WO1999041781A1 - Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module - Google Patents

Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module Download PDF

Info

Publication number
WO1999041781A1
WO1999041781A1 PCT/JP1999/000576 JP9900576W WO9941781A1 WO 1999041781 A1 WO1999041781 A1 WO 1999041781A1 JP 9900576 W JP9900576 W JP 9900576W WO 9941781 A1 WO9941781 A1 WO 9941781A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
semiconductor
base sheet
semiconductor module
inner lead
Prior art date
Application number
PCT/JP1999/000576
Other languages
English (en)
French (fr)
Inventor
Kunitoshi Yamamoto
Koichiro Tsuji
Original Assignee
Nissha Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co., Ltd. filed Critical Nissha Printing Co., Ltd.
Priority to US09/601,766 priority Critical patent/US6573028B1/en
Priority to EP99903905A priority patent/EP1063699A4/en
Publication of WO1999041781A1 publication Critical patent/WO1999041781A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/403Edge contacts; Windows or holes in the substrate having plural connections on the walls thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01054Xenon [Xe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/049PCB for one component, e.g. for mounting onto mother PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09645Patterning on via walls; Plural lands around one hole
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1407Applying catalyst before applying plating resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers

Definitions

  • Base sheet for semiconductor module Description: Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module
  • the present invention relates to a semiconductor module base sheet for forming a semiconductor module by mounting one or more semiconductor chips such as a monolithic IC, a hybrid IC, a multi-chip IC, a diode, a transistor, and a thyristor, and the semiconductor module.
  • the present invention relates to a method for manufacturing a base sheet for use, and a semiconductor module configured by mounting a semiconductor chip on the base sheet.
  • a metal conductor is pressed out of a die pad and a lead on which a semiconductor chip is mounted as represented by a lead frame. After the semiconductor chip is mounted on the die pad, the electrode terminals of the semiconductor chip and the inner lead of the lead are electrically connected by bonding with a thin metal wire, and then the semiconductor chip and the inner lead are formed. At least the through hole side of the portion was sealed, and the outer lead portion of the lead was bent by a mold in order to mount the semiconductor package on the printed board.
  • the lead frame required rigidity because the semiconductor chip was supported by the die pad and had to be bent to be mounted on the printed circuit board. As a result, metal lead frames could not be reduced in thickness, and it was difficult to use pure copper with good conductivity.
  • the outer leads are partially connected to each other. After the sealing step, each connected portion (called a tie bar) is cut with a mold or the like. A process was required to make the outer lead portions independent for each pin. Therefore, recently, various semiconductor packages 914 have been considered, which do not require rigidity in the lead material and do not need to cut many tie bars during the manufacturing process. For example, a flexible board such as a film 15 having an inner lead portion 5 and an outer lead portion 6 formed thereon is bent (see FIG. 70), and this is folded into a base 13 of a semiconductor package 9 14. And the lead part on the back of the base 13
  • an object of the present invention is to solve the above-described problems, and to provide a semiconductor module capable of manufacturing a semiconductor module in a small number of manufacturing steps, a semiconductor module base sheet used in the manufacturing method thereof, and the manufacturing thereof It is to provide a method. Disclosure of the invention The present invention is configured as described below to achieve the above object.
  • an insulating substrate having a semiconductor chip arrangement area in which a conductor chip can be arranged
  • the plurality of electrode terminals of the semiconductor chip are formed on the same side of the insulating substrate as the semiconductor chip arrangement region and are arranged in the semiconductor chip arrangement region so as to constitute a semiconductor module.
  • a plurality of outer lead portions formed on a surface of the insulating substrate opposite to the semiconductor chip placement region;
  • a plurality of connection portions respectively connecting the plurality of inner lead portions and the plurality of data lead portions on a side wall surface of the insulating substrate;
  • the present invention provides a semiconductor module base sheet comprising:
  • the semiconductor module base sheet according to the first aspect wherein the semiconductor chip disposition region has a concave portion large enough to accommodate the semiconductor chip.
  • the semiconductor module according to the first or second aspect, wherein the insulating substrate has a through hole, and the plurality of connection portions are formed on a side wall surface of the through hole.
  • a substrate sheet is provided.
  • the through hole of the insulating substrate is arranged on two opposing sides of the rectangular semiconductor chip arrangement area, and the base module for a semiconductor module according to the third aspect is provided. Provide one.
  • the semiconductor module substrate sheet according to the third aspect wherein the through holes of the insulating substrate are arranged on four sides of the rectangular semiconductor chip arrangement area. provide.
  • a semiconductor device according to the first or second aspect, wherein the insulating substrate has a recess at an edge thereof, and the plurality of connection portions are formed on a side wall surface of the recess.
  • a substrate sheet for a conductor module is provided.
  • the plurality of connections are provided on a side wall surface of an edge of the insulating substrate.
  • each of the plurality of inner lead portions is arranged so as to extend from each of the plurality of connection portions toward the semiconductor chip arrangement region, and
  • Each of the outer lead portions is arranged to extend from each of the plurality of connection portions toward a region corresponding to the semiconductor chip placement region on the back side of the base sheet.
  • each of the plurality of inner lead portions is arranged so as to extend from each of the plurality of connection portions toward a side opposite to the semiconductor chip arrangement region
  • Each of the plurality of outer lead portions is arranged so as to extend from each of the plurality of connection portions toward the side opposite to the region corresponding to the semiconductor chip arrangement region on the back side of the base sheet.
  • a photosensitive resist film is formed on the metal layer, and then the formed photosensitive resist film is partially formed. By developing after exposure, it is patterned as an etching resist layer present in the portion to be left as the inner lead portion and the outer lead portion and the portion to be left as the connection portion on the side wall surface. After etching away the metal layer in a portion not covered with the etching resist layer, the etching resist layer is removed, so that the inner lead portion, the outer lead portion, and the connecting portion are formed.
  • a method for manufacturing a base sheet for a conductor module is provided.
  • a photosensitive resist film is formed on both sides of the insulating substrate and the side wall surfaces of the insulating substrate. After that, the photosensitive resist film is partially exposed and then developed, so that the unnecessary portions of the inner lead portion and the outer lead portion and the unnecessary portions of the connection portions on the side wall surface are formed.
  • the inner lead portion is formed on both sides of the insulating substrate and the side wall surfaces not covered by the plating resist layer.
  • the photosensitive resist film when patterning the etching resist layer, is of a photo-curing type, and a lead pattern forming section for forming the inner lead section.
  • a first mask that transmits light but does not transmit the other parts, and a light control system that scatters or refracts incident light and emits it from the side opposite to the incident side.
  • the substrate is exposed while being superposed on one surface of the substrate, and a lead pattern forming portion forming the arterial lead portion and a connecting portion pattern forming portion forming the connecting portion transmit light, and other portions are formed.
  • a second mask that is not transmitted and a light control sheet that scatters or refracts the incident light and emits the light from the side opposite to the incident side are overlaid on the other surface of the substrate, and are exposed to light.
  • the photosensitive resist film is developed to remove the uncured portion other than the cured portion, whereby the inner lead portion, the outer lead portion, and the connection portion are formed.
  • the photosensitive resist film when patterning the etching resist layer, is of a photo-decomposable type, and the lead pattern forming part forming the inner lead part and the connecting part are formed.
  • a third mask which blocks the light while the connection pattern forming part that forms the light and transmits the other part, and a light control sheet that scatters or bends the incident light and emits it from the side opposite to the incident side of the substrate. Exposure is performed on one surface, and a lead pattern forming portion forming the outer lead portion and a connecting portion pattern forming portion forming the connecting portion shield light and block other portions.
  • a method for manufacturing a substrate sheet for a semiconductor module according to the tenth aspect wherein the etching resist layer is formed on a portion where the etching resist layer is formed.
  • the photosensitive resist film when patterning the etching resist layer, is of a photocurable type, and one of the inner lead portion and the water lead portion is formed.
  • the fifth mask which transmits light while the lead pattern forming portion and the connecting portion pattern forming portion forming the above-mentioned connecting portion do not transmit the other portion, and scatters or refracts incident light to define the incident side.
  • a light control sheet emitted from the opposite side is superimposed on one surface of the substrate and exposed, and only a lead pattern forming portion that forms the other of the inner lead portion and the arter lead portion transmits light.
  • a sixth mask that does not transmit the other portions is superposed on the other surface of the substrate and exposed to cure only the exposed portions of the photosensitive resist film.
  • the etching resist layer is formed on the portion where the inner lead portion, the outer lead portion, and the connection portion are formed.
  • the photosensitive resist film when patterning the etching resist layer, is of a photodecomposable type, and one of the inner lead portion and the arter lead portion is formed.
  • the lead pattern forming part to be connected and the connecting part pattern forming part to form the above-mentioned connecting part shield the light and transmit the other part.
  • a light control sheet that is emitted from the side is superposed on one surface of the substrate and exposed, and a lead pattern that forms one of the inner lead portion and the outer lead portion is formed.
  • the eighth mask is overlapped on the other surface of the substrate, and the exposed portion is exposed to light, and the exposed portion of the photosensitive resist film is exposed.
  • the photosensitive resist film is developed to remove only the photo-decomposed portion, so that the inner lead portion, the outer lead portion, and the portion where the connection portion is formed are formed. 10.
  • the photosensitive resist film when patterning the plating resist layer, is of a photo-curing type, and is connected to a lead pattern forming portion that forms the inner lead portion.
  • the ninth mask which does not transmit light and the other part transmits while the connection pattern forming part forming the part, and the light control sheet that scatters or refracts the incident light and emits it from the side opposite to the incident side, as described above. Exposure is performed so as to overlap one surface of the substrate, and the lead pattern forming portion forming the arter lead portion and the connection pattern forming portion forming the connecting portion do not transmit light, and the other portions do.
  • a 10th mask and a light control sheet that scatters or refracts the incident light and emits it from the side opposite to the incident side are superposed on the other surface of the substrate and exposed to light, and the photosensitive resist film is exposed to light.
  • the photosensitive resist film is developed to remove uncured portions other than the cured portions, so that the inner lead portions, the outer lead portions, and the connection portions are formed.
  • the photosensitive resist film when patterning the mask resist layer, is of a photo-decomposable type, and is connected to a lead pattern forming part forming the inner lead part.
  • a first mask that transmits light and blocks the other part of the connection pattern forming part that forms the part, and a light control sheet that scatters or refracts the incident light and emits it from the side opposite to the incident side. Is exposed on one surface of the substrate while the lead pattern forming part forming the outer lead part and the connecting part pattern forming part forming the connecting part transmit light and block other parts.
  • the 12th mask to be covered and the light control sheet that scatters or refracts the incident light and emits it from the side opposite to the incident side are overlaid on the other surface of the substrate and exposed to light. After photolyzing only the exposed portion, the photosensitive resist film is developed to remove only the photodecomposed portion, thereby forming the inner lead portion, the outer lead portion, and the connection portion.
  • the photosensitive resist film when patterning the plating resist layer, is a photocurable type, and forms one of the inner lead portion and the outer lead portion.
  • the 13th mask in which the lead pattern forming portion to be formed and the connecting portion pattern forming portion to form the connecting portion do not transmit light but transmit the other portion, and the incident side by scattering or refracting the incident light.
  • a light control sheet emitted from the opposite side is superposed on one surface of the substrate and exposed, and a lead pattern forming portion for forming one of the inner lead portion and the outer lead portion and a through hole are formed. The part that is superimposed on the substrate does not transmit light, and the other part transmits.
  • the 14th mask is exposed on the other surface of the substrate, and only the exposed part of the photosensitive resist film is cured. Sa Then, the photosensitive resist film is developed to remove uncured portions other than the cured portions, thereby removing the inner lead portions, the outer lead portions, and the portions other than the portions where the connection portions are formed.
  • the present invention also provides a method for producing a base sheet for a semiconductor module according to the eleventh aspect, wherein the plating resist layer is formed.
  • the photosensitive resist film when patterning the plating resist layer, is of a photo-decomposable type, and one of the inner lead portion and the outer lead portion is A fifteenth mask that allows light to pass through the lead pattern formation part to be formed and the connection part pattern formation part to form the connection part, and shields other parts, and scatters or refracts the incident light so as to be on the opposite side to the incident side
  • a light control sheet for emitting light is superimposed on one surface of the substrate and exposed, and a lead pattern form is formed to form one of the inner lead portion and the outer lead portion.
  • a 16th mask that allows light to pass through and blocks the other part from the other part of the substrate is exposed to light.
  • the resist layer is formed on portions other than the portion where the inner lead portion, the outer lead portion, and the connection portion are formed.
  • any one of the first to ninth aspects wherein a metal conductor portion having a size equal to or larger than the size of the semiconductor chip is arranged in the semiconductor chip arrangement area.
  • a substrate sheet as described.
  • the first metal conductor portion having a size equal to or larger than the size of the semiconductor chip is arranged in the semiconductor chip arrangement region, and the first metal conductor portion on the front surface side of the insulating substrate is provided.
  • a second metal conductor is provided in a region on the back side of the insulating substrate opposed to the first metal conductor via the insulating substrate, and a through hole is formed between the first metal conductor and the second metal conductor.
  • the base sheet according to the twenty-second aspect in which a hole of the through hole connecting the first metal conductor and the second metal conductor is filled with a resin. I do.
  • the first metal conductor and the second metal conductor are connected by the through hole, and the hole of the through hole is filled with the resin.
  • the base sheet according to the twenty-third aspect, wherein a metal layer is disposed from above to cover the first metal conductor, the second metal conductor, and the hole of the through hole filled with the resin. provide.
  • the metal conductor part extends the inner lead part or a part of the arter lead to the semiconductor chip arrangement region,
  • the base sheet according to any one of the twenty-first to twenty-fourth aspects, wherein the base sheet is formed in a size on which the conductor chip can be placed.
  • a through hole is formed in the insulating substrate, a connection portion is provided on the side wall surface opposite to the semiconductor chip arrangement region side, and the inner lead portion is arranged in a direction away from the connection portion.
  • a semiconductor substrate sheet having an outer lead portion disposed in a direction away from a region corresponding to a back surface of the semiconductor chip placement region from the connection portion.
  • a base sheet in which a metal conductor portion is formed in the semiconductor chip arrangement region.
  • a through hole is formed in the insulating substrate, a connection portion is provided on the side wall surface opposite to the semiconductor chip disposition region side, and the inner lead portion is disposed in a direction away from the connection portion.
  • connection portion is provided on the side wall surface of the through hole on the semiconductor chip placement region side so as not to contact the connection portion, a metal conductor portion is provided in the semiconductor chip placement region, and a back surface of the semiconductor chip placement region A metal layer portion is provided in a region corresponding to the above, and a base sheet is provided in which the metal conductor portion and the metal layer portion are connected by the another connection portion.
  • the base sheet according to the twenty-sixth or twenty-seventh aspect wherein the resin is filled in the through hole.
  • any of the twenty-first to twenty-eighth, wherein the shape of the surface of the metal conductor portion disposed on the surface of the base sheet on which the inner lead portion is formed is a plane A semiconductor substrate sheet according to the above aspect is provided.
  • fine irregularities or patterned recesses are formed on the plane of the metal conductor portion disposed on the surface of the base sheet on which the inner lead portion is formed. 21.
  • a semiconductor substrate sheet according to any one of the twenty-first to twenty-eighth aspects.
  • the semiconductor chip is arranged in the semiconductor chip arrangement region of the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects,
  • a semiconductor module is provided in which each of the plurality of electrode terminals is electrically connected to each of the plurality of inner lead portions.
  • the semiconductor chip is arranged in the semiconductor chip arrangement region of the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects, Provided is a semiconductor module in which each of the plurality of electrode terminals is electrically connected to each of the plurality of inner lead portions by a wire.
  • the semiconductor chip is arranged in the semiconductor chip arrangement area of the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects, A semiconductor module in which each of the bumps formed on the plurality of electrode terminals on the back surface of the semiconductor module is electrically connected to each of the plurality of inner lead portions.
  • the semiconductor chip is arranged in the semiconductor chip arrangement region of the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects, Provided is a semiconductor module in which each of the plurality of electrode terminals on the back surface and each of the plurality of inner lead portions are electrically joined via an anisotropic conductive adhesive.
  • the semiconductor chip is housed and held in the concave part of the semiconductor chip arrangement region of the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects.
  • the base sheet according to any one of the first to ninth and twenty to twenty-ninth aspects is provided with a plurality of rectangular semiconductor chip arrangement regions provided in the base sheet.
  • a semiconductor chip is arranged in each of the semiconductor chip arrangement areas, and the plurality of electrode terminals of the semiconductor chip are electrically connected to the plurality of inner lead portions, respectively.
  • FIG. 1 is a perspective view showing the surface of a semiconductor module base sheet according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing the back surface of the base sheet of FIG. 1,
  • FIG. 3 is a cross-sectional view taken along the line I I I—I I I in FIG.
  • FIGS. 4A, 4B, 4C, and 4D are plan views showing various modifications of the through-holes in the semiconductor module base sheet according to the first embodiment, respectively.
  • FIG. 5 is a perspective view showing a surface of a base sheet according to a modification of the first embodiment
  • FIG. 6 is a perspective view showing a semiconductor module assembly in which six semiconductor chips are placed in the six semiconductor chip arrangement regions in the manufacturing process of the semiconductor module according to the first embodiment
  • FIG. 7 shows a semiconductor package obtained by sealing a semiconductor chip mounted in a semiconductor chip arrangement region of each semiconductor module of a semiconductor module assembly manufactured in the semiconductor module manufacturing process according to the first embodiment. It is a perspective view which shows an assembly,
  • FIG. 8 is a perspective view showing a state in which the semiconductor package assembly manufactured in FIG. 7 is separated from the base sheet by one semiconductor package.
  • FIG. 9 is a perspective view showing a state in which a semiconductor module base is separated from a base sheet one by one in a manufacturing process of a semiconductor module according to a modification of the first embodiment.
  • FIG. 10 is a perspective view showing a semiconductor module obtained by placing a semiconductor chip in a semiconductor chip placement region of a semiconductor module base separated from a base sheet in FIG. 9,
  • FIG. 11 is a perspective view showing a semiconductor package obtained by sealing the semiconductor module of FIG. 10.
  • FIG. 12 is a cross-sectional view of the semiconductor module of FIG.
  • FIG. 13 is a perspective view of a multi-semiconductor module in which two semiconductor chips of FIG. 1 are mounted on a base.
  • FIG. 14 is a perspective view showing a surface of a substrate sheet for a semiconductor module according to the second embodiment of the present invention.
  • FIG. 15 is a sectional view taken along the line XV—XV in FIG.
  • FIG. 16 is a perspective view showing the back surface of the semiconductor module substrate sheet according to the second embodiment of FIG. 14;
  • FIG. 17 is a perspective view of the surface of a semiconductor module base sheet according to a modification of the second embodiment.
  • FIG. 18 is a view illustrating six semiconductor module manufacturing steps according to the second embodiment.
  • FIG. 9 is a perspective view showing a semiconductor module assembly obtained by mounting the semiconductor chip of FIG.
  • FIG. 19 is obtained by sealing a semiconductor chip mounted in the semiconductor chip arrangement area of each semiconductor module of the semiconductor module assembly manufactured in the semiconductor module manufacturing process according to the second embodiment.
  • FIG. 2 is a perspective view showing a semiconductor package assembly in which
  • FIG. 20 is a perspective view showing a state in which the semiconductor package assembly manufactured in FIG. 19 is separated from the base sheet by one semiconductor package.
  • FIG. 21 is a perspective view showing a state in which a semiconductor module base is separated from a base sheet one by one in a semiconductor module manufacturing process according to a modification of the second embodiment.
  • FIG. 22 is a perspective view showing a state in which the semiconductor module is configured by mounting the semiconductor chip in the semiconductor chip placement region of the semiconductor module base separated from the base sheet in FIG. 21;
  • FIG. 23 is a perspective view showing a state in which the semiconductor module of FIG. 22 is sealed to form a semiconductor package.
  • FIG. 24 is a perspective view of a multi-semiconductor module in which two semiconductor chips are mounted on a base.
  • FIG. 25 shows the results obtained by mounting six semiconductor chips on six semiconductor chip arrangement areas in a semiconductor module manufacturing process using the semiconductor module base sheet according to the third embodiment of the present invention.
  • FIG. 3 is a perspective view showing a semiconductor module assembly to be obtained;
  • FIG. 26 is a plan view of a semiconductor module base sheet according to a modification of the third embodiment of the present invention.
  • FIG. 27 is a view showing a state where six semiconductor chips are placed in the six semiconductor chip arrangement regions in a semiconductor module manufacturing process using a semiconductor module base sheet according to another modification of the third embodiment of the present invention. It is a perspective view showing a semiconductor module assembly obtained by performing,
  • FIG. 28 is a cross-sectional view of a semiconductor module according to a modification of the third embodiment of the present invention.
  • FIG. 29 is a cross-sectional view of a semiconductor module according to another modification of the third embodiment of the present invention.
  • FIG. 30 is a cross-sectional view of a semiconductor package according to still another modification of the third embodiment of the present invention.
  • FIG. 31 is a perspective view showing a surface of a semiconductor module base sheet according to a fourth embodiment of the present invention.
  • FIG. 32 is a perspective view showing a surface of a substrate sheet for a semiconductor module according to a fifth embodiment of the present invention.
  • FIG. 33 is a perspective view showing a surface of a base sheet for a semiconductor module according to a sixth embodiment of the present invention.
  • FIG. 34 is a perspective view showing a surface of a substrate sheet for semiconductor module according to a seventh embodiment of the present invention.
  • FIG. 35 is a perspective view showing a surface of a base sheet for a semiconductor module according to an eighth embodiment of the present invention.
  • FIG. 36 is a perspective view showing a back surface of the semiconductor module base sheet according to the eighth embodiment of the present invention
  • FIGS. 37A, 37B, 37C, and 37D are plan views showing various modifications of the through-holes of the semiconductor module base sheet according to the eighth embodiment, respectively.
  • FIG. 19 is a perspective view showing a surface of a semiconductor module base sheet according to a modification of the eighth embodiment of the present invention.
  • FIG. 39 is a perspective view showing a semiconductor module assembly obtained by mounting six semiconductor chips in six semiconductor chip arrangement areas in the semiconductor module manufacturing process according to the eighth embodiment,
  • FIG. 40 is obtained by sealing a semiconductor chip placed in a semiconductor chip arrangement area of each semiconductor module of a semiconductor module assembly manufactured in the semiconductor module manufacturing process according to the eighth embodiment.
  • FIG. 2 is a perspective view showing a semiconductor package assembly in which
  • FIG. 41 is a perspective view showing a state in which the semiconductor package assembly manufactured in FIG. 40 is separated from the base sheet by one semiconductor package,
  • FIG. 42 is a perspective view showing a state in which semiconductor module bases are separated from the base sheet one by one in a semiconductor module manufacturing process according to a modification of the eighth embodiment.
  • FIG. 43 is a perspective view showing a semiconductor module obtained by placing a semiconductor chip on a semiconductor chip placement region of a semiconductor module base separated from a base sheet in FIG. 42;
  • FIG. 44 is a perspective view showing a semiconductor package obtained by sealing the semiconductor module of FIG. 43.
  • FIG. 45 is a perspective view showing a surface of a substrate sheet for a semiconductor module according to a ninth embodiment of the present invention.
  • FIG. 46 is a perspective view showing a back surface of the semiconductor module base sheet according to the ninth embodiment of the present invention.
  • FIG. 47 is a perspective view showing a surface of a semiconductor module substrate sheet according to a modification of the ninth embodiment of the present invention.
  • FIG. 48 is a view showing the process of manufacturing the semiconductor module according to the ninth embodiment.
  • FIG. 10 is a perspective view showing a semiconductor module assembly obtained by mounting six semiconductor chips in six semiconductor chip arrangement areas,
  • FIG. 49 is obtained by sealing a semiconductor chip placed in a semiconductor chip arrangement area of each semiconductor module of a semiconductor module assembly manufactured in the semiconductor module manufacturing process according to the ninth embodiment.
  • FIG. 2 is a perspective view showing a semiconductor package assembly in which
  • FIG. 50 is a perspective view showing a state where the semiconductor package assembly manufactured in FIG. 49 is separated from the base sheet by one semiconductor package at a time.
  • FIG. 51 is a perspective view showing a state where semiconductor module bases are separated from a base sheet one by one in a semiconductor module manufacturing process according to a modification of the ninth embodiment.
  • FIG. 52 is a perspective view showing a semiconductor module obtained by placing a semiconductor chip on a semiconductor chip placement region of a semiconductor module base separated from a base sheet in FIG. 51,
  • FIG. 53 is a perspective view showing a semiconductor package obtained by sealing the semiconductor module of FIG. 52,
  • FIG. 54 is a cross-sectional view of the semiconductor module of FIG.
  • FIG. 55 is a cross-sectional view of the semiconductor module according to the tenth embodiment of the present invention
  • FIG. 56 is a cross-sectional view of the semiconductor module according to the tenth embodiment of the present invention
  • FIG. FIG. 35 is a sectional view taken along line B—B in FIG.
  • FIG. 58 is a cross-sectional view taken along line A—A in FIG.
  • FIG. 59 is a perspective view showing the surface of the semiconductor module base sheet according to the eleventh embodiment of the present invention.
  • FIG. 60 shows a method of exposing a part of the photosensitive resist film at the connection portion on the side wall surface of the through hole in the base sheet for a semiconductor module according to the later-described 12th to 16th embodiments of the present invention.
  • FIG. 61 is a photosensitive resist of the connection portion on the side wall surface of the through hole in the semiconductor module base sheet according to a modified example of the later-described 12th to 16th embodiments of the present invention. It is an explanatory view showing a method of exposing a part of the film,
  • FIG. 62 shows the photosensitive resin of the connection portion on the side wall surface of the through hole in the semiconductor module base sheet according to another modified example of the later-described 12th to 16th embodiments of the present invention. It is an explanatory view showing a method of exposing a part of the dist film,
  • FIG. 63 is a photosensitive resist of the connection portion on the side wall surface of the through hole in the semiconductor module base sheet according to another modified example of Embodiments 1 to 2 of the present invention. It is an explanatory view showing a method of exposing a part of the film,
  • FIG. 64 is a cross-sectional view showing a method of exposing a part of the photosensitive resist film.
  • FIG. 65 is a cross-sectional view showing a method of exposing a part of the photosensitive resist film.
  • 6 is a sectional view showing a method of exposing a part of the photosensitive resist film,
  • FIG. 67 is a sectional view showing a method of exposing a part of the photosensitive resist film,
  • FIG. FIG. 69 is a cross-sectional view illustrating a method of exposing a part of the photosensitive resist film.
  • FIG. 69 is a cross-sectional view illustrating a method of exposing a part of the photosensitive resist film.
  • FIG. 4 is a development view showing a film used for a semiconductor package having a connection portion for connecting an inner lead portion and an outer lead portion on a side surface of a base according to the technology;
  • FIG. 71 is a diagram showing a semiconductor package in which the film of FIG. 70 is wound around a base.
  • FIG. 72 is a process diagram illustrating a process of forming a connection portion and the like in the method of manufacturing a base sheet according to the 12th embodiment of the present invention, for manufacturing the base sheet according to the embodiment.
  • FIG. 73 is a process diagram illustrating a process of forming a connection portion and the like in the method of manufacturing a base sheet according to the thirteenth embodiment of the present invention for manufacturing the base sheet according to the above embodiment.
  • FIG. 74 shows a second example of the present invention for manufacturing the base sheet according to the above embodiment.
  • FIG. 75 shows a second embodiment of the present invention for manufacturing the base sheet according to the embodiment.
