試験片をスパン 200 mmの 2点で支持し、 1000°Cまで 4時間で昇温し、さらに所定温度まで 1時間当たり 100°Cで 昇温し、その所定温度で 1時間保持した後、室温まで自然放冷したときの試験片のたわみ量 を再加熱時の変形量とした。
ただし、試験片の厚みが 5mmになっていない場合については、たわみ量は試験片の厚み に反比例するので補正した値を再加熱時の変形量とした。
その補正の方法は、 2種類の異なる厚みの試験片で再加熱時の変形量を実測し、下記の式 で nを算出し、更にテストピースの厚みが 5mmのときの再加熱時の変形量を求めた。
変形量 2 =変形量 I X (厚み 1 ÷厚み 2) n
変形量 1:厚み 1の試験片で再加熱時の変形量
変形量 2:厚み 2の試験片で再加熱時の変形量
n:補正のための定数
表 12に素地の焼成変形量と、同一素地を更に再加熱したときの変形量の関係を示す。 着肉速度定数は、 0. 3MPaの加圧下で原料泥漿を濾紙にて 20分間濾過を行レ、、濾紙上 に着肉された素地の厚みを測定し次の式で求めた。
着肉速度定数(mm— 2 sec) = {厚み(mm) }2/20 X 60 (sec) X 100
戻りは、着肉速度定数の測定で得られた含水状態の素地を、幅 10mm、長さ 50mmの試験 片に切り出し、この試験片に図 4に示すような方法で振動を 5秒間与えたときの試験片の長さ を次の式で求めた。
戻り(%) = { (振動後の長さ—振動前の長さ) Z振動前の長さ } X 100
製品(図 1、図 2に示した製品)の試作は次の方法で行った。
図 1、図 2で示したいずれの製品についても、成形の型には石膏型を使用した。この石膏型 に原料泥漿を流し込み所定の肉厚が着肉形成された後に排泥、脱型し、仕上げ加工をした 後、乾燥、施釉し焼成した。
試作した製品の素地肉厚は、従来生産されてきた同様な製品に対し約 30%薄くなつている。 製品の素地肉厚は、泥漿铸込み成形の特徴とその製品の構造上、両サイドの型から着肉形 成された素地(二重部)と、片方力 だけ着肉形成された素地 (一重部)があり、一般的に一重 部より二重部の素地肉厚が厚く設定されている。
表 13に、図 1、図 2の製品素地肉厚設定値と、従来同一製品の肉厚設定値を示す。
この製品の試作時に可塑性、加工性を評価した。
ここでの可塑性、加工性とは、製品を脱型した後の仕上げ加工性に関わる特性である。可 塑性は、素地面の凸凹の修正、接着面の接着ラインの修正の容易性を示す尺度であり、加工 性は、穴あけや研削加工の容易性を示す尺度であり、いずれも作業者の触感によって評価し た。
表 3の No. 1—:!〜 3は比較例で、従来技術の素地とそれを用いた製品の試作結果につい て示す。
表 4の No. 2—:!〜 6は実施例で、本発明素地とそれを用いた製品の試作結果について示 す。
表 3、表 4中の各項目について以下に説明する。
原料中鉱物組成中の、結晶組成鉱物とは原料中のコランダム、ムライト、石英(クォーツ)の 非可塑性鉱物の総量を示す。
カオリナイト類とは、カオリナイト以外にディカイト、パイロフイライト、ハロイサイトも含めたもの であり、このカオリナイト類とセリサイトの総量が全原料中に含まれる粘土鉱物量である。
素地組成中の、焼結フラックス量とは素地の化学組成中の Na2〇 、 K20等のアルカリ酸ィ匕 物と Mg〇、 CaO等のアルカリ土類酸化物との総量を示す。
素地組成の内、アルカリ土類モル比とは焼結フラックス分を 100とした場合の焼結フラックス 量に対する Mg〇、 CaO等のアルカリ土類酸化物量のモル比(mol%)を示す。
素地物性中の熱膨張係数とは、 50°Cから 600°Cまでの熱膨張係数を示す。
生産性中の原料代とは、 No. 1—1の原料代を 100とした場合の指数を示す。
