WO2009123345A1 - 衛生陶器用陶磁器素地 - Google Patents
衛生陶器用陶磁器素地 Download PDFInfo
- Publication number
- WO2009123345A1 WO2009123345A1 PCT/JP2009/057037 JP2009057037W WO2009123345A1 WO 2009123345 A1 WO2009123345 A1 WO 2009123345A1 JP 2009057037 W JP2009057037 W JP 2009057037W WO 2009123345 A1 WO2009123345 A1 WO 2009123345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sanitary ware
- ceramic body
- quartz
- corundum
- substrate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/04—Clay; Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
Definitions
- the present invention relates to a ceramic body for sanitary ware and a method for manufacturing sanitary ware, and in particular, enables sanitary ware to be thin and light, and has a high firing strength and a small amount of thermal deformation during firing.
- the present invention relates to a ceramic body for sanitary ware that has excellent impact properties and low water absorption.
- Sanitary ware is characterized by a particularly large and complex shape among ceramic products.
- the wall thickness was about 9-12mm.
- sanitary ware is heavy and has a problem that it takes a construction load S, and its thin and light weight is required.
- the bending strength can be estimated to be proportional to the square of the thickness, so the firing strength of the substrate can be increased, and the amount of firing deformation can be estimated to be inversely proportional to the square of the thickness. Both issues of reducing the amount of firing deformation must first be solved.
- thermal shock mentioned here has a thermal shock that is similar to that when pouring hot water into the basin. More important is the thermal shock during firing. Thermal shock during firing occurs especially at the stage of lowering the temperature. For example, the temperature inside the product is reduced despite the fact that the interior of the product is still hot, and the heat generated by this temperature difference. This refers to impact, and in the case of large, complex shapes such as sanitary ware, the prevention of cracks (kiln sharks) caused by thermal shock is a major issue.
- the conventional ceramic body for sanitary ware has quartz and mullite as its main crystal phases, and these crystal phases and the gaps between them are filled with SiO, A10, and alkali metal oxides.
- the glass is composed mainly of earthen metal oxides.
- a ceramic body is Forming and firing ceramic base material particles mainly composed of calcined flux materials such as porcelain quartzite, quartz sand, clay, feldspar, etc., the raw materials other than quartz melt and SiO, Al 2 O, and
- alkali metal oxides ⁇ formed by forming a glass phase composed mainly of an alkaline earth metal oxide and filling the gaps between the particles.
- a glass phase composed mainly of an alkaline earth metal oxide
- the glass phase mullite precipitates.
- the undissolved quartz and mullite are used as the crystalline phase to fill the gap, and A substrate structure consisting of pores will be created.
- Quartz particles left undissolved in the substrate generate a large tensile stress at the interface with the glass phase due to the difference in thermal expansion between the quartz and the glass phase during the cooling process of firing.
- This stress forms minute cracks (microcracks) in the stone particles or at the interface, and these microcracks are generated due to the presence of a very small amount of coarse quartz particles in the raw material, which can greatly reduce the strength of the substrate.
- Non-patent document 1 Japanese Ceramic Society Academic Journal, February 1991, issue 153-15
- Non-patent document 2 Japan Ceramic Society, Academic Journal, November 1991, issue 1110-111
- page 3 Non-patent document 2
- Japan Ceramics See Non-Patent Document 3).
- the occurrence of this microcrack also has an advantage in the manufacture of large complex shaped products such as sanitary ware.
- the conventional sanitary ware substrate has a large number of quartz particles with microcracks, which reduce the strength of the substrate, but reduce the thermal shock stress. It is thought that it develops impact properties. Therefore, the conventional bending strength for sanitary ware was about 40-80 MPa.
- the quartz particles in the substrate become fine particles, so the amount of microcracks generated in the quartz particles is reduced, and the thermal shock resistance of the substrate is reduced.
- the reason why micro cracks do not occur when the quartz particles become smaller is considered to be that the stress generated by the difference in thermal expansion coefficient from the glass phase is also reduced.
- a method for preventing this decrease in thermal shock resistance there is also disclosed a method for preventing the atomization of quartz in the substrate by post-adding and mixing a quartz raw material such as silica sand whose particle size is adjusted ( For example, see JP-A-6-56516 (Patent Document 2)).
- the method of atomizing the base material is effective in improving the strength of the base.
- the strength improvement mechanism by atomization of the raw material is one of the reduction of defects such as coarse particles and pores remaining in the substrate, and the involvement of quartz particles in the substrate is considered.
- a substrate containing quartz in the substrate such as a substrate made of porcelain stone, clay, and feldspar
- microcracks in the quartz particles or at the interface between the quartz particles and the glass phase decrease as the substrate material is atomized.
- a microcrack is a type of defect that exists in the substrate and reduces the strength of the substrate. Therefore, a decrease in the amount of microcracks leads to an improvement in the substrate strength.
- the strength improving means by corundum blending increases as the corundum blending amount increases, but the following two problems occur.
- the first problem is that corundum is heavier than quartz or glass phase, so even if you try to reduce the thickness and weight by making the strength stronger, the weight of the base material will increase and the weight will be substantially less. It is a point that is connected to the conversion!
- the second problem is that it contains a large amount of corundum such as alumina. The raw material is expensive.
- a method of using a natural ore raw material that generates corundum and mullite when calcined as a raw material containing corundum, or a raw material that is calcined to generate corundum and mullite is also disclosed.
- a natural ore raw material that generates corundum and mullite when calcined as a raw material containing corundum, or a raw material that is calcined to generate corundum and mullite is also disclosed.
- Patent Document 3 See, for example, ffWO96Z09996 (page 6-11) (Patent Document 3), W097 / 26223 (page 17-22), (Patent Document 4)
- weight increase due to the mixing of corundum is unavoidable, and although such natural raw materials are cheaper than anoremina, they are the raw materials usually used in sanitary ware, pottery stone. 'It is still more expensive than clay and feldspar.
- the method of improving strength by reducing the atomization of the raw material and adjusting the amount of flux reduces the thermal shock resistance of the substrate because the thermal shock resistance of the substrate is reduced. Therefore, it is easy to generate kiln sharks, and there is a problem that the effect of developing high strength / high strength like a corundum compound base is not obtained.
- Patent Document 1 Japanese Patent Laid-Open No. 2-275575
- Patent Document 2 JP-A-6-56516
- Patent Document 3 WO96Z09996 2009/057037
- Patent Document 4 W 097/26223
- Patent Document 5 W099 / 43628
- Patent Document 6 Japanese Patent Laid-Open No. 2002-114565
- Non-Patent Literature 1 Journal of the Ceramic Society of Japan, February 1991, Issue 153—15
- Non-Patent Literature 2 Journal of the Ceramic Society of Japan, November 1991, Issue 1110—Page 1113
- Non-Patent Literature 3 Journal of the Ceramic Society of Japan Journal 1992 August 1066-1069 Disclosure of Invention
- the present invention has been made to solve the above problems. That is, the present invention is intended to provide a sanitary ware body having high strength, low firing deformation, low generation of kiln sharks, high V, and thermal shock resistance, particularly suitable for reducing the thickness and weight.
- a ceramic body for sanitary ware comprising a glass phase and a crystal phase, wherein the main component of the crystal phase is quartz, and the cut surface of the sanitary ware ceramic body is cut off.
- the probability of existence of quartz particles of 80 im or more and lmm or less is 1 or less per lmm 2 when observing 10 or more screens with a field of view of 1 mm 2 or more using a one-microscope (10x objective lens)
- a ceramic body for sanitary ware characterized by the above is provided.
- ceramic green body strength s provides for sanitary ware, characterized in that the presence probability is lmm 2 per 0.01 or more 1 or less of the quartz grains Is done. This makes it possible to manufacture sanitary ware with high strength but low firing deformation and high thermal shock resistance at low cost.
- the water absorption rate of the ceramic body for sanitary ware is 3% or less without using a raw material such as a chamotte which increases the water absorption rate.
- a ceramic base for sanitary ware is provided.
- the unglazed bending strength of the sanitary ware ceramic body is lOOMPa.
- a ceramic body for sanitary ware characterized by the above is provided. Thinning of sanitary ware can be achieved without danger such as breakage.
- the composition of the main components constituting the sanitary ware ceramic body is SiO: 45 to 69 wt%, Al 2 O: 20 to 45 wt 0 /. Na 0, K ⁇ ,
- sanitary ware ceramic body characterized in that the mullite content is 10 to 30 wt% and the corundum content is 0 to 20%. This has made it possible to manufacture sanitary ware that has higher strength but has a smaller amount of firing deformation and high thermal shock resistance.
- the corundum content is further reduced to 0 to 10 wt%. Thereby, an increase in cost and an increase in specific gravity can be prevented.
- the corundum is included in a calcined porcelain shale used as a raw material of the sanitary ware required ceramic base.
- a ceramic base for sanitary ware is provided. This makes it possible to manufacture sanitary ware with superior thermal shock resistance at lower cost.
- a ceramic body for sanitary ware characterized by a bending strength of lOOMPa or more and a thermal shock resistance of 160 ° C or more. Provided. This makes it possible to manufacture lightweight sanitary ware with excellent thermal shock resistance that does not generate kiln sharks even when it is thinned.
- the sanitary ware is characterized in that the amount of firing deformation by the solid test piece in the firing step in the manufacturing process of the sanitary ware ceramic body is 17 mm or less.
- a ceramic body for earthenware is provided. This makes it possible to manufacture sanitary ware with a thin and sharp shape.
- a sanitary ware element base having high strength, small firing deformation, and excellent thermal shock resistance, and a method for manufacturing the same are provided, and thereby a thin and light sanitary ware can be provided.