  • FIG. 15 is a process diagram illustrating a process of forming a connection portion and the like in the method for manufacturing a base sheet according to the 15th embodiment;
  • FIG. 76 is a process diagram illustrating a process of forming a connection portion and the like in the method of manufacturing a base sheet according to the sixteenth embodiment of the present invention, for manufacturing the base sheet according to the above embodiment;
  • FIG. 77 is a process diagram illustrating a process of forming a connection portion and the like according to a modification of the above-described 12th embodiment.
  • FIG. 78 is a process diagram illustrating a process of forming a connection portion and the like according to a modification of the thirteenth embodiment.
  • FIG. 79 is a perspective view showing a surface of a base sheet for a semiconductor module according to a further modification of the eighth embodiment of the present invention.
  • FIG. 80 shows a semiconductor module assembly obtained by mounting six semiconductor chips in six semiconductor chip placement regions in a manufacturing process of a semiconductor module according to a modification of the eighth embodiment of FIG. It is a perspective view showing a body
  • FIG. 81 shows a semiconductor chip mounted on a semiconductor chip arrangement region of each semiconductor module of a semiconductor module assembly manufactured in a semiconductor module manufacturing process according to a modification of the eighth embodiment of FIG.
  • FIG. 2 is a perspective view showing a semiconductor package assembly obtained by sealing
  • FIG. 82 corresponds to FIG. 1 and is a perspective view showing a surface of a base sheet for a semiconductor module according to a modification of the above embodiment of the present invention
  • FIG. 83 is a perspective view corresponding to FIG. 14 and showing a surface of a base sheet for a semiconductor module according to a modified example of the above embodiment of the present invention.
  • FIG. 84 is a sectional view taken along line XV—XV in FIG.
  • FIG. 85 is a perspective view corresponding to FIG. 35 and showing a surface of a semiconductor module base sheet according to a modification of the embodiment of the present invention.
  • FIG. 86 is a perspective view corresponding to FIG. 35 and showing a surface of a semiconductor module base sheet according to a modified example of the above embodiment of the present invention.
  • FIG. 87 is a plan view of a metal conductor portion that can be used in FIGS. 82 to 86 and the like. Yes,
  • FIG. 88 is a cross-sectional view taken along the line C-C of FIG.
  • FIG. 89 is a plan view of a metal conductor portion usable in FIGS. 82 to 86
  • FIG. 90 is a cross-sectional view taken along a line D-D of FIG.
  • FIG. 91 is a plan view of a metal conductor portion usable in FIGS. 82 to 86
  • FIG. 92 is a cross-sectional view taken along line E--E of FIG.
  • FIG. 93 is a partially enlarged plan view showing the surface of a semiconductor module base sheet according to a modification of the above embodiment of the present invention.
  • FIG. 94 is a sectional view taken along the line X—X of FIG.
  • FIG. 95 is a cross-sectional view taken along line XX of FIG. 93 according to a modification of FIG. 93.
  • FIG. 96 is a cross-sectional view of a semiconductor module base sheet according to a modification of the above embodiment of the present invention. It is a partially enlarged plan view showing the surface,
  • FIG. 97 is a cross-sectional view taken along line Y—Y of FIG.
  • FIG. 98 is a partially enlarged plan view showing a surface of a semiconductor module substrate sheet according to a modification of the above embodiment of the present invention.
  • FIG. 99 is a sectional view taken along the line X—X of FIG.
  • FIG. 100 is a sectional view taken along line XX of FIG. 98 according to a modification of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view showing the front surface of the semiconductor module base sheet 8 according to the first embodiment
  • FIG. 2 is a perspective view showing the back surface of the base sheet 8 of FIG.
  • Figure 3 shows FIG. 3 is a sectional view taken along line III-III in FIG.
  • a semiconductor module base sheet 8 is composed of an insulating substrate 1 having six rectangular semiconductor chip arrangement areas 2 and connecting parts 4 located at four corners of each semiconductor chip arrangement area 2.
  • the linear through holes 3 provided on the four sides of the semiconductor chip arrangement area 2 and the through holes 3 of each semiconductor chip arrangement area 2 on one side of the insulating substrate 1 A large number of patterns are formed toward the central region 2 (in FIG. 1, they are patterned in parallel with each other and are drawn less than the actual number.)
  • a large number of patterns are formed from the through holes 3 of each semiconductor chip mounting area 2 toward the center area of the area corresponding to the back surface of the semiconductor chip mounting area 2 (in FIG.
  • the outer lead portion 6 and the inner lead portion 5 provided on the insulating substrate 1 on the side wall surface of the through hole 3 on the side of the semiconductor chip arrangement region are drawn.
  • a large number of patterns are formed between the outer lead section 6 and the inner lead section 5 and the outer lead section 6 to electrically connect the inner lead section 5 and the outer lead section 6. It is drawn less than the number of lines.
  • the insulating substrate 1 synthetic fiber cloth base epoxy resin, or glass cloth / paper composite base epoxy resin, or glass cloth / glass nonwoven composite base epoxy resin, or glass cloth base epoxy resin, or Laminated plate such as glass cloth base material Teflon resin, or polyetherimide resin, or polysulfone resin, or polyethersulfone resin, or benzocyclobutene resin, or BT resin resin, or Teflon A resin such as resin, aluminum nitride, silicon carbide, or ceramic such as alumina can be used.
  • the thickness of the insulating substrate 1 is, for example, 0.1 mm to 0.2 mm.
  • the linear through holes 3 are formed on the four sides of each semiconductor chip arrangement region 2 except for the connection portions 4 at the four corners of the semiconductor chip arrangement region 2.
  • the size of each semiconductor chip arrangement area 2 is, for example, a square or rectangle having a side of about 0.5 mm to 5 O mm. What is it? Further, the width of each through hole 3 is at least 0.1 mm or more to form the connection portion 7 on the side wall surface in the hole, and is usually, for example, about 0.3 mm to 3 mm.
  • the connecting portion 4 is limited to the structure shown in FIG. 1 if each semiconductor chip arrangement region 2 is sufficiently held as a part of the base sheet and the desired connecting portion 7 can be formed on the side wall surface of the through hole 3. No matter how it is provided. For example, Figs. 4A to 4
  • the number of connecting portions 4 may be reduced by connecting adjacent through-holes 3 as appropriate, or conversely, although not specifically shown, the number of through-holes 3 is increased. Thus, the number of connecting portions 4 may be increased. Further, as shown in FIGS. 4B, 4C, and 4D, the connecting portion 4 may be formed at a position other than each corner of each semiconductor chip arrangement region 2. Further, in FIG. 1, the through holes 3 between the adjacent semiconductor chip arrangement regions 2 are shared, but the through holes 3 may be independent for each semiconductor chip arrangement region (see FIG. Not shown). As a method of forming the through holes 3 in the base sheet, there are press working, router working, drill working, and laser working.
  • each of the inner lead portion 5, the outer lead portion 6, and the connection portion 7, a metal such as copper, nickel, or gold is preferable, and the inner lead portion 5, the outer lead portion 6 is preferably used.
  • the connecting portion 7 is formed with a thickness of, for example, 0. L // m to 50 // m.
  • a semiconductor module substrate sheet 8a As shown in FIG. 5, a semiconductor module substrate sheet 8a according to a modification of the first embodiment of the present invention has a semiconductor chip arrangement region 2 on the surface on which the inner leads 5 are formed.
  • the semiconductor chip 10 By having a concave portion 9 large enough to accommodate the semiconductor chip 10 in the center and storing and holding the semiconductor chip 10 in the concave portion 9, the semiconductor chip 10 can be more stably held on the base sheet 8. It may be.
  • the six semiconductor chip arrangement areas 2 of the base sheet 8 are respectively provided.
  • each electrode terminal of each semiconductor chip 10 and each corresponding inner lead portion 5 are electrically connected by a wire 11 such as gold.
  • a wire 11 such as gold.
  • the sealing operation is performed in the semiconductor module assembly 08, the semiconductor chip 10 placed in the semiconductor chip placement area 2 of each of the six semiconductor modules 100 of the semiconductor module assembly 108 Are sealed to form a semiconductor package assembly 118 as shown in FIG.
  • This sealing work is to seal at least the electrode terminals of the semiconductor chip 10 and at least the through-hole side of the inner lead portion 5, and the sealing portion 12 formed by sealing is made of ceramic. It may be covered with a hollow lid such as metal or metal, resin may be applied with a dispenser or the like, or resin such as epoxy resin or phenol resin may be injection-molded. In such a state of the semiconductor package assembly 118, it may be transported to the next process or the like, or may be shipped as a part.
  • each connecting portion 4 forms a small flat surface at each corner by cutting at the shortest distance connecting the ends of the through holes 3 on two adjacent sides of each semiconductor chip placement region 2 I do.
  • the cutting method is not necessarily limited to the method of forming a small flat surface at each corner as described above. For cutting, a punching press, router processing, laser processing, V-cut, or dicer cutting is used.
  • each connecting portion 4 cuts at the shortest distance connecting the ends of the through holes 3 on two adjacent sides of each semiconductor chip arrangement region 2 of each base 13. For cutting, punching press, router processing, laser processing, V-cut, or dicer cut are used.
  • the semiconductor chip 10 is fixed to the separated semiconductor chip placement area 2 of the base 13 with an adhesive 110 or the like, and then each electrode of the semiconductor chip 10 is fixed.
  • the terminals and the respective inner lead portions 5 corresponding thereto are electrically connected by wires 11 such as gold to obtain a semiconductor module 100 shown in FIG. In such a state of the semiconductor module 100, it may be conveyed to the next process or the like, or may be shipped as a part.
  • a semiconductor package 14 is formed.
  • This sealing operation is to seal at least the through-hole side of each electrode terminal of the semiconductor chip 10 and the inner lead portion 5, and the sealing portion 12 formed by the sealing is made of ceramics or the like.
  • a hollow lid made of metal or the like may be covered, a resin may be applied with a dispenser or the like, or a resin such as an epoxy resin or a phenol resin may be injection-molded. In such a state of the semiconductor package 14, the semiconductor package 14 may be transported to the next process or the like, or may be shipped as a component.
  • the method of separating the semiconductor modules 100 one by one has been described.
  • the semiconductor module i 100 may be separated two by two as shown in FIG.
  • the multi-semiconductor module 1 1 4 in a state where the two semiconductor modules 100 are mounted on the base 1 13 corresponding to two of the bases 13 May be obtained.
  • a special inner lead portion is formed on the surface side of the base sheet as shown in FIG. Electrical connection, or a special arter lead (not specifically shown) having the same shape as the special inner lead of FIG. 13 is formed on the back side of the base sheet.
  • the electrical connection may be made, or the inner lead portion and the outer lead portion may be electrically connected by a metal layer or an inner layer wiring on the inner surface of the through hole.
  • a multi-semiconductor module in which a larger number of semiconductor modules are mounted on one base may be obtained by separating the semiconductor module 100 into an arbitrary number of three or more. Also in this case, an arbitrary number of three or more semiconductor modules 100 are similarly electrically connected.
  • the outer lead 6 on the area corresponding to the semiconductor chip arrangement area 2 on the back surface of the base sheet rather than the through hole 3, and to obtain the overall dimensions of the semiconductor chip module.
  • the size of the entire semiconductor package can be reduced.
  • the difference between the semiconductor module base sheet 8b according to the second embodiment and the semiconductor module base sheet 8 according to the first embodiment is that the semiconductor module base sheet 8b is provided not on the four sides of each semiconductor chip placement area 2 but on two opposing sides. Only the through hole 3b is provided.
  • the through hole 3b is a continuous elongated hole corresponding to the three semiconductor chip arrangement regions 2 arranged adjacently along the longitudinal direction of the base sheet 8b. Therefore, as shown in FIGS. 14, 15 and 16, the inner lead portion 5, the outer lead portion 6, and the connecting portion 7 for connecting the inner lead portion 5, not the four sides of the semiconductor chip arrangement region 2, are also provided. It is formed only for the through hole 3b on the two opposite sides.
  • through-holes need to be provided on two sides instead of four sides of each semiconductor chip arrangement region.
  • the number of the holes 3 can be reduced, the processing time of the through holes 3 for the base sheet 8b can be reduced and the cost can be reduced, and the inner lead portion 5, the outer lead portion 6, and , these The number of connecting parts 7 to be connected can be reduced.
  • a semiconductor module base sheet 8b As shown in FIG. 17, a semiconductor module base sheet 8b according to a modification of the second embodiment of the present invention has a center of each semiconductor chip arrangement region 2 on the surface on which the inner lead portion 5 is formed.
  • the semiconductor chip 10b is provided with a concave portion 9 large enough to receive the semiconductor chip 10b, and the semiconductor chip 10b is stored and held in the concave portion 9, so that the base sheet 8 can be more stably held.
  • each of the six semiconductor chip placement areas 2 of the base sheet 8b After the semiconductor chip 10b is fixed with an adhesive or the like, each electrode terminal of each semiconductor chip 10b and each corresponding inner lead portion 5 are electrically connected by a wire 11 such as gold.
  • a semiconductor module assembly 108 b shown in FIG. 18 composed of six semiconductor modules connected to each other is obtained. Such a semiconductor module assembly 108b may be transported to the next process or the like or shipped as a component.
  • each of the chips 1 Ob is sealed to form a semiconductor package assembly 118b as shown in FIG.
  • This sealing work is to seal at least the through-hole side of each electrode terminal of the semiconductor chip 10 b and the inner lead portion 5, and the sealing portion 12 formed by sealing is made of a ceramic material.
  • a hollow lid made of metal or the like may be covered, a resin may be applied with a dispenser or the like, or a resin such as an epoxy resin or a phenol resin may be injection-molded. In such a state of the semiconductor package assembly 118b, it may be transported to the next process or the like, or may be shipped as a component.
  • the semiconductor packages 14b from the semiconductor package assembly 1 18b can be separated one at a time or several at once. Outside each semiconductor chip placement area 2 The remaining two sides of the semiconductor chip arrangement area 2 where the through holes 3 are not formed are cut into rectangles substantially in parallel. For cutting, punching press, router processing, laser cutting, V-cut, or dicer cut are used.
  • the insulating substrate that is, the base 13b corresponding to the semiconductor module 100b can be cut off before the semiconductor chip 100b is mounted on the base 13b. That is, the bases 13b from the semiconductor module base sheet 8b of FIG. 21 are arranged one at a time or a plurality of the bases 13 at a time outside the semiconductor chip placement area 2 and at the same time, Through hole in chip placement area 2
  • the semiconductor chip 1 O b is attached to the separated semiconductor chip placement area 2 of the separated base 13 b by an adhesive or the like 110 (the cross-sectional view is similar to that of FIG. See Fig. 12. However, the semiconductor chip 10 corresponds to the semiconductor chip 10b.)
  • each electrode terminal of the semiconductor chip 10b and each corresponding inner lead portion 5 are made of gold or the like.
  • the semiconductor module 100b is electrically connected by the wire 11 of FIG. In such a state of the semiconductor module 100b, the semiconductor module may be transported to the next process or the like, or may be shipped as a component.
  • a semiconductor package 14b is formed.
  • This sealing work is to seal at least the through-hole side of each electrode terminal of the semiconductor chip 10b and the inner lead portion 5, and the sealing portion 12 formed by sealing is made of ceramic or the like. It may be covered with a hollow lid made of metal or the like, resin may be applied with a dispenser, or epoxy resin or phenol resin May be injection molded. In such a state of the semiconductor package 14b, the semiconductor package 14b may be transported to the next process or shipped as a part.
  • the semiconductor module 10 In the method for manufacturing a semiconductor module, the semiconductor module 10
  • the semiconductor module 100b is separated one by one, but the present invention is not limited to this.
  • Two electrically connected semiconductor modules 100 b force Obtain multi-semiconductor module 2 14 mounted on base 2 13 equivalent to two bases 13 b You may do so.
  • a special inner lead portion is formed on the surface side of the base sheet to electrically connect, or
  • a special outer lead part with the same shape as the special inner lead part in Fig. 24 is formed on the back side of the base sheet and electrically connected, or the inner lead part and the outer lead part are formed.
  • a multi-semiconductor module in which a larger number of semiconductor modules are mounted on a single base may be obtained by separating the semiconductor module 100b into an arbitrary number of three or more. In this case as well, an arbitrary number of three or more semiconductor modules 100b are similarly electrically connected.
  • the outer lead 6 can be provided on the area corresponding to the semiconductor chip arrangement area 2 on the back surface of the base sheet with respect to the through hole 3b, and the entire semiconductor chip module can be provided. And the overall dimensions of the semiconductor package can be reduced.
  • the semiconductor chip arrangement region 2 can be packed and arranged on the two sides where the through holes need not be formed.
  • the semiconductor chips can be arranged at a high density on the base sheet, a large number of semiconductor modules can be formed, and the cost can be reduced.
  • the semiconductor module according to the second embodiment is In the joule base sheet 8b, the inner lead portion 5 extends into the semiconductor chip arrangement area 2, and its end is directly connected (down-face tangent) to the electrode terminal 10a on the bottom surface of the semiconductor chip 10V.
  • the wire 11 is unnecessary.
  • a semiconductor module base sheet 8c in which a number of base sheets 8b are connected in the width direction can be used.
  • the insulating substrate 1c and the through hole 3c in FIG. 26 correspond to the insulating substrate 1 and the through hole 3b in FIG. 25, respectively.
  • positioning holes 39 are continuously provided at predetermined intervals outside the semiconductor chip arrangement area 2 at one end in the width direction. When the positioning holes 39 are provided in this manner, the positioning sheet (not shown) is inserted into the positioning holes 39, and the base sheet 8c is fixed at a predetermined position. Bonding between each electrode terminal and the inner lead portion 5 can be performed.
  • the positioning pin is once removed from the positioning hole 39, and the base sheet 8c is moved by a predetermined pitch. Then, the base sheet 8c is again placed in the positioning hole 39 opposed to the positioning pin.
  • the next bonding operation can be performed by inserting the pins and fixing the position of the base sheet 8c at the predetermined position. In this way, the electrode terminals of the semiconductor chip 10 and the inner lead portions 5 can be joined without displacement.
  • the semiconductor chip 10 V has a concave portion 9 large enough to accommodate the semiconductor chip 10 b V, and the semiconductor chip 10 V is accommodated and held in the concave portion 9, so that the semiconductor chip 10 V can be more stably held on the base sheet 8. It may be.
  • the semiconductor chip 1 Ow may be mounted on a base sheet, and the bumps 41 may be electrically connected to the inner lead portion 5 to obtain the semiconductor module 3 14.
  • the anisotropic conductive adhesive 42 is interposed between the electrode terminal 10 a on the bottom surface of the semiconductor chip 10 V and the inner lead portion 5.
  • the semiconductor module 414 may be obtained by electrical bonding (down-face tangent).
  • bumps 40 are provided at the ends of the outer lead portions 6 on the back surface of the base sheet, as shown in FIG.
  • the semiconductor package 514 or the semiconductor module may be electrically connected to another circuit board or component by the bump 40.
  • the outer lead 6 can be provided on the side of the back surface of the base sheet corresponding to the semiconductor chip arrangement area 2 with respect to the through hole 3b, and the entire semiconductor module can be provided.
  • the size and the size of the entire semiconductor package can be made smaller.
  • the size of the entire semiconductor module and the size of the entire semiconductor package can be reduced by the connection portion between the wire and the inner lead portion.
  • the wires are formed so as to rise above the semiconductor chip as shown in the figure, a corresponding space is required above the semiconductor chip. No space is required, and the height of the semiconductor module or semiconductor package can be reduced.
  • the difference between the semiconductor module base sheet 8 d according to the fourth embodiment and the semiconductor module base sheet 8 b according to the second embodiment is that, as shown in FIG. It consists of an insulating substrate 1. That is, in FIG. 31, three semiconductor chip arrangement areas 2 are arranged adjacent to each other, and the inner lead portions 5 and the outer lead portions 6 are provided at opposing edges along the longitudinal direction of the base sheet 8 d. And a connection section 7 for connecting them.
  • This fourth since the labor for forming a through hole can be reduced as compared with the previous embodiment, the base sheet becomes cheaper.
  • the fourth embodiment it is possible to project the outer leads 6 from the opposing edge portions along the longitudinal direction of the base sheet 8d to the area corresponding to the semiconductor chip arrangement area 2 on the back surface of the base sheet.
  • the size of the entire semiconductor chip module and the size of the entire semiconductor package can be reduced.
  • the difference between the semiconductor module base sheet 8e according to the fifth embodiment and the semiconductor module base sheet 8b according to the second embodiment is that, as shown in FIG. Is formed of a rectangular insulating substrate 1 in which the vicinity of the area where the is formed is recessed from other parts. That is, in FIG. 32, three semiconductor chip arrangement areas 2 are arranged adjacent to each other, and the three semiconductor chip arrangement areas 2 are respectively arranged at opposing edges along the longitudinal direction of the base sheet 8e.
  • the vicinity where the connecting portion 7 is formed is recessed from other portions to form a recess 3 e.In the vicinity of the recess 3 e, the inner lead portion 5, the outer lead portion 6, and the like are provided. And a connection part 7 for connecting the two.
  • the base sheet can be more inexpensive, and the length of the base sheet 8 e can be reduced.
  • the connecting portions 7 are provided in the recesses 3 e recessed from the other portions, so that when handling the base sheet 8 d, the connection portion 7 is smaller than the rectangular base sheet 8 d in FIG. 31.
  • the connection part 7, the inner lead part 5, and the outer lead part 6 are not easily damaged.
  • the outer lead 6 can be protruded from the opposite edge portion along the longitudinal direction of the base sheet 8 e to the area corresponding to the semiconductor chip arrangement area 2 on the back surface of the base sheet, The size of the entire semiconductor chip module and the size of the entire semiconductor package can be reduced.
  • the difference between the semiconductor module base sheet 8f according to the sixth embodiment and the semiconductor module base sheet 8b according to the second embodiment is that, as shown in FIG. Is formed of a rectangular insulating substrate 1 without an outer through-hole 3 surrounding the substrate. That is, in FIG. 33, six semiconductor chip arrangement areas 2 are arranged adjacent to each other, the through holes 3 are provided only between the adjacent semiconductor chip arrangement areas 2, and the longitudinal direction of the base sheet 8f An inner lead portion 5, an outer lead portion 6, and a connecting portion 7 for connecting the inner lead portion 5 and the outer lead portion 6 are provided at each of the opposing edge portions along and along the lateral direction. According to the fourth embodiment, since the labor for forming the through holes is eliminated as compared with the previous embodiment, the base sheet is more inexpensive.
  • the filter lead 6 can be protruded from the opposing edge portion along the longitudinal direction of the base sheet 8f to the area corresponding to the semiconductor chip arrangement area 2 on the back of the base sheet, The size of the entire semiconductor chip module and the size of the entire semiconductor package can be reduced.
  • the semiconductor module substrate sheet 8g according to the seventh embodiment is different from the semiconductor module substrate sheet 8b according to the second embodiment in that, as shown in FIG. Instead of the through-hole 3 surrounding the outside, the area where the connection portion 7 is formed is made up of a rectangular insulating substrate 1 provided with a recess 3 h that is hollowed out from other portions. . That is, in FIG. 34, six semiconductor chip arrangement regions 2 are arranged adjacent to each other, and six opposing edge portions along the longitudinal direction and the lateral direction of the base sheet 8 g are attached to each other. The vicinity of the semiconductor chip mounting area 2 where the respective connection portions 7 are formed is recessed from other portions to form a recess 3 h.
  • the inner lead portion 5 and the outer A lead section 6 and a connection section 7 for connecting them are provided.
  • the seventh embodiment as compared with the first to third embodiments, labor for forming a through hole is reduced.
  • the base sheet becomes less expensive, and the connecting portion 7 is provided in the recess 3 h that is recessed from the other part at the opposing edge portion along the longitudinal direction of the base sheet 8 g. Therefore, when handling the base sheet 8g, the connecting portion 7, the inner lead portion 5, and the outer lead portion 6 are less likely to be damaged than the rectangular base sheet 8f in FIG.
  • the filter lead 6 can be protruded from the opposing edge portion along the longitudinal direction of the base sheet 8 g to the region corresponding to the semiconductor chip arrangement region 2 on the back surface of the base sheet.
  • the size of the entire semiconductor chip module and the size of the entire semiconductor package can be reduced.
  • the difference between the semiconductor module base sheet 8j according to the eighth embodiment and the semiconductor module base sheet 8 according to the first embodiment is that, as shown in FIGS. 35, 36, and 57, the through holes 3j
  • the connection part 7 is arranged on the side wall surface opposite to the semiconductor chip arrangement area side, and the inner lead part 5 is arranged in the direction away from the semiconductor chip arrangement area 2 from the connection part 7 and the connection part 7
  • the outer lead portion 6 is arranged in a direction away from the region corresponding to the back surface of the semiconductor chip arrangement region 2 from the above.
  • the through hole 3j is similar to the through hole 3. That is, the linear through-holes 3 j are formed on the four sides of each semiconductor chip
  • each semiconductor chip arrangement region 2 is, for example, a square or rectangle having a side of about 0.5 mm to 5 O mm.
  • the width of each through-hole 3j is at least 0.1 mm or more to form the connection portion 7 on the side wall surface in the hole, and is usually, for example, about 0.3 mm to 3 mm.
  • the structure such as the arrangement and the shape of the through hole 3j is not limited to that shown in FIG. 35 as long as the desired connection portion 7 can be formed on the side wall surface of the through hole 3, and may be provided in any manner. For example, as shown in FIG. 37A to FIG.
  • the number of through holes 3 j may be reduced by connecting adjacent through holes 3 j as appropriate, or conversely, not specifically shown. But the through holes 3 i Even if you increase the number, it will not.
  • the location of the through-hole 3j is not limited to each side of each semiconductor chip placement area 2, but is arranged so as to straddle a corner. You can.
  • As a method of forming the through holes 3j in the base sheet there are press working, router working, drill working, and laser working. As shown in FIG.
  • the semiconductor module base sheet 8j As the semiconductor module base sheet 8j according to the modification of the eighth embodiment of the present invention, the center of each semiconductor chip arrangement region 2 on the surface where the inner lead portion 5 is formed is shown.
  • the semiconductor chip 10 is provided with a concave portion 9 large enough to accommodate the semiconductor chip 10, and the semiconductor chip 10 is stored and held in the concave portion 9, so that the semiconductor chip 10 can be more stably held on the base sheet 8. You may.
  • each of the six semiconductor chip arrangement areas 2 of the base sheet 8j is After the semiconductor chip 10 is fixed with an adhesive or the like, each electrode terminal of each semiconductor chip 10 and each corresponding inner lead portion 5 are straddled through the through hole 3 j and wires 11 such as gold. To make electrical connection.
  • a semiconductor module assembly 108 j of FIG. 39 composed of six semiconductor modules connected to each other is obtained. Such a semiconductor module assembly 108 j may be transported to the next process or the like, or may be shipped as a part.
  • the semiconductor module assembly 108 j When performing the sealing operation in the semiconductor module assembly 108 j, the semiconductor module assembly 108 j was placed in each semiconductor chip arrangement area 2 of the six semiconductor modules 600 in the semiconductor module assembly 108 j. Each of the semiconductor chips 10 is sealed to form a semiconductor package assembly 118 j as shown in FIG. This sealing work is to seal at least the electrode terminals of the semiconductor chip 10 and at least the through-hole side of the inner lead portion 5.
  • the sealing portion 12 formed by sealing is made of ceramic or metal. Or a resin such as epoxy resin or phenol resin, or a resin such as epoxy resin or phenol resin.
  • the semiconductor package assembly 118 j may be transported to the next process or the like, or may be shipped as a component. In the case of separating into individual semiconductor packages 6 14, as shown in FIG.