生産性中の乾燥切れの発生率とは、成形後乾燥完了に至るまでの収縮歪により発生する 切れであり、図 1の製品を 10ケ試作したときの発生率を示す。
生産性中の窯サメ発生率とは、焼成の降温過程において製品が冷却されるヒートショックに よって生じる切れであり、図 1の製品を 10ケ試作したときの発生率を示す。
生産性中の製品の変形とは、焼成時の素地の軟化によって生じる製品の変形であり、素地 の軟化による変形 (焼成変形)が大きいと製品自重の荷重によって製品が変形する。
急熱試験合格率とは、図 2の洗面器を 10ケ試作し、製品に 80°Cの温度差を与えたとき、そ の熱衝撃による切れが発生しない合格率を示す。 80°Cの温度差は、洗面器のボール部に 1
0°Cの冷水を入れて洗面器を 10°Cに維持した状態から、冷水を抜き取った後即座に 90°Cの 熱水をボール部に注ぐ方法で行った。
No. 1—1は、従来より衛生陶器の生産に使用されている一般的な素地である。このような 素地では、図 1の製品を試作した場合、製品の変形が大きく生産に不適当である。
No. 1一 2は、コランダムを大量に添カ卩することにより素地強化を図り、更に原料を微粒化す ることにより焼成変形の低減を図った、従来技術の素地である。このような素地では、図 1の製 品を変形することなく作ることができる力 全原料中に含まれるセリサイト、カオリナイト、ディ力 イト、パイロフイライト、ハロイサイトなどの粘土鉱物の総量が少なぐ素地の可塑性、加工性が 悪く、戻りが大きいこと、更に乾燥切れの発生が大きいこと等から生産性が悪いという問題が ある。
No. 1一 3は、生産性を確保するために、 No. 1—1のような一般的な素地を原料を微粒化 することにより素地強化と焼成変形の低減を図った従来技術の素地である。 このような素地 では、図 1の製品を変形させることなく作ることができるが、窯サメが発生することから生産に不 適である。
No. 2—:!〜 6は本発明の素地である。いずれの素地も全原料中に含まれる粘土鉱物量が 50wt%以上であり、戻りが少なぐ可塑性、加工性に優れ、乾燥切れに対する抵抗性も優れ ている。
No. 2—:!〜 3は、コランダム原料を使用しないで、原料の微粒化によって素地強化と焼成 変形の低減を図ったものであり、更に窯サメが発生しないように素地特性の最適化を図ってい る。窯サメの発生には、素地の特性のうち素地の耐熱衝撃性と熱膨張係数が大きく影響して いる。
又、製品の素地肉厚の影響もあり、図 1の製品のように素地肉厚を薄くした製品を、窯サメが 発生しないように生産するためには、耐熱衝撃性を向上させると共に、特に熱膨張係数を 75 X 10— 7/°C以下にしなければならない。
このために本発明では素地の調製にあたって、原料粒度と焼成条件に応じた原料中の石英 量の調整を行っている。
No. 2—1の素地は、図 2の製品のように急熱試験という品質基準がある製品では、急熱試 験に問題があり使用できない。 No. 2— 2〜3は、その問題を改良した素地であり耐熱衝撃性 を向上させている。
No. 2— 2は、焼結フラックス組成の調整によって、具体的には焼結フラックス中のアルカリ 土類酸化物の組成比を高くすることによって改良した素地であり、 No. 2— 3は更に原料の粒 度調整によって、具体的には No. 2— 2より原料粒度を粗粒化することによって改良した素地 である。
No. 2— 2の素地のように、焼結フラックス組成の調整によって耐熱衝撃性が向上し、更に 素地強度も向上する。耐熱衝撃性と素地強度の向上に十分な効果を期待するためには、ァ ルカリ土類モル比を 40mol%以上、好ましくは 50mol%以上にしなければならない。