- FIG. 1 is a photomicrograph showing the microstructure of the sanitary ware body of the present invention.
- FIG. 2 is a photomicrograph showing the microstructure of a conventional sanitary ware body.
- the ceramic body for sanitary ware according to the present invention also has a glass phase and a crystal phase force.
- the main component of the crystal phase is quartz, which is characterized by having no more than one quartz particle of 80 ⁇ m or more and 1 mm or less per 1 mm 2 . If the existence probability of quartz particles with a grain size of 80 ⁇ or more and 1 mm or less exceeds 1 per 1 mm 2 , the strength of the base material will be reduced.
- the microscope field of 1mm size is 100
- the probability of existence can be calculated to be 2 per lmm 2 . Since quartz particles are irregularly shaped, the maximum distance is the size of the quartz particles. For example, if 90 ⁇ mX 10 / ⁇ m rectangular particles are observed in the microscope field, they are counted as particles of 80 ⁇ m or more.
- the water absorption rate of the sanitary ware ceramic body in the present invention is preferably 3 wt% or less, more preferably 0.1 wt% or less. If the water absorption rate is higher than the preferred value, water absorption may occur in the sanitary ware usage environment, causing frost damage and contamination resistance problems. Although there is no lower limit to the preferred water absorption rate, industrially, it is a factor of cost increase to 0.001% or less. It is not preferable to use calcined clay such as chamotte in order to sinter with such a low water absorption rate, and the amount of the flux component is adjusted as described later. It is necessary to save.
- the unglazed bending strength of the sanitary ware ceramic body in the present invention is preferably lOOMPa or more. If the bending strength is less than lOOMPa, it will not be possible to secure sufficient strength to make sanitary ware thinner and lighter. Although there is no upper limit to the preferred bending strength, it is difficult to produce economically those having 300 MPa or more industrially. As means for increasing the bending strength, the present invention employs means for reducing the coarse content of the quartz particles as much as possible.
- the preferred sanitary ware body composition in the present invention is composed of Si02: 45 to 69 wt%, A12O3: 20 to 45 wt%, and selected from the group consisting of Na20, K20, and Li20. Sum of at least one component selected and the group force with CaO, MgO and BaO forces selected: 3 to 6 wt. / 0 , containing the quartz and mullite as the main component of the crystal phase, or containing quartz, mullite and corundum, the content of the quartz being 5 to 30 wt%, and the content of the mullite being 10 to 30 wt% In other words, the corundum has a content power of about 3 to 20 wt%.
- the ratio of Si02 exceeds the preferred upper limit, it will not be possible to prepare a sufficient amount of necessary components such as clay and flux, so that the plasticity of the substrate will decrease and sintering will not proceed sufficiently.
- a sufficient amount of quartz cannot be added to the substrate, and the amount of firing deformation becomes too large.
- the ratio of A1203 exceeds the preferred upper limit, the amount of corundum contained in the substrate becomes too large, and the substrate cost increases or the specific gravity becomes too high, resulting in a light weight. If the ratio of A1203 is less than the preferred lower limit, the amount of clay will be too small, adversely affecting the plasticity of the substrate during molding.
- the preferred crystal phase component in the present invention is the above-mentioned quartz, and the mullite that undergoes glass phase analysis is also essential. Quartz is preferred, and if the upper limit is exceeded, the sinterability of the substrate will decrease, and if preferred, the lower limit is exceeded, the firing deformation of the substrate will be too large.
- the amount of mullite has a correlation with the amount of clay, and the amount of mullite is preferred! When the upper limit is exceeded, the dry shrinkage of the substrate becomes too large, and when the preferred lower limit is exceeded, the plasticity of the substrate becomes insufficient.
- the crystal phase component may contain corundum as well. Adding a large amount of corundum increases the strength but leads to an increase in cost and specific gravity. Therefore, the corundum content is preferably 0 to 20 wt%, more preferably 0 to L0 wt%, and it is preferably as small as possible as long as necessary strength can be ensured, and may be 0.
- the structure of the sanitary ware body in the present invention is as described above.
- Force S The maximum characteristic of this body is high strength and excellent thermal shock resistance.
- it is effective to increase the strength of the substrate by suppressing the generation of microcracks by atomizing the substrate by atomizing the substrate.
- This method reduces the thermal shock resistance of the substrate, so that The occurrence was said to be adversely affected.
- the present invention by suppressing the existence probability of quartz particles of 80 ⁇ m or more and lmm or less to 1 or less per lmm2, the occurrence of microcracks is suppressed as much as possible, while maintaining the merit of high strength, while providing thermal shock resistance. It was possible to improve at the same time.
- the preferred thermal shock resistance temperature of the sanitary ware body in the present invention is 160 ° C or higher, and this thermal shock temperature is increased by making the existence probability of quartz particles of 80 ⁇ m or higher as small as possible. It is possible. Measurement method for thermal shock resistance 'Evaluation method is described in the examples below! / Detailed explanation.
- this technology which has made it possible to achieve both strength and thermal shock resistance, which have been considered to be conflicting elements in the past, has a bending strength of lOOMPa or higher and a thermal shock resistance of 160 ° C or higher. It has achieved high strength and high thermal shock resistance at a high level that could not be achieved with conventional sanitary ware, making it possible to produce thin and light sanitary ware.
- Such a ceramic body for sanitary ware is made of a ceramic base material selected from porcelain stone, silica stone, silica sand, clay, corundum-containing raw material, sintered flux raw material, etc.
- a ceramic base material selected from porcelain stone, silica stone, silica sand, clay, corundum-containing raw material, sintered flux raw material, etc.
- Sintered flux raw material melts with the exception of quartz contained in the raw material to form a glass phase, and mullite also precipitates in the glass phase.
- the particle size of the quartz contained in the raw material does not match the particle size of the quartz contained in the fired product, and the quartz particles in the fired product are dissolved in the glass phase at the periphery of the quartz particles in the raw material. The diameter is reduced and the fine quartz particles in the raw material are completely dissolved in the glass phase.
- the control of the particle size of the quartz particles must be performed by measuring the particle size of the quartz in the fired body in consideration of the firing conditions, etc., which are less than the control of the particle size in the raw material.
- the coarse particle content of 80 m or more and lmm or less As a means of reducing the coarse particle content of 80 m or more and lmm or less, first of all, when using raw materials containing quartz crystals such as porcelain stone 'feldspar' clay 'flux raw material, it is recommended to use coarse particles as much as possible. Is to choose. If the raw material containing coarse-grained quartz is used in the pulverization process, the overall average particle size becomes too fine, resulting in a decrease in the thermal shock resistance of the substrate. .
- the average particle size of the slurry is preferably 4 ⁇ ra or more and 8 ⁇ m or less.
- a raw material containing a large amount of quartz serving as a coarse-grained quartz source can be used by adding a separate powder process and finely mixing it into a force slurry.
- the quartz content can be obtained not from the quartz content contained in the porcelain stone 'clay' flux material or the like, but also from the silica sand whose particle size is controlled.
- the silica sand whose particle size is controlled may contain a coarse-grained quartz in a small part. Therefore, even when using silica sand whose grain size is controlled by using quartz, and when the quartz content is taken from porcelain stone 'silica''clay' flux raw material, it is not possible to remove coarse particles by sieving. It is a sure method. This is because most of the coarse particles in the slurry are made of quartz. Force S is an effective means. In particular, the coarse-grained quartz produced when crushing porcelain stones has a high aspect ratio and must be stopped.
- the periphery of the quartz particles dissolves in the glass phase during firing, and the diameter becomes smaller. It is not the case that there is absolutely no particle of 80 ⁇ m or more.
- Particles with high aspect ratio V such as 100 ⁇ 30 ⁇ 30 ⁇ m, can easily pass through 80 ⁇ m sieve openings.
- the sieve opening is 90 ⁇ m or more.
- the corundum-containing raw material which is the raw material for the sanitary ware base material in the present invention, is preferably calcined porphyry shale.
- the calcined porphyry shale contains corundum crystals and mullite crystals as the main components, and the thermal shock resistance is improved, although the strength is slightly lower than when alumina is added alone as corundum crystals.
- the corundum crystal used as a raw material hardly dissolves in the glass phase, so the particle crystal diameter in the raw material is almost the same as the crystal diameter in the fired body.
- the average system of corundum particles 2 ⁇ ⁇ ! It is ⁇ 20 ⁇ m, and if it exceeds 20 ⁇ m, the effect of improving the strength is not sufficient, and if it is smaller than 2 ⁇ m, the dispersibility deteriorates.
- Clay minerals such as sericite, kaolinite, pyrophyllite, datekite, and halloysite are added to improve plasticity during molding and are the main constituents of clay clay.
- flux minerals include potassium feldspar, soda feldspar, calcium feldspar, dolomite, wollastonite, nepheline sianite, talc, petalite, calcite, magnesite, barium carbonate, etc.
- K20 Li2O, CaO, MgO, BaO and other minerals that are sources of flux components that act as sintering aids.
- the method for molding a sanitary ware base material according to the present invention is a slurry-making method and a pot-type molding method.
- Peptizer is used.
- water glass, sodium carbonate, sodium humate, sodium polyacrylate, acrylic acid oligomer ammonium salt, etc. can be used.
- a binder can be added to the slurry.
- emulsion binders carboxymethyl cellulose sodium, polyvinyl alcohol, dextrin, gum arabic, tragagant rubber, methyl cellulose, peptone, water-soluble
- a pinner such as starch or colloidal silica Can do.
- the slurry may be prepared by a wet milling process using a cylinder mill or a bead mill, or by using a particle size controlled raw material. Management is required.