  • the semiconductor packages 6 1 4 from the semiconductor package assembly 1 18 j can be separated one at a time or at once. Separate each. At the time of this separation, outside each semiconductor chip arrangement region 2, a force is cut substantially parallel to a portion where the through hole 3 of each semiconductor chip arrangement region 2 is not formed, that is, an adjacent side. For cutting, a punching press, router processing, laser processing, V-cut, or dicer cut is used.
  • the insulating substrate corresponding to the individual semiconductor modules 600 that is, the base 13j can be cut off before the semiconductor chip 10 is mounted on the base 13j. That is, the bases 13 j are cut one at a time or a plurality of pieces at a time from the semiconductor module base sheet 8 j of FIG. At the time of this separation, the semiconductor chip is cut substantially parallel to the outside of each semiconductor chip arrangement region 2 of each base 1 3 j and to a portion where the through hole 3 of each semiconductor chip arrangement region 2 is not formed, that is, an adjacent side. .
  • punching press, router processing, laser processing, V-cut, or dicer cut are used for cutting.
  • the semiconductor chip 10 is fixed to the separated semiconductor chip placement area 2 of the base 13 j with an adhesive 110 or the like (see FIG. 54).
  • the semiconductor module 600 is obtained by electrically connecting each of the electrode terminals 10 and each of the corresponding inner lead portions 5 with a wire 11 such as gold. In such a state of the semiconductor module 600, it may be conveyed to the next process or the like, or may be shipped as a part.
  • a semiconductor package 6 14 is formed.
  • This sealing operation is to seal at least the through-hole side of each electrode terminal of the semiconductor chip 10 and the inner lead portion 5, and as the sealing portion 12 formed by sealing,
  • a hollow lid made of ceramic or metal may be covered, resin may be applied with a dispenser or the like, or resin such as epoxy resin or phenol resin may be injection-molded. In such a state of the semiconductor package 614, it may be transported to the next process or the like, or may be shipped as a component.
  • the semiconductor module 60 in the method for manufacturing a semiconductor module, the semiconductor module 60
  • the present invention is not limited to this.
  • the semiconductor modules 600 By disconnecting the semiconductor modules 600 two by two and electrically connecting the two, the two semiconductor modules 600 are separated from each other. It is also possible to obtain a multi-semiconductor module mounted on a base corresponding to two bases 13 j.
  • a special inner lead portion is formed on the surface side of the base sheet as shown in FIG. 13 or FIG. 24, and the two semiconductor modules 600 are electrically connected.
  • a special outer lead portion having the same shape as the special inner lead portion shown in FIG. 13 or FIG.
  • the semiconductor module 600 may be separated by an arbitrary number of three or more to obtain a multi-semiconductor module in which a larger number of semiconductor modules are mounted on one base. In this case as well, an arbitrary number of three or more semiconductor modules 600 are similarly electrically connected.
  • connection portion 7 can be prevented from being exposed to the side surface of the semiconductor module or the semiconductor package by projecting the lead outside the through hole 3 j, and as a result, Helps to improve product reliability.
  • the base sheet 8 m in FIG. 79, the semiconductor module aggregate 108 m in FIG. 80, and the semiconductor package aggregate 118 m in FIG. As shown in the figure, if the length of the inner lead is shortened to the semiconductor chip placement area side from the cut portion that separates the individual semiconductor packages so that it fits within the sealing portion 12, reliability is further improved. However, when the semiconductor package is separated into individual semiconductor packages, burrs do not occur at the inner lead portion.
  • a base sheet for a semiconductor module according to a ninth embodiment of the present invention and a method for manufacturing a semiconductor module using the base sheet will be described.
  • the difference between the semiconductor module base sheet 8k according to the ninth embodiment and the semiconductor module base sheet 8j according to the eighth embodiment is not the four sides of each semiconductor chip arrangement region 2, but the opposing sides. That is, a through hole 3 k is provided only on two sides.
  • the through hole 3k is a continuous elongated hole corresponding to the three semiconductor chip arrangement regions 2 arranged adjacently along the longitudinal direction of the base sheet 8k. Therefore, as shown in FIGS. 45, 46, and 58, the inner lead portion 5, the outer lead portion 6, and the connecting portion 7 for connecting them are not the four sides of each of the semiconductor chip arrangement regions 2, as shown in FIGS. However, it is formed only for the through hole 3k on the two opposing sides.
  • the number of through holes 3 k for one semiconductor module can be reduced, and the processing time of the through holes 3 k for the base sheet 8 k is reduced.
  • the cost can be reduced, and the number of the inner lead portions 5, the outer lead portions 6, and the connection portions 7 connecting these components can be reduced.
  • the semiconductor module base sheet 8p As shown in FIG. 47, as the semiconductor module base sheet 8p according to the modification of the ninth embodiment of the present invention, as shown in FIG. 47, as the semiconductor module base sheet 8p according to the modification of the ninth embodiment of the present invention, as shown in FIG.
  • the semiconductor chip 10b By having a concave portion 9 large enough to accommodate the semiconductor chip 10b in the center and storing and holding the semiconductor chip 10b in the concave portion 9, the semiconductor chip 10b can be more stably held on the base sheet 8. You may do so.
  • each semiconductor chip 10 is fixed with an adhesive or the like, each electrode terminal of each semiconductor chip 10b and each corresponding inner lead portion 5 are electrically connected to each other by wires 11 such as gold. I do.
  • wires 11 such as gold. I do.
  • a semiconductor module assembly 108 k in FIG. 48 including six semiconductor modules connected to each other is obtained. Collection of such semiconductor modules It may be transported to the next process or the like in the state of united 108 k or shipped as parts.
  • the semiconductor module assembly 108 k When performing the sealing operation in the semiconductor module assembly 108 k, the semiconductor module assembly 108 k was placed in each semiconductor chip arrangement area 2 of the six semiconductor modules 700 in the semiconductor module assembly 108 k. Each of the semiconductor chips 10b is sealed to form a semiconductor package assembly 118k as shown in FIG.
  • This sealing work is to seal at least the electrode terminals of the semiconductor chip 10b and at least the through-hole side of the inner lead portion 5, and the sealing portion 12 formed by sealing is made of ceramics.
  • a hollow cover made of metal or the like may be covered, a resin may be applied with a dispenser or the like, or a resin such as an epoxy resin or a fuanol resin may be injection-molded. In such a state of the semiconductor package assembly 118k, the semiconductor package assembly may be transported to the next process or the like, or may be shipped as a component.
  • the semiconductor packages 7 14 from the semiconductor package assembly 1 18 k can be separated one at a time or several at once. Each is cut into a rectangle outside each semiconductor chip arrangement region 2 and substantially parallel to the four sides of each semiconductor chip arrangement region 2. For cutting, punching press, router processing, laser processing, V-cut, or dicer cutting is used.
  • the semiconductor module base sheet 8 k shown in FIG. 51 and the bases 13 k are arranged one at a time or a plurality of pieces at a time outside the semiconductor chip placement area 2 and at the same time, It is cut into a rectangle roughly parallel to the side of the chip placement area 2.
  • a punching press, router processing, laser processing, V-cut, or dicer cut is used for cutting.
  • each electrode terminal of the semiconductor chip 10 b and each corresponding inner lead portion 5 are connected to the wire 11 1 such as gold.
  • a semiconductor module 700 is obtained. In such a state of the semiconductor module 700, it may be transported to the next process or the like, or may be shipped as a component.
  • the sealing operation is performed in the semiconductor module 700, the semiconductor chip 10b mounted on each semiconductor chip placement region 2 of the semiconductor module 700 is sealed, and the semiconductor chip 700 shown in FIG.
  • the semiconductor package 714 is formed.
  • This sealing work is to seal at least the through-hole side of each electrode terminal of the semiconductor chip 10b and the inner lead portion 5, and the sealing portion 12 formed by sealing is used.
  • a hollow lid made of ceramic or metal may be covered, a resin may be applied with a dispenser, or the like, or an epoxy resin or a funool resin may be injection-molded.
  • the semiconductor package 714 may be transported to the next process or the like or shipped as a component.
  • the semiconductor module 70 In the method of manufacturing a semiconductor module, the semiconductor module 70
  • the present invention is not limited to this.
  • the two semiconductor modules 700 By separating the semiconductor modules 700 two by two and electrically connecting them, the two semiconductor modules 700 A multi-semiconductor module mounted on a base corresponding to two bases 13 k may be obtained.
  • a special inner lead portion is formed on the surface side of the base sheet to electrically connect them.
  • a multi-semiconductor module in which a larger number of semiconductor modules are mounted on one base may be obtained by separating the semiconductor module 700 into an arbitrary number of three or more. In this case as well, an arbitrary number of three or more half The conductor modules 700 are appropriately electrically connected. Further, by providing the through-holes on two opposite sides of the semiconductor chip placement area 2, the semiconductor chip placement area 2 can be packed and arranged on two sides where it is not necessary to form a through-hole. The semiconductor chips can be arranged at high density on the chip, and a large number of semiconductor modules can be formed, thereby reducing the cost.
  • a through hole 3 k is provided in the semiconductor chip arrangement region 2 in the semiconductor module base sheet 8 k according to the ninth embodiment.
  • the electrode terminal 10a on the bottom surface of w is directly connected (down-fuse tangent) to the inner lead portion 5 located in the semiconductor chip disposition area 2 and outside the through hole to obtain the semiconductor module 701, This is different from the ninth embodiment in that it does not require S.
  • a chip 10 w may be prepared, the semiconductor chip 1 ow may be mounted on a base sheet, and the bumps 41 may be electrically connected to the inner lead portions 5 to obtain the semiconductor module 701.
  • an anisotropic conductive adhesive 4 may be obtained by electrical connection (down-face tangent) with the interposition of the two.
  • the rising height of the connection portion between the semiconductor chip and the wire is unnecessary, so that the height of the semiconductor module can be reduced. It is also effective in places where wire-to-wire bonding is difficult when connecting narrow pitch inner leads to semiconductor chips. Also, the connection area between the wire and the lead can be omitted.
  • FIG. 59 shows a substrate sheet 8 m for a semiconductor module according to the eleventh embodiment of the present invention.
  • 8 m of the base sheet is provided with lead 200 for surface treatment. These are formed together with the inner lead 5 or outer lead 6 or outer lead 6 and inner lead 5 so that these leads can be formed by electrolytic plating as described later. It is. Also, since the surface treatment lead 200 is connected to all of the inner leads, all of the outer leads, or all of the inner leads and all of the outer leads, electrolytic plating can be performed. . Note that the surface treatment lead 200 may be similarly implemented so as to be electrically connected to the outer lead, or may be implemented for both the inner lead portion and the outer lead portion.
  • the inner leads and the outer leads are cut off with surface treatment leads so as not to be electrically connected.
  • the plating processing time is short and a plating with a large thickness is possible, and the connection reliability with the semiconductor chip is improved.
  • the method of forming the patterns of the inner lead portion 5, the outer lead portion 6, and the connection portion 7 of the base sheet of each of the above embodiments includes the following: There is something like that.
  • reference numerals used in the first embodiment will be used as representative examples. Therefore, in the following description, the “side wall surface of the through hole” means the side wall surface of the depression in the case of a base sheet having no through hole but having a depression. It means the part where the connection part is formed.
  • step S1 of Fig. 72 after forming a through hole 3 in the insulating substrate 1, in step S2 of Fig. 72, palladium or the like is applied to the entire surface of both surfaces of the insulating substrate 1 and the entire side wall surface of the through hole 3. Formed as a plating catalyst.
  • step S1 in FIG. 72 a through-hole 3 is formed in a substrate in which a conductor such as copper foil is adhered to both surfaces of the insulating substrate 1, and then in step S2 in FIG. Palladium or the like is coated on the entire surface of the wall and, if necessary, on both surfaces of the substrate 1. It is formed as a catalyst for g.
  • a mask resist layer is provided on portions that do not need to be masked other than the portions that should be left as 7.
  • the resist layer is formed by applying a liquid resist (step S3), exposing (step S4), and developing (step S5) using a general photosensitive resist material.
  • a plating resist layer is formed in an arbitrary pattern on the portion.
  • the above coating may be performed by a general coating method, or by immersing the substrate in a photosensitive electrodeposition solution and performing electrodeposition coating.
  • the photosensitive plating resist material for example, an acryl-based, polyvinyl cinnamate-based, synthetic rubber-based, or novolak-based photo-curable or photo-decomposable type is used.
  • a plating layer is formed by electroless plating on a portion other than the plating resist layer formed on the unnecessary portion, that is, on a portion requiring plating.
  • step S7 in FIG. 72 the plating resist layer is removed.
  • the pattern of the inner lead portion and the pattern of the outer lead portion 6 are respectively formed on both surfaces of the substrate, and the pattern of the connection portion 7 is also formed on the side wall surface of the through hole 3.
  • an appropriate stripping agent such as sodium hydroxide, sodium metasilicate, methylene chloride, glycol ether, a mixed solvent thereof, or a mixture thereof with sodium hydroxide or water oxidizing water is used in order to strip the resist layer.
  • an organic solvent such as a mixed solution with an aqueous alkali solution.
  • the plating layer is formed in a portion other than the plating resist, a pattern can be formed in accordance with the resolution of the resist, which is suitable for a fine pattern.
  • the bottom of the resist is slightly eroded, so that in comparison with that point, the etching resist matches the resist pattern.
  • a through hole 3 is formed in the insulating substrate 1 in the same manner as the method using the plating resist layer in the first and second embodiments, and then in step S12 of FIG. Then, palladium or the like is formed as a plating catalyst on the entire surface of both surfaces of the insulating substrate 1 and the entire side wall surface of the through hole 3.
  • palladium or the like is formed as a plating catalyst on the entire side wall surface of the substrate 3 and, if necessary, on the entire surface of both surfaces of the substrate 1.
  • step S12A of FIG. 73 electroless plating is performed.
  • the conductive layer made of the electroless plating is suitable for growing an electrolytic plating layer formed thereon.
  • the conductive layer made of the electroless plating is formed on the entire surface. Electroless plating is formed on the entire surface of both sides of the insulating substrate and on the side wall of the through hole as an electrically conductive layer, and then formed of metal such as copper, nickel, and tin to form a metal layer by electrical plating. I do.
  • a photoresist layer is provided on portions other than the remaining portions of the connection portion 7 on the wall surface.
  • the resist layer is formed by applying a liquid resist (step S13), exposing (step S14), and developing (step S15) using a general photosensitive resist material.
  • a photoresist layer is formed in an unnecessary pattern in an unnecessary part.
  • the coating may be performed by a general coating method, or may be performed by immersing the substrate in a photosensitive electrodeposition solution to perform electrodeposition coating.
  • a photo-curing type such as an acrylic type, a polybutyl cinnamate type, a synthetic rubber type, or a novolak type, or a photo-decomposable type is used.
  • step S16 in FIG. 73 the above plating is not performed due to electrolytic plating.
  • a plating layer is formed only on a portion other than the plating resist layer formed on a necessary portion, that is, only on a portion requiring a plating layer.
  • step S17 in FIG. 73 the plating resist layer is removed.
  • the pattern of the inner lead portion 5 and the pattern of the outer lead portion 6 are formed on both surfaces of the substrate, and the pattern of the connection portion 7 is also formed on the side wall surface of the through hole 3.
  • an appropriate stripping agent for example, sodium hydroxide, sodium metasilicate, methylene chloride, glycol ether, a mixed solvent thereof, or a mixture thereof with sodium hydroxide, is used to strip the resist layer.
  • An organic solvent such as a mixed solution with an aqueous solution of aluminum hydroxide such as lithium hydroxide is used.
  • step S18 of FIG. 73 soft etching is performed.
  • This soft etching is performed to remove the electroless plating layer formed in step S12A in the exposed portion after the resist is stripped.
  • the electrolytic plating layer serving as the inner lead portion, the outer lead portion, and the connection portion also becomes slightly thinner or thinner.
  • the chemical used for soft etching is the same as general etching, such as ferric chloride, cupric chloride, aletin persulfate, and sodium hydroxide.
  • general etching such as ferric chloride, cupric chloride, aletin persulfate, and sodium hydroxide.
  • the etching is made lighter than general etching.
  • the metal layer is formed by electric plating on portions other than the plating resist formed in an arbitrary pattern, the plating layer can be made thicker, more efficiently, and more reliable than in the first and second embodiments. A good metal layer can be formed.
  • the method of manufacturing the base sheet according to the fourteenth embodiment includes drilling (step S21), forming a catalyst for plating (step S22), electroless plating (step S22A), and electrolytic plating (step S22).
  • step S22 forming a catalyst for plating
  • step S22A electroless plating
  • step S22 electrolytic plating
  • step S22 electrolytic plating
  • step S 23 liquid resist coating
  • step S 24 exposure
  • step S 25 step S 25
  • pitching step S 26
  • resist stripping step S 27
  • And surface treatment step S28.
  • steps S 21 to S 22 A are steps S 11 of the 13th embodiment of FIG. Same as ⁇ S12A.
  • Step S22B the through-holes of a substrate with electroless plated or a metal foil such as copper on both sides of the insulating substrate are placed on the entire surface of both sides of the insulating substrate and the side wall surface of the through-hole.
  • the metal layer on the entire surface of the substrate and the side wall surface of the through hole is thickened to improve the reliability. .
  • This is the usual electrolytic plating.
  • an etching resist layer is completed on the portion where the plating is to be left, that is, the portion corresponding to the inner lead portion, the outer lead portion, and the connection portion.
  • the etching resist layer is formed by applying (step S23), exposing (step S24), and developing (step S25) using a general photosensitive etching resistant resist material to leave the above-mentioned characteristics.
  • An etching resist layer is formed on a desired portion in an arbitrary pattern.
  • the coating may be performed by a general coating method, or may be performed by immersing the substrate in a photosensitive electrodeposition solution for electrodeposition coating.
  • the photosensitive etching-resistant resist material for example, an acrylic, polybutyl cinnamate, synthetic rubber, or novolak photocurable or photodecomposable material is used.
  • the etching step (step S26) the electroless plating layer and the electrolytic plating layer in portions not covered with the etching resist layer are removed.
  • step S27 is the same as step S17 of the thirteenth embodiment in FIG.
  • the surface treatment step (step S28) may be omitted, and may be performed as needed.
  • the thickness of the etching resist layer may be smaller than the thickness of the metal layer of the electric mechanism. Further, since there is no need to perform soft etching later as in the thirteenth embodiment, the inner lead portion, the outer lead portion, and the connection portion do not become thin.
  • the method of manufacturing the base sheet according to the fifteenth embodiment includes: drilling (step S31), forming a catalyst for plating (step S32), electroless plating (step S32A), and applying a liquid resist. (Step S33), Exposure (Step S334), Current Image (step S35), etching (step S36), resist stripping (step S37), and surface treatment (step S38) are performed in this order.
  • steps S31 to S32A are the same as steps S11 to S12A of the thirteenth embodiment in FIG.
  • an etching resist layer is completed on a portion where the plating is to be left, that is, a portion corresponding to the inner lead portion, the outer lead portion, and the connection portion.
  • the etching resist layer is formed by applying (step S33), exposing (step S34), and developing (step S35) using a general photosensitive etching resistant resist material to a portion where the above-mentioned plating is to be left.
  • An etching resist layer is formed in an arbitrary pattern.
  • the above coating may be performed by a general coating method, or may be performed by immersing a substrate in a photosensitive electrodeposition solution and performing electrodeposition coating.
  • a photosensitive etching resistant resist material for example, an acryl-based, polyvinyl cinnamate-based, synthetic rubber-based, or novolak-based photo-curable or photo-decomposition type is used.
  • the etching step step S36
  • the electroless plating layer not covered with the etching resist layer is removed.
  • the above step S37 is the same as step S1 of the thirteenth embodiment in FIG.
  • the surface treatment step (Step S38) may be omitted, and may be performed as needed.
  • Step S42 various metal thin film forming methods such as vapor deposition, sputtering, and thermal spraying
  • Step S42 liquid resist coating
  • Step S44 liquid resist coating
  • Step S45 current image
  • Step S46 etching
  • step S47 Resist peeling
  • step S48 surface treatment
  • step S41 is the same as step S11 of the thirteenth embodiment in FIG.
  • the above-mentioned vapor deposition involves placing an insulating substrate in a vacuum vapor deposition machine and heating the vapor deposition material. Evaporate and adhere to the insulating substrate to form a metal layer.
  • an insulating material is put into a vacuum sputtering machine, a beam is applied to a metal target material, and the metal target material is scattered and attached to an insulating substrate to form a metal layer.
  • thermal spraying the metal material is heated and melted by a burner or the like, and blown off with air or the like to attach a metal layer to the insulating material.
  • an etching resist layer is completed in a portion where the metal layer is to be left, that is, a portion corresponding to the inner lead portion, the outer lead portion, and the connection portion.
  • the etching resist layer is formed by applying a liquid resist (step S43), exposing (step S44), and developing (step S45) using a general photosensitive etching resistant resist material.
  • An etching resist layer is formed in an arbitrary pattern on a portion where the metal layer is to be left.
  • the coating may be performed by a general coating method, or may be performed by immersing the substrate in a photosensitive electrodeposition solution for electrodeposition coating.
  • the photosensitive etching-resistant resist material for example, an acrylic, polybutylcinnamate-based, synthetic rubber-based, or novolak-based photocurable or photodecomposable resist material is used.
  • the etching step (step S46) a portion of the metal layer that is not covered with the etching resist layer is removed.
  • the above step S47 is the same as step S17 of the thirteenth embodiment in FIG.
  • the surface treatment step (step S48) may be omitted, and may be performed as needed.
  • This method is effective for forming a metal thin film on an insulating material such as a ceramic which does not easily have an electroless plating, or an insulating material such as a polyester film or a polyimide film which does not have a sufficient adhesion strength.
  • a surface treatment step may be performed as necessary after the resist stripping step (step S7) of the above-described first embodiment. .
  • the soft etching process according to the thirteenth embodiment is performed.
  • Step S8B a surface treatment step
  • a portion described as a side wall surface of a through hole refers to a portion where a connection portion is formed, such as a base sheet edge, in a base sheet having no through hole.
  • an insulating substrate 38 covered with a photosensitive resist film (after completion, the above-mentioned insulating substrate 1 is obtained).
  • the light control sheet 34 is used only on one surface of the insulating substrate 38.
  • FIG. 65 shows a modified example in which the positional relationship between the mask 33 and the light control sheet 34 may be opposite to the positional relationship in FIG. 64 with respect to the insulating substrate 38.
  • an insulating substrate 38 covered with a photosensitive resist film is placed on one side in the order of FIGS. 64 and 67 or vice versa.
  • the light control sheet 34 is used for both surfaces of the insulating substrate 38.
  • an insulating substrate 38 covered with a photosensitive resist film is exposed simultaneously on both sides, and the light control sheet 34 is provided on one side.
  • an inexpensive substrate 38 covered with a photosensitive resist film is exposed on both sides simultaneously, and the light control sheet 34 is exposed on both sides.
  • the exposure of the photosensitive resist film 32 for forming the etching resist layer and the plating resist layer is performed as follows.
  • the mask 33 and the light control sheet 34 are overlaid on one surface of the insulating substrate 38, for example, the upper surface of FIG. 62, as shown in FIG. 64, the light control sheet 34 and the mask
  • the photosensitive resist film 32 is exposed downward from the top through the light transmitting portion 35 of 33.
  • This mask 33 and each mask 33 described below are made of glass or It can be composed of an acryl-based film sheet or the like.
  • the photosensitive resist film 32 is developed to form an etching resist layer or a plating resist layer having a pattern corresponding to the pattern of the mask 33.
  • the insulating mask of the two masks 33 is used. Front side mask 3 3 placed on the front side of substrate 1 (Fig. 6
  • the upper mask 3 3) forms a pattern corresponding to the lead pattern forming portion 3 3 a corresponding to the inner lead portion 5 and the connecting portion 7 connected to the inner lead portion 5.
  • the connection pattern formation portion 33 b connected to the lead pattern formation portion 33 a are each formed transparently as the light transmission portion 35, and the other portions are opaque as light shielding portions. Formed. Therefore, since the portions corresponding to the lead pattern forming portion 33a and the connecting portion pattern forming portion 33b are the light transmitting portions 35, light is transmitted and the lead of the photosensitive resist film 32 is removed. The portion corresponding to the pattern forming portion 33a and the connecting portion pattern forming portion 33b is exposed and cured, while the other portion is not cured because it does not transmit light and is not exposed.
  • the back side mask 3 3 (lower side mask 3 3 in FIG. 62) arranged on the back side of the insulating substrate 1 has a lead pattern forming portion 3 3 c which is patterned corresponding to the outer lead portion 6. Only the light transmitting portion 35 is formed to be transparent, and the other portion is formed to be opaque as a light shielding portion. Therefore, since the portion corresponding to the lead pattern forming portion 33 c is the light transmitting portion 35, light is transmitted, and the lead pattern forming portion 33 c and the connection portion pattern of the photosensitive resist film 32 are formed. The part corresponding to part 3 3d is exposed and cured, while the other part is not cured because it does not transmit light and is not exposed.
  • a dotted rectangle 33 e on each mask 33 in FIG. 62 indicates a position where the mask 33 overlaps the through hole 3.
  • the light control sheet 34 which will be described in detail later, scatters or refracts the incident light, and then emits the light from the side opposite to the incident side to form the photosensitive surface of the side wall surface where the connection portion 7 of the through hole 3 is to be formed.
  • the resist film 32 is irradiated.
  • the insulating substrate of the two masks 33 is used.
  • the front mask 3 3 (the upper mask 3 3 in FIG. 6 3) arranged on the front side of 1 has a lead pattern shielding portion 3 3 f formed in a pattern corresponding to the inner lead portion 5, and
  • the connection pattern shielding part 33g formed in a pattern corresponding to the connection part 7 connected to the inner lead part 5 and connected to the lead pattern shielding part 33f is the light shielding part 13 respectively.
  • 5 is formed opaque, and the other portions are formed transparent as light transmitting portions 35.
  • the portions corresponding to the lead pattern shielding portion 3 3 f and the connection portion pattern shielding portion 33 g are the light shielding portions 135, no light is transmitted, and the lead pattern shielding of the photosensitive resist film 32 is not performed.
  • the part corresponding to the part 33 f and the connection part pattern shielding part 33 g is not exposed and is not decomposed, while the other part is transmitted and exposed to light to be decomposed.
  • the back side mask 3 3 (the lower side mask 33 in FIG. 63) arranged on the back side of the insulating substrate 1 has a lead pattern shielding section 3 3 formed in a pattern corresponding to the outer lead section 6.
  • a portion 33 e overlapped with the through hole 3, and a force are formed opaque as the light shielding portion 135, and the other portions are formed transparent as the light transmitting portion 35. Therefore, since the portion corresponding to the portion 3 3 e overlapped with the lead pattern shielding portion 3 3 h is the light shielding portion 1 35, light does not pass therethrough and the photosensitive resist film 32 does not have the lead pattern shielding portion.
  • the portion corresponding to 33 h is not exposed and does not decompose, and the wall corresponding to the through hole of the photosensitive resist film 32 is not exposed, and the portion corresponding to the connection pattern shielding portion 33 g is decomposed. While the other parts are not exposed to light, they are exposed and decomposed.
  • the decomposed portion is removed by the developer, while the undecomposed portion remains without being removed by the developer, and the inner lead portion 5, the connection portion 7, and the outer lead portion 6, respectively.
  • An etching resist layer is formed in a portion corresponding to.
  • the dotted rectangle 33 e on each mask 33 in FIG. 63 indicates the position where the rectangle 33 e overlaps the through hole 3.