焼結フラックス量に関しては焼成変形の関係から、焼成変形を 25mm以下に抑えるために は、焼結フラックス量を 5wt%以下にして、素地の焼結が十分に進行するように原料粒度と焼 成条件を調製する必要がある。現実的な焼成温度範囲は 1100〜1300°Cであり、この関係 力 原料平均粒子径は 6. 5 μ m以下にしなければならない。
又、原料粒度は微粒にするほど素地の焼結性が改善できる力 生産性が悪くなる。
No. 2— 3の素地では、図 1及ぴ図 2の両製品共に、生産性良く製造が可能である力 素地 の強度が低く焼成変形も多少大きいことが更に改良が望まれる点である。
No. 2— 4〜6は、 No. 2— 3の素地を更に改良を図ったものであり、コランダムを原料として 使用している。コランダムの使用は素地強化になり、その効果が耐熱衝撃性の向上にも表れ ている。更に耐熱衝撃性に対しては、コランダム原料として精製アルミナを使用するより焼成 ばん土頁岩を使用した方が有利となる。
これは焼成ばん土頁岩中のムライトの効果と考えられる。ただし、コランダム原料の使用は従 来技術で見られたように、原料代が高い、生産性が悪いという問題に繋がる。しかし、コランダ ム原料の使用量とその効果及び弊害との関係は一律でなぐコランダム量を 10wt%未満とす ることで、コランダムによる素地強化の効果を効率よく引き出せ、原料代を安く抑え、更に生産 性に優れた素地を得ることができる。
図 3は、表 3、表 4中の No. 1— 2と No. 2_ 5の素地について、脱型直後の含水状態から含 水率が減少してレ、く各過程での、曲げ強度と変形量の関係を示したものである。この関係は、 素地の可塑性を示すひとつの指標となるものと考える。脱型直後の含水状態にある素地では、 応力が加わったときに起きるたわみは応力が取り除かれた後も元に戻らず、可塑変形をおこ す。この可塑変形量の大きさが、素地の可塑性を示す尺度となる。したがって、素地間の可塑 性の比較は、同一強度における変形量の差で見ることができ、変形量の大きな素地ほど可塑 性に優れているものと考える。図 3中の二つの素地間の比較では、このような見方をした場合、 No. 2— 5の方が可塑性が優れているといえる。この結果は触感による評価結果と良く一致し ている。
表 5乃至表 9は、表 4の本発明の素地の特徴の根拠を示す実施例である。
No. 3—:!〜 6は、原料粒度の効果を示す実施例であり、微粒化に伴い素地強度が向上す る一方、熱膨張係数が増加し、耐熱衝撃性が悪くなる。又、微粒化とフラックス量調整により焼 成変形が小さくなる。
No. 4一:!〜 4は、原料中の石英量の効果を示す実施例であり、石英量の減少に伴い熱膨 張係数が減少し、耐熱衝撃性は変化しなレ、。
No. 5—:!〜 5は、アルカリ土類酸化物モル比の効果を示す実施例であり、アルカリ土類酸 化物モル比の増加に伴い耐熱衝撃性が向上し、さらに素地強度が向上している。
No. 6— :!〜 4は、コランダム量の効果を示す実施例であり、コランダム量の増加に伴レ、、コ ランダム量が 10wt%未満までは強度向上の効果が顕著である力 コランダム量が 10wt%以 上になるとその効果が小さくなる。
No. 7— :!〜 6は、コランダム量の違いに対するアルカリ土類酸化物モル比の効果である。コ ランダム量が 10wt%未満まではアルカリ土類酸化物モル比を高めることにより強度向上の効 果が得られる力 コランダム量が 10wt%以上になるとアルカリ土類酸化物モル比を高めること による強度向上の効果が小さくなる。 産業上の利用可能性
以上に説明した如ぐ本発明にかかる衛生陶器用陶磁器素地とその製造方法によれば、少 ないコランダム配合量にて、素地強度が高 焼成変形量が小さ 耐熱衝撃性に優れた特 性が得られ、さらに衛生陶器を生産性良く製造することが可能である。
従って、本発明によれば、工業的に極めて有利(生産性に優れている、低コストである)に衛 生陶器の薄肉軽量化、そして、重量増加を抑えた大型化が可能となる。