- the prepared slurry is formed by using gypsum or pressure culm molding, and then becomes a sanitary ware through a conventional process of drying and calcination at a temperature of 1100-1300 ° C.
- the amount of preferred deformation and firing deformation in this firing step is 17 mm or less, and if it exceeds the preferred amount and range, it is difficult to reduce the thickness and weight sufficiently. Still preferred! / There is no lower limit to the amount of firing deformation, but industrially it is difficult to reduce the amount of firing deformation to 5 mm or less.
- the method for measuring the amount of firing deformation referred to here will be described in detail with reference to the examples. Thus, in order to keep the amount of deformation in firing small, as described above, it is necessary to make the sintering proceed even if the amount of flux components is reduced by reducing the average particle size. The thermal shock resistance deteriorates as the value is reduced.
- Table 1 shows the chemical composition of the raw materials used in the examples. These are all natural ingredients, and the Ichological composition shown is representative. In addition, the minerals contained are estimated by XRD quantitative analysis, and there is an error from the sum of the pure chemical composition of each mineral.
- Porcelain stones are sericite-type and kaolinite-type low-purity and high-purity ones.
- High-purity ones are sericite and kaolinite, which are almost pure clay minerals. It contains a large amount of quartz. Sasame clay and feldspar also contain quartz.
- the calcined porphyry shale is calcined from natural porphyry porphyry shale, with a composition of about 80 wt% corundum, about 10 wt% mullite, and about 10 wt% glass components.
- Kaolin minerals include decaite, pyrophyllite, and halloysite in addition to kaolinite. The total amount of kaolin mineral and sericite is the amount of clay mineral contained in all raw materials.
- Tables 2 and 3 show the raw materials used in the comparative examples and examples in the present invention, the constituent minerals contained in the raw materials, the raw material average particle system, the firing temperature, the base composition, the amount of coarse quartz, and Pime Shows physical properties.
- Each display method, preparation method, measurement method, and evaluation method are as follows.
- the presence or absence of raw material preparation in Tables 2 and 3 indicates that the raw materials shown in Table 1 were used, and the sum of the respective preparation ratios resulted in the ratio of mineral composition in the raw materials shown in Table 2 and Table 3.
- V, ru. A water glass as a peptizer was added to the raw materials of each composition so that the viscosity as water and a peptizer was in the range of 200-400 CP, and pulverized with a ball mill to prepare a slurry.
- the volume concentration of slurry is 49-52 vol% in terms of the volume concentration of powder in the slurry.
- the average particle size of the raw material in the slurry was measured with a laser scattering type particle size distribution measuring device (Microtrack MT-3000 manufactured by Nikkiso Co., Ltd.) and displayed as a particle size with a cumulative volume of 50%.
- this slurry was poured into a gypsum mold to prepare a test piece having a predetermined shape described later. After each test piece dry, 1 2 00 ° C, and calcined at soaking time of 30 minutes.
- the chemical composition of each substrate was determined by XRF analysis of the calcined substrate, and the amount of each oxide was quantified.
- XRD analysis of each calcined substrate no peaks other than quartz 'mullite' corundum were observed, and the corundum peaks were only observed when corundum was added as a raw material. Therefore, the mullite 'quartz' colandum in the calcined substrate was quantified by XRD analysis.
- the amount of crystalline phase in the base composition is expressed as the total amount of mullite and quartz corundum, and the amount of glass phase is expressed as 100% force minus the amount of crystalline phase.
- the amount of calcined flux is shown as the total amount of Na20, K20, CaO, and MgO in the chemical composition of the substrate.
- the amount of coarse-grained quartz was determined as follows. The cut surface of the test piece was wrapped and immersed in a 0.5 wt% hydrofluoric acid solution for 1 hour. The quartz particles were observed using a confocal laser microscope (Olympus OLS1100) after washing and drying. The observation conditions were 10x objective lens and the field of view range was 1, 28mm X O. 96mm (l. 23mm2).
- FIG. 1 shows an observation example of Example 2
- FIG. 2 shows an observation example of Comparative Example 1.
- the matrix phase that appears black is the glass phase
- the white particles are the quartz crystal particles. Note that mullite crystal particles are covered with the glass phase, and therefore cannot be observed in this photograph, but can be observed when the glass phase is dissolved by stricter etching conditions with hydrofluoric acid.
- the force in which the white particles in Example 2 also include fine corundum particles are all pulverized to a particle size of 30 ⁇ m or less.
- the water absorption rate was evaluated by the rate of increase in weight when a completely dried test piece was boiled for 2 hours and allowed to stand for 24 hours.
- the firing shrinkage ratio was obtained from the change in the radial length of the test piece before and after firing.
- the strength was measured by a three-point bending method using a test piece with a diameter of 13 x 130 mm and a span of 100 mm and a crosshead speed of 2.5 mm / min.
- an unfired test piece having a width of 30 mm, a thickness of 15 mm, and a length of 260 mm was supported at a span of 200 mm during firing, and the amount of deflection after firing and the thickness of the test piece were measured. Since the amount of deflection at this time is inversely proportional to the square of the thickness of the test piece after firing, the amount of deflection converted when the thickness is 10 mm is defined as the amount of firing deformation.
- Firing deformation amount measured value of deflection X (thickness of test piece after firing) 2 / ° 2
- Thermal shock resistance was evaluated by checking the presence or absence of cracks after holding a fired test piece of width 25 x thickness 10 x length 110 mm at a specified temperature for 3 hours and then rapidly cooling it into water. It was. The rapid cooling temperature was increased by 10 ° C, and the maximum temperature difference at which cracks did not occur was shown as thermal shock resistance.
- Comparative Example 1 is a general substrate that has been conventionally used in the production of sanitary ware. In such a substrate, if a large complex shape product such as sanitary ware is prototyped with a thin wall, 2009/057037
- Comparative Example 2 is a prior art substrate that is obtained by atomizing Comparative Example 1 to strengthen the substrate and reduce firing deformation.
- the thermal shock resistance is greatly reduced, so that it is easy to generate kiln sharks, the base is poorly plastic, the workability is deteriorated, and the dry cracking is large. ! There is a problem.
- Comparative Example 3 is a substrate in which high-purity sericite porcelain, high-purity kaolin porcelain and high-purity quartz particles are used, and coarse particles are removed by passing through a sieve having an opening of 90 ⁇ m.
- the quartz particles are coarse, coarse quartz particles having a large aspect ratio cannot be removed even through sieving, and because the average particle size is also coarse, the strength is low and the firing deformation is large. It is unsuitable for making.
- Comparative Example 4 is a base material in which the base material is strengthened by adding a clay shale to the base material based on the mixing ratio of Comparative Example 1. In this substrate, the strength is improved by the effect of adding corundum, but the presence of coarse quartz does not provide the strength to obtain the light weight effect due to thinning, and the average particle size is also coarse! Because of this, firing deformation is also large.
- Comparative Example 5 As in Comparative Example 2, the force S, which is obtained by pulverizing Comparative Example 1, is designed so that the plasticity of the substrate does not deteriorate, and the particle size is slightly coarser. In this case, the effect of improving the strength is not obtained so much.
- Comparative Example 6 is a base material obtained by removing coarse-grained quartz by passing through a sieve with a mesh opening size of 90 m. I can't get much.
- Comparative Example 7 the high-purity quartz contained in the substrate of Comparative Example 3 was previously pulverized and atomized before compounding to prepare a substrate. With this substrate, the strength is slightly improved, but it is higher than lOOMpa! /, And the strength is obtained.
- Example 1 is a substrate in which coarse quartz is removed by sieving with a mesh opening of 90 m using Comparative Example 7 as a pace.
- Examples 2 to 4 a clay shale is added as a raw material.
- Example 2 is the same as Comparative Example 3 with the addition of sandstone shale, but was adjusted so that the plasticity of the substrate was poor and the grain size was too fine.
- Example 3 is a substrate obtained by further removing coarse-grained quartz from Example 2 by sieving with an opening of 90 ⁇ .
- Example 4 does not use the quartz contained in the porcelain stone of Example 3, but uses high-purity sericite porcelain, high-purity kaolin porcelain, and high-purity quartz particles finely ground by grinding, and an additional 90 ⁇ m. This is a substrate from which coarse-grained quartz has been removed by sieve opening.
- Corundum contained in the peridotite shale has a strong base and is effective in improving the thermal shock resistance. Combined with the removal of coarse quartz, corundum leads to an increase in cost and specific gravity. The amount can be suppressed to less than 10 wt%, and the effect of strengthening the substrate by corundum can be efficiently extracted.
- the presence probability of coarse quartz of 80 m or more is 1 or less per lm m 2 and exhibits high thermal shock resistance.
- the thermal shock resistance, strength, and amount of fire deformation are comprehensively evaluated to make sanitary ware thinner.
- This is a base material that can reduce the thickness and weight by 20-30% from the current sanitary ware.