  • the light control sheet 34 is also provided as shown in FIG. Overlapping and exposure of the photosensitive resist film 32 upward from below through the light transmission sheet 35 of the light control sheet 34 and the mask 33, and a difference in the lower mask pattern Other than that, they are exactly the same (see FIGS. 60 and 61).
  • the outer lead portion is formed on the back side mask 33 disposed on the back side of the insulating substrate 1 (the lower mask 33 in FIG. 60).
  • the lead pattern forming part 33 formed with a pattern corresponding to the lead pattern forming part 33 c formed in accordance with 6 and the connecting part 7 connected to the outer lead part 6.
  • the connecting portion pattern forming portion 33d connected to c is formed transparent as the light transmitting portion 35, and the other portion is formed opaque as the light shielding portion. Therefore, since a portion corresponding to the lead pattern forming portion 33 c and the connection portion pattern forming portion 33 d is the light transmitting portion 35, light is transmitted therethrough, and the photosensitive resist film 32 becomes the lead pattern forming portion.
  • the portion corresponding to 33c and the connection pattern forming portion 33d is exposed and cured, while the other portion is not cured because it does not transmit light and is not exposed.
  • the outer lead portion 6 is formed on the back side mask 33 (the lower mask 33 in FIG. 61) disposed on the back side of the insulating substrate 1.
  • the lead pattern forming portion 33c formed in accordance with the pattern and the connecting portion 7 connected to the outer lead portion 6 are formed in pattern and connected to the lead pattern forming portion 33c.
  • the formed connection portion pattern forming portion 33d is formed opaque as the light shielding portion 135, and the other portion is formed transparent as a light transmitting portion.
  • the lead pattern formation part 33 c and the connection part pattern formation part 33 d corresponds to the lead pattern formation part 33 c and the connection part pattern formation part 33 d. Since the light-shielding part is the light-shielding part, light does not pass through and the photosensitive resist film 32 is exposed to light except for the part corresponding to the lead pattern forming part 33 c and the connecting part pattern forming part 33 d. On the other hand, the portions corresponding to the lead pattern forming portion 33c and the connecting portion pattern forming portion 33d are not decomposed because light is not exposed.
  • the step of FIG. 64 and the step of FIG. 66 in the first method are simultaneously performed as shown in FIG.
  • the step of FIG. 64 and the step of FIG. 67 in the second method are simultaneously performed as shown in FIG.
  • the insulating substrate 38 covered with the photosensitive resist film 32 is shown in FIGS. 60 to 63 of the above first to fourth methods, but when an etching resist layer is formed, Of course, a metal layer exists between the photosensitive resist film 32 and the insulating substrate 38.
  • the plating resist layer is formed by the above-described first to fourth methods, a resist layer is formed on the portions other than the inner lead portion 5, the connection portion 7, and the outer lead portion 6 by the exposure step and the development step. And set the mask.
  • the light control sheet 34 converts the parallel light 36 from the light source into scattered light or refracted light 37, and directs a part of the light to the side wall surface of the through hole 3. (See Figure 64).
  • the light control sheet 34 for example, a sheet having fine irregularities on the surface like a diffusion sheet, or a sheet containing fine particles or bubbles inside, or a prism-like projection on the surface like a prism sheet The provided sheet can be used. Without the light control sheet 34, the light transmitted through the light transmitting portion 35 of the mask 33 hardly illuminates the side wall surface of the through hole 3, and the etching patterned on the side wall surface of the through hole 3 A resist layer or a mask resist layer cannot be formed.
  • an etching resist layer or a mask resist layer is simultaneously formed on the front surface or the back surface or both front and back surfaces of the substrate 38 and the side wall surface of the through hole 3. Therefore, the process can be omitted.
  • the case where a prism sheet is used as the light control sheet 34 and the case where the diffusion Compare with the case of using A prism sheet (bidirectional refraction sheet) has a greater amount of light traveling in two directions from its shape than a diffusion sheet.
  • a prism sheet rather than a diffusion sheet forms a connection on the end surface in the direction in which light travels, in other words, on the side wall surface of the through hole 3 of the substrate sheet or the side wall surface of the edge of the substrate sheet. This is preferable because it can form a relatively sharp image.
  • the order in which the mask 33 and the light control sheet 34 are overlapped may be under the light control sheet 34 force S (see FIG. 65).
  • the light used for exposure is light such as sunlight, a mercury lamp, a xenon lamp, an arc lamp, or a light source such as an argon laser.
  • the exposure on one surface of the substrate 38 and the exposure on the other surface may be performed simultaneously or sequentially on one surface.
  • FIGS. 64 and 65 show an example in which an etching resist layer is formed. However, in the case of a plating resist layer, the metal layer 31 is omitted.
  • the photosensitive resist film 32 when the photosensitive resist film 32 is a photocurable type, the uncured portion of the photosensitive resist film 32 is selectively removed by using soda carbonate or the like as a developing solution. It is done by doing.
  • the photosensitive resist film 32 is of a photo-decomposable type, the photo-decomposed portion of the photosensitive resist film 32 can be selectively removed by using sodium metasilicate or the like as a developing solution. It is performed by
  • the above-mentioned method using the etching resist layer or the plating resist layer is most preferable, but the metal layer is formed by a laser or other physical means. 3 1 can also be scraped.
  • solder resist examples include epoxy resin, varnish, and enamel.
  • Solder resist can be formed by screen printing, roll coating, curtain coating, spraying, etc. -Or Or, there are methods such as electrostatic application.
  • a surface treatment may be performed on part or all of the inner lead portion 5 or the outer lead portion 6.
  • the surface treatment include a solder leveler, gold plating, solder plating, nickel plating, silver plating, and palladium plating.
  • the surface treatment layer formed by these surface treatments may be appropriately combined into a plurality of layers or a single layer. As an exception, a single layer of gold plating is not possible, and the gold plating layer is usually laminated on the nickel plating layer.
  • the surface treatment plating layer is the electroless plating only when the lead is provided inside the through hole 3, but when the lead is provided outside the through hole 3, the electroless plating is other than the electroless plating.
  • the leads 200 for surface treatment are provided on the base sheet 8 m as shown in FIG. 59, electrolytic plating is also possible. Note that the lead 200 must be cut away so as not to remain in the semiconductor module or the semiconductor package when the semiconductor package or the base is separated and cut later.
  • the lead pattern forming portion 33a is an inner lead.
  • connection portion pattern formation portion 33b is formed in pattern corresponding to the connection portion 7 connected to the inner lead portion 5 and the lead pattern formation portion 33a.
  • the lead pattern forming part 33 c is connected to the pattern lead corresponding to the pattern lead part 6, and the connection part pattern formation part 33 d is connected to the connection part 7 connected to the pattern lead part 6.
  • a corresponding pattern is formed and connected to the lead pattern forming portion 33c, but is not limited to this.
  • the lead pattern forming portion 33a is formed in a pattern corresponding to the outer lead portion 6, and the connection pattern forming portion 3 3b is formed in a pattern corresponding to the connection portion 7 connected to the above-mentioned outer lead portion 6 and connected to the above-mentioned lead pattern formation portion 33a, and the lead pattern formation portion 33c is an inner lead portion 5.
  • the connection pattern formation portion 3 3 d is formed in a pattern corresponding to the connection portion 7 connected to the lead portion 5. One may be connected to the lead pattern forming portion 33c.
  • the lead pattern shielding part 33f is formed in a pattern corresponding to the inner lead part 5, and the connection part pattern shielding part 33g is corresponding to the connection part 7 connected to the inner lead part 5 described above.
  • the pattern is formed and connected to the lead pattern shielding portion 33f, and the lead pattern shielding portion 33h is formed in a pattern corresponding to the outer lead portion 6, but is not limited thereto.
  • the lead pattern shielding portion 33f is formed in a pattern corresponding to the outer lead portion 6, and the connection pattern shielding portion is formed.
  • the lead pattern shielding part 33 h is connected to the inner lead part 5.
  • the pattern may be formed correspondingly. Except in the case of cutting with a laser or other physical means, these methods using exposure expose the inner lead, connection, and outer lead in a continuous process or at the same time. An etching resist and a plating resist for the lead portion, the connecting portion, and the outer lead portion can be formed. Therefore, the inner lead portion, the connecting portion, and the outer lead portion can be simultaneously and efficiently and inexpensively formed by etching or plating.
  • an electroless plating and electrolytic plating to the entire surface including the recesses to a thickness of 18 ⁇ m.
  • a photo-curing photosensitive resist film is formed on the surface of the substrate, the side wall surface and the back surface of the through hole, and then exposed, developed, and patterned, and then covered with a photosensitive resist pattern by etching.
  • a number of outer leads are formed in a pattern from the through hole of each semiconductor chip arrangement region 2 toward the central region, and the inner lead portions provided on both surfaces of the insulating substrate are formed on the side wall surface of the through hole.
  • a number of connecting portions were formed between the outer lead portions and the outer lead portions.
  • the wiring pitch at the end of the inner lead was 0.23 mm, and the pitch at the end of the outer lead was 0.5 mm.
  • the mask for transmitting light and the incident light are scattered or refracted by the lead pattern forming portion and the divided connection portion pattern forming portion and emitted from the opposite side.
  • the light control sheet is superposed on one surface of the substrate and exposed, and another mask and a light control sheet through which the lead pattern forming portion and the connecting portion pattern forming portion transmit light are superposed on the other surface of the substrate. Done.
  • NiZAu plating was applied to the conductor surface as a surface treatment to obtain a semiconductor module base sheet.
  • a semiconductor chip having 200 electrode terminals is mounted at the center of each semiconductor chip arrangement area 2 on the surface on which the inner lead portion is provided.
  • Each electrode terminal of the chip and the inner lead portion were electrically connected by gold wire bonding.
  • the semiconductor module base sheet was placed in an injection molding die, and at least the through hole side of the semiconductor chip and the inner lead portion was sealed by injecting an epoxy resin.
  • connection between the through holes of the semiconductor module base sheet was cut by a press to obtain 104 monolithic ICs.
  • one set consisting of 4 pieces with a pitch of 2.4 mm in the vertical direction is set as one set, and these are arranged in 6 sets in the horizontal direction and 3 sets in the vertical direction, and the horizontal sides of the semiconductor chip arrangement area of each set
  • a through hole with a width of 0.9 mm and a length of 25 mm is provided on the top by punching. That is, through holes were provided on two opposing sides of the 5904 semiconductor chip arrangement regions of this plate.
  • an 18 // m thick copper plating was applied to the entire surface by electroless plating and electrolytic plating, and a photo-decomposable photosensitive resist film was formed on the surface of the substrate, the side wall surface of the through hole, and the back surface.
  • patterning is performed by exposure and development, and the copper plating layer and the copper foil that are not covered with the photosensitive resist pattern are removed by etching, thereby penetrating each semiconductor chip arrangement area 2 on one side of the insulating substrate.
  • a large number of inner leads are formed in a pattern from the hole toward the central area, and a large number of outer leads are formed in a pattern on the other surface of the insulating substrate from the through hole of each semiconductor chip arrangement region 2 toward the central area.
  • connection portions were formed between inner lead portions and outer lead portions provided on both surfaces of the insulating substrate by patterning.
  • the wiring pitch at the end of the inner lead was 0.23 mm, and at the end of the outer lead was 0.5 mm.
  • a mask for shielding the light by the lead pattern shielding part and the connection part pattern shielding part and a light control sheet for scattering or refracting the incident light and emitting the light from the opposite side are used. Exposure was performed by superimposing on one surface of the substrate, and another mask and a light control sheet in which the lead pattern shielding portion and the connection portion pattern shielding portion shielded light were superimposed on the other surface of the substrate.
  • NiZAu plating to the conductor surface as a surface treatment, it is cut by a press to produce a semiconductor module with two horizontal sets of 103 mm in length and 65 mm in width. Nine base sheets were obtained.
  • the semiconductor chip of eight electrode terminals is provided at the center of each semiconductor chip arrangement area 2 on the surface provided with the inner lead portion.
  • Each electrode terminal of the semiconductor chip was electrically connected to the inner lead portion by gold wire bonding.
  • the semiconductor module base sheet was placed in an injection molding die, and at least the through hole side of the semiconductor chip and the inner lead portion was sealed by injecting an epoxy resin.
  • the semiconductor module is cut by a dicer outside the semiconductor chip arrangement region 2 of the semiconductor module base sheet and substantially in parallel with the remaining side of each semiconductor chip arrangement region 2 to obtain one semiconductor module. 656 monolithic ICs were obtained from the base sheet.
  • a 0.1 mm-thick plate of BT (bismaleimide 'triazine) resin with glass cloth laminated on both sides of a 0.18 mm-thick foil made of Mitsubishi Gas Chemical Co., Ltd. was used.
  • As the metal layer an 18 / m-thick Cu layer was formed by electroless plating and electrolytic plating.
  • As the resist a positive electrodeposition etching resist (photodegradable) manufactured by Nippon Paint Co., Ltd. was applied. Its thickness was 0.007 mm to 0.008 mm. Exposure was performed at 600 mJ cm 2 using a high pressure mercury lamp. For development, a 1% aqueous solution of sodium metasilicate was sprayed at 32 ° C. The time was about 60 seconds. Etching was performed by spraying an aqueous solution of ferric chloride at 45 ° C and 50 ° C. The time was about 4 minutes. Strip resist at room temperature 3 ⁇
  • connection portion 7 was formed.
  • FIG. 82 corresponding to FIG. 1
  • FIGS. 83 and 84 corresponding to FIGS. 14 and 15, and FIGS. 84 and 85 corresponding to FIG.
  • the metal conductor portions 800 A, 800 B, 800 C, and 800 D having a size equal to or larger than the size of the semiconductor chip can be arranged in the semiconductor chip arrangement region 2.
  • the metal conductor is effective for bonding to the semiconductor chip.
  • the inner lead can be extended to be a metal conductor.
  • a first metal conductor portion 8100 having a size equal to or larger than the size of the semiconductor chip is arranged in the semiconductor chip arrangement region 2,
  • a second metal conductor portion 820 is provided in a region on the back surface side of the insulating substrate 1 opposed to the first metal conductor portion 810 on the front surface side of the substrate 1 via the insulating substrate 1.
  • the metal conductor portion 810 and the second metal conductor portion 820 can be connected by a metal layer formed on the inner wall of the through hole 8100a. In this way, the through-holes 8100a allow the front and back metal conductors, that is, the first metal conductor 8
  • the hole of the through hole 8 10 a connecting the first metal conductor 810 and the second metal conductor 8 20 of FIG. It can also be filled with 30.
  • the semiconductor chip in addition to the effect of connecting the front and back metal conductors with the through holes, the semiconductor chip can be protected by filling the through holes with resin.
  • the first metal conductor connected through the through hole 8100 a of FIG. 95 and the hole of the through hole 810 a is filled with the resin.
  • the metal layers 840 and 841, respectively, are further disposed from above on the portion 810 and the second metal conductor 820, respectively, and the first metal conductor 810 and the second metal So as to cover the conductor 820 and the hole of the through hole 810a filled with the resin. You can also. In this way, by filling the through-hole with resin and further providing a metal layer thereon, the through-hole 810 connecting the first metal conductor 810 and the second metal conductor 820 is formed.
  • the resin buried in the through-holes cannot withstand the temperature at which the resin buried in the through-holes is heated, especially during curing of the adhesive such as a metal adhesive.
  • the above problem can be solved by covering with a metal layer.
  • the metal conductor portion extends a portion of the inner lead portion 5 or a part of the outer lead 6 to the semiconductor chip arrangement region 2, and the semiconductor chip is mounted thereon. It can also be formed in a size that can be placed.
  • a through hole is formed in the insulating substrate 1, and a connection portion 7 is provided on the side wall surface opposite to the semiconductor chip disposition area side, and the inner lead portion 5 is provided in a direction away from the connection portion 7.
  • a through hole is formed in the insulating substrate 1, a connection portion 7 is provided on a side wall surface opposite to the semiconductor chip arrangement region side, and an inner lead portion 5 is arranged in a direction away from the connection portion 7.
  • a separate connecting portion 851 is provided on the side wall surface on the semiconductor chip mounting region side so as not to contact the connecting portion, and a metal conductor portion 850 is provided in the semiconductor chip mounting region 2 (800 D in FIG. 86).
  • a metal layer portion 852 is provided in a region corresponding to the back surface of the semiconductor chip arrangement region 2, and the metal conductor portion 850 on the front side of the base sheet and the metal layer on the back surface of the base sheet are provided. Part 8 52 is connected to the other connecting part 8 5 1
  • connection portion 851 is formed on the side wall surface of the through hole on the semiconductor arrangement region side, and the metal conductor portion 850 and the back metal layer portion 852 are formed.
  • the metal conductor portion 850 and the back metal layer portion 852 are formed.
  • the through hole can be filled with a resin 853.
  • the mechanical strength of the base sheet, the semiconductor module, and the semiconductor package can be increased by filling the inner lead portion 5, the outer lead portion 6, and the through hole in the semiconductor arrangement region 2 with resin. it can.
  • the surface shape of the metal conductor portion disposed on the surface of the base sheet on which the inner lead portion 5 is formed may be flat. With this configuration, the inclination of the semiconductor chip can be eliminated by the planar shape of the surface of the metal conductor.
  • fine irregularities as shown in FIGS. 87 and 88 are formed on the plane of the metal conductor portion (die pad portion) 800 E disposed on the surface of the base sheet on which the inner lead portion 5 is formed. It can also have. Further, a pattern as shown in FIGS. 89 and 90 is formed on the plane of the metal conductor portion (die pad portion) 800 F arranged on the surface of the base sheet side on which the inner lead portion 5 is formed. It may also have a recessed portion 800 r. Further, a pattern as shown in FIGS. 91 and 92 is formed on a plane of the metal conductor portion (die pad portion) 800 G disposed on the surface of the base sheet on which the inner lead portion 5 is formed. It may also have a recess 800 t. As described above, by forming fine irregularities and patterned recesses on the surface of the metal conductor, when the semiconductor chip is adhered to the metal conductor with an adhesive, the adhesive strength can be increased. it can.
  • each of the above metal conductor portions is as follows.
  • the metal conductor portions on the front surface and the back surface of the semiconductor chip arrangement region of the base sheet are formed simultaneously with the formation of the inner lead portion and the upper lead portion by the same process and in the same manner as the formation of the inner lead portion and the outer lead portion. .
  • the method of electrically connecting the metal conductor on the front side and the metal conductor on the back side with a through hole is as follows: When forming a through hole for the connection part, use a drill, router, or laser as with the through hole. Make a through hole and connect to the side wall of the through hole A metal layer is also formed on the wall of the through hole in the same process and in the same manner as forming the metal layer as a part. After that, a metal conductor on the front side and a metal conductor on the back side are simultaneously formed by the same process and the same method as the formation of the inner lead part and the outer lead part.
  • an epoxy resin or the like is filled with a dispenser, screen printing, a blade, or the like, and cured to form.
  • a metal layer from above the filled metal conductor portion and the back metal conductor portion after filling the hole, further form a metal layer by electroless plating or electrolytic plating over the entire insulating substrate, and then, The above-mentioned metal layer is simultaneously formed by the same method in the same step as that for forming the outer lead portion.
  • connection portion As another method for forming the above-mentioned connection portion, the following method is used.
  • the other connecting portion 851 is formed in the same process as the connecting portion of the inner lead portion and the arter lead portion, and is formed in the same manner as the connecting portion of the inner lead portion and the arter lead portion. It is formed on the side wall surface on the region side.
  • the shape of the other connection portion on the side wall surface may be the same as the shape of the inner lead portion and the outer lead portion, or may be another shape. Also, for example, there may be no pattern.
  • the through hole is filled with resin by the same method as that for filling the through hole.
  • each of the metal conductors is set to be equal to or larger than the size of the semiconductor chip. This is because if the metal conductor is smaller than the size of the semiconductor chip, the portion of the semiconductor chip protruding from the metal conductor may be broken.
  • Each of the metal conductors has a shape that does not contact the inner lead. However, when a part of the inner lead is extended to the inside of the semiconductor chip arrangement area and used as a metal conductor, the inner lead shall not be in contact with other inner leads.
  • the surface of the metal conductor portion is made to be the same plane as the surface of the inner lead portion and the arter lead portion, but fine irregularities or patterned concave portions may be formed as necessary.
  • the same surface treatment as that of the inner lead portion, the outer lead portion, and the connection portion may be performed, or the surface treatment may not be performed at all.
  • the semiconductor module substrate sheet, the method for manufacturing the semiconductor module substrate sheet, the semiconductor module and the method for manufacturing the semiconductor module substrate sheet according to each of the above embodiments of the present invention have the above-described configuration and operation. You.
  • an insulating substrate having a semiconductor chip disposing region in which a semiconductor chip can be disposed, and the semiconductor chip formed on the same side of the insulating substrate as the semiconductor chip disposing region, and forming a semiconductor module
  • a plurality of inner lead portions electrically connected to a plurality of electrode terminals of the semiconductor chip arranged in the arrangement region; and a plurality of inner lead portions formed on a surface of the insulating substrate opposite to the semiconductor chip arrangement region.
  • An outer lead portion and a plurality of connection portions for connecting the plurality of inner lead portions and the plurality of outer lead portions on the side wall surface of the insulating substrate are provided.
  • an insulating substrate having one or more semiconductor chip arrangement regions, and an insulating substrate arranged on four sides excluding a part of the semiconductor chip arrangement region or two opposite sides of each semiconductor chip arrangement region.
  • a number of outer leads patterned on the other surface from the through hole, dent, or edge to each semiconductor chip placement area, and provided on both sides of the insulating substrate at the side wall of the through hole, dent, or edge Using a base sheet for a semiconductor module having a large number of pattern-formed connecting portions between the inner lead portion and the outer lead portion.
  • a semiconductor chip is mounted before or after cutting outside each semiconductor chip placement area or outside the plurality of semiconductor chip placement areas corresponding to each of the plurality of semiconductor chip placement areas, and the electrode terminals of the semiconductor chip and the inner lead portion are mounted. Are electrically connected to each other to obtain a semiconductor module, and further, a semiconductor package is obtained by going through each step of sealing at least the through hole side of the semiconductor chip and the inner lead portion.
  • the inner lead portion is formed directly on the base of the semiconductor module, the number of manufacturing steps of the semiconductor module is reduced. Furthermore, since the inner lead portion is formed directly on the base of the semiconductor module, even if the inner lead portion having a narrow pitch with multiple pins is formed as in some semiconductor modules, the inner lead portion is formed with multiple pins. A high-density and miniaturized semiconductor module can be manufactured while maintaining the dimensional accuracy of the narrow-pitch inner lead portion.
  • An outer lead portion is provided on the back surface of the base of the semiconductor module, and the inner lead portion and the outer lead portion are connected to each other by a connection portion provided on a side surface of the base. Since the package is surface mounted, rigidity is not required for the lead material.
  • the semiconductor module base sheet, the method for manufacturing the semiconductor module base sheet, and the semiconductor module according to the present invention have the above-described configuration and operation, and therefore have the following effects.
  • an insulating substrate having a semiconductor chip disposing region in which a semiconductor chip can be disposed, and the semiconductor chip formed on the same side of the insulating substrate as the semiconductor chip disposing region, and forming a semiconductor module
  • a plurality of inner lead portions electrically connected to a plurality of electrode terminals of the semiconductor chip arranged in the arrangement region; and a plurality of inner lead portions formed on a surface of the insulating substrate opposite to the semiconductor chip arrangement region.
  • An outer lead portion and a plurality of connection portions for connecting the plurality of inner lead portions and the plurality of outer lead portions on the side wall surface of the insulating substrate are provided.
  • the inner lead portion is directly formed on the base sheet serving as the base of the semiconductor module, the number of manufacturing steps of the semiconductor module can be reduced. Furthermore, since the inner lead portion is formed directly on the base sheet serving as the base of the semiconductor module, even in the case where the inner lead portion having a large number of pins and a narrow pitch is formed as in some semiconductor modules. In addition, it is possible to manufacture a high-density and miniaturized semiconductor module while maintaining the dimensional accuracy of a multi-pin, narrow-pitch inner lead portion.
  • the outer lead portion is provided on the back of the base sheet, which is the base of the semiconductor module.
  • the semiconductor module or the semiconductor package is surface-mounted in a state where the inner lead portion and the outer lead portion are respectively connected by the connection portions provided on the side wall surface of the base sheet serving as a base.