Claims

請求の範囲
1. 焼成時の変形量が 25mm以下で、且つ、熱膨張係数が 75 X 10— 7Z°C以下である衛生 陶器用陶磁器素地。
2. 無釉曲げ強度が lOOMPa以上で、且つ、熱膨張係数が 75 X 10— 7Z°C以下である衛生 陶器用陶磁器素地。
3. 焼成時の変形量が 25mm以下で、且つ、熱膨張係数が 75 X 1CT7Z°C以下で、更に、無 釉曲げ強度が 1 OOMPa以上である衛生陶器用陶磁器素地。
4. 前記衛生陶器用陶磁器素地の耐熱衝撃性が 100°C以上である請求項 1乃至 3のいずれ かに記載の衛生陶器用陶磁器素地。
5. 前記衛生陶器用陶磁器素地の吸水率が 3%以下である請求項 1乃至 4のいずれかに記 載の衛生陶器用陶磁器素地。
6. 衛生陶器用陶磁器素地を構成する主成分の組成力 Si02 : 55〜69wt%、 Al23 : 25〜 40wt%であり、 Na20 、 K20、 Li2〇力もなる群から選ばれた少なくとも 1種の成分と CaO、 M gO、 Ba〇、 BeOからなる群から選ばれた少なくとも 1種の成分との和: 3〜5wt%であり、結晶 として石英とムライトを、あるいは石英、ムライトとコランダムを含み、全結晶量が 40wt%以下 で、且つ、コランダム量が 10wt%未満であることを特徴とする衛生陶器用陶磁器素地。
7. 前記衛生陶器用陶磁器素地中のムライト量が 10wt%以上である請求項 6に記載の衛生 陶器用陶磁器素地。
8. 前記衛生陶器用陶磁器素地の構成成分の内、アルカリ酸化物とアルカリ土類酸化物の 総量に対するアルカリ土類酸化物のモル比が 40mol%以上である請求項 6または 7に記載の 衛生陶器用陶磁器素地。
9. 陶石、カオリン、珪石、珪砂、コランダム含有原料、粘土、焼結フラックス原料等から選ば れた衛生陶器用陶磁器原料を、その全原料中に含まれる石英量を 32wt%以下、コランダム 量を 10wt%未満になるように混合し、該衛生陶器用陶磁器原料の平均粒径が 6. 5 μ m以下 となるよう粉碎し、成形し、乾燥後、 1100〜1300°Cの温度で焼成することを特徴とする衛生 陶器用陶磁器素地の製造方法。
10. 陶石、カオリン、珪石、珪砂、ばん土頁岩、粘土、焼結フラックス原料等から選ばれた衛 生陶器用陶磁器原料を、その全原料中に含まれる石英量を 32wt%以下になるように、さらに、 焼成したときの素地中のコランダム量が 10wt%未満になるように混合し、該衛生陶器用陶磁 器原料の平均粒径が 6. 5 μ πι以下となるよう粉砕し、成形し、乾燥後、 1100〜: 1300°Cの温 度で焼成することを特徴とする衛生陶器用陶磁器素地の製造方法。
11. 前記衛生陶器用陶磁器原料の内コランダム含有原料が、焼成したばん土頁岩であるこ とを特徴とする請求項 9項記載の衛生陶器用陶磁器素地の製造方法。
12. 前記焼成したばん土頁岩の A1203含有量が 50wt%以上であることを特徴とする請求 項 11項記載の衛生陶器用陶磁器素地の製造方法。
13. 前記アルミナ含有原料を 100メッシュ以下となるように事前に粉砕することを特徴とする 請求項 9項記載の衛生陶器用陶磁器素地の製造方法。
14. 前記ばん土頁岩の A1203含有量が 50wt%以上であることを特徴とする請求項 10項記 載の衛生陶器用陶磁器素地の製造方法。
15. 記衛生陶器用陶磁器原料を、その全原料中に含まれる粘土鉱物の総量が 50wt%以 上になるように混合する請求項 9、 10項いずれかに記載の衛生陶器用陶磁器素地の製造方 法。
16. 前記粘土鉱物がセリサイト、カオリナイト、デイツカイ パイロフイライト、ハロイサイトから 選ばれる請求項 15記載の衛生陶器用陶磁器素地の製造方法。
17. 前記成形の方法が铸込み成形である請求項 9乃至 16のいずれかに記載の衛生陶器 用陶磁器素地の製造方法。
PCT/JP1999/000832 1998-02-26 1999-02-24 Corps en ceramique pour appareils sanitaires et son procede de production WO1999043628A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/64724 1998-02-26
JP6472498 1998-02-26

Publications (1)

Publication Number Publication Date
WO1999043628A1 true WO1999043628A1 (fr) 1999-09-02

Family

ID=13266396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000832 WO1999043628A1 (fr) 1998-02-26 1999-02-24 Corps en ceramique pour appareils sanitaires et son procede de production

Country Status (4)