- the ceramic body for sanitary ware of the present invention can be used to reduce the thickness and weight of sanitary ware because it has a high firing strength, a small amount of thermal deformation during firing, and excellent thermal shock resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
衛生陶器の薄肉軽量化に適した、高強度、低焼成変形、高耐熱衝撃性を兼ね備えた衛生陶器用素地が開示されている。該衛生陶器用陶磁器素地は、ガラス相と結晶相からなり、結晶相の主成分を石英とする衛生陶器用陶磁器素地であって、前記衛生陶器用陶磁器素地の切断面をレーザー顕微鏡(対物レンズ10倍)を用いて1mm2以上の大きさの視野で10画面以上観察したときの80μm以上1mm以下の石英粒子の存在確率が1mm2あたり1個以下であることを特徴とする。
Description
明 細 書
衛生陶器用陶磁器素地
技術分野
[0001] 本発明は、衛生陶器用陶磁器素地および衛生陶器の製造法に係り、特に衛生陶 器の薄肉軽量化を可能とする、焼成強度が大きぐ焼成時の熱変形量が小さぐ耐 熱衝撃性が優れ、また吸水率が小さレ、衛生陶器用陶磁器素地に関する。
背景技術
[0002] 衛生陶器は陶磁器製品の中では特に大型複雑形状であることを特徴としている。こ のような大型複雑形状品におレヽては焼成時における熱変形を小さくするため、またポ ルト締め固定などにより部分的に加重力 Sかかる部分があるのでその強度を確保する ために、その肉厚は 9〜 12mm程度が必要とされていた。そのため衛生陶器は重く 施工負荷力 Sかかるという問題があり、その薄肉軽量ィヒが求められている。衛生陶器を 薄肉軽量化するためには、曲げ強度は厚みの 2乗に比例すると推定できるため素地 の焼成強度を大きくすることと、焼成変形量は厚みの 2乗に反比例すると推定できる ため素地の焼成変形量を小さくすることの両方の課題をまず解決しなければならな い。
[0003] このような陶磁器素地の焼成強度を大きくする方法や焼成変形を小さくする方法に は種々の手法が考えられるが、衛生陶器特有の制約条件として素地に高い耐熱衝 撃性が要求されることがあげられる。ここであげる熱衝撃には洗面器に熱湯を注ぐ場 合のような熱衝撃もある力 それ以上に重要なのは焼成中の熱衝撃である。焼成中 の熱衝撃とは特に温度下げの段階で発生するものであり、例えば製品の内部はまだ 高温であるにも力かわらず、製品の表面の温度が低下し、この温度差により発生する 熱衝撃を指しており、衛生陶器のような大型複雑形状品にお 、てはこの熱衝撃に起 因するクラック (窯サメ)の発生の防止は大きな課題である。
[0004] 従来の衛生陶器用陶磁器素地とは石英、ムライトをその主要結晶相としており、こ れらの結晶相とその隙間を埋める SiO、 A1〇、およびアルカリ金属酸ィ匕物'アル力
2 2 3
リ土類金属酸化物を主成分とするガラス相力 なって 、る。このような陶磁器素地は
陶石珪石 ·珪砂,粘土 ·長石類等の焼成フラックス原料を主成分とする陶磁器素地原 科粒子を成形'焼成することにより、石英以外の原料が溶融して SiO、 Al O、およ
2 2 3 びアルカリ金属酸化物 ·アルカリ土類金属酸化物を主成分とするガラス相を形成し、 このガラス相が粒子隙間を埋めていくことにより形成される。また焼成工程において は石英の一部はガラス相に溶解し、またガラス相力 ムライトが析出することにより、 結果的に溶け残りの石英とムライトをその結晶相としその隙間を埋めるガラス相、およ ぴ気孔からなる素地構造ができることになる。
[0005] 素地中に溶け残った石英粒子は、焼成の冷却過程において石英とガラス相の熱膨 張差によってガラス相との界面に大きな引っ張り応力が発生する。この応力により石 英粒子内もしくは界面に微小なクラック(マイクロクラック)が形成され、このマイクロク ラックは原料中のごく微量の粗大石英粒子の存在により発生して素地強度を大きく損 なうことが知られて 、る。(日本セラミックス協会学術論文誌 1991年 2月号第 153— 1 5 (非特許文献 1)、日本セラミックス協会学術論文誌 1991年 11月号第 1110— 111 3頁(非特許文献 2)、日本セラミックス協会学術論文誌 1992年 8月号第 1066— 10 69頁 (非特許文献 3)参照)。しかしながらこのマイクロクラックの発生には衛生陶器の ような大型複雑形状品の製造においては利点もある。即ち、従来の衛生陶器用素地 ではマイクロクラックを伴う石英粒子が多数存在しており、このマイクロクラックは素地 強度を低下させる反面、熱衝撃応力をを緩和する役割を果たすことにより、優れた対 熱衝撃性を発現させるものと考えられて 、る。したがって従来の衛生陶器用素地に おいては無釉曲げ強度は 40〜80MPa程度であった。
[0006] このような素地強度の低下を招く石英をコランダムに代替することにより素地強度の 向上をは;^る研究が磁器の世界では行われており、既に食器や碍子の世界では一 部実用化されて!/、る。具体的には磁器原科中にコランダム ( aアルミナ)を 10〜60w t°/o程度配合するものであり、機械的強度は無釉曲げ強度で lOOMPa以上になる( 例えば特開平 2— 275753号公報 (第 2— 4頁、第 3表)(特許文献 1)参照)。この強 度はコランダム含有量が多!/、ものほど大きくなる。
[0007] 一方素地の焼成変形量を小さくする方法としては、前述のようなコランダムを配合し た素地において、素地原料を微粒ィヒする方法が開示されている (例えば特開平 6—
56516号公報 (第 4— 6頁、第 1表)(特許文献 2)参照)。この方法では素地原料の 微粒化により素地の焼結性が向上するのを利用して、添加する焼成フラックス量を減 らし、焼成時の素地の軟ィヒによる変形を低減させてレ、る。
しかしながらこの方法では素地中の石英粒子も微粒になるため石英粒子に発生す るマイクロクラック量が減少し、素地の耐熱衝撃性が低下する。なお石英粒子が小さ くなるとマイクロ'クラックが発生しなくなる理由は、ガラス相との熱膨張率差により発生 する応力も小さくなるためであると考えられてレ、る。この耐熱衝撃性の低下を防ぐ方 法として、粒径が調整された珪砂等の石英原料を後添加して混合することにより、素 地中の石英の微粒化を防ぐ方法も開示されている(例えば前記特開平 6— 56516号 公報 (特許文献 2)参照)。
[0008] また、素地原料を微粒化する方法は素地の強度向上にも効果があることが知られ ている。素地原料の微粒化による強度向上のメカニズムについては、素地中に残留 する粗大粒子や気孔などの欠陥が減少することによるものがひとつであり、さらに素 地中の石英粒子の関与が考えられている。陶石、粘土、長石を原料とする素地のよう に、素地中に石英を含む素地においては、素地原料の微粒化にともない石英粒子 中または石英粒子とガラス相の界面におけるマイクロクラックが減少する。マイクロクラ ックは素地中に存在する 1種の欠陥であり、素地強度を低下させるものである。したが つてマイクロクラック量の減少は素地強度の向上につながる。またマイクロクラックの 減少によって、マイクロクラックの発生により解放されな力 た、石英とガラス相の熱膨 張差によって生じた応力が石英とガラス相の界面に残留することになり、この残留応 力が素地強度を向上させる働きをするものと考えられて!/、る。したがって素地中の石 英粒子の存在は、素地原料の微粒化によってよりいっそうの強度向上の効果をもた らす。ただしこれは耐熱衝撃性の低下と!/、う問題点と裏腹の効果である。
[0009] 上述のようなコランダム配合による強度向上手段では、コランダム配合量が多いほ ど強度は向上する反面、次の 2点の問題が発生する。第一の問題点は、コランダムは 石英やガラス相に比べるとその重量が大きいため、せつ力べ高強度にして薄肉軽量 化しようとしても、素地の比重が大きくなつて実質的にはそれほどの軽量化にはつな がらな!/ヽとレ、う点である。また第二の問題点はアルミナのようなコランダムを大量に含
む原料は高価であると 、うことである。これらの問題点を解決するためにコランダムを 含む原料として焼成するとコランダムおよびムライトを生成する天然鉱石原料、または 、それをか焼してコランダムおよびムライトを生成させた原料を用いる方法も開示され てレ、る(例え ffWO96Z09996号公報(第 6— 11頁)(特許文献 3)、 W097/2622 3号公報 (第 17— 22頁)、(特許文献 4)参照)。しかしながらこの方法をもってしても やはりコランダムの混合による重量增は避けられなレ、し、またこのような天然原料はァ ノレミナよりは安価であるものの、衛生陶器に通常用いられる原料である、陶石 '粘土 · 長石等に比べるとまだ高価である。
[0010] また、原料の微粒化とフラックス量の調整により強度の向上と焼成時の変形量を低 減させる方法には、素地の耐熱衝撃性が低下するため、焼成時に冷却過程における ヒートショックのため窯サメが発生しやすくなり、またコランダム配合素地のような高!/ヽ 強度発現の効果は得られなレ、とレ、う問題点がある。
[0011] このような問題点を解決するために焼成時の変形量を小さくすると共に素地の熱膨 張係数を小さくする方法も開示されて!/、る (例えば^ W099/43628号公報 (特許文 献 5)参照)。この方法では比重増'価格増につながるコランダムの配合量をそれほど 大きくすることなぐ高強度でかつ焼成変形が小さな素地を製造することが可能となつ ているが、耐熱衝撃性の向上という意味は充分ではなぐ天然原料の銘柄'ロット差 などのバラツキの要因により、窯サメは発生しやすくなつてレ、る。
[0012] また、焼成時の変形量を低減させる別の方法としては強熱減量の小さい材料を使 用することによりガラス相の量を減らし、焼成収縮を小さくすると共に焼成時の変形を 抑える方法も開示されている(例えば特開 2002— 114565号公報 (第 5— 6頁、図 9 ) (特許文献 6)参照)。しかしながらこの方法を採用するとシャモットのような素地を焼 き締めるのが難しくなるような原料を使用せざるを得なくなるため焼成素地の吸水率 は 15〜20%程度と非常に大きく、これを水廻りの衛生陶器として用いるには凍害や 耐汚染性に問題がある。