  • the material does not need rigidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

明 細 書 半導体モジュール用基体シート及び半導体モジュール用基体シートを製造する 方法及び半導体モジュール 技術分野
本発明は、 モノリシック I C、 ハイブリッド I C、 マルチチップ I C、 ダイ オード、 トランジスタ、 サイリスタなどの半導体チップが 1個又は複数個装着 されて半導体モジュールを構成するための半導体モジュール用基体シートと、 該半導体モジュール用基体シートを製造する方法と、 該基体シートに半導体チ ップが装着されて構成される半導体モジュールに関する。 背景技術
従来、 モノ リシック I C、 ハイブリ ツド I C、 マノレチチップ I C、 ダイォー ド、 トランジスタ、 サイリスタなどの半導体パッケージは、 リードフレームに 代表されるように半導体チップを載せるダイパッドとリードとを金属導体をプ レスで打ち抜くかエッチングにより形成し、 ダイパッドに半導体チップを搭載 し、 半導体チップの各電極端子とリードのインナーリード部とを細い金属ワイ ヤーでボンディングするなどして電気的に接合した後、 半導体チップ及びィン ナーリード部の少なくとも貫通穴側を封止し、 リードのアウターリード部はプ リント基板に半導体パッケージを装着するために金型により折り曲げていた。 しかし、 リードフレームは、 ダイパッドで半導体チップを支え、 プリント基 板に装着するために折り曲げなければならないため、 剛性が必要であった。 そ の結果、 金属のリードフレームは厚さを薄くできず、 導電性のよい純銅を使用 しにくかった。 また、 半導体チップ等を封止した時点でアウターリード部は瞵 同士が部分的に繋がっており、 封止工程の後に、 この各繋がった部分 (タイバ —と呼ばれる) を金型等により切断してアウターリード部をピン毎に独立させ る工程が必要であった。 そこで、 最近ではリード材料に剛性が必要なく、 製造工程中において多数の タイバーを切断する必要のない半導体パッケージ 9 1 4が種々考えられた。 そ のひとつとして、 フィルム 1 5などのフレキシブル基板にインナーリード部 5 やアウターリード部 6を形成したものを折り曲げて (図 7 0参照) 、 これを半 導体パッケージ 9 1 4の基台 1 3部分に、 基台 1 3の裏面にァウタ一リード部
6が形成されかつィンナーリード部 5とアウターリード部 6とが基台 1 3の側 面に設けられた接続部 7によってそれぞれ接続されるように接着したのち半導 体チップ 1 0を基台 1 3に載置してワイヤ 1 1で半導体チップ 1 0とインナー リード部 5とを接続したのち、 封止部 1 2により半導体チップ 1 0などを封止 することにより、 半導体パッケージ 9 1 4を面実装可能としたものがある (図
7 1参照) 。
し力、し、 フィルムにインナーリード部などを形成した後、 それを折り曲げた り、 接着したりするなどの製造工程が多く、 手間がかかるという問題点があつ た。
また、 近年、 ダイオード、 トランジスタ、 サイリスタなどを除く一部の半導 体パッケージ、 例えば i cなどでは、 半導体チップの高密度実装化がより一層 厳しく要求されてきており、 これに伴って、 ワイヤ一ボンディング等により半 導体チップの各電極端子と電気的に接合されるインナーリード部も多ピン化、 狭ピッチ化することが要求されている。 このような多ピンで狭ピッチのインナ —リード部を有する半導体パッケージの場合には、 フィルムの折り曲げ及び接 着時に生ずるわずかな位置合わせ誤差も無視することはできず、 その位置合わ せ誤差によつて寸法精度の維持が困難となるという問題点があった。
したがって、 本発明の目的は、 上記の問題を解決することにあって、 半導体 モジュールを少ない製造工程で製造することが可能な半導体モジュール、 及び その製造方法に使用する半導体モジュール用基体シート及びその製造方法を提 供することである。 発明の開示 本発明は、 上記目的を達成するため、 以下のように構成している。
本発明の第 1態様によれば、 導体チップが配置可能な半導体チップ配置領域 を有する絶縁基板と、
上記絶縁基板の上記半導体チップ配置領域と同じ側の面に形成され、 かつ、 半導体モジュールを構成するように上記半導体チップ配置領域に配置される上 記半導体チップの複数の電極端子とそれぞれ電気的に接続される複数のィンナ 一リード部と、
上記絶縁基板の上記半導体チップ配置領域とは反対側の面に形成された複数 のアウターリード部と、
上記絶縁基板の側壁面において上記複数のィンナーリード部と上記複数のァ ウタ一リード部とをそれぞれ接続する複数の接続部と、
を備える半導体モジュール用基体シートを提供する。
本発明の第 2態様によれば、 上記半導体チップ配置領域において、 上記半導 体チップを収容可能な大きさの凹部を有している第 1態様に記載の半導体モジ ユール用基体シートを提供する。
本発明の第 3態様によれば、 上記絶縁基板は貫通穴を有しており、 該貫通穴 の側壁面に上記複数の接続部が形成されている第 1又は 2態様に記載の半導体 モジュール用基体シートを提供する。
本発明の第 4態様によれば、 上記絶縁基板の上記貫通穴は、 矩形の上記半導 体チップ配置領域の対向する 2辺に配置されている第 3態様に記載の半導体モ ジュール用基体シ一トを提供する。
本発明の第 5態様によれば、 上記絶縁基板の上記貫通穴は、 矩形の上記半導 体チップ配置領域の 4辺に配置されている第 3態様に記載の半導体モジュ一ル 用基体シートを提供する。
本発明の第 6態様によれば、 上記絶縁基板の端縁に窪みを有しており、 該窪 みの側壁面に上記複数の接続部が形成されている第 1又は 2態様に記載の半導 体モジュール用基体シートを提供する。
本発明の第 7態様によれば、 上記絶縁基板の端縁の側壁面に上記複数の接続 部が形成されている第 1又は 2態様に記載の半導体モジュール用基体シートを 提供する。
本発明の第 8態様によれば、 上記複数のインナーリード部の各々は、 上記複 数の接続部の各々から上記半導体チップ配置領域に向けて延びるように配置さ れているとともに、 上記複数のアウターリード部の各々は、 上記複数の接続部 の各々から、 基体シ一ト裏面側で上記半導体チップ配置領域に対応する領域に 向けて延びるように配置されている第 1〜 7のいずれかの態様に記載の半導体 モジュール用基体シートを提供する。
本発明の第 9態様によれば、 上記複数のインナーリード部の各々は、 上記複 数の接続部の各々から上記半導体チップ配置領域とは反対側に向けて延びるよ うに配置されているとともに、 上記複数のアウターリード部の各々は、 上記複 数の接続部の各々から、 基体シ一ト裏面側で上記半導体チップ配置領域に対応 する領域とは反対側に向けて延ぴるように配置されている第 3〜 5のいずれか の態様に記載の半導体モジュール用基体シートを提供する。
本宪明の第 1 0様によれば、 第 1〜9のいずれかの態様に記載の半導体モジ ユール用基体シ一トの製造方法であって、
上記絶縁基板の両面及び上記絶縁基板の上記側壁面に金属層を設けた後、 上 記金属層上に感光性レジスト膜を形成し、 その後、 上記形成された感光性レジ スト膜を部分的に露光したのち現像することにより、 上記インナ一リード部及 び上記アウターリード部としてそれぞれ残すべき部分及び上記側壁面の上記接 続部として残すべき部分に存在するエッチングレジスト層としてパターン化し、 その後、 上記エッチングレジスト層で覆われていない部分の上記金属層をエツ チング除去したのち、 上記エッチングレジスト層を除去することによって、 上 記インナーリード部、 上記アウターリード部、 及び上記接続部が形成される半 導体モジュール用基体シー卜の製造方法を提供する。
本発明の第 1 1態様によれば、 第 1〜 9のいずれかの態様に記載の半導体モ ジュール用基体シートの製造方法であって、
上記絶縁基板の両面及び上記絶縁基板の上記側壁面に感光性レジスト膜を形 成し、 その後、 上記感光性レジスト膜を部分的に露光したのち現像することに より、 上記ィンナーリ一ド部及び上記ァウターリ一ド部の不要な部分及び上記 側壁面の上記接続部の不要な部分に存在するメツキレジスト層としてパターン 化し、 その後、 無電解メツキ又は電解メツキを行なうことにより、 上記絶縁基 板両面及び上記側壁面の上記メツキレジスト層で覆われていない部分に、 上記 インナーリード部、 上記アウターリード部、 及び上記接続部が形成される半導 体モジュール用基体シートの製造方法を提供する。
本発明の第 1 2態様によれば、 上記エッチングレジス ト層をパターン化する 場合、 上記感光性レジスト膜が光硬化型のものであり、 上記ィンナーリ一ド部 を形成するリ一ドパターン形成部と上記接続部を形成する接続部パターン形成 部とが光を透過し他の部分は透過しない第 1マスク及び入射した光を散乱又は 屈折させて入射側とは反対側より出射させる光制御シ一トを上記基板の一方の 面に重ねて露光するとともに、 上記ァゥターリード部を形成するリ一ドパター ン形成部と上記接続部を形成する接続部パターン形成部とが光を透過し他の部 分は透過しない第 2マスク及び入射した光を散乱又は屈折させて入射側とは反 対側より出射させる光制御シートを上記基板の他方の面に重ねて露光して、 上 記感光性レジスト膜のうち露光された部分のみを硬化させた後、 上記感光性レ ジスト膜を現像して上記硬化した部分以外の未硬化部分を除去することにより、 上記インナ一リード部、 上記アウターリード部、 及び上記接続部が形成される 部分に上記エッチングレジスト層を形成するようにした第 1 0態様に記載の半 導体モジュール用基体シートの製造方法を提供する。
本発明の第 1 3態様によれば、 上記エッチングレジスト層をパターン化する 場合、 上記感光性レジスト膜が光分解型のものであり、 上記インナーリード部 を形成するリードパターン形成部と上記接続部を形成する接続部パターン形成 部とが光を遮蔽し他の部分は透過する第 3マスク及び入射した光を散乱又は屈 折させて入射側とは反対側より出射させる光制御シートを上記基板の一方の面 に重ねて露光するとともに、 上記アウターリード部を形成するリ一ドパターン 形成部と上記接続部を形成する接続部パターン形成部とが光を遮蔽し他の部分 は透過する第 4マスク及び入射した光を散乱又は屈折させて入射側とは反対側 より出射させる光制御シートを上記基板の他方の面に重ねて露光して、 上記感 光性レジスト膜のうち露光された部分のみを光分解させた後、 上記感光性レジ スト膜を現像して上記光分解した部分のみを除去することにより、 上記インナ —リード部、 上記アウターリード部、 及び上記接続部が形成される部分に上記 エッチングレジスト層を形成するようにした第 1 0態様に記載の半導体モジュ 一ノレ用基体シートの製造方法を提供する。
本発明の第 1 4態様によれば、 上記エッチングレジスト層をパターン化する 場合、 上記感光性レジスト膜が光硬化型のものであり、 上記インナーリード部 と上記ァゥターリード部のいずれか一方を形成するリ一ドパターン形成部と上 記接続部を形成する接続部パターン形成部とが光を透過し他の部分は透過しな い第 5マスク及び入射した光を散乱又は屈折させて入射側とは反対側より出射 させる光制御シートを上記基板の一方の面に重ねて露光するとともに、 上記ィ ンナーリード部と上記ァゥターリード部のいずれか他方を形成するリ一ドパタ —ン形成部のみが光を透過し他の部分は透過しない第 6マスクを上記基板の他 方の面に重ねて露光して、 上記感光性レジスト膜のうち露光された部分のみを 硬化させた後、 上記感光性レジスト膜を現像して上記硬化した部分以外の未硬 化部分を除去することにより、 上記インナーリード部、 上記アウターリード部、 及び上記接続部が形成される部分に上記エッチングレジスト層を形成するよう にした第 1 0態様に記載の半導体モジュール用基体シートの製造方法を提供す る。
本発明の第 1 5態様によれば、 上記エッチングレジスト層をパターン化する 場合、 上記感光性レジスト膜が光分解型のものであり、 上記ィンナーリ一ド部 と上記ァゥターリード部のいずれか一方を形成するリ一ドパターン形成部と上 記接続部を形成する接続部パターン形成部とが光を遮蔽し他の部分は透過する 第 7マスク及び入射した光を散乱又は屈折させて入射側とは反対側より出射さ せる光制御シートを上記基板の一方の面に重ねて露光するとともに、 上記ィン ナーリード部と上記アウターリ一ド部のいずれか他方を形成するリ一ドパター ン形成部と貫通穴に重ね合わせられる部分とが光を遮蔽し他の部分は透過する 第 8マスクを上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜の うち露光された部分のみを光分解させた後、 上記感光性レジスト膜を現像して 上記光分解した部分のみを除去することにより、 上記インナーリード部、 上記 アウターリード部、 及び上記接続部が形成される部分に上記エッチングレジス ト層を形成するようにした第 1 0態様に記載の半導体モジュール用基体シート の製造方法を提供する。
本発明の第 1 6態様によれば、 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜が光硬化型のものであり、 上記ィンナーリ一ド部を形成 するリードパターン形成部と上記接続部を形成する接続部パターン形成部とが 光を透過せず他の部分は透過する第 9マスク及び入射した光を散乱又は屈折さ せて入射側とは反対側より出射させる光制御シートを上記基板の一方の面に重 ねて露光するとともに、 上記ァゥターリード部を形成するリ一ドパターン形成 部と上記接続部を形成する接続パターン形成部とが光を透過せず他の部分は透 過する第 1 0マスク及び入射した光を散乱又は屈折させて入射側とは反対側よ り出射させる光制御シートを上記基板の他方の面に重ねて露光して、 上記感光 性レジスト膜のうち露光された部分のみを硬化させた後、 上記感光性レジスト 膜を現像して上記硬化した部分以外の未硬化部分を除去することにより、 上記 インナーリード部、 上記アウターリード部、 及び上記接続部が形成される部分 以外の部分に上記メツキレジスト層を形成するようにした第 1 1態様に記載の 半導体モジュール用基体シ一トの製造方法を提供する。
本発明の第 1 7態様によれば、 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜が光分解型のものであり、 上記ィンナーリ一ド部を形成 するリードパターン形成部と上記接続部を形成する接続部パタ一ン形成部とが 光を透過し他の部分は遮蔽する第 1 1マスク及び入射した光を散乱又は屈折さ せて入射側とは反対側より出射させる光制御シートを上記基板の一方の面に重 ねて露光するとともに、 上記アウターリード部を形成するリードパターン形成 部と上記接続部を形成する接続部パターン形成部とが光を透過し他の部分は遮 蔽する第 1 2マスク及び入射した光を散乱又は屈折させて入射側とは反対側よ り出射させる光制御シートを上記基板の他方の面に重ねて露光して、 上記感光 性レジスト膜のうち露光された部分のみを光分解させた後、 上記感光性レジス ト膜を現像して上記光分解した部分のみを除去することにより、 上記ィンナー リード部、 上記アウターリード部、 及び上記接続部が形成される部分以外の部 分に上記メツキレジスト層を形成するようにした第 1 1態様に記載の半導体モ ジュール用基体シートの製造方法を提供する。
本発明の第 1 8態様によれば、 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜が光硬化型のものであり、 上記インナーリード部と上記 アウターリード部のいずれか一方を形成するリードパターン形成部と上記接続 部を形成する接続部パタ一ン形成部とが光を透過せず他の部分は透過する第 1 3マスク及び入射した光を散乱又は屈折させて入射側とは反対側より出射させ る光制御シートを上記基板の一方の面に重ねて露光するとともに、 上記ィンナ 一リード部と上記ァウタ一リード部のいずれか他方を形成するリ一ドパターン 形成部と貫通穴に重ね合わせられる部分とが光を透過せず他の部分は透過する 第 1 4マスクを上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜 のうち露光された部分のみを硬化させた後、 上記感光性レジスト膜を現像して 上記硬化した部分以外の未硬化部分を除去することにより、 上記ィンナーリ一 ド部、 上記アウターリード部、 及び上記接続部が形成される部分以外の部分に 上記メツキレジス ト層を形成するようにした第 1 1態様に記載の半導体モジュ 一ル用基体シートの製造方法を提供する。
本発明の第 1 9態様によれば、 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜が光分解型のものであり、 上記インナ一リード部と上記 アウターリード部のいずれか一方を形成するリードパターン形成部と上記接続 部を形成する接続部パターン形成部とが光を透過し他の部分は遮蔽する第 1 5 マスク及び入射した光を散乱又は屈折させて入射側とは反対側より出射させる 光制御シートを上記基板の一方の面に重ねて露光するとともに、 上記ィンナー リード部と上記アウターリード部のいずれか他方を形成するリードパターン形 成部のみが光を透過し他の部分は遮蔽する第 1 6マスクを上記基板の他方の面 に重ねて露光して、 上記感光性レジスト膜のうち露光された部分のみを光分解 させた後、 上記感光性レジスト膜を現像して上記光分解した部分のみを除去す ることにより、 上記インナーリード部、 上記アウターリード部、 及び上記接続 部が形成される部分以外の部分に上記メツキレジスト層を形成するようにした 第 1 1態様に記載の半導体モジュール用基体シートの製造方法を提供する。 本発明の第 2 0態様によれば、 第 1 0〜1 9のいずれかの態様に記載の半導 体モジュール用基体シートの製造方法により製造された半導体パッケージ用基 体シートを提供する。
本発明の第 2 1態様によれば、 上記半導体チップ配置領域に上記半導体チッ プのサイズと同等以上の大きさを持つ金属導体部を配置した第 1〜9、 2 0の いずれかの態様に記載の基体シートを提供する。
本発明の第 2 2態様によれば、 上記半導体チップ配置領域に上記半導体チッ プのサイズと同等以上の大きさを持つ第 1金属導体部を配置するとともに、 上 記絶縁基板の表面側の上記第 1金属導体部と上記絶縁基板を介して対向する上 記絶縁基板の裏面側の領域に第 2金属導体部を設け、 上記第 1金属導体部と上 記第 2金属導体部とをスルーホールで接続する第 1〜9、 2 0のいずれかの態 様に記載の基体シートを提供する。
本発明の第 2 3態様によれば、 上記第 1金属導体部と上記第 2金属導体部を 接続する上記スル一ホールの穴部を樹脂で埋める第 2 2態様に記載の基体シー トを提供する。
本発明の第 2 4態様によれば、 上記スルーホールで接続され、 上記スルーホ —ルの穴部を上記樹脂埋めされた上記第 1金属導体部と上記第 2金属導体部と のそれぞれに、 更に上から金属層を配置して、 上記第 1金属導体部と上記第 2 金属導体部と上記樹脂埋めされた上記スルーホールの穴部とを覆うようにした 第 2 3態様に記載の基体シートを提供する。
本発明の第 2 5態様によれば、 上記金属導体部は、 上記インナーリード部又 は上記ァゥターリードの一部を上記半導体チップ配置領域まで延長し、 上記半 導体チップが載置可能な大きさに形成された第 2 1〜2 4のいずれかの態様に 記載の基体シートを提供する。
本発明の第 2 6態様によれば、 絶縁基板に貫通穴をあけ半導体チップ配置領 域側とは反対側の側壁面に接続部を設け、 該接続部から遠ざかる方向にィンナ —リード部が配置され、 上記接続部から上記半導体チップ配置領域の裏面に対 応する領域から遠ざかる方向にアウターリード部が配置されている半導体基体 シートにおいて、
上記半導体チップ配置領域に金属導体部を形成するようにした基体シートを 提供する。
本発明の第 2 7態様によれば、 絶縁基板に貫通穴をあけ、 半導体チップ配置 領域側とは反対側の側壁面に接続部を設け、 該接続部から遠ざかる方向にィン ナーリード部が配置され、 上記接続部から半導体チップ配置領域の裏面に対応 する領域から遠ざかる方向にアウターリード部が配置されている半導体基体シ ートにおいて、
上記貫通穴の上記半導体チップ配置領域側の側壁面に上記接続部と接触しな いように別の接続部を設け、 上記半導体チップ配置領域に金属導体部を設け、 上記半導体チップ配置領域の裏面に対応する領域に金属層部を設け、 上記金属 導体部と上記金属層部とを上記別の接続部により接続される基体シートを提供 する。
本発明の第 2 8態様によれば、 上記貫通穴に樹脂を埋めた第 2 6又は 2 7態 様に記載の基体シートを提供する。
本発明の第 2 9態様によれば、 上記インナーリード部が形成された基体シ一 ト側の面に配置された上記金属導体部の表面の形状が平面である第 2 1〜2 8 のいずれかの態様に記載の半導体基体シートを提供する。
本発明の第 3 0態様によれば、 上記インナ一リード部が形成された基体シ一 ト側の面に配置された上記金属導体部の平面上に細かな凹凸又はパターン化さ れた凹部を有する第 2 1〜2 8のいずれかの態様に記載の半導体基体シートを 提供する。 本発明の第 3 1態様によれば、 第 1〜9、 2 0〜 2 9のいずれかの態様の基 体シートの上記半導体チップ配置領域に上記半導体チップを配置し、 上記半導 体チップの上記複数の電極端子の各々と上記複数のィンナーリ一ド部の各々と を電気的に接合するようにした半導体モジュールを提供する。
本発明の第 3 2態様によれば、 第 1〜9、 2 0〜 2 9のいずれかの態様の基 体シートの上記半導体チップ配置領域に上記半導体チップを配置し、 上記半導 体チップの上記複数の電極端子の各々と上記複数のインナーリード部の各々と をワイヤにより電気的に接合するようにした半導体モジュールを提供する。 本発明の第 3 3態様によれば、 第 1〜9、 2 0〜 2 9のいずれかの態様の態 様の基体シートの上記半導体チップ配置領域に上記半導体チップを配置し、 上 記半導体チップの裏面の上記複数の電極端子にそれぞれ形成されたバンプの 各々と上記複数のィンナーリ一ド部の各々とを電気的に接合するようにした半 導体モジュールを提供する。
本発明の第 3 4態様によれば、 第 1〜9、 2 0〜2 9のいずれかの態様の基 体シートの上記半導体チップ配置領域に上記半導体チップを配置し、 上記半導 体チップの裏面の上記複数の電極端子の各々と上記複数のィンナーリ一ド部の 各々とを異方導電接着剤を介して電気的に接合するようにした半導体モジユー ルを提供する。
本発明の第 3 5態様によれば、 第 1〜9、 2 0〜2 9のいずれかの態様の基 体シートの上記半導体チップ配置領域の凹部内に上記半導体チップを収容して 保持された半導体モジュールを提供する。
本発明の第 3 6態様によれば、 第 1〜9、 2 0〜2 9のいずれかの態様の基 体シートには上記半導体チップ配置領域が矩形でかつ複数設けられて、 上記複 数の半導体チップ配置領域の各々に半導体チップを配置し、 上記半導体チップ の上記複数の電極端子と上記複数のィンナーリード部とをそれぞれ電気的に接 合した後、 上記各半導体チップ配置領域毎に対応して切断して得られた半導体 モジュールを提供する。 図面の簡単な説明
本発明のこれらと他の目的と特徴は、 添付された図面についての好ましい実 施形態に関連した次の記述から明らかになる。 この図面においては、
図 1は、 本発明における第 1実施形態に係る半導体モジュール用基体シート の表面を示す斜視図であり、
図 2は、 図 1の基体シートの裏面を示す斜視図であり、
図 3は、 図 1の I I I— I I I線断面図であり、
図 4 A, 4 B, 4 C, 4 Dは、 それぞれ、 上記第 1実施形態に係る半導体モ ジュ一ル用基体シートの貫通穴の様々な変形例を示す平面図であり、
図 5は、 上記第 1実施形態の変形例にかかる基体シートの表面を示す斜視図 であり、
図 6は、 上記第 1実施形態に係る半導体モジュールの製造工程において 6個 の半導体チップが 6個の半導体チップ配置領域に載置された半導体モジュール 集合体を示す斜視図であり、
図 7は、 上記第 1実施形態に係る半導体モジュールの製造工程において製造 された半導体モジュール集合体の各半導体モジュールの半導体チップ配置領域 に載置された半導体チップを封止して得られた半導体パッケージ集合体を示す 斜視図であり、
図 8は、 図 7において製造された半導体パッケージ集合体を 1個の半導体パ ッケージずつ基体シ—トから切り離す状態を示す斜視図であり、
図 9は、 上記第 1実施形態の変形例に係る半導体モジュールの製造工程にお いて半導体モジュール用基台を 1個ずつ基体シートから切り離す状態を示す斜 視図であり、
図 1 0は、 図 9において基体シートから切り離された半導体モジュール用基 台の半導体チップ配置領域に半導体チップを載置して得られた半導体モジユー ルを示す斜視図であり、
図 1 1は、 図 1 0の半導体モジュ一ルを封止して得られた半導体パッケージ を示す斜視図であり.、 図 1 2は、 図 1 0の半導体モジュールの断面図であり、
図 1 3は、 図 1◦の半導体チップを基台上で 2個載置した状態のマルチ半導 体モジュ一ルの斜視図であり、
図 1 4は、 本発明の第 2実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 1 5は、 図 1 4の X V— X V線断面図であり、
図 1 6は、 図 1 4の上記第 2実施形態に係る半導体モジュール用基体シート の裏面を示す斜視図であり、
図 1 7は、 上記第 2実施形態の変形例に係る半導体モジュール用基体シート の表面の斜視図であり、 図 1 8は、 上記第 2実施形態に係る半導体モジュ一 ルの製造工程において 6個の半導体チップが 6個の半導体チップ配置領域に載 置されて得られた半導体モジュ一ル集合体を示す斜視図であり、
図 1 9は、 上記第 2実施形態に係る半導体モジュールの製造工程において製 造された半導体モジュール集合体の各半導体モジュールの半導体チップ配置領 域に載置された半導体チップを封止して得られた半導体パッケージ集合体を示 す斜視図であり、
図 2 0は、 図 1 9において製造された半導体パッケージ集合体を 1個の半導 体パッケージずつ基体シートから切り離す状態を示す斜視図であり、
図 2 1は、 上記第 2実施形態の変形例に係る半導体モジュールの製造工程に おいて半導体モジュール用基台を 1個ずつ基体シートから切り離す状態を示す 斜視図であり、
図 2 2は、 図 2 1において基体シートから切り離された半導体モジュール用 基台の半導体チップ配置領域に半導体チップを載置して半導体モジュールを構 成した状態を示す^視図であり、
図 2 3は、 図 2 2の半導体モジュールを封止して半導体パッケージを構成し た状態を示す斜視図であり、
図 2 4は、 半導体チップを基台上で 2個載置した状態のマルチ半導体モジュ ールの斜視図であり、 図 2 5は、 本発明の第 3実施形態に係る半導体モジュール用基体シートを使 用する半導体モジュールの製造工程において 6個の半導体チップが 6個の半導 体チップ配置領域に載置されて得られる半導体モジュール集合体を示す斜視図 であり、
図 2 6は、 本発明の第 3実施形態の変形例に係る半導体モジュール用基体シ 一トの平面図であり、
図 2 7は、 本発明の第 3実施形態の別の変形例に係る半導体モジュール用基 体シートを使用する半導体モジュールの製造工程において 6個の半導体チップ が 6個の半導体チップ配置領域に載置されて得られる半導体モジュール集合体 を示す斜視図であり、
図 2 8は、 本発明の第 3実施形態の変形例に係る半導体モジュールの断面図 であり、
図 2 9は、 本発明の第 3実施形態の別の変形例に係る半導体モジュールの断 面図であり、
図 3 0は、 本発明の第 3実施形態のさらに別の変形例に係る半導体パッケ一 ジの断面図であり、