Country Link
CN (1) CN1107037C (ja)
ID (1) ID28756A (ja)
TW (1) TW536529B (ja)
WO (1) WO1999043628A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123345A1 (ja) * 2008-03-31 2009-10-08 Toto株式会社 衛生陶器用陶磁器素地
CN112919806A (zh) * 2021-04-09 2021-06-08 江西省萍乡市华东出口电瓷有限公司 一种耐高压瓷质绝缘子釉料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287710B2 (ja) * 2013-09-30 2018-03-07 Toto株式会社 大型セラミック板およびその製造方法
JP2015199638A (ja) * 2014-03-31 2015-11-12 Toto株式会社 大型セラミック板
CN104058715B (zh) * 2014-06-18 2015-09-09 福建省德化县恒星陶瓷有限公司 一种高温瓷
CN108218392B (zh) * 2018-01-30 2020-12-11 福建省德化县福庆陶瓷有限公司 一种低膨胀防粘抗菌陶瓷锅及其制造工艺
CN110204301B (zh) * 2019-05-31 2022-04-05 景德镇乐华陶瓷洁具有限公司 一种抗变形的大规格陶瓷洁具及其制备方法
CN110981414B (zh) * 2019-12-24 2022-06-24 汕头市天际电器实业有限公司 一种陶瓷杯的制作工艺
CN110950674A (zh) * 2019-12-26 2020-04-03 九牧厨卫股份有限公司 一种纤维增强卫生陶瓷坯体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656516A (ja) * 1992-08-04 1994-03-01 Toto Ltd 熔化質素地、その製造方法、それを用いた衛生陶器、及び熔化質素地用の釉薬
JPH0769709A (ja) * 1992-11-30 1995-03-14 Rosenthal Ag 磁器、磁器原料組成物及び該磁器の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656516A (ja) * 1992-08-04 1994-03-01 Toto Ltd 熔化質素地、その製造方法、それを用いた衛生陶器、及び熔化質素地用の釉薬
JPH0769709A (ja) * 1992-11-30 1995-03-14 Rosenthal Ag 磁器、磁器原料組成物及び該磁器の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123345A1 (ja) * 2008-03-31 2009-10-08 Toto株式会社 衛生陶器用陶磁器素地
CN112919806A (zh) * 2021-04-09 2021-06-08 江西省萍乡市华东出口电瓷有限公司 一种耐高压瓷质绝缘子釉料
CN112919806B (zh) * 2021-04-09 2022-04-22 江西省萍乡市华东出口电瓷有限公司 一种耐高压瓷质绝缘子釉料

Also Published As

Publication number Publication date
CN1107037C (zh) 2003-04-30
ID28756A (id) 2001-06-28
TW536529B (en) 2003-06-11
CN1298373A (zh) 2001-06-06

Similar Documents

Publication Publication Date Title
JP2980457B2 (ja) 衛生陶器用素地及びその製造方法
Kamseu et al. Characterisation of porcelain compositions using two china clays from Cameroon
KR100442043B1 (ko) 도자기,도자기소지(素地),이들의제조방법및위생도기
CN101700973B (zh) 精陶质陶瓷坯体及其制备与应用
EA013699B1 (ru) Спечённое огнеупорное изделие, обладающее повышенной устойчивостью к температурному шоку
KR100262181B1 (ko) 고강도고내열충격성도자기소지의제조방법
EP1852405A2 (de) Reaktives flüssiges Keramikbindemittel
KR100925149B1 (ko) 저변형 도자기의 제조방법
JPH09502689A (ja) 白色陶磁器セラミック組成物
JPS6117468A (ja) 窯業製品
WO1999043628A1 (fr) Corps en ceramique pour appareils sanitaires et son procede de production
US3520705A (en) Non-vitreous ceramic ware made from pseudowollastonite
CZ2000200A3 (cs) Sklokeramické materiály, způsob jejich přípravy a uľití
WO2009123345A1 (ja) 衛生陶器用陶磁器素地
Boulaiche et al. Valorisation of Industrial Soda-Lime Glass Waste and Its Effect on the Rheological Behavior, Physical-Mechanical and Structural Properties of Sanitary Ceramic Vitreous Bodies
KR100242624B1 (ko) 제올라이트를 이용한 도자기 제조 방법
KR101325509B1 (ko) 고가소성과 고강도를 나타내는 도자기의 제조방법
JP3949408B2 (ja) 熱間補修用珪石れんが及びその製造方法
JPH1087365A (ja) 耐熱衝撃性セラミックスおよびその製造方法
JP3491991B2 (ja) セメント系焼成建材の製造方法
JPH02175653A (ja) 陶磁器質焼結体
KR100356736B1 (ko) 탄화규소(SiC)질 요도구와 그의 제조방법
JP2023049464A (ja) 陶器素地材料
JPH07187786A (ja) SiC質耐火物
KR940006415B1 (ko) 건축용 소결인조석 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805425.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09623138

Country of ref document: US