[0013] 特許文献 1 :特開平 2— 275753号公報
特許文献 2:特開平 6— 56516号公報
特許文献 3: WO96Z09996号公報
2009/057037
5 特許文献 4:W〇97/26223号公報
特許文献 5: W099/43628号公幸艮
特許文献 6:特開 2002— 114565号公報
非特許文献 1 :日本セラミックス協会学術論文誌 1991年 2月号第 153— 15 非特許文献 2:日本セラミックス協会学術論文誌 1991年 11月号第 1110— 1113頁 非特許文献 3 :日本セラミックス協会学術論文誌 1992年 8月号第 1066— 1069頁 発明の開示
発明が解決しょうとする課題
[0014] 本発明は、上記問題を解決するためになされたものである。すなわち、本発明は、 特に薄肉軽量化に適した高強度で焼成変形量が小さく、また窯サメの発生がなレ、高 V、耐熱衝撃性を持つ衛生陶器素地の提供をその目的としてレ、る。
課題を解決するための手段
[0015] 本発明の一つの態様によれば、ガラス相と結晶相からなり、結晶相の主成分を石英 とする衛生陶器用陶磁器素地であって、前記衛生陶器用陶磁器素地の切断面をレ 一ザ一顕微鏡 (対物レンズ 10倍)を用いて 1mm2以上の大きさの視野で 10画面以上 観察したときの 80 i m以上 lmm以下の石英粒子の存在確率が lmm2あたり 1個以 下であることを特徴とする衛生陶器用陶磁器素地が提供される。本発明により、素地 の耐熱衝撃性を損なうような石英粒子全体の微粒化を伴うことなしに、マイクロクラッ ク努生による強度低下を防ぐことができるため、高強度でありながら焼成変形量が小 さぐまた高レ、耐熱衝撃性を持つ衛生陶器の製造が可能となる。
[0016] また、本発明の好ま U/、態様によれば、前記石英粒子の存在確率が lmm2あたり 0 . 01個以上 1個以下であることを特徴とする衛生陶器用陶磁器素地力 s提供される。こ れにより、高強度でありながら焼成変形量が小さく、又高い耐熱衝撃性を持つ衛生陶 器を低コストで製造することが可能となる。
[0017] また、本発明の別の好ましい態様によれば、吸水率を大きくするシャモットのような 原料を使うことなしに前記衛生陶器用陶磁器素地の吸水率が 3 %以下であることを 特徴とする衛生陶器用陶磁器素地が提供される。これにより、高強度であることと耐 汚染性 '耐凍害性の両立が可能となる。
[0018] また本発明の別の好ましい態様によれば、粗粒石英分の除去によりマイクロクラック の発生による強度低下を防止することができるため、前記衛生陶器用陶磁器素地の 無釉曲げ強度が lOOMPa以上であることを特徴とする衛生陶器用陶磁器素地が提 供される。衛生陶器の薄肉化を破損などの危険性なく達成することが可能となる。
[0019] また、本発明の別の好ましい態様によれば、前記衛生陶器用陶磁器素地を構成す る主成分の組成が SiO :45〜69wt%、 Al O: 20~45wt0/。であり、 Na 0、 K〇、
2 2 3 2 2
Li Oからなる群から選ばれた少なくとも 1種の成分と CaO、 MgO、 BaOからなる群か
2
ら選ばれた少なくとも 1種の成分との和: 3〜6wt%であり、結晶相主成分として前記 石英とムライトを、あるいは石英とムライトとコランダムを含み、該石英の含有量が 5〜 30wt%であり、該ムライトの含有量が 10〜30wt%であり、該コランダムの含有量が 0〜20 %であることを特徴とする衛生陶器用陶磁器素地が提供される。これにより 、さらに高強度でありながら焼成変形量が小さぐまた高い耐熱衝撃性を持つ衛生陶 器の製造が可能となった。
[0020] また、本発明の別の好ましレ、態様によれば、前記コランダムの含有量をさらに減らし て 0〜10wt%とする。これにより、コストアップや比重の増大を防ぐことができる。
[0021] また、本発明の別の好まし V、態様によれば、前記コランダムが、前記衛生陶器要陶 磁器素地の原料として用いられる焼成したばん土頁岩に含まれるものであることを特 徴とする衛生陶器用陶磁器素地が提供される。これにより、より低コストで耐熱衝撃 性に優れた衛生陶器の製造が可能となる。
[0022] また、本発明の別の好ま U/、態様によれば、無釉曲げ強度が lOOMPa以上であり、 耐熱衝撃性が 160°C以上であることを特徴とする衛生陶器用陶磁器素地が提供され る。これにより、薄肉化しても窯サメの発生がない耐熱衝撃性に優れた軽量の衛生陶 器の製造が可能となる。
[0023] また、本発明の別の好ましい態様によれば、前記衛生陶器用陶磁器素地の製造ェ 程における焼成工程での無釉テストピースによる焼成変形量が 17mm以下であるこ とを特徴とする衛生陶器用陶磁器素地が提供される。これにより、薄肉でシャープな 形状の衛生陶器の製造が可能となる。
発明の効果
[0024] 本発明によれば、高強度で焼成変形が小さくかつ耐熱衝撃性に優れた衛生陶器 要素地、及ぴその製造方法が提供され、これにより、薄肉軽量の衛生陶器を可能と する。
図面の簡単な説明
[0025] [図 1]本発明の衛生陶器素地の微構造を示す顕微鏡写真である。
[図 2]従来の衛生陶器素地の微構造を示す顕微鏡写真である。
発明を実施するための最良の形態
[0026] 本発明における衛生陶器用陶磁器素地はガラス相と結晶相力もなる。そして結晶 相の主成分としては石英を含んでおり、 1mm2あたりの 80 μ m以上 lmm以下の石英 粒子が 1個以下であることをその特徴としている。石英粒子の粗粒分として、 80 μ πι 以上 1mm以下の石英粒子の存在確率が 1mm2あたり 1個を超えると、素地強度が低 下する不具合が生じる。なお物性上好ましい 1mm2あたりの 80 m以上 lmm以下 の石英粒子の個数に下限はなく 0個であっても差し支えないが、 0. 01個より少なくす ると耐熱衝撃性が低下したり成形時の着肉速度が低下したりする要因ともなるので 0 . 01個以上であることがさらに好ましい。
[0027] ここで定義する粗粒石英粒子の存在確率は、素地の切断面を顕微鏡で lmm以
2 上の大きさの視野で 10画面以上観察し 1辺力 ¾0 μ m以上 1mm以下の石英粒子の 数を数えることにより決定するものとする。即ち、 1mmの大きさの顕微鏡視野を 100
2
画面観察して、 80 /i iii以上の石英粒子が合計 200個観察されたとすると、存在確率 は lmm2あたり 2個であると計算できる。なお石英粒子は不定形をしてレ、るのでそのさ しわたしで最大の距離を石英粒子の粒径とする。例えば 90 μ mX 10 /^ mの長方形 の粒子が顕微鏡視野で観察されたとするとこれも 80 μ m以上の粒子とカウントする。
[0028] 本発明における衛生陶器用陶磁器素地の吸水率は、好ましくは 3wt%以下、さら に好ましくは 0. lwt%以下である。吸水率が好ましい値より大きくなると衛生陶器の 使用環境にお V、て吸水が発生して凍害が発生したり、耐汚染性に問題が生じたりす る。なお好ましい吸水率に下限はないが、工業的には 0. 001%以下にするのはコス トアップの要因となる。このように吸水率が小さく焼き締めるためにはシャモットのよう な仮焼粘土を用いることは好ましくなぐまた後述するようにフラックス成分の量を調
節する必要がある。
[0029] 本発明における衛生陶器用陶磁器素地の無釉曲げ強度は、好ましくは lOOMPa 以上である。無釉曲げ強度が lOOMPaより小さいと衛生陶器の薄肉軽量化を行うの に十分な強度を確保することができない。なお、好ましい無釉曲げ強度には上限は ないが、工業的には 300MPa以上のものは経済的に生産することが難しい。この曲 げ強度を上げる手段として、本発明にぉレヽては石英粒子の粗粒分をなるベく少なく する手段を採用している。
[0030] 本発明における好ましい衛生陶器素地の構成は、主成分の組成が Si〇2:45〜69 wt%、 A12O3 : 20~45wt%であり、 Na2〇、 K20、 Li2〇からなる群から選ばれた 少なくとも 1種の成分と CaO、 MgO、 BaO力もなる群力 選ばれた少なくとも 1種の成 分との和: 3〜6wt。/0であり、結晶相主成分として前記石英とムライトを、あるいは石英 とムライトとコランダムを含み、該石英の含有量が 5〜30wt%であり、該ムライトの含 有量が 10~30wt%であり、該コランダムの含有量力 ¾〜20wt%である構成である。 Si〇2の比率が好ましい上限以上になると、粘土やフラックスなどの必要成分を十分 な量調合できなくなるので素地の可塑性が低下したり焼結が十分に進まなくなったリ する。また Si〇2の比率が好ましレ、下限以下になると十分な石英分を素地に配合でき なるなるため、焼成変形量が大きくなり過ぎる。 A1203の比率が好ましい上限以上に なると素地中に含まれるコランダムの量が多すぎるようになり、素地コストが上昇したり 比重が大きくなりすぎて軽量ィ匕につながらなくなる。 A1203の比率が好ましい下限以 下になると、粘土の配合量が少なくなり過ぎて成形時の素地の可塑性に悪影響を及 ぼす。 Na2〇、 K20、 Li20力らなる群力 選ばれた少なくとも 1種の成分と CaO、 M gO、BaO力 なる群力も選ばれた少なくとも 1種の成分との和が好ましい上限を超え ると、素地の焼成変形が大きくなりすぎ、好ましい下限を超えると焼き締りが低下する 。本発明における好ましい結晶相の成分は前記石英を必須とし、またガラス相力 析 出するムライトも必須である。石英が好ましレ、上限を超えると素地の焼結性が低下し、 また好ましレ、下限を超えると素地の焼成変形が大きくなりすぎる。またムライトの量は 粘土分の量の相関があり、ムライト量が好まし!/、上限を超えると素地の乾燥収縮量が 大きくなり過ぎ、また好ましい下限を超えると素地の可塑性が不充分となる。本発明
9 057037
9
における結晶相成分としてはさらにコランダムを含んでも良レ、。コランダムは大量に加 えると強度は大きくなるもののコストアップや比重増大につながる。そこでコランダムの 含有量は好ましくは 0~20wt%であるがさらに好ましくは 0〜: L0wt%であり、必要な 強度を確保できる限り、なるべく少ないことが好ましく、 0であっても差し支えない。