図 3 1は、 本発明の第 4実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 3 2は、 本発明の第 5実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 3 3は、 本発明の第 6実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 3 4は、 本発明の第 7実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 3 5は、 本発明の第 8実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 3 6は、 本発明の第 8実施形態に係る半導体モジュール用基体シートの裏 面を示す斜視図であり、 図 3 7 A, 3 7 B , 3 7 C , 3 7 Dは、 それぞれ、 上記第 8実施形態に係る 半導体モジュール用基体シートの貫通穴の様々な変形例を示す平面図であり、 図 3 8は、 本発明の第 8実施形態の変形例に係る半導体モジュール用基体シ 一トの表面を示す斜視図であり、
図 3 9は、 上記第 8実施形態に係る半導体モジュールの製造工程において 6 個の半導体チップが 6個の半導体チップ配置領域に載置されて得られた半導体 モジュール集合体を示す斜視図であり、
図 4 0は、 上記第 8実施形態に係る半導体モジュールの製造工程において製 造された半導体モジュール集合体の各半導体モジュールの半導体チップ配置領 域に載置された半導体チップを封止して得られた半導体パッケージ集合体を示 す斜視図であり、
図 4 1は、 図 4 0において製造された半導体パッケージ集合体を 1個の半導 体パッケージずつ基体シ—トカゝら切り離す状態を示す斜視図であり、
図 4 2は、 上記第 8実施形態の変形例に係る半導体モジュールの製造工程に おいて半導体モジュール用基台を 1個ずつ基体シ一トから切り離す状態を示す 斜視図であり、
図 4 3は、 図 4 2において基体シートから切り離された半導体モジュール用 基台の半導体チップ配置領域に半導体チップを載置して得られた半導体モジュ ールを示す斜視図であり、
図 4 4は、 図 4 3の半導体モジュールを封止して得られた半導体パッケージ を示す斜視図であり、
図 4 5は、 本発明の第 9実施形態に係る半導体モジュール用基体シートの表 面を示す斜視図であり、
図 4 6は、 本発明の第 9実施形態に係る半導体モジュール用基体シートの裏 面を示す斜視図であり、
図 4 7は、 本発明の第 9実施形態の変形例に係る半導体モジュール用基体シ 一トの表面を示す斜視図であり、
図 4 8は、 上記第 9実施形態に係る半導体モジュールの製造工程において 6 個の半導体チップが 6個の半導体チップ配置領域に載置されて得られた半導体 モジュール集合体を示す斜視図であり、
図 4 9は、 上記第 9実施形態に係る半導体モジュールの製造工程において製 造された半導体モジュール集合体の各半導体モジュールの半導体チップ配置領 域に載置された半導体チップを封止して得られた半導体パッケージ集合体を示 す斜視図であり、
図 5 0は、 図 4 9において製造された半導体パッケージ集合体を 1個の半導 体パッケージずつ基体シートから切り離す状態を示す斜視図であり、
図 5 1は、 上記第 9実施形態の変形例に係る半導体モジュールの製造工程に おいて半導体モジュール用基台を 1個ずつ基体シートから切り離す状態を示す 斜視図であり、
図 5 2は、 図 5 1において基体シートから切り離された半導体モジュール用 基台の半導体チップ配置領域に半導体チップを載置して得られる半導体モジュ ールを示す斜視図であり、
図 5 3は、 図 5 2の半導体モジュールを封止して得られる半導体パッケージ を示す斜視図であり、
図 5 4は、 図 5 3の半導体モジュールの断面図であり、
図 5 5は、 本発明の第 1 0実施形態に係る半導体モジュールの断面図であり、 図 5 6は、 本発明の第 1 0実施形態に係る半導体モジュールの断面図であり、 図 5 7は、 図 3 5の B— B線の断面図であり、
図 5 8は、 図 4 5の A— A線の断面図であり、
図 5 9は、 本発明の第 1 1実施形態に係る半導体モジュール用基体シートの 表面を示す斜視図であり、
図 6 0は、 本発明の後記する第 1 2〜1 6実施形態に係る半導体モジュール 用基体シートに係る上記貫通穴の側壁面の上記接続部の感光性レジスト膜の一 部を露光する方法を示す説明図であり、
図 6 1は、 本発明の後記する第 1 2〜1 6実施形態の変形例に係る半導体モ ジュール用基体シートに係る上記貫通穴の側壁面の上記接続部の感光性レジス ト膜の一部を露光する方法を示す説明図であり、
図 6 2は、 本発明の後記する第 1 2〜1 6実施形態の別の変形例に係る半導 体モジュ一ル用基体シートに係る上記貫通穴の側壁面の上記接続部の感光性レ ジスト膜の一部を露光する方法を示す説明図であり、
図 6 3は、 本発明の後記する第 1 2〜: I 6実施形態の別の変形例に係る半導 体モジュール用基体シートに係る上記貫通穴の側壁面の上記接続部の感光性レ ジスト膜の一部を露光する方法を示す説明図であり、
図 6 4は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 6 5は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 6 6は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 6 7は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 6 8は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 6 9は、 上記感光性レジスト膜の一部を露光する方法を示す断面図であり、 図 7 0は、 従来技術に係る基台側面にインナーリード部とアウターリード部 とを接続する接続部を有する半導体パッケージに使用するフィルムを示す展開 図であり、
図 7 1は、 図 7 0のフィルムを基台に巻き付けた半導体パッケージを示す図 であり、
図 7 2は、 上記実施形態にかかる基体シートを製造するための、 本発明の第 1 2実施形態にかかる基体シートの製造方法における接続部などの形成工程を 説明する工程図であり、
図 7 3は、 上記実施形態にかかる基体シ一トを製造するための、 本発明の第 1 3実施形態にかかる基体シー卜の製造方法における接続部などの形成工程を 説明する工程図であり、
図 7 4は、 上記実施形態にかかる基体シートを製造するための、 本発明の第
1 4実施形態にかかる基体シートの製造方法における接続部などの形成工程を 説明する工程図であり、
図 7 5は、 上記実施形態にかかる基体シートを製造するための、 本発明の第 1 5実施形態にかかる基体シートの製造方法における接続部などの形成工程を 説明する工程図であり、
図 7 6は、 上記実施形態にかかる基体シートを製造するための、 本発明の第 1 6実施形態にかかる基体シートの製造方法における接続部などの形成工程を 説明する工程図であり、
図 7 7は、 上記第 1 2実施形態の変形例にかかる接続部などの形成工程を説 明する工程図であり、
図 7 8は、 上記第 1 3実施形態の変形例にかかる接続部などの形成工程を説 明する工程図であり、
図 7 9は、 本発明の第 8実施形態のさらなる変形例に係る半導体モジュール 用基体シートの表面を示す斜視図であり、
図 8 0は、 図 7 9の上記第 8実施形態の変形例に係る半導体モジュールの製 造工程において 6個の半導体チップが 6個の半導体チップ配置領域に載置され て得られた半導体モジュール集合体を示す斜視図であり、
図 8 1は、 図 7 9の上記第 8実施形態の変形例に係る半導体モジュールの製 造工程において製造された半導体モジュール集合体の各半導体モジュールの半 導体チップ配置領域に載置された半導体チップを封止して得られた半導体パッ ケージ集合体を示す斜視図であり、
図 8 2は、 図 1に対応し、 力つ、 本発明における上記実施形態の変形例に係 る半導体モジュール用基体シートの表面を示す斜視図であり、
図 8 3は、 図 1 4に対応し、 かつ、 本発明における上記実施形態の変形例に 係る半導体モジュ一ル用基体シートの表面を示す斜視図であり、
図 8 4は、 図 8 4の X V— X V線断面図であり、
図 8 5は、 図 3 5に対応し、 かつ、 本発明における上記実施形態の変形例に 係る半導体モジュール用基体シートの表面を示す斜視図であり、
図 8 6は、 図 3 5に対応し、 かつ、 本発明における上記実施形態の変形例に 係る半導体モジュール用基体シートの表面を示す斜視図であり、
図 8 7は、 上記図 8 2〜8 6などにおいて使用可能な金属導体部の平面図で あり、
図 8 8は、 図 8 7の C一 C線断面図であり、
図 8 9は、 上記図 8 2〜8 6において使用可能な金属導体部の平面図であり、 図 9 0は、 図 8 9の D— D線断面図であり、
図 9 1は、 上記図 8 2〜 8 6において使用可能な金属導体部の平面図であり、 図 9 2は、 図 9 1の E— E線断面図であり、
図 9 3は、 本発明の上記実施形態の変形例に係る半導体モジユーノレ用基体シ 一トの表面を示す部分拡大平面図であり、
図 9 4は、 図 9 3の X— X線断面図であり、
図 9 5は、 図 9 3の変形例にかかる図 9 3の X— X線断面図であり、 図 9 6は、 本発明の上記実施形態の変形例に係る半導体モジュール用基体シ 一トの表面を示す部分拡大平面図であり、
図 9 7は、 図 9 6の Y— Y線断面図であり、
図 9 8は、 本発明の上記実施形態の変形例に係る半導体モジュール用基体シ —トの表面を示す部分拡大平面図であり、
図 9 9は、 図 9 8の X— X線断面図であり、
図 1 0 0は、 図 9 8の変形例にかかる図 9 8の X— X線断面図である。 発明を実施するための最良の形態
本発明の記述を続ける前に、 添付図面において同じ部品については同じ参照 符号を付している。
以下、 本発明の種々の実施形態にかかる半導体モジュール用基体シートとそ の製造方法と半導体モジュールの製造方法について図を参照しながら詳細に説 明する。
まず、 本発明の第 1実施形態にかかる半導体モジュール用基体シートと該基 体シートを使用する半導体モジュール及びその製造方法について説明する。 図 1は、 上記第 1実施形態に係る半導体モジュール用基体シート 8の表面を 示す斜視図、 図 2は図 1の基体シート 8の裏面を示す斜視図である。 図 3は、 図 1の I I I— I I I線断面図である。 これらの図において、 半導体モジユー ル用基体シート 8は、 六つの矩形の半導体チップ配置領域 2を有する絶縁基板 1と、 各半導体チップ配置領域 2の 4つの角部の夫々に位置する連結部 4を除 く、 上記半導体チップ配置領域 2の四辺上に設けられた線状の貫通穴 3と、 絶 縁基板 1の片面において各半導体チップ配置領域 2の各貫通穴 3から上記半導 体チップ配置領域 2の中央域に向かってパターン形成された多数の (図 1では 互いに平行にパターン形成されており、 かつ、 実際の本数より少なく描かれて いる。 ) インナーリード部 5と、 絶縁基板 1の他面において各半導体チップ配 置領域 2の貫通穴 3から上記半導体チップ配置領域 2の裏面に相当する領域の 中央域に向かってパターン形成された多数の (図 2では互いに平行にパターン 形成されており、 かつ、 実際の本数より少なく描かれている。 ) アウターリー ド部 6と、 貫通穴 3の上記半導体チップ配置領域側の側壁面において絶縁基板 1に設けられたィンナーリード部 5とアウターリード部 6との間にパターン形 成されてインナーリード部 5とァウタ一リード部 6とを電気的に接続する多数 の (図 1 , 2では互いに平行にパターン形成されており、 かつ、 実際の本数よ り少なく描かれている。 ) 接続部 7とを有している。
絶縁基板 1としては、 合成繊維布基材エポキシ樹脂、 若しくは、 ガラス布 ' 紙複合基材エポキシ樹脂、 若しくは、 ガラス布 ·ガラス不織布複合基材ェポキ シ樹脂、 若しくは、 ガラス布基材エポキシ樹脂、 若しくは、 ガラス布基材テフ ロン樹脂などの積層板、 又は、 ポリエーテルイミ ド樹脂、 若しくは、 ポリサル フォン樹脂、 若しくは、 ポリエーテルサルフォン樹脂、 若しくは、 ベンゾシク ロブテン樹脂、 若しくは、 B Tレジン樹脂、 若しくは、 テフロン樹脂などの樹 月旨、 又は、 窒化アルミニウム、 若しくは、 炭化珪素、 若しくは、 アルミナなど のセラミックなどを用いることができる。 絶縁基板 1の厚さとしては、 例えば 0 . l mm〜0 . 2 mmとする。
線状の貫通穴 3は、 各半導体チップ配置領域 2の四辺上に、 半導体チップ配 置領域 2の 4つの角部の連結部 4を除いて形成する。 各半導体チップ配置領域 2の大きさは、 例えば、 一辺が 0 . 5 mm〜 5 O mm程度の正方形や長方形な どである。 また、 各貫通穴 3の幅は、 接続部 7をその穴内の側壁面に形成する ため少なくとも 0 . 1 mm以上とし、 通常は例えば 0 . 3 mm〜3 mm程度と する。 連結部 4は、 各半導体チップ配置領域 2が基体シートの一部として十分 に保持されかつ所望の接続部 7が貫通穴 3の側壁面に形成できるならば、 図 1 のような構造に限定されず、 どのように設けてもよレ、。 例えば、 図 4 A〜図 4
Dに示すように、 隣接する貫通穴 3を適宜つなぐことにより、 連結部 4の形成 数を減らしてもよいし、 逆に、 具体的には図示しないが、 貫通穴 3の個数を増 やして連結部 4の形成数を増やしてもいい。 また、 図 4 B, 4 C, 4 Dに示す ように、 連結部 4の形成場所を各半導体チップ配置領域 2の各角部以外の位置 に変えてもよい。 また、 図 1においては、 隣り合う半導体チップ配置領域 2に おいて、 その間にある貫通穴 3を共有しているが、 貫通穴 3は半導体チップ配 置領域毎に独立していてもよい (図示せず) 。 貫通穴 3を基体シートに形成す る方法としては、 プレス加工、 ル一ター加工、 ドリル加工、 又は、 レーザ加工 などがある。
上記インナーリード部 5、 アウターリード部 6、 及び、 接続部 7の各材料と しては、 銅、 ニッケル、 若しくは、 金などの金属が好ましく、 上記インナ一リ ード部 5、 アウターリード部 6、 接続部 7は、 例えば 0 . l // m〜5 0 // mの 厚みで形成される。
なお、 本発明の第 1実施形態の変形例にかかる半導体モジュール用基体シー ト 8 aとして、 図 5に示すように、 インナーリ一ド部 5が形成された面の各半 導体チップ配置領域 2の中央に、 半導体チップ 1 0を収容可能な大きさの凹部 9を有するようにして、 半導体チップ 1 0を凹部 9内に収容保持することによ り、 より安定して基体シート 8に保持できるようにしてもよい。
上記構造にかかる基体シ一ト 8を使用する上記第 1実施形態に係る半導体モ ジュールの製造工程においては、 図 6に示すように、 上記基体シート 8の 6個 の半導体チップ配置領域 2にそれぞれ半導体チップ 1 0が接着剤等により固定 されたのち、 各半導体チップ 1 0の各電極端子とそれに対応する各インナ一リ ード部 5とを金などのワイヤ 1 1により電気的に接続する。 これにより、 連結 部 4で互いに接続された状態の 6個の半導体モジュールから構成される図 6の 半導体モジュール集合体 1 0 8が得られる。 このような半導体モジュール集合 体 1 0 8の状態で次工程などに搬送するか又は部品として出荷するようにして もよい。
半導体モジュール集合体 0 8において封止作業を行う場合には、 半導体モ ジュール集合体 1 0 8の 6個の半導体モジュール 1 0 0の各々の半導体チップ 配置領域 2に載置された半導体チップ 1 0をそれぞれ封止して、 図 7に示すよ うに、 半導体パッケージ集合体 1 1 8を形成する。 この封止作業は、 半導体チ ップ 1 0の各電極端子及びインナーリード部 5の少なくとも貫通穴側を封止す るものであり、 封止より形成される封止部 1 2としては、 セラミックや金属な どの中空蓋を被せてもよいし、 樹脂をディスペンサーなどで塗布してもよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂などの樹脂を射出成形してよい。 こ のような半導体パッケージ集合体 1 1 8の状態で次工程などに搬送するか又は 部品として出荷するようにしてもよレ、。
個別の半導体パッケージ 1 4に分離する場合には、 図 8に示すように、 半導 体パッケージ集合体 1 1 8から半導体パッケージ 1 4を、 一度に 1個ずつ又は 一度にまとめて複数個ずつ、 貫通穴 3が形成されていない部分すなわちこの実 施形態では連結部 4で切り離す。 この切り離すとき、 各連結部 4では、 各半導 体チップ配置領域 2の隣接する二辺の貫通穴 3の端部同士を接続する最短距離 で切断することにより、 各角部に小さな平面を形成する。 この切断方法として は、 必ずしもこのように各角部に小さな平面を形成するものに限らない。 切断 には、 打ち抜きプレス、 ルーター加工、 レーザー加工、 Vカット、 若しくは、 ダイサ一カツトなどを用いる。
一方、 上記構造にかかる基体シート 8を使用する上記第 1実施形態の変形例 に係る半導体モジュールの製造工程においては、 図 9に示すように、 半導体モ ジュール用基体シート 8から 1個の半導体モジュール 1 0 0に対応する絶縁基 板すなわち基台 1 3を、 半導体チップ 1 0を基台 1 3に載置する前に切り離す こともできる。 すなわち、 図 9の半導体モジュール用基体シート 8から基台 1 3を、 一度に 1個ずつ又は一度にまとめて複数個ずつ、 貫通穴 3が形成されて いなレ、部分すなわちこの実施形態では連結部 4で切り離す。 この切り離すとき、 各連結部 4では、 各基台 1 3の各半導体チップ配置領域 2の隣接する二辺の貫 通穴 3の端部同士を接続する最短距離で切断する。 切断には、 打ち抜きプレス、 ルーター加工、 レーザー加工、 Vカット、 若しくは、 ダイサーカットなどを用 いる。
次いで、 図 1 0, 1 2に示すように、 切り離された基台 1 3の半導体チップ 配置領域 2に半導体チップ 1 0を接着剤等 1 1 0により固定したのち、 半導体 チップ 1 0の各電極端子とそれに対応する各インナーリード部 5とを金などの ワイヤ 1 1により電気的に接続して、 図 1 2に示す半導体モジュール 1 0 0を 得る。 このような半導体モジュール 1 0 0の状態で次工程などに搬送するか又 は部品として出荷するようにしてもよい。
次いで、 半導体モジュール 1 0 0において封止作業を行う場合には、 半導体 モジュール 1 0 0の各半導体チップ配置領域 2に載置された半導体チップ 1 0 を封止して、 図 1 1に示すように、 半導体パッケージ 1 4を形成する。 この封 止作業は、 半導体チップ 1 0の各電極端子及びインナーリード部 5の少なくと も貫通穴側を封止するものであり、 封止より形成される封止部 1 2としては、 セラミックや金属などの中空蓋を被せてもよいし、 樹脂をディスペンサーなど で塗布してもよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂などの樹脂を 射出成形してよい。 このような半導体パッケージ 1 4の状態で次工程などに搬 送するか又は部品として出荷するようにしてもよい。
なお、 上記半導体モジュールの製造方法においては、 半導体モジュール 1 0 0を 1個ずつ切り離すものについて説明したが、 これに限らず、 図 1 3に示す ように、 半導体モジュール i 0 0を 2個ずつ切り離すとともに両者を電気的に 接続することにより、 2個の半導体モジュール 1 0 0が、 基台 1 3の 2個分に 相当する基台 1 1 3上に載置した状態のマルチ半導体モジュール 1 1 4を得る ようにしてもよい。 2個の半導体モジュール 1 0 0を電気的に接続する方法と しては、 図 1 3に示すように基体シート表面側に特別なィンナーリ一ド部を形 成して電気的に接続したり、 又は具体的には図示しないが図 1 3の特別なイン ナ一リ一ド部と同様な形状の特別なァゥターリード部を基体シート裏面側に形 成して電気的に接続したり、 又はィンナーリード部とアウターリード部とをス ルーホール内面の金属層若しくは内層配線で電気的に接続したりすればよい。 また、 半導体モジュール 1 0 0を 3個以上の任意の個数で切り離すことにより、 さらに多数の半導体モジュールが 1枚の基台上に搭載されたマルチ半導体モジ ユールを得るようにしてもよい。 この場合も同様に 3個以上の任意の個数の半 導体モジュール 1 0 0を適宜電気的に接続する。
上記第 1実施形態及び上記変形例によれば、 貫通穴 3よりも基体シート裏面 の半導体チップ配置領域 2に対応する領域側にァウタ一リード 6を出すことが できて、 半導体チップモジュール全体の寸法及び半導体パッケージ全体の寸法 をより小さくすることができる。
次に、 本発明の第 2実施形態にかかる半導体モジュール用基体シートと該基 体シートを使用する半導体モジュール及びその製造方法について説明する。 この第 2実施形態にかかる半導体モジュール用基体シート 8 bが、 第 1実施 形態にかかる半導体モジュール用基体シート 8と異なる点は、 各半導体チップ 配置領域 2の四辺ではなく、 対向する二辺上にのみ貫通穴 3 bが設けられてこ とである。 この貫通穴 3 bは、 基体シート 8 bの長手方向沿いに隣接して配置 されている 3個の半導体チップ配置領域 2に対応するように連続した細長い穴 となっている。 よって、 インナーリード部 5、 アウターリード部 6、 及び、 こ れらを接続する接続部 7も、 図 1 4, 1 5, 1 6に示すように、 上記各半導体 チップ配置領域 2の四辺ではなく、 上記対向する二辺上の貫通穴 3 bに対して のみ形成されている。
この第 2実施形態では、 第 1実施形態と比較して、 各半導体チップ配置領域 の四辺に貫通穴を設けるのではなく二辺に貫通穴を設ければよいため、 1個の 半導体モジュールに対する貫通穴 3の本数を少なくすることができ、 基体シー ト 8 bに対する貫通穴 3の加工手間を少なくしてより安価なものとすることが できるとともに、 インナーリ一ド部 5、 アウターリード部 6、 及び、 これらを 接続する接続部 7も少なくすることができる。
なお、 本発明の第 2実施形態の変形例にかかる半導体モジュール用基体シー ト 8 bとして、 図 1 7に示すように、 インナーリード部 5が形成された面の各 半導体チップ配置領域 2の中央に、 半導体チップ 1 0 bを収容可能な大きさの 凹部 9を有するようにして、 半導体チップ 1 0 bを凹部 9内に収容保持するこ とにより、 より安定して基体シート 8に保持できるようにしてもよレ、。
上記構造にかかる基体シート 8 bを使用する上記第 2実施形態に係る半導体 モジュールの製造工程においては、 図 1 8に示すように、 上記基体シート 8 b の 6個の半導体チップ配置領域 2にそれぞれ半導体チップ 1 0 bが接着剤等に より固定されたのち、 各半導体チップ 1 0 bの各電極端子とそれに対応する各 インナーリード部 5とを金などのワイヤ 1 1により電気的に接続する。 これに より、 互いに接続された状態の 6個の半導体モジュールから構成される図 1 8 の半導体モジュール集合体 1 0 8 bが得られる。 このような半導体モジュール 集合体 1 0 8 bの状態で次工程などに搬送するか又は部品として出荷するよう にしてもよレ、。
半導体モジュール集合体 1 0 8 bにおいて封止作業を行う場合には、 半導体 モジュール集合体 1 0 8 bの 6個の半導体モジュール 1 0 0 bの各々の半導体 チップ配置領域 2に載置された半導体チップ 1 O bをそれぞれ封止して、 図 1 9に示すように、 半導体パッケージ集合体 1 1 8 bを形成する。 この封止作業 は、 半導体チップ 1 0 bの各電極端子及びィンナーリード部 5の少なくとも貫 通穴側を封止するものであり、 封止より形成される封止部 1 2としては、 セラ ミックゃ金属などの中空蓋を被せてもよいし、 樹脂をディスペンサーなどで塗 布してもよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂などの樹脂を射出 成形してよい。 このような半導体パッケージ集合体 1 1 8 bの状態で次工程な どに搬送するか又は部品として出荷するようにしてもよい。
個別の半導体パッケージ 1 4 bに分離する場合には、 図 2 0に示すように、 半導体パッケージ集合体 1 1 8 bから半導体パッケージ 1 4 bを一度に 1個ず つ又は一度にまとめて複数個ずつ各半導体チップ配置領域 2の外側で、 つ、 各半導体チップ配置領域 2の貫通穴 3が形成されていない残りの二辺に大略平 行に矩形に切断する。 切断には、 打ち抜きプレス、 ルーター加工、 レーザ一加 ェ、 Vカット、 若しくは、 ダイサーカットなどを用いる。
一方、 上記構造にかかる基体シート 8 bを使用する上記第 2実施形態の変形 例に係る半導体モジュールの製造工程においては、 図 2 1に示すように、 半導 体モジュール用基体シート 8 から 1個の半導体モジュール 1 0 0 bに対応す る絶縁基板すなわち基台 1 3 bを、 半導体チップ 1 0 bを基台 1 3 bに載置す る前に切り離すこともできる。 すなわち、 図 2 1の半導体モジュール用基体シ ート 8 bから基台 1 3 bを一度に 1個ずつ又は一度にまとめて複数個ずつ各半 導体チップ配置領域 2の外側で、 かつ、 各半導体チップ配置領域 2の、 貫通穴
3が形成されていない部分すなわちこの実施形態では貫通穴 3が形成されてい ない残りの二辺に大略平行に、 矩形に切断する。 切断には、 打ち抜きプレス、 ルータ—加工、 レーザー加工、 Vカット、 若しくは、 ダイサーカットなどを用 レヽる。
次いで、 図 2 2に示すように、 切り離された基台 1 3 bの半導体チップ配置 領域 2に半導体チップ 1 O bを接着剤等 1 1 0 (断面図としては図 1 2と同様 であるため図 1 2参照。 ただし、 半導体チップ 1 0は半導体チップ 1 0 bに対 応。 ) により固定したのち、 半導体チップ 1 0 bの各電極端子とそれに対応す る各インナーリード部 5とを金などのワイヤ 1 1により電気的に接続して、 半 導体モジュール 1 0 0 bを得る。 このような半導体モジュール 1 0 0 bの状態 で次工程などに搬送するか又は部品として出荷するようにしてもよい。
次いで、 半導体モジュール 1 0 0 bにおいて封止作業を行う場合には、 半導 体モジュール 1 0 0 bの各半導体チップ配置領域 2に載置された半導体チップ 1 0 bを封止して、 図 2 3に示すように、 半導体パッケージ 1 4 bを形成する。 この封止作業は、 半導体チップ 1 0 bの各電極端子及びィンナーリード部 5の 少なくとも貫通穴側を封止するものであり、 封止より形成される封止部 1 2と しては、 セラミックや金属などの中空蓋を被せてもよいし、 樹脂をデイスペン サーなどで塗布してもよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂など の樹脂を射出成形してよい。 このような半導体パッケージ 1 4 bの状態で次ェ 程などに搬送するか又は部品として出荷するようにしてもよレ、。
なお、 上記半導体モジュールの製造方法においては、 半導体モジュール 1 0
0 bを 1個ずつ切り離すものについて説明したが、 これに限らず、 図 2 4に示 すように、 半導体モジュール 1 0 0 bを 2個ずつ切り離すことにより、 図 2 4 に示すように、 互いに電気的に接続された 2個の半導体モジュ ル 1 0 0 b力 基台 1 3 bの 2個分に相当する基台 2 1 3上に載置した状態のマルチ半導体モ ジュール 2 1 4を得るようにしてもよい。 2個の半導体モジュール 1 0 0 bを 電気的に接続する方法としては、 図 2 4に示すように基体シート表面側に特別 なインナーリード部を形成して電気的に接続したり、 又は具体的には図示しな いが図 2 4の特別なインナ一リード部と同様な形状の特別なアウターリード部 を基体シート裏面側に形成して電気的に接続したり、 又はィンナーリード部と アウターリード部とをスルーホール内面の金属層若しくは内層配線で電気的に 接続したりすればよい。 また、 半導体モジュール 1 0 0 bを 3個以上の任意の 個数で切り離すことにより、 さらに多数の半導体モジュールが 1枚の基台上に 搭載されたマルチ半導体モジュールを得るようにしてもよい。 この場合も同様 に 3個以上の任意の個数の半導体モジュール 1 0 0 bを適宜電気的に接続する。 上記第 2実施形態及び上記変形例によれば、 貫通穴 3 bよりも基体シート裏 面の半導体チップ配置領域 2に対応する領域側にァウタ一リード 6を出すこと ができて、 半導体チップモジュール全体の寸法及び半導体パッケージ全体の寸 法をより小さくすることができる。 また、 貫通穴 3 bを半導体チップ配置領域 2の対向する二辺に設けることにより、 貫通穴を形成する必要の無い二辺にお いて半導体チップ配置領域 2を詰めて配置することができるため、 基体シート 上に半導体チップを高い密度で配置することができ、 多数の半導体モジュール を形成することができて、 コストが安くなる。
次に、 本発明の第 3実施形態にかかる半導体モジュール用基体シートと該基 体シートを使用する半導体モジュ一ル及びその製造方法につ!/、て説明する。 この第 3実施形態は、 図 2 5に示すように、 第 2実施形態にかかる半導体モ ジュール用基体シート 8 bにおいてィンナーリード部 5が半導体チップ配置領 域 2内にまで延び、 その端部が半導体チップ 1 0 Vの底面の電極端子 1 0 aと 直接接続 (ダウンフェース接線) されて、 ワイヤ 1 1が不要となっている点が 第 2実施形態と異なるものである。
この第 3実施形態の変形例としては、 図 2 6に示すように、 多数の基体シー ト 8 bを幅方向に連結した半導体モジュール用基体シート 8 cとすることもで きる。 なお、 図 2 6の絶縁基板 1 c及び貫通穴 3 cは図 2 5の絶縁基板 1及び 貫通穴 3 bにそれぞれ相当する。 この基体シート 8 cでは、 その幅方向の一端 縁の半導体チップ配置領域 2の外に位置合わせ用穴 3 9を連続して所定間隔で 設けるようにしている。 このように位置合わせ用穴 3 9を設けておくと、 位置 合わせ用穴 3 9に、 図示しない位置合わせ用ピンを差し込んで基体シート 8 c を所定位置に位置固定して、 半導体チップ 1 0の各電極端子とインナ一リード 部 5とのボンディングを行うことができる。 ボンディング終了後、 位置合わせ 用穴 3 9から位置合わせ用ピンを一旦抜いて基体シ一ト 8 cを所定ピッチ移動 させたのち、 再び、 位置合わせ用ピンに対向した位置合わせ用穴 3 9に該ピン を差し込んで基体シート 8 cを上記所定位置に位置固定して、 次のボンディン グ作業を行うようにすることもできる。 このようにすれば、 半導体チップ 1 0 の各電極端子とィンナーリード部 5とをずれることなく接合させることができ る。 なお、 この変形例は、 第 3実施形態の変形例として図示したが、 第 1又は 2実施形態でも同様なことが実施可能である。
なお、 本発明の第 3実施形態の変形例にかかる半導体モジュール用基体シー トとして、 図 2 7に示すように、 インナーリード部 5が形成された面の各半導 体チップ配置領域 2の中央に、 半導体チップ 1 0 b V収容可能な大きさの凹部 9を有するようにして、 半導体チップ 1 0 Vを凹部 9内に収容保持することに より、 より安定して基体シート 8に保持できるようにしてもよい。
上記第 3実施形態において、 具体的には、 上記半導体チップ 1 0 Vの底面の 電極端子 1 0 aに、 図 2 8に示すような半球面状のバンプ 4 1を設けた半導体 チップ 1 0 wを用意し、 図 2 5又は図 2 7において半導体チップ 1 0 Vに代え て半導体チップ 1 O wを基体シートに装着して上記バンプ 4 1をインナ一リー ド部 5に電気的に接続して半導体モジュール 3 1 4を得るようにしてもよレ、。 また、 上記第 3実施形態において、 図 2 9に示すように、 上記半導体チップ 1 0 Vの底面の電極端子 1 0 aとィンナーリード部 5との間に、 異方導電接着 剤 4 2介在させつつ、 電気的に接合 (ダウンフェース接線) して半導体モジュ ール 4 1 4を得るようにしてもよい。
さらに、 上記第 1〜 3実施形態及び以下に述べる他の実施形態及びそれらの 変形例において、 基体シートの裏面のアウターリード部 6の端部に、 図 3 0に 示すように、 バンプ 4 0を設けて、 該バンプ 4 0により、 半導体パッケージ 5 1 4又は半導体モジュールを他の回路基板又は部品に電気的に接合するように してもよレ、。
上記第 3実施形態及び上記変形例によれば、 貫通穴 3 bよりも基体シート裏 面の半導体チップ配置領域 2に対応する領域側にァウタ一リード 6を出すこと ができて、 半導体モジュール全体の寸法及び半導体パッケージ全体の寸法をよ り小さくすることができる。 また、 ワイヤとインナ一リード部との接続個所の 分だけ半導体モジュール全体の寸法及び半導体パッケージ全体の寸法を小さく することができる。 さらに、 ワイヤは、 図に示すように半導体チップより上方 に立ち上がるように形成されるため、 半導体チップの上方にその分の空間が必 要となるが、 ワイヤを不要とすることにより、 そのような空間も不要となり、 半導体モジュール又は半導体パッケー としての高さを低くすることができる。 次に、 本発明の第 4実施形態にかかる半導体モジュール用基体シートについ て説明する。
この第 4実施形態にかかる半導体モジュール用基体シート 8 dが、 第 2実施 形態にかかる半導体モジュール用基体シート 8 bと異なる点は、 図 3 1に示す ように、 貫通穴 3が無く、 矩形の絶縁基板 1より構成されていることである。 すなわち、 図 3 1には、 3個の半導体チップ配置領域 2が隣接して配置され、 基体シート 8 dの長手方向沿いの対向する端縁部分に、 インナーリード部 5と、 アウターリード部 6と、 それらを接続する接続部 7とを設けている。 この第 4 実施形態によれば、 先の実施形態と比較して貫通穴を形成する手間が減らせる ため、 基体シートがより安価なものとなる。
上記第 4実施形態によれば、 基体シート 8 dの長手方向沿いの対向する端縁 部分から基体シ一ト裏面の半導体チップ配置領域 2に対応する領域側にァウタ 一リード 6を出すことができて、 半導体チップモジュール全体の寸法及び半導 体パッケージ全体の寸法をより小さくすることができる。
次に、 本発明の第 5実施形態にかかる半導体モジュール用基体シートについ て説明する。
この第 5実施形態にかかる半導体モジユーノレ用基体シート 8 e 、 第 2実施 形態にかかる半導体モジュール用基体シート 8 bと異なる点は、 図 3 2に示す ように、 貫通穴 3が無く、 接続部 7が形成される付近が他の部分よりくぼまさ れている矩形の絶縁基板 1より構成されていることである。 すなわち、 図 3 2 には、 3個の半導体チップ配置領域 2が隣接して配置され、 基体シート 8 eの 長手方向沿いの対向する端縁部分に、 3個の半導体チップ配置領域 2のそれぞ れの接続部 7が形成される付近が他の部分よりくぼまされて窪み 3 eが設けら れており、 この窪み 3 eの付近に、 インナーリード部 5と、 アウターリ一ド部 6と、 それらを接続する接続部 7とを設けている。 この第 5実施形態によれば、 第 1〜3の実施形態と比較して貫通穴を形成する手間が減らせるため、 基体シ ートがより安価なものとなるとともに、 基体シート 8 eの長手方向沿いの対向 する端縁部分において、 接続部 7が他の部分よりくぼんだ窪み 3 eに設けられ ているため、 基体シート 8 dを取り扱うとき、 図 3 1の矩形の基体シート 8 d よりは、 接続部 7及びインナーリード部 5と、 アウターリード部 6が損傷しに くい。
上記第 5実施形態によれば、 基体シート 8 eの長手方向沿いの対向する端縁 部分から基体シート裏面の半導体チップ配置領域 2に対応する領域側にァウタ 一リード 6を出すことができて、 半導体チップモジュール全体の寸法及び半導 体パッケージ全体の寸法をより小さくすることができる。
次に、 本発明の第 6実施形態にかかる半導体モジュール用基体シートについ て説明する。
この第 6実施形態にかかる半導体モジュール用基体シート 8 f が、 第 2実施 形態にかかる半導体モジュール用基体シート 8 bと異なる点は、 図 3 3に示す ように、 6個の半導体チップ配置領域 2を囲む外側の貫通穴 3が無い、 矩形の 絶縁基板 1より構成されていることである。 すなわち、 図 3 3には、 6個の半 導体チップ配置領域 2が隣接して配置され、 隣接する半導体チップ配置領域 2 との間にのみ貫通穴 3が設けられ、 基体シート 8 f の長手方向沿い及び短手方 向沿いの各対向する端縁部分に、 インナーリード部 5と、 アウターリード部 6 と、 それらを接続する接続部 7とを設けている。 この第 4実施形態によれば、 先の実施形態と比較して貫通穴を形成する手間が省けるため、 基体シートがよ り安価なものとなる。
上記第 6実施形態によれば、 基体シート 8 f の長手方向沿いの対向する端縁 部分から基体シート裏面の半導体チップ配置領域 2に対応する領域側にァゥタ 一リード 6を出すことができて、 半導体チップモジュール全体の寸法及び半導 体パッケ一ジ全体の寸法をより小さくすることができる。
次に、 本発明の第 7実施形態にかかる半導体モジュール用基体シートについ て説明する。
この第 7実施形態にかかる半導体モジュール用基体シート 8 gが、 第 2実施 形態にかかる半導体モジュール用基体シート 8 bと異なる点は、 図 3 4に示す ように、 6個の半導体チップ配置領域 2を囲む外側の貫通穴 3の代わりに、 接 続部 7が形成される付近が他の部分よりくぼまされている窪み 3 hが設けられ ている矩形の絶縁基板 1より構成されていることである。 すなわち、 図 3 4に は、 6個の半導体チップ配置領域 2が隣接して配置され、 基体シート 8 gの長 手方向沿 、及び短手方向沿いの各対向する端縁部分に、 6個の半導体チップ配 置領域 2のそれぞれの接続部 7が形成される付近が他の部分よりくぼまされて 窪み 3 hが設けられており、 この窪み 3 hの付近に、 インナ一リード部 5と、 アウターリード部 6と、 それらを接続する接続部 7とを設けている。 この第 7 実施形態によれば、 第 1〜3の実施形態と比較して貫通穴を形成する手間が省 けるため、 基体シートがより安価なものとなるとともに、 基体シート 8 gの長 手方向沿いの対向する端縁部分において、 接続部 7が他の部分よりくぼんだ窪 み 3 hに設けられているため、 基体シート 8 gを取り扱うとき、 図 3 3の矩形 の基体シート 8 f よりは、 接続部 7及びインナーリード部 5と、 アウターリー ド部 6が損傷しにくい。
上記第 7実施形態によれば、 基体シ一ト 8 gの長手方向沿いの対向する端縁 部分から基体シート裏面の半導体チップ配置領域 2に対応する領域側にァゥタ 一リード 6を出すことができて、 半導体チップモジュール全体の寸法及び半導 体パッケージ全体の寸法をより小さくすることができる。
次に、 本発明の第 8実施形態にかかる半導体モジュール用基体シートについ て説明する。
この第 8実施形態にかかる半導体モジュール用基体シート 8 j力 第 1実施 形態にかかる半導体モジュール用基体シート 8と異なる点は、 図 3 5, 3 6, 5 7に示すように、 貫通穴 3 jの半導体チップ配置領域側とは反対側の側壁面 に接続部 7が配置され、 該接続部 7から半導体チップ配置領域 2から遠ざかる 方向にィンナーリ一ド部 5が配置されるとともに、 上記接続部 7から半導体チ ップ配置領域 2の裏面に対応する領域から遠ざかる方向にとアウターリード部 6とが配置されていることである。
上記貫通穴 3 jは上記貫通穴 3と同様なものである。 すなわち、 線状の貫通 穴 3 jは、 各半導体チップ配置領域 2の四辺上に、 半導体チップ配置領域 2の
4つの角部を除いて形成する。 各半導体チップ配置領域 2の大きさは、 例えば、 一辺が 0 . 5 mm〜 5 O mm程度の正方形や長方形などである。 また、 各貫通 穴 3 jの幅は、 接続部 7をその穴内の側壁面に形成するため少なくとも 0 . 1 mm以上とし、 通常は例えば 0 . 3 m m〜3 mm程度とする。 貫通穴 3 jの配 置及び形状等の構造は、 所望の接続部 7が貫通穴 3の側壁面に形成できるなら ば、 図 3 5に限定されず、 どのように設けてもよい。 例えば、 図 3 7 A〜図 3 7 Dに示すように、 隣接する貫通穴 3 jを適宜つなぐことにより、 貫通穴 3 j の個数を減らしてもよいし、 逆に、 具体的には図示しないが、 貫通穴 3 i の個 数を増やしてもレ、い。 また、 図 3 7 B, 3 7 C , 3 7 Dに示すように、 貫通穴 3 jの形成場所を各半導体チップ配置領域 2の各辺の部分のみに限らず、 角部 に跨るように配置してもよレ、。 貫通穴 3 jを基体シートに形成する方法として は、 プレス加工、 ルーター加工、 ドリル加工、 又は、 レーザ加工などがある。 なお、 本発明の第 8実施形態の変形例にかかる半導体モジュール用基体シー ト 8 j として、 図 3 8に示すように、 インナーリード部 5が形成された面の各 半導体チップ配置領域 2の中央に、 半導体チップ 1 0を収容可能な大きさの凹 部 9を有するようにして、 半導体チップ 1 0を凹部 9内に収容保持することに より、 より安定して基体シート 8に保持できるようにしてもよい。
上記構造にかかる基体シート 8を使用する上記第 8実施形態に係る半導体モ ジュールの製造工程においては、 図 3 9に示すように、 上記基体シート 8 j の 6個の半導体チップ配置領域 2にそれぞれ半導体チップ 1 0が接着剤等により 固定されたのち、 各半導体チップ 1 0の各電極端子とそれに対応する各インナ 一リード部 5とを貫通穴 3 jを跨ぐようにして金などのワイヤ 1 1により電気 的に接続する。 これにより、 互いに接続された状態の 6個の半導体モジュール から構成される図 3 9の半導体モジュール集合体 1 0 8 jが得られる。 このよ うな半導体モジュール集合体 1 0 8 j の状態で次工程などに搬送するか又は部 品として出荷するようにしてもよい。
半導体モジュール集合体 1 0 8 jにおいて封止作業を行う場合には、 半導体 モジュール集合体 1 0 8 jの 6個の半導体モジュール 6 0 0の各々の半導体チ ップ配置領域 2に載置された半導体チップ 1 0をそれぞれ封止して、 図 4 0に 示すように、 半導体パッケージ集合体 1 1 8 jを形成する。 この封止作業は、 半導体チップ 1 0の各電極端子及びインナ一リード部 5の少なくとも貫通穴側 を封止するものであり、 封止より形成される封止部 1 2としては、 セラミック や金属などの中空蓋を被せてもよいし、 樹脂をディスペンサーなどで塗布して もよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂などの樹脂を射出成形し てよい。 このような半導体パッケージ集合体 1 1 8 j の状態で次工程などに搬 送するか又は部品として出荷するようにしてもよい。 個別の半導体パッケージ 6 1 4に分離する場合には、 図 4 1に示すように、 半導体パッケージ集合体 1 1 8 jから半導体パッケージ 6 1 4を一度に 1個ず つ又は一度にまとめて複数個ずつ切り離す。 この切り離すとき、 各半導体チッ プ配置領域 2の外側で、 力つ、 各半導体チップ配置領域 2の貫通穴 3が形成さ れていない部分すなわち隣接する辺に大略平行に切断する。 切断には、 打ち抜 きプレス、 ルーター加工、 レーザー加工、 Vカット、 若しくは、 ダイサーカツ トなどを用いる。
一方、 上記構造にかかる基体シート 8 jを使用する上記第 8実施形態の変形 例に係る半導体モジュールの製造工程においては、 図 4 2に示すように、 半導 体モジュール用基体シート 8 jから 1個の半導体モジュール 6 0 0に対応する 絶縁基板すなわち基台 1 3 jを、 半導体チップ 1 0を基台 1 3 jに載置する前 に切り離すこともできる。 すなわち、 図 4 2の半導体モジュール用基体シート 8 jから基台 1 3 jを一度に 1個ずつ又は一度にまとめて複数個ずつ切り離す。 この切り離すとき、 各基台 1 3 j の各半導体チップ配置領域 2の外側で、 かつ、 各半導体チップ配置領域 2の貫通穴 3が形成されていない部分すなわち隣接す る辺に大略平行に切断する。 切断には、 打ち抜きプレス、 ルーター加工、 レー ザ一加工、 Vカット、 若しくは、 ダイサーカットなどを用いる。
次いで、 図 4 3に示すように、 切り離された基台 1 3 jの半導体チップ配置 領域 2に半導体チップ 1 0を接着剤等 1 1 0 (図 5 4参照。 ) により固定した のち、 半導体チップ 1 0の各電極端子とそれに対応する各インナーリード部 5 とを金などのワイヤ 1 1により電気的に接続して、 半導体モジュール 6 0 0を 得る。 このような半導体モジュール 6 0 0の状態で次工程などに搬送するか又 は部品として出荷するようにしてもよい。
次いで、 半導体モジュール 6 0 0において封止作業を行う場合には、 半導体 モジュール 6 0 0の各半導体チップ配置領域 2に載置された半導体チップ 1 0 を封止して、 図 4 4に示すように、 半導体パッケージ 6 1 4を形成する。 この 封止作業は、 半導体チップ 1 0の各電極端子及びィンナ一リード部 5の少なく とも貫通穴側を封止するものであり、 封止より形成される封止部 1 2としては、 セラミックや金属などの中空蓋を被せてもよいし、 樹脂をディスペンサーなど で塗布してもよいし、 エポキシ樹脂、 若しくは、 フエノール樹脂などの樹脂を 射出成形してよい。 このような半導体パッケージ 6 1 4の状態で次工程などに 搬送するか又は部品として出荷するようにしてもよい。
なお、 上記半導体モジュールの製造方法においては、 半導体モジュール 6 0
0を 1個ずつ切り離すものについて説明したが、 これに限らず、 半導体モジュ ール 6 0 0を 2個ずつ切り離すとともに両者を電気的に接続することにより、 2個の半導体モジュール 6 0 0が、 基台 1 3 j の 2個分に相当する基台上に载 置した状態のマルチ半導体モジュールを得るようにしてもよい。 2個の半導体 モジュール 6 0 0を電気的に接続する方法としては、 図 1 3若しくは図 2 4に 示すように基体シート表面側に特別なィンナーリ一ド部を形成して電気的に接 続したり、 又は具体的には図示しないが図 1 3若しくは図の特別なインナーリ 一ド部と同様な形状の特別なアウターリード部を基体シート裏面側に形成して 電気的に接続したり、 又はインナーリード部とアウターリード部とをスルーホ —ル内面の金属層若しくは内層配線で電気的に接続したりすればよい。 また、 半導体モジュール 6 0 0を 3個以上の任意の個数で切り離すことにより、 さら に多数の半導体モジュールが 1枚の基台上に搭載されたマルチ半導体モジユー ルを得るようにしてもよい。 この場合も同様に 3個以上の任意の個数の半導体 モジュール 6 0 0を適宜電気的に接続する。
上記第 8実施形態及び変形例によれば、 貫通穴 3 j の外側にリードを出すこ とにより、 接続部 7を半導体モジュール又は半導体パッケージの側面に出さな いようにすることができ、 その結果、 製品の信頼性向上に役立つ。 さらに、 上 記第 8実施形態のさらなる変形例として、 図 7 9の基体シート 8 m、 図 8 0の 半導体モジュール集合体 1 0 8 m、 図 8 1の半導体パッケージ集合体 1 1 8 m にそれぞれ示すように、 インナーリード部の長さを個別の半導体パッケージに 分離する切断部分より半導体チップ配置領域側に短くして封止部 1 2の中に収 まるようにすれば、 信頼性が更に向上し、 個別の半導体パッケージに分離する 切断時にもインナ一リード部のバリも発生しない。 次に、 本発明の第 9実施形態にかかる半導体モジュール用基体シートと該基 体シートを使用する半導体モジュールの製造方法について説明する。
この第 9実施形態にかかる半導体モジュール用基体シ一ト 8 kが、 第 8実施 形態にかかる半導体モジュール用基体シート 8 j と異なる点は、 各半導体チッ プ配置領域 2の四辺ではなく、 対向する二辺上にのみ貫通穴 3 kが設けられて ことである。 この貫通穴 3 kは、 基体シート 8 kの長手方向沿いに隣接して配 置されている 3個の半導体チップ配置領域 2に対応するように連続した細長い 穴となっている。 よって、 インナーリード部 5、 アウターリード部 6、 及び、 これらを接続する接続部 7も、 図 4 5 , 4 6, 5 8に示すように、 上記各半導 体チップ配置領域 2の四辺ではなく、 上記対向する二辺上の貫通穴 3 kに対し てのみ形成されている。
この第 9実施形態では、 第 8実施形態と比較して、 1個の半導体モジュール に対する貫通穴 3 kの本数を少なくすることができ、 基体シート 8 kに対する 貫通穴 3 kの加工手間を少なくしてより安価なものとすることができるととも に、 インナーリード部 5、 アウターリード部 6、 及び、 これらを接続する接続 部 7も少なくすることができる。
なお、 本発明の第 9実施形態の変形例にかかる半導体モジュール用基体シ一 ト 8 pとして、 図 4 7に示すように、 インナーリード部 5が形成された面の各 半導体チップ配置領域 2の中央に、 半導体チップ 1 0 bを収容可能な大きさの 凹部 9を有するようにして、 半導体チップ 1 0 bを凹部 9内に収容保持するこ とにより、 より安定して基体シート 8に保持できるようにしてもよい。
上記構造にかかる基体シート 8 kを使用する上記第 9実施形態に係る半導体 モジュールの製造工程においては、 図 4 8に示すように、 上記基体シ一ト 8 k の 6個の半導体チップ配置領域 2にそれぞれ半導体チップ 1 0が接着剤等によ り固定されたのち、 各半導体チップ 1 0 bの各電極端子とそれに対応する各ィ ンナーリード部 5とを金などのワイヤ 1 1により電気的に接続する。 これによ り、 互いに接続された状態の 6個の半導体モジュールから構成される図 4 8の 半導体モジュール集合体 1 0 8 kが得られる。 このような半導体モジュール集 合体 1 0 8 kの状態で次工程などに搬送するか又は部品として出荷するように してもよレ、。
半導体モジュール集合体 1 0 8 kにおいて封止作業を行う場合には、 半導体 モジュール集合体 1 0 8 kの 6個の半導体モジュール 7 0 0の各々の半導体チ ップ配置領域 2に載置された半導体チップ 1 0 bをそれぞれ封止して、 図 4 9 に示すように、 半導体パッケージ集合体 1 1 8 kを形成する。 この封止作業は、 半導体チップ 1 0 bの各電極端子及びインナーリード部 5の少なくとも貫通穴 側を封止するものであり、 封止より形成される封止部 1 2としては、 セラミツ クゃ金属などの中空蓋を被せてもよいし、 樹脂をディスペンサ一などで塗布し てもよいし、 エポキシ樹脂、 若しくは、 フユノール樹脂などの樹脂を射出成形 してよい。 このような半導体パッケージ集合体 1 1 8 kの状態で次工程などに 搬送するか又は部品として出荷するようにしてもよい。
個別の半導体パッケージ 7 1 4に分離する場合には、 図 5 0に示すように、 半導体パッケージ集合体 1 1 8 kから半導体パッケージ 7 1 4を一度に 1個ず つ又は一度にまとめて複数個ずつ各半導体チップ配置領域 2の外側で、 かつ、 各半導体チップ配置領域 2の四辺に大略平行に矩形に切断する。 切断には、 打 ち抜きプレス、 ルーター加工、 レーザー加工、 Vカット、 若しくは、 ダイサー カツトなどを用いる。
一方、 上記構造にかかる基体シート 8 kを使用する上記第 9実施形態の変形 例に係る半導体モジュールの製造工程においては、 図 5 1に示すように、 半導 体モジュール用基体シート 8 kから 1個の半導体モジュール 7 0 0に対応する 絶縁基板すなわち基台 1 3 kを、 半導体チップ 1 0 bを基台 1 3 kに载置する 前に切り離すこともできる。 すなわち、 図 5 1の半導体モジュール用基体シー ト 8 kから基台 1 3 kを一度に 1個ずつ又は一度にまとめて複数個ずつ各半導 体チップ配置領域 2の外側で、 かつ、 各半導体チップ配置領域 2の辺に大略平 行に矩形に切断する。 切断には、 打ち抜きプレス、 ルーター加工、 レーザー加 ェ、 Vカット、 若しくは、 ダイサ一カットなどを用いる。
次いで、 図 5 2, 5 4に示すように、 切り離された基台 1 3 kの半導体チッ プ配置領域 2に半導体チップ 1 0 bを接着剤等 1 1 0により固定したのち、 半 導体チップ 1 0 bの各電極端子とそれに対応する各インナーリ一ド部 5とを金 などのワイヤ 1 1により電気的に接続して、 半導体モジュール 7 0 0を得る。 このような半導体モジュール 7 0 0の状態で次工程などに搬送するか又は部品 として出荷するようにしてもよい。
次いで、 半導体モジュール 7 0 0において封止作業を行う場合には、 半導体 モジュール 7 0 0の各半導体チップ配置領域 2に載置された半導体チップ 1 0 bを封止して、 図 5 3に示すように、 半導体パッケージ 7 1 4を形成する。 こ の封止作業は、 半導体チップ 1 0 bの各電極端子及びィンナ一リ一ド部 5の少 なくとも貫通穴側を封止するものであり、 封止より形成される封止部 1 2とし ては、 セラミックや金属などの中空蓋を被せてもよいし、 樹脂をデイスペンザ —などで塗布してもよいし、 エポキシ樹脂、 若しくは、 フユノール樹脂などの 樹月旨を射出成形してよい。 このような半導体パッケージ 7 1 4の状態で次工程 などに搬送するか又は部品として出荷するようにしてもよい。
なお、 上記半導体モジュールの製造方法においては、 半導体モジュール 7 0
0を 1個ずつ切り離すものについて説明したが、 これに限らず、 半導体モジュ ール 7 0 0を 2個ずつ切り離すとともに両者を電気的に接続することにより、 2個の半導体モジュール 7 0 0が、 基台 1 3 kの 2個分に相当する基台上に載 置した状態のマルチ半導体モジュールを得るようにしてもよい。 2個の半導体 モジュール 7 0 0を電気的に接続する方法としては、 図 1 3若しくは図 2 4に 示すように基体シート表面側に特別なィンナーリ一ド部を形成して電気的に接 続したり、 又は具体的には図示しないが図 1 3若しくは図 2 4の特別なインナ —リード部と同様な形状の特別なァゥターリード部を基体シート裏面側に形成 して電気的に接続したり、 又はィンナーリード部とアウターリード部とをスル —ホール内面の金属層若しくは内層配線で電気的に接続したりすればよい。 ま た、 半導体モジュール 7 0 0を 3個以上の任意の個数で切り離すことにより、 さらに多数の半導体モジュールが 1枚の基台上に搭載されたマルチ半導体モジ ユールを得るようにしてもよい。 この場合も同様に 3個以上の任意の個数の半 導体モジュール 7 0 0を適宜電気的に接続する。 また、 貫通穴を半導体チップ 配置領域 2の対向する二辺に設けることにより、 貫通穴を形成する必要の無い 二辺において半導体チップ配置領域 2を詰めて配置することができるため、 基 体シ一ド上に半導体チップを高い密度で配置することができ、 多数の半導体モ ジュールを形成することができて、 コストが安くなる。
次に、 本発明の第 1 0実施形態にかかる半導体モジュール用基体シートと該 基体シートを使用する半導体モジュールの製造方法について説明する。
この第 1 0実施形態は、 図 5 5に示すように、 第 9実施形態にかかる半導体 モジュール用基体シート 8 kにおいて、 半導体チップ配置領域 2内に貫通穴 3 kが設けられ、 半導体チップ 1 O wの底面の電極端子 1 0 aが、 半導体チップ 配置領域 2内にかつ貫通穴より外側に位置するィンナーリード部 5と直接接続 (ダウンフユ一ス接線) されて半導体モジュール 7 0 1を得て、 ワイヤ 1 1力 S 不要となっている点が第 9実施形態と異なるものである。
この第 1 0実施形態においては、 具体的には、 上記半導体チップ 1 O wの底 面の電極端子 1 0 aに、 図 5 5に示すような半球面状のバンプ 4 1を設けた半 導体チップ 1 0 wを用意し、 半導体チップ 1 O wを基体シートに装着して上記 バンプ 4 1をインナーリード部 5に電気的に接続して半導体モジュール 7 0 1 を得るようにしてもよい。