[0031] 本発明における衛生陶器素地の構成は以上に述べた通りである力 Sこの素地の最大 の特性は高強度であると共に、耐熱衝撃性に優れていることである。即ち従来技術 においては素地の微粒化により石英を微粒化してマイクロクラックの発生を抑えること は素地の高強度化には効果がある力 この手法では素地の耐熱衝撃性が低下する ため、窯サメの発生には悪影響が出るとされていた。しかしながら本発明においては 80 μ m以上 lmm以下の石英粒子の存在確率を lmm2あたり 1個以下に抑えること によりマイクロクラックの発生を極力抑えて高強度であるというメリットを保持しながら、 耐熱衝撃性を同時に向上させることができた。
[0032] 本発明における衛生陶器素地の好ましい耐熱衝撃性温度は 160°C以上であり、こ の耐熱衝撃性温度は 80 μ m以上の石英粒子の存在確率をなるぺく小さくすることに より大きくすることが可能である。なお耐熱衝撃性の測定方法 '評価方法については 後述の実施例にお!/、て詳述する。
[0033] 以上のように従来相反する要素とされてきた強度と耐熱衝撃性の両立を可能とした 本技術は、無釉曲げ強度で lOOMPa以上で耐熱衝撃性が 160°C以上と 、うこれま での衛生陶器では達成不可能な高いレベルで高強度化と高耐熱衝撃性ィ匕を達成し 、薄肉軽量の衛生陶器の生産が可能となった。
[0034] このような衛生陶器用陶磁器素地は陶石、珪石、珪砂、粘土、コランダム含有原料 、焼結フラックス原料等から選ばれた陶磁器素地原料を、焼成後の素地中の石英粒 子が lmm2あたりの 80 /x m以上の該石英粒子が 1個以下になるように水中に分散混 合'粒度調整を施したスラリーを調製し、該スラリーを鐯込成形し、成形体を乾燥後、 必要な部分に施釉し、 1100〜1300°Cで焼成することにより製造することができる。 陶石 ·珪石 '珪砂 ·粘土 ·焼結フラックス原料等はその原料中に含まれる石英分を除 いて溶融してガラス相を形成し、そのガラス相中力もムライトが析出する。また珪石' 珪砂はその大部分が、また陶石'粘土'焼結フラックス原料等はその一部が石英結晶
037
10
力もなつており、その石英結晶の一部はガラス相中に溶解する。したがって原料中に 含まれる石英の粒径は焼成体中に含まれる石英の粒径とは一致せず、焼成体中の 石英粒子は原料中の石英粒子の周辺部分がガラス相中に溶解して径が小さくなり、 原料中の微粒の石英粒子はガラス相中に完全に溶解してしまう。
[0035] したがって、石英粒子の粒度コントロールは原料中の粒度コントロールではなぐ焼 成条件等を考慮して焼成体中の石英の粒度を測定することにより行わなければなら ない。 80 m以上 lmm以下の粗粒分をなるベく少なくする手段としては、まずは陶石 '長石'粘土'フラックス原料などの石英結晶を含む原料を用いる場合、なるべく粗粒 の石英を含まな 、銘柄を選ぶことである。粗粒の石英を含む原料を粉砕工程にぉレヽ て細力べする手段を用いては、全体的な平均粒度が細力べなりすぎて、素地の耐熱 衝撃性が低下してしまう結果になる。
[0036] また、全体的な平均粒度を細力くしすぎると素地の成形時の可塑性が低下するとい う不具合も生じる。なお好まし 、スラリーの平均粒径は 4 μ ra以上 8 μ m以下である。 また粗粒石英源となる石英分を多く含む原料にっレ、ては、別途粉碎ェ程を設けて細 力べしておいて力 スラリーに混合する手段を用いることもできる。
[0037] また、石英分を陶石 '粘土'フラックス原料等に含まれる石英分から採るのではなく 粒度コントロールされた珪砂から採ることもできる。し力しながら陶石'粘土'フラックス 原料として石英分を実質的に全く含まなレ、ものは高価な銘柄が多レ、ので経済性を考 慮しながら使用を検討する必要がある。
[0038] ただ、すべての石英分を粒度コントロールされた珪砂から採る場合にぉレヽても、そ の粒度コントロールされた珪砂はそのごく一部に粗粒の石英分を含む場合がある。し たがって石英分をすベて粒度コントローノレされた珪砂を用いる場合でも、また石英分 を陶石 '珪石 '粘土'フラックス原料等からとる場合においても、篩い通しにより粗粒分 を除くことは確実な方法である。これはスラリ一中の粗粒分の大半は石英分であること 力 有効な手段である力 S、ただし前述のように原料中の石英の粒径と焼成体中の石 英の粒径は異なるし、また特に陶石を粉砕した時に生じる粗粒石英分は高レ、ァスぺ クト比を持つので中止しなければならない。例えば目開き 80 μ πι以下の篩を用いれ ば、焼成時に石英粒子の周囲がガラス相に溶けて径カ S小さくなるために焼成体中に
は 80 μ m以上の粒子は絶対に存在しないかというとそうではない。アスペクト比が高 V、粒子、例えば 100 μ πι Χ 30 μ ηι Χ 30 ί mの粒子は 80 μ mの篩の目開きを簡単 に通過してしまう。また一般的にふるいの目開きが小さい篩にスラリーを通すのは篩 に目詰まりが生じるので工業的には難しぐ好まし 、篩の目開きは 90 μ m以上である
[0039] また、本発明における衛生陶器用素地の原料であるコランダム含有原料として好ま しレヽのは焼成したばん土頁岩である。焼成したばん土頁岩は主成分としてコランダム 結晶とムライト結晶を含み、アルミナをコランダム結晶として単独で加える場合と比較 して強度は若干低下するものの耐熱衝撃性は向上する。なお原料として用いられる コランダム結晶は石英結晶の場合と異なりガラス相中にはほとんど溶解しなレ、ため、 原料中の粒子結晶径がほぼそのまま焼成体中の結晶径となる。好ましレ、コランダム 粒子の平均系は 2 μ π!〜 20 μ mであり、 20 μ mを超えると強度向上の効果が十分で はなく、 2 μ mより小さくなると分散性が悪くなる。
[0040] 本発明にお!/、て用される素地原料を構成する石英 ·コランダム以外の鉱物を以下 にあげる。セリサイト、カオリナイト、パイロフイライト、デイツカイト、ハロイサイトといった 粘土鉱物は成形時の可塑性向上のために加えられ、粘土'陶石の主要構成成分で ある。フラックス鉱物としてはカリ長石、ソーダ長石、カルシウム長石、ドロマイト、ゥォ ラストナイト、ネフエリンサイアナイト、タルク、ぺタライト、カルサイト、マグネサイト、炭 酸バリウム等をあげることができ、これらは Na20、 K20、 Li2〇、 CaO、 MgO、 BaO などの焼結助剤として働くフラックス成分源となる鉱物である。
[0041] また、本発明における衛生陶器用素地の成形方法はスラリーを用レ、た铸込成形で あるが、そのスラリーを製造するにおいては原料粉体を水中に分散させる必要があり 、そのためには解膠剤が用いられる。解膠剤としては水ガラス、炭酸ナトリウム、フミン 酸ナトリウム、ポリアクリル酸ナトリウム、アクリル酸オリゴマーアンモニゥム塩などを用 V、ることができる。また成形体の強度が特に必要な場合にはスラリーにパインダ一を 加えることもでき、各種ェマルジヨン系バインダー、カルボキシルメチルセルロースナト リウム、ポリビエルアルコール、デキストリン、アラビアゴム、トラガガントゴム、メチルセ ルロース、ペプトン、水溶性デンプン、コロイダルシリカなどのパインダーを用いること
ができる。
[0042] スラリーの調製方法はシリンダーミル'ビーズミルなどを用いた湿式粉砕工程でも、 粒度コントロールされた原料を用 V、たブランジャー混合でも良)/、が、前述のような粗 粒石英分の管理を行う必要がある。調製が終了したスラリーは石膏铸込成形や加圧 鐃込成形を用いて成形され、その後乾燥 '施釉 · 1100〜1300°Cの温度で焼成とい う従来技術の工程を経て衛生陶器になる。
[0043] この焼成工程における好ましレ、焼成変形量は 17mm以下であり、好ましレ、範囲を 超えると十分な薄肉軽量化が難しくなる。なお好まし!/、焼成変形量には下限値はな いが、工業的には焼成変形量を 5mm以下にすることは難しい。なおここで言う焼成 変形量の測定方法にっレ、ては実施例にぉ 、て詳述する。このように焼成変形量を小 さく抑えるためには前述のように平均粒径を小さくすることによりフラックス成分量を抑 えても焼結が進むようにする必要がある力 単純に粉砕により平均粒径を小さくして いくと耐熱衝撃性が悪化する。そこで本発明における技術である、粗粒石英粒子の 存在確率を小さくすることにより、強度'焼成変形'耐熱衝撃性の 3つの値を薄肉軽量 化衛陶に適した値にコントロールすることが可能となり、現行の衛生陶器から 20〜30 %の薄肉軽量ィ匕が可能となる。
実施例
[0044] 以下に本発明の実施例を説明する。
表 1は、実施例で使用した原料のィ匕学組成を示す。これらはすべて天然原料であり 、示したィヒ学組成は代表値である。また含有鉱物は XRD定量分析により推定したも のであり、それぞれの鉱物の純粋な化学組成の合計とは誤差がある。
[0045] [表 1]
[0046] 陶石はセリサイト系、カオリナイト系で低純度と高純度のものを用い、高純度のもの はほぼ純粋な粘土鉱物であるセリサイト、カオリナイトであるが、低純度のものは大量 に石英分を含んでいる。蛙目粘土、長石も石英分を含んでいる。焼成ばん土頁岩は 天然原料であるばん土頁岩を仮焼してコランダム約 80wt%、ムライト約 10wt%、ガ ラス成分約 10wt%の組成にしたものである。カオリン鉱物とは、カオリナイト以外にデ イカイト、パイロフイライト、ハロイサイトも含めたものであり、このカオリン鉱物とセリサイ トの総量が全原料に含まれる粘土鉱物量である。
[0047] 表 2及ぴ表 3に本発明における比較例及ぴ実施例にかかる素地の使用原料、原料 中の含有組成鉱物、原料平均粒子系、焼成温度、素地組成、粗粒石英量、及ぴ素 地物性を示す。
それぞれの表示方法、調合方法、測定方法、評価方法は下記の通りである。 表 2、表 3における原料調合有無とは、表 1に示す各原料を用いたことをあらわして おり、それぞれの調合比を合計すると表 2·表 3に示す原料中鉱物組成の比になって V、る。それぞれの組成の原料に水と解膠剤として粘性が 200— 400CPの範囲となる ように解膠剤としての水ガラスを添加し、ボールミルで粉砕してスラリーを調製した。な おスラリ一の体積濃度はスラリ一中の粉の体積濃度で 49— 52vol%である。スラリー中 の原料の平均粒径はレーザー散乱方式の粒度分布測定装置 (日機装 (株)製マイクロ トラック MT- 3000)で測定し、累積体積 50%の粒径で表示した。
[0048] [表 2]