また、 上記第 1 0実施形態において、 図 5 6に示すように、 上記半導体チッ プ 1 0 Vの底面の電極端子 1 0 aとインナーリード部 5との間に、 異方導電接 着剤 4 2介在させつつ、 電気的に接合 (ダウンフェース接線) して半導体モジ ユール 7 0 '2を得るようにしてもよい。 また、 ワイヤーが不要なため、 半導体 チップとワイヤ一接続部の立ち上がり高さが不要なため、 半導体モジュールの 高さを低くすることができる。 また、 狭ピッチのインナーリ ドと半導体チッ プの接続においてワイヤ一ボンディングがしにくい場所に有効である。 また、 ワイヤーとリードの接続面積分を省くことができる。
次に、 本発明の第 1 1実施形態にかかる半導体モジュール用基体シート 8 m を図 5 9に示す。 この基体シート 8 mには、 表面処理用のリード 2 0 0をイン ナリード部 5、 又はァウタ一リード部 6、 又はアウターリード部 6及びインナ リード部 5とともに形成するようにして、 後述するように、 電解メツキで、 こ れらのリード部を形成できるようにしたものである。 また、 表面処理用リード 2 0 0が、 インナ一リード部の全て、 又はァウタ一リード部の全て、 又はイン ナーリード部の全て及びアウターリード部の全てと接続されるので、 電解めつ きができる。 なお、 この表面処理用リード 2 0 0は、 同様にアウターリードに 対し電気的に接続するように実施しても良く、 又、 インナーリード部及びァゥ ターリード部ともに実施しても良い。 また、 個々の半導体基体シートすなわち 基台、 又は、 半導体モジュールとして切り離す場合は表面処理用リードでイン ナーリード部及びァウタ一リード部が電気的に接続されないように切断する。 また、 このやり方で電解メツキを施すと、 メツキ処理時間が早くかつ厚付のメ ツキが可能であり、 半導体チップとの接続信頼性が向上する。
上記各実施形態の基体シートのィンナーリード部 5、 アウターリード部 6、 及び、 接続部 7のパターンをそれぞれ形成する方法、 言い換えれば、 本発明の 実施形態にかかる基体シートの製造方法としては、 以下のようなものがある。 なお、 以下の説明では、 代表例として第 1実施形態において使用した参照符号 を使用する。 よって、 以下の説明において、 「貫通穴の側壁面」 は、 貫通穴が 無いが窪みの有る基体シー卜の場合には窪みの側壁面を意味し、 貫通穴の無い 基体シートでは基体シート端縁など接続部が形成される部分を意味するものと する。
まず、 本発明の第 1 2実施形態にかかる基体シートの製造方法を図 7 2に基 づいて説明する。
まず、 図 7 2のステップ S 1において絶縁基板 1に貫通穴 3を開けた後に、 図 7 2のステップ S 2において、 絶縁基板 1の両面全面及ぴ貫通穴 3の側壁面 全面にパラジウムなどをメツキ用触媒として形成する。 あるいは、 図 7 2のス テツプ S 1において絶縁基板 1の両面全面に銅箔など導体を貼り合せた基板に 貫通穴 3を開けた後に、 図 7 2のステップ S 2において、 貫通穴 3の側壁面全 面に、 さらには必要に応じて、 基板 1の両面全面上にもパラジウムなどをメッ キ用触媒として形成する。
次に、 図 7 2のステップ S 3〜S 5において、 基板両面においてインナーリ ード部 5及びアウターリード部 6としてそれぞれ残すべき部分以外のメツキ不 要な部分と貫通穴 3の側壁面において接続部 7として残すべき部分以外のメッ キ不要な部分とに、 メツキレジスト層を設ける。 メツキレジスト層は、 一般の 感光性メツキレジスト材料を用い、 液状レジストの塗布 (ステップ S 3 ) 、 露 光 (ステップ S 4 ) 、 及び、 現像 (ステップ S 5 ) することにより、 上記メッ キ不要な部分にメツキレジスト層を任意のパターンに形成する。 上記塗布は、 一般の塗装法によるもの以外に、 基板を感光性電着液に浸漬して電着塗装して もよレ、。 感光性メツキレジスト材料としては、 例えば、 ァクリル系、 ポリビニ ルシンナメート系、 合成ゴム系、 若しくは、 ノボラック系などの光硬化型、 又 は光分解型のものを用いる。
次に、 図 7 2のステップ S 6において、 無電解メツキにより、 上記メツキ不 要な部分に形成されたメツキレジスト層以外の部分、 すなわち、 メツキが必要 な部分にメツキ層を形成する。
さらに、 図 7 2のステップ S 7において、 メツキレジスト層を剥離する。 以 上により、 基板両面にィンナーリ一ド部及びァウタ一リード部 6のパターンが それぞれ形成されるとともに、 貫通穴 3の側壁面にも接続部 7のパターンが形 成される。 この工程においては、 メツキレジスト層を剥離するために、 適宜の 剥離剤、 例えば水酸化ナトリウム、 メタケイ酸ソーダ、 メチレンクロライド、 グリコールエーテル、 これらの混合溶剤、 又はこれらと水酸化ナトリウム、 水 酸化力リゥムなどのアルカリ水溶液との混合液などの有機溶剤を用いる。 この ようにすれば、 メツキ用レジスト以外の部分にメツキ層を形成するため、 レジ ストの解像力に応じたパターン形成が実現でき、 ファインパターンに適する。 また、 エッチングレジス トの場合、 レジストの下も少し侵食されるので、 その 点も比較すると、 メツキレジストの場合、 レジストパターンと一致する。 また、 インナーリード部 5、 アウターリード部 6、 接続部 7のパターンを形 成する方法としては、 別のメツキレジス ト層を用いる方法もある。 これを本発 明の第 1 3実施形態にかかる基体シートの製造方法として図 7 3に基づいて説 明する。
まず、 図 7 3のステップ S 1 1において、 絶縁基板 1に上記第 1 2実施形態 においてメツキレジスト層を用いた方法と同様に貫通穴 3を開けた後、 図 7 3 のステップ S 1 2において、 絶縁基板 1の両面全面及び貫通穴 3の側壁面全面 にパラジウムなどをメツキ用触媒として形成する。 あるいは、 図 7 3のステツ プ S 1 1において絶縁基板 1の両面全面に銅箔など導体を貼り合せた基板に貫 通穴 3を開けた後に、 図 7 3のステップ S 1 2において、 貫通穴 3の側壁面全 面に、 さらには必要に応じて、 基板 1の両面全面上にもパラジウムなどをメッ キ用触媒として形成する。
次に、 図 7 3のステップ S 1 2 Aにおいて、 無電解メツキを行う。 この無電 解メツキからなる導電層は、 その上に形成される電解メツキ層を成長させるの に適している。 なお、 無電解メツキからなる導電層の形成は全面にする。 無電 解メツキは、 絶縁基板の両面全面、 貫通穴の側壁面に電気的な導電層として形 成し、 その上に電気メツキによる金属層を形成するための銅、 ニッケル、 すず などの金属で形成する。
次に、 図 7 3のステップ S 1 3〜S 1 5において、 絶縁基板 1の両面のィン ナーリード部 5及びアウターリード部 6の残すべき部分以外の電解メツキ不要 部分と及び貫通穴 3の側壁面の接続部 7の残すべき部分以外の部分とに、 メッ キレジスト層を設ける。 メツキレジスト層は、 一般の感光性メツキレジスト材 料を用い、 液状レジストの塗布 (ステップ S 1 3 ) 、 露光 (ステップ S 1 4 ) 、 及び、 現像 (ステップ S 1 5 ) することにより、 上記メツキ不要な部分にメッ キレジスト層を任意のパターンに形成する。 上記塗布は、 一般の塗装法による もの以外に、 基板を感光性電着液に浸潰して電着塗装してもよい。 感光性メッ キレジスト材料としては、 例えば、 アクリル系、 ポリビュルシンナメート系、 合成ゴム系、 若しくは、 ノボラック系などの光硬化型、 又は、 光分解型のもの を用いる。
次に、 図 7 3のステップ S 1 6において、 電解メツキにより、 上記メツキ不 要な部分に形成されたメツキレジスト層以外の部分、 すなわち、 メツキ層が必 要な部分にのみメツキ層を形成する。
さらに、 図 7 3のステップ S 1 7において、 メツキレジスト層を剥離する。 以上により、 基板両面にインナーリード部 5及びアウターリード部 6のパター ンがそれぞれ形成されるとともに、 貫通穴 3の側壁面にも接続部 7のパターン が形成される。 この工程においては、 メツキレジスト層を剥離するために、 適 宜の剥離剤、 例えば水酸化ナトリウム、 メタケイ酸ソ一ダ、 メチレンクロライ ド、 グリコールエーテル、 これらの混合溶剤、 又はこれらと水酸化ナトリウム、 水酸化力リウムなどのアル力リ水溶液との混合液などの有機溶剤を用いる。 次に、 図 7 3のステップ S 1 8において、 ソフトエッチングを行う。 このソ フトエッチングは、 レジスト剥離後の露出部分における、 ステップ S 1 2 Aで 形成した無電解メツキ層を除去するために行う。 このとき、 インナーリード部 やアウターリード部や接続部となる電解メツキ層も多少薄くなったり細くなる。 また、 ソフトエッチングに使用する薬液としては、 塩化第 2鉄、 塩化第 2銅、 過硫酸ァレチン硫酸、 水酸化ナトリウム等、 一般のエッチングと変わらない。 ただし、 無電解メツキさえ無くなればよいので、 一般のエッチングより軽めに エッチングする。 また、 任意のパターンで形成されたメツキレジス ト以外の部 分を電気メツキにより金属層を形成するため、 第 1 2実施形態と比べると、 メ ツキ層を厚く、 早く効率的にでき、 信頼性のよい金属層を形成できる。
さらに、 本発明の第 1 4実施形態にかかる基体シートの製造方法を図 7 4に 基づいて説明する。
この第 1 4実施形態にかかる基体シートの製造方法は、 穴開け (ステップ S 2 1 ) 、 メツキ用触媒形成 (ステップ S 2 2 ) 、 無電解メツキ (ステップ S 2 2 A) 、 電解メツキ (ステップ S 2 2 B ) 、 液状レジスト塗布 (ステップ S 2 3 ) 、 露光 (ステップ S 2 4 ) 、 現像 (ステップ S 2 5 ) 、 ヱツチング (ステ ップ S 2 6 ) 、 レジスト剥離 (ステップ S 2 7 ) 、 表面処理 (ステップ S 2 8 ) の順に行うようにしている。
上記ステップ S 2 1〜S 2 2 Aは図 7 3の第 1 3実施形態のステップ S 1 1 〜S 1 2 Aと同様である。
電解メツキ (ステップ S 2 2 B ) においては、 絶縁基板の両面全面及び貫通 穴の側壁面に、 無電解メツキされた基板や絶縁基板の両面に銅などの金属箔が 貼られた基板の貫通穴の側壁面に、 無電解メツキされた基板の両面全面及び貫 通穴に、 電気メツキを施すことにより、 上記基板の両面全面及び貫通穴の側壁 面の金属層を厚く して信頼性を高くする。 これは普通の電解めつきである。 上記ステップ S 2 3〜S 2 4においては、 メツキを残したい部分すなわちィ ンナーリード部とアウターリード部と接続部に対応する部分にェッチングレジ スト層を完成する。 エッチングレジスト層は、 一般の感光性耐エッチングレジ スト材料を用い、 塗布 (ステップ S 2 3 ) 、 露光 (ステップ S 2 4 ) 、 及び、 現像 (ステップ S 2 5 ) することにより、 上記メツキを残したい部分にエッチ ングレジスト層を任意のパターンに形成する。 上記塗布は、 一般の塗装法によ るもの以外に、 基板を感光性電着液に浸漬して電着塗装してもよい。 感光性耐 エッチングレジスト材料としては、 例えば、 アクリル系、 ポリビュルシンナメ —ト系、 合成ゴム系、 若しくは、 ノボラック系などの光硬化型、 又は光分解型 のものを用いる。 また、 上記エッチング工程 (ステップ S 2 6 ) では、 エッチ ングレジスト層で覆われていない部分の無電解メツキ層及び電解メツキ層を除 去する。 上記ステップ S 2 7は図 7 3の第 1 3実施形態のステップ S 1 7と同 様である。 表面処理工程 (ステップ S 2 8 ) は省略してもよく、 必要に応じて 行えばよい。 この方法によれば、 信頼性を高めるため金属層を厚くする場合、 エッチングレジスト層の厚みが電気メツキの金属層の厚みより薄くても良い。 又、 第 1 3実施形態のように後でソフトエッチングをする必要がないため、 ィ ンナーリード部やアウターリード部や接続部が薄くなることがない。
さらに、 本発明の第 1 5実施形態にかかる基体シートの製造方法を図 7 5に 基づいて説明する。
この第 1 5実施形態にかかる基体シートの製造方法は、 穴開け (ステップ S 3 1 ) 、 メツキ用触媒形成 (ステップ S 3 2 ) 、 無電解メツキ (ステップ S 3 2 A) 、 液状レジス ト塗布 (ステップ S 3 3 ) 、 露光 (ステップ S 3 4 ) 、 現 像 (ステップ S 35) 、 エッチング (ステップ S 36) 、 レジスト剥離 (ステ ップ S 37) 、 表面処理 (ステップ S 38) の順に行うようにしている。
上記ステップ S 3 1〜S 32 Aは図 73の第 1 3実施形態のステップ S 1 1 〜S 1 2 Aと同様である。 上記ステップ S 33〜S 35においては、 メツキを 残したい部分すなわちインナーリード部とアウターリード部と接続部に対応す る部分にエッチングレジスト層を完成する。 エッチングレジスト層は、 一般の 感光性耐エッチングレジスト材料を用い、 塗布 (ステップ S 33) 、 露光 (ス テツプ S 34) 、 及び、 現像 (ステップ S 35) することにより、 上記メツキ を残したい部分にエッチングレジスト層を任意のパターンに形成する。 上記塗 布は、 一般の塗装法によるもの以外に、 基板を感光性電着液に浸漬して電着塗 装してもよレ、。 感光性耐エッチングレジスト材料としては、 例えば、 ァクリル 系、 ポリビニルシンナメート系、 合成ゴム系、 若しくは、 ノボラック系などの 光硬化型、 又は光分解型のものを用いる。 また、 上記エッチング工程 (ステツ プ S 36) では、 エッチングレジスト層で覆われていない部分の無電解メツキ 層を除去する。 上記ステップ S 3 7は図 73の第 1 3実施形態のステップ S 1
7と同様である。 表面処理工程 (ステップ S 38) は省略してもよく、 必要に 応じて行えばよい。
さらに、 本発明の第 1 6実施形態にかかる基体シートの製造方法を図 76に 基づいて説明する。
この第 1 6実施形態にかかる基体シートの製造方法は、 穴開け (ステップ S
41) 、 蒸着、 スパッタリング、 溶射などの各種金属薄膜形成法 (ステップ S 42) 、 液状レジスト塗布 (ステップ S 43) 、 露光 (ステップ S 44) 、 現 像 (ステップ S 45) 、 エッチング (ステップ S 46) 、 レジス ト剥離 (ステ ップ S 47) 、 表面処理 (ステップ S 48) の順に行うようにしている。
上記ステップ S 4 1は図 73の第 1 3実施形態のステップ S 1 1と同様であ る。
上記蒸着、 スパッタリング、 溶射などの各種金属薄膜形成法 (ステップ S 4 2) において、 上記蒸着は絶縁基板を真空蒸着機に入れ、 蒸着材料を加熱して 蒸発させ絶縁基板に付着させて金属層を形成する。 また、 上記スパッタリング は絶縁材料を真空スパッタリング機に入れ、 金属ターゲット材料にビームを当 て、 金属ターゲット材料を飛散させて絶縁基板に付着させて金属層を形成する。 上記溶射はバーナーなどで金属材料を加熱容融させ、 空気などで吹き飛ばして 絶縁材料に金属層を付着させる。
上記ステップ S 4 3〜S 4 5においては、 金属層を残したい部分すなわちィ ンナ一リード部とアウターリード部と接続部に対応する部分にエッチングレジ ス ト層を完成する。 エッチングレジスト層は、 一般の感光性耐エッチングレジ スト材料を用い、 液状レジストの塗布 (ステップ S 4 3 ) 、 露光 (ステップ S 4 4 ) 、 及び、 現像 (ステップ S 4 5 ) することにより、 上記金属層を残した い部分にエッチングレジスト層を任意のパターンに形成する。 上記塗布は、 一 般の塗装法によるもの以外に、 基板を感光性電着液に浸漬して電着塗装しても よい。 感光性耐エッチングレジスト材料としては、 例えば、 アクリル系、 ポリ ビュルシンナメート系、 合成ゴム系、 若しくは、 ノボラック系などの光硬化型、 又は光分解型のものを用いる。 また、 上記エッチング工程 (ステップ S 4 6 ) では、 エッチングレジスト層で覆われていない部分の金属層を除去する。 上記 ステップ S 4 7は図 7 3の第 1 3実施形態のステップ S 1 7と同様である。 表 面処理工程 (ステップ S 4 8 ) は省略してもよく、 必要に応じて行えばよい。 この方法は、 無電解メツキがつきにくい絶縁材料例えばセラミックや、 密着強 度が得にくい絶縁材料例えばポリエステルフィルムやポリイミ ドフィルムに、 金属薄膜を形成するのに有効である。
さらに、 図 7 7に示すように、 上記第 1 2実施形態のレジスト剥離工程 (ス テツプ S 7 ) の後に、 必要に応じて、 表面処理工程 (ステップ S 8 A) を行う ようにしてもよい。
さらに、 図 7 8に示すように、 上記第 1 3実施形態のソフトエッチング工程
(ステップ S 1 8 ) の後に、 必要に応じて、 表面処理工程 (ステップ S 8 B ) を行うようにしてもよい。
次に、 上記接続部 7を形成するときの上記露光方法について、 図 6 0〜図 6 9を用いながら、 詳細に説明する。 なお、 以下の説明でも、 代表例として第 1 実施形態において使用した参照符号を使用する。 よって、 以下の説明において、 貫通穴の側壁面と記載している部分は、 貫通穴の無い基体シートでは基体シー ト端縁など接続部が形成される部分を指すものとする。
ここでは、 具体的には 4種類の方法について説明する。
まず、 第 1の方法としては、 図 6 4, 6 6に示すように、 感光性レジスト膜 で覆われた絶縁基板 3 8 (完成後は、 上記絶縁基板 1となる。 ) に対して、 図 6 4 , 図 6 6の順に又はその逆の順に、 片面ずつ露光を行う方法であり、 光制 御シート 3 4は絶縁基板 3 8の一方の面のみに使用する。 なお、 マスク 3 3と 光制御シート 3 4の位置関係が絶縁基板 3 8に対して図 6 4の位置関係と逆さ でもよいという変形例を図 6 5に示す。
第 2の方法としては、 図 6 4, 6 7に示すように、 感光性レジスト膜で覆わ れた絶縁基板 3 8に対して、 図 6 4, 図 6 7の順に又はその逆の順に、 片面ず つ露光を行う方法であり、 光制御シート 3 4は絶縁基板 3 8の両方の面に使用 する。
第 3の方法としては、 図 6 8に示すように、 感光性レジスト膜で覆われた絶 縁基板 3 8に対して、 両面同時に露光を行う方法であり、 光制御シート 3 4は 一方の面のみに使用する。
第 4の方法としては、 図 6 9に示すように、 感光性レジスト膜で覆われた絶 緣基板 3 8に対して、 両面同時に露光を行う方法であり、 光制御シート 3 4は 両方の面に使用する。
より詳しくは、 上記第 1の方法においては、 上記エッチングレジスト層及び メツキレジスト層をそれぞれ形成するための感光性レジスト膜 3 2の露光は次 のように行う。
まず、 マスク 3 3及び光制御シート 3 4を上記絶縁基板 3 8の一方の面、 例 えば図 6 2の上面、 に重ねた後、 図 6 4に示すように、 光制御シート 3 4及び マスク 3 3の光透過部 3 5を透過して、 感光性レジスト膜 3 2に、 上から下向 きに露光する。 このマスク 3 3及び以下に述べる各マスク 3 3は、 ガラス又は ァクリル系のフィルムシ一トなどから構成することができる。
次いで、 別のマスク 3 3を絶縁基板 3 8の他方の面、 例えば図 6 2の下面、 に重ねた後、 図 6 6に示すように、 マスク 3 3の光透過部 3 5を透過して、 感 光性レジスト膜 3 2に、 下から上向きに露光する。
その後、 上記感光性レジスト膜 3 2を現像して、 マスク 3 3のパターンに対 応したパターンを有するエッチングレジスト層又はメツキレジスト層を形成す る。
この上記第 1の方法の場合、 感光性レジスト膜 3 2として光硬化型の材料を 用いてエッチングレジス トを形成するときには、 図 6 2に示すように、 二枚の マスク 3 3のうちの絶縁基板 1の表面側に配置される表面側マスク 3 3 (図 6
2では上側のマスク 3 3 ) では、 インナーリード部 5に対応してパターン形成 されたリードパターン形成部 3 3 aと、 上記インナ一リード部 5に接続される 接続部 7に対応してパターン形成されかつ上記リードパターン形成部 3 3 aに 連結された接続部パターン形成部 3 3 bとが、 それぞれ、 上記光透過部 3 5と して透明に形成され、 その他の部分は光遮蔽部として不透明に形成される。 よ つて、 リードパターン形成部 3 3 aと接続部パターン形成部 3 3 bに相当する 部分が光透過部 3 5であるため、 光が透過して、 感光性レジスト膜 3 2の、 リ 一ドパターン形成部 3 3 aと接続部パターン形成部 3 3 bに対応する部分が露 光されて硬化する一方、 他の部分は光が透過せず露光されないため硬化しなレ、。 一方、 絶縁基板 1の裏面側に配置される裏面側マスク 3 3 (図 6 2では下側の マスク 3 3 ) では、 アウターリード部 6に対応してパターン形成されたリード パターン形成部 3 3 cのみが上記光透過部 3 5として、 透明に形成され、 その 他の部分は光遮蔽部として不透明に形成される。 よって、 リードパターン形成 部 3 3 cに相当する部分が光透過部 3 5であるため、 光が透過して、 感光性レ ジスト膜 3 2の、 リードパターン形成部 3 3 cと接続部パターン形成部 3 3 d に対応する部分が露光されて硬化する一方、 他の部分は光が透過せず露光され ないため硬化しない。 この結果、 露光後の現像工程においては、 硬化していな い部分は現像液で除去される一方、 硬化している部分は現像液では除去されず に残り、 それぞれ、 インナーリード部 5、 接続部 7、 アウターリード部 6に対 応する部分にエッチングレジスト層が形成される。 なお、 図 6 2における各マ スク 3 3上の点線の矩形 3 3 eは、 貫通穴 3に重ね合わされる位置を示してい る。 また、 詳しくは後述する力 光制御シート 3 4は、 入射した光を散乱又は 屈折させたのち入射側とは反対側より出射させて、 貫通穴 3の接続部 7を形成 したい側壁面の感光性レジスト膜 3 2に照射するものである。
また、 上記第 1の方法において感光性レジスト膜 3 2として光分解型の材料 を用いてエッチングレジス トを形成するときには、 図 6 3に示すように、 二枚 のマスク 3 3のうちの絶縁基板 1の表面側に配置される表面側マスク 3 3 (図 6 3では上側のマスク 3 3 ) では、 インナ一リード部 5に対応してパターン形 成されたリードパターン遮蔽部 3 3 f と、 上記インナーリード部 5に接続され る接続部 7に対応してパターン形成されかつ上記リードパターン遮蔽部 3 3 f に連結された接続部パターン遮蔽部 3 3 gとが、 それぞれ、 上記光遮蔽部 1 3 5として、 不透明に形成され、 その他の部分は光透過部 3 5として透明に形成 される。 よって、 リードパターン遮蔽部 3 3 f と接続部パターン遮蔽部 3 3 g に相当する部分が光遮蔽部 1 3 5であるため、 光が透過せず、 感光性レジスト 膜 3 2の、 リードパターン遮蔽部 3 3 f と接続部パターン遮蔽部 3 3 gに対応 する部分が露光されず分解しない一方、 他の部分は光が透過して露光されて分 解する。 一方、 絶縁基板 1の裏面側に配置される裏面側マスク 3 3 (図 6 3で は下側のマスク 3 3 ) では、 アウターリード部 6に対応してパターン形成され たリードパターン遮蔽部 3 3 hと、 貫通穴 3に重ね合わせられる部分 3 3 eと 力 それぞれ、 上記光遮蔽部 1 3 5として、 不透明に形成され、 その他の部分 は光透過部 3 5として透明に形成される。 よって、 リードパターン遮蔽部 3 3 hと重ね合わせられる部分 3 3 eに相当する部分が光遮蔽部 1 3 5であるため、 光が透過せず、 感光性レジスト膜 3 2の、 リードパターン遮蔽部 3 3 hに対応 する部分が露光されず分解しないで、 つ、 感光性レジスト膜 3 2の貫通穴の 壁面が露光されずに上記接続部パターン遮蔽部 3 3 gに対応する部分が分解さ れない一方、 他の部分は光が透過して露光されて分解する。 この結果、 露光後 の現像工程においては、 分解している部分は現像液で除去される一方、 分解し ていない部分は現像液では除去されずに残り、 それぞれ、 インナーリード部 5、 接続部 7、 アウターリード部 6に対応する部分にエッチングレジスト層が形成 される。 なお、 図 6 3における各マスク 3 3上の点線の矩形 3 3 eは、 貫通穴 3に重ね合わされる位置を示している。
次に、 上記第 2の方法は、 上記第 1の方法において、 別のマスク 3 3を絶縁 基板 3 8の他方の面に重ねるとき、 図 6 7に示すように光制御シ一ト 3 4も重 ねて、 光制御シート 3 4及びマスク 3 3の光透過部 3 5を透過して、 感光性レ ジスト膜 3 2に、 下から上向きに露光することと下側のマスクパターンが異な ること以外は、 全く同一である (図 6 0及び 6 1参照。 ) 。
ここで、 感光性レジスト膜 3 2が光硬化性の場合、 絶縁基板 1の裏面側に配 置される裏面側マスク 3 3 (図 6 0では下側のマスク 3 3 ) では、 アウターリ ード部 6に対応してパターン形成されたリ一ドパターン形成部 3 3 cと、 上記 ァウタ一リード部 6に接続される上記接続部 7に対応してパターン形成されか つ上記リードパターン形成部 3 3 cに連結された接続部パターン形成部 3 3 d とが、 それぞれ、 上記光透過部 3 5として、 透明に形成され、 その他の部分は 光遮蔽部として不透明に形成される。 よって、 リードパターン形成部 3 3 cと 接続部パターン形成部 3 3 dに相当する部分が光透過部 3 5であるため、 光が 透過して、 感光性レジスト膜 3 2の、 リードパターン形成部 3 3 cと接続部パ ターン形成部 3 3 dに対応する部分が露光されて硬化する一方、 他の部分は光 が透過せず露光されないため硬化しない。 また、 感光性レジス ト膜 3 2が光分 解性の場合、 絶縁基板 1の裏面側に配置される裏面側マスク 3 3 (図 6 1では 下側のマスク 3 3 ) では、 アウターリード部 6に対応してパターン形成された リードパターン形成部 3 3 cと、 上記アウターリード部 6に接続される上記接 続部 7に対応してパターン形成されかつ上記リードパターン形成部 3 3 cに連 結された接続部パターン形成部 3 3 dとが、 それぞれ、 上記光遮蔽部 1 3 5と して、 不透明に形成され、 その他の部分は光透過部として透明に形成される。 よって、 リードパターン形成部 3 3 cと接続部パターン形成部 3 3 dに相当す る部分が光遮蔽部であるため、 光が透過せず、 感光性レジスト膜 3 2の、 リー ドパターン形成部 3 3 cと接続部パターン形成部 3 3 dに対応する部分以外が 露光されて分解する一方、 リードパターン形成部 3 3 cと接続部パターン形成 部 3 3 dに対応する部分は光が露光されないため分解しない。
次に、 上記第 3の方法は、 上記第 1の方法における図 6 4の工程と図 6 6の 工程とを図 6 8に示すように同時に行うものである。 また、 上記第 4の方法は、 上記第 2の方法における図 6 4の工程と図 6 7の工程とを図 6 9に示すように 同時に行うものである。
なお、 上記第 1〜第 4の方法の図 6 0〜図 6 3中では感光性レジスト膜 3 2 で覆われた絶縁基板 3 8が示されているが、 エッチングレジスト層を形成する 場合には、 当然ながら、 感光性レジスト膜 3 2と絶縁基板 3 8との間には金属 層が存在する。 また、 上記第 1〜4の方法においてメツキレジスト層を形成す る場合、 インナーリ一ド部 5、 接続部 7、 アウターリード部 6以外の部分が露 光工程及び現像工程によってレジスト層が形成されるように置き換えてマスク を設定する。
上記第 1〜第 4の方法において、 上記光制御シート 3 4は、 光源からの平行 光 3 6を散乱