次に、このスラリーを石膏型に流し込み、後述する所定の形状のテストピースを作成 した。それぞれのテストピースは乾燥後、 1200°C、ソーキング時間 30分にて焼成し た。それぞれの素地の化学組成は焼成素地の XRF分析により行い、各酸化物の量を 定量した。各焼成素地の XRD分析にぉレ、ては石英'ムライト'コランダム以外のピーク は観察できず、またコランダムのピークが観察できたものは原料としてコランダムを加 えたものだけであった。そこで XRD分析により、焼成素地中のムライト'石英 'コランダ ムを定量した。素地組成における結晶相の量はムライト'石英 ·コランダムの量の総計 で表示しガラス相の量は 100%力 上記結晶相の量を差し引いた量として表示した。 また焼成フラックス量は素地の化学組成のうち Na20、 K2〇、 CaO, MgOの量の総 計として表示した。
[0051] 粗粒石英量は以下のようにして求めた。テストピースの切断面をラップし、フッ酸 0. 5wt%溶液に 1時間浸漬した。洗浄'乾燥後サンプルを共焦点レーザー顕微鏡 (オリ ンパス OLS1100)を用レ、て石英粒子を観察した。なお観察条件は対物レンズ 10倍で 視野範囲は 1 , 28mm X O. 96mm (l. 23mm2)とした。なお図 1に実施例 2の、図 2 に比較例 1の観察例を示す。黒く見えるマトリックス相がガラス相であり、白い粒子が 石英結晶粒子である。なおムライト結晶粒子はガラス相に覆われてレ、るためにこの写 真では観察できないがフッ酸によるエッチング条件をもっと厳しくしてガラス相を溶解 させると観察することができる。なお実施例 2における白い粒子には微 まれてい るコランダム粒子も含まれる力 コランダム粒子はすべて 30 μ m以下の粒径まで微粉 砕されてレ、る。それぞれの視野におけるさしわたしの最大径で 80 μ m以上 1mm以下 の石英粒子の数をカウントした。そしてそれぞれのサンプノレで任意の 10箇所以上を 測定し、その平均から lmm2あたりの 80 μ m以上 limn以下の石英粒子の個数を計 算した。
[0052] 素地物性のうち吸水率は、完全乾燥したテストピースを 2時間煮沸し、さらに 24時 間放置したときの重量増加率で評価した。焼成収縮率は焼成前後でのテストピース の径方向の長さ変ィ匕より求めた。強度は、 φ 13 X 130mmのテストピースにより、スパン 100mm,クロスヘッドスピード 2.5mm/minの条件で 3点曲げ方法で測定した。焼成変 形量は、幅 30mm、厚み 15mm、長さ 260mmの未焼成の試験片を焼成時にスパン 200 mmで支持しておき、焼成後のたわみ量と試験片の厚みを測定した。このときのたわ み量は焼成後の試験片の厚みの二乗に反比例するので、次の式で、厚みが 10mm の時に換算したたわみ量を焼成変形量とした。
焼成変形量 =たわみ量測定値 X (焼成後の試験片の厚み)2 /°2
[0053] 耐熱衝撃性は、幅 25 X厚み 10 X長さ 110mmの焼成したテストピースを、所定温度 で 3時間保持した後、水中に投入して急冷し、クラック発生の有無をチェックし評価し た。そして 10°Cずつ急冷温度を上げていき、クラックが生じない最大温度差を耐熱 衝撃性として示した。
[0054] 比較例 1は、従来より衛生陶器の生産に使用されている一般的な素地である。この ような素地では、衛生陶器のような大型複雑形状品を薄肉にて試作した場合、製品
2009/057037
17
の変形が大きく生産に不適当である。
[0055] 比較例 2は、比較例 1を微粒化することにより素地強化と焼成変形の低減を図った、 従来技術の素地である。このような素地では、耐熱衝撃性が大幅に低下するために 窯サメが発生しやすくなり、また素地の可塑性が悪く加工性の悪化、乾燥キレの発生 が大きレ、こと等から生産性が悪!/、とレ、う問題がある。
[0056] 比較例 3は、高純度セリサイト陶石、高純度カオリン陶石および高純度の石英粒子 を用い、 90 μ m目開きの篩通しにより粗粒を除去した素地である。この素地では石英 粒子が粗いため篩通しをしてもアスペクト比が大きな粗粒石英粒子を除くことができ ず、また平均粒径も粗いため強度が低く、焼成変形が大きくなるため、薄肉衛生陶器 の作製に不適である。
[0057] 比較例 4は、比較例 1の調合比をベースとした素地ににばん土頁岩を添加し、素地 の高強度化を図った素地である。この素地では、コランダムの添加効果により強度は 向上するものの、粗粒石英の存在により薄肉化による軽量効果が得られるほどの強 度は得られておらず、また平均粒径も粗!/、ため焼成変形も大き 、。
[0058] 比較例 5は、比較例 2と同様に比較例 1を微粒ィヒしたものである力 S、素地の可塑性 が悪化しなレ、よう粒度をやや粗く設計してある。この場合は強度の向上効果があまり 得られない。
[0059] 比較例 6は、粗粒石英を 90 m目開きの篩通しにより除去した素地である力 平均 粒径が粗レ、ため粗粒石英を充分に除くことができず、強度の向上効果があまり得ら れなレ、。
[0060] 比較例 7は、比較例 3の素地に含まれる高純度石英を、調合前にあらかじめ粉碎し 微粒化しておき、素地を作製したものである。この素地では、やや強度の向上が見ら れるが、 lOOMpa以上の高!/、強度は得られてレ、なレ、。
[0061] 以上のようにすベての比較例の素地は 80ミクロン以上の粗粒石英のの存在確率は lmm2あたり 3個以上あり、また耐熱衝撃性も低い。また耐熱衝撃性、強度、焼成変 形量を総合して評価して衛生陶器の薄肉化には向!/ヽて 、な!、。
[0062] 実施例 1は、比較例 7をペースにして、粗粒石英を 90 m目開きの篩通しにより除去 した素地である。
P T/JP2009/057037
18
[0063] 実施例 2乃至 4は、ばん土頁岩を原料として添加している。
実施例 2は、比較例 3を微粒ィ匕してばん土頁岩を添加したものであるが、素地の可 塑性が悪ィ匕しなレ、よう粒度が細カすぎなレ、ように調節して 、る。
実施例 3は、実施例 2を 90 μ ιη目開きの篩通しにより粗粒石英をさらに除去した素 地である。
実施例 4は実施例 3中の陶石に含まれる石英を用いず、高純度セリサイト陶石、高 純度カオリン陶石および粉砕により微粒ィ匕した高純度の石英粒子を用い、さらに 90 μ m目開きの篩通しにより粗粒石英を除去した素地である。
[0064] ばん土頁岩に含まれるコランダムは素地強ィ匕になり、また耐熱衝撃性の向上にも効 果がある力 粗粒石英分の除去と組み合わせることにより、コストアップ、比重増大に つながるコランダム量を 10wt%未満に抑え、コランダムによる素地強化の効果を効率 よく引き出すことが出来る。
[0065] 以上のようにすベての実施例の素地は 80 m以上の粗粒石英の存在確率が lm m2あたり 1個以下であり、高い耐熱衝撃性を呈する。また耐熱衝撃性、強度、焼成変 形量を総合して評価して衛生陶器の薄肉化には向いて!/、る素地であって、現行の衛 生陶器から 20〜30%の薄肉軽量化を可能とする。
産業上の利用可能性
[0066] 本発明の衛生陶器用陶磁器素地は、焼成強度が大きぐ焼成時の熱変形量が小さ く、耐熱衝撃性に優れているため、衛生陶器の薄肉軽量化に利用可能である。
Claims
[1] ガラス相と結晶相からなり、結晶相の主成分を石英とする衛生陶器用陶磁器素地 であって、前記衛生陶器用陶磁器素地の切断面をレーザー顕微鏡 (対物レンズ 10 倍)を用いて lmm2以上の大きさの視野で 10画面以上観察したときの 80 m以上 1 mm以下の石英粒子の存在確率が 1mm2あたり 1個以下であることを特徴とする衛生 陶器用陶磁器素地。
[2] 前記石英粒子の存在確率が lmm2あたり 0. 01個以上 1個以下であることを特徴と する請求項 1に記載の衛生陶器用陶磁器素地。
[3] 前記衛生陶器用 P甸磁器素地の吸水率が 3wt/。以下であることを特徴とする請求項 1 または 2に記載の衛生陶器用陶磁器素地。
[4] 前記衛生陶器用陶磁器素地の無釉曲げ強度が 1 OOMPa以上であることを特徴と する請求項 1乃至 3の V、ずれか一項に記載の衛生陶器用陶磁器素地。
[5] 前記衛生陶器用陶磁器素地を構成する主成分の組成が SiO: 45〜69wt%、 A1
2 2
O : 20〜45wt%であり、 Na〇、 K 0、 Li Οからなる群力も選ばれた少なくとも 1種
3 2 2 2
の成分と CaO、 MgO、 Ba〇力 なる群力 選ばれた少なくとも 1種の成分との和: 3〜 6wt%であり、結晶相主成分として前記石英とムライトを、あるいは石英とムライトとコ ランダムを含み、該石英の含有量が 5〜30wt%であり、該ムライトの含有量が 10〜3 Owt%であり、該コランダムの含有量が 0〜20wt%であることを特徴とする請求項 1 乃至 4の!/ヽずレ、れかに記載の衛生陶器用陶磁器素地。
[6] 前記コランダムの含有量が 0〜10wt%であることを特徴とする請求項 5に記載の衛 生陶器用陶磁器素地。
[7] 前記コランダムが、前記衛生陶器用陶磁器素地の原料として用いられる焼成した ばん土頁岩に含まれるものであることを特徴とする請求項 5または 6に記載の衛生陶 器用陶磁器素地。
[8] 前記衛生陶器用陶磁器素地の無釉曲げ強度が 1 OOMPa以上であり、耐熱衝撃性 力 S160°C以上であることを特徴とする請求項 1乃至 7のいずれか一項に記載の衛生 陶器用陶磁器素地。
[9] 前記衛生陶器用陶磁器素地の製造工程における焼成工程での無釉テストピース
による焼成変形量が 17mm以下であることを特徴とする請求項 1乃至 8のいずれか 一項に記載の衛生陶器用陶磁器素地。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008091611A JP2011116568A (ja) | 2008-03-31 | 2008-03-31 | 衛生陶器用陶磁器素地 |
JP2008-091611 | 2008-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009123345A1 true WO2009123345A1 (ja) | 2009-10-08 |
Family
ID=41135694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057037 WO2009123345A1 (ja) | 2008-03-31 | 2009-03-31 | 衛生陶器用陶磁器素地 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011116568A (ja) |
WO (1) | WO2009123345A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299833A (zh) * | 2020-09-30 | 2021-02-02 | 蒙娜丽莎集团股份有限公司 | 一种高强高韧莫来石陶瓷薄板及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6350703B2 (ja) * | 2016-05-10 | 2018-07-04 | Toto株式会社 | 大型セラミック板およびその製造方法 |
JP6528879B2 (ja) * | 2017-03-29 | 2019-06-12 | Toto株式会社 | 大型セラミック板およびその製造方法 |
KR102424006B1 (ko) * | 2020-07-21 | 2022-07-25 | (주)삼현 | 레드머드를 포함하는 타일 조성물 및 이를 이용한 타일 제조방법 |
JP2023049464A (ja) | 2021-09-29 | 2023-04-10 | Toto株式会社 | 陶器素地材料 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275753A (ja) * | 1985-01-18 | 1990-11-09 | Ngk Insulators Ltd | 高強度長石質磁器 |
JPH0656516A (ja) * | 1992-08-04 | 1994-03-01 | Toto Ltd | 熔化質素地、その製造方法、それを用いた衛生陶器、及び熔化質素地用の釉薬 |
JPH07237958A (ja) * | 1994-02-25 | 1995-09-12 | Inax Corp | 高強度陶磁器及びその製造方法 |
WO1997026223A1 (fr) * | 1996-01-18 | 1997-07-24 | Toto Ltd. | Materiau porcelaine et gres ceramique, corps en ceramique, procedes pour leur production, appareils sanitaires et procede pour la production de ces appareils sanitaires |
JPH11500994A (ja) * | 1994-11-29 | 1999-01-26 | セラムテック・アクチェンゲゼルシャフト・イノベーティブ・セラミック・エンジニアリング | コランダム磁器物、コランダム磁器物の製造法、およびコランダム磁器物の使用 |
WO1999043628A1 (fr) * | 1998-02-26 | 1999-09-02 | Toto Ltd. | Corps en ceramique pour appareils sanitaires et son procede de production |
-
2008
- 2008-03-31 JP JP2008091611A patent/JP2011116568A/ja active Pending
-
2009
- 2009-03-31 WO PCT/JP2009/057037 patent/WO2009123345A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275753A (ja) * | 1985-01-18 | 1990-11-09 | Ngk Insulators Ltd | 高強度長石質磁器 |
JPH0656516A (ja) * | 1992-08-04 | 1994-03-01 | Toto Ltd | 熔化質素地、その製造方法、それを用いた衛生陶器、及び熔化質素地用の釉薬 |
JPH07237958A (ja) * | 1994-02-25 | 1995-09-12 | Inax Corp | 高強度陶磁器及びその製造方法 |
JPH11500994A (ja) * | 1994-11-29 | 1999-01-26 | セラムテック・アクチェンゲゼルシャフト・イノベーティブ・セラミック・エンジニアリング | コランダム磁器物、コランダム磁器物の製造法、およびコランダム磁器物の使用 |
WO1997026223A1 (fr) * | 1996-01-18 | 1997-07-24 | Toto Ltd. | Materiau porcelaine et gres ceramique, corps en ceramique, procedes pour leur production, appareils sanitaires et procede pour la production de ces appareils sanitaires |
WO1999043628A1 (fr) * | 1998-02-26 | 1999-09-02 | Toto Ltd. | Corps en ceramique pour appareils sanitaires et son procede de production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299833A (zh) * | 2020-09-30 | 2021-02-02 | 蒙娜丽莎集团股份有限公司 | 一种高强高韧莫来石陶瓷薄板及其制备方法 |
CN112299833B (zh) * | 2020-09-30 | 2022-06-17 | 蒙娜丽莎集团股份有限公司 | 一种高强高韧莫来石陶瓷薄板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2011116568A (ja) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2980457B2 (ja) | 衛生陶器用素地及びその製造方法 | |
Kamseu et al. | Characterisation of porcelain compositions using two china clays from Cameroon | |
Martín-Márquez et al. | Effect of microstructure on mechanical properties of porcelain stoneware | |
Andreola et al. | Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor | |
Stathis et al. | Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitaryware porcelain | |
Lee et al. | Influence of mixing on mullite formation in porcelain | |
Ozel et al. | Effect of the processing on the production of cordierite–mullite composite | |
Reinosa et al. | Sintering behaviour of nanostructured glass-ceramic glazes | |
TW303349B (ja) | ||
US9193631B2 (en) | Fused and coated silica grains | |
WO2009123345A1 (ja) | 衛生陶器用陶磁器素地 | |
CN107580590B (zh) | 用于修复玻璃熔炉的未成型产品 | |
EP2877436A1 (en) | Ceramic compositions | |
Ribeiro et al. | Properties of sintered mullite and cordierite pressed bodies manufactured using Al-rich anodising sludge | |
Chen et al. | High strength silica-based ceramics material for investment casting applications: Effects of adding nanosized alumina coatings | |
Torres et al. | Pyroxene-based glass-ceramics as glazes for floor tiles | |
Kayacı | The use of perlite as flux in the production of porcelain stoneware tiles | |
EP2651851A2 (en) | Multilayer ceramic structures | |
JP4408104B2 (ja) | 強化磁器及びその製造方法 | |
CN106699141B (zh) | 原位生成cm2a8复相增强钢包浇注料及其制备方法 | |
WO2018093322A1 (en) | Translucent nanocrystalline glass ceramic | |
KR101098243B1 (ko) | 고강도 도자기용 소지 조성물 및 이를 이용한 고강도 도자기의 제조방법 | |
Xu et al. | Effect of zirconia addition amount in glaze on mechanical properties of porcelain slabs | |
JP2015527959A (ja) | アルミナを含むセラミック組成物 | |
Bakr | Densification behavior, phase transformations, microstructure and mechanical properties of fired Egyptian kaolins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09727596 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09727596 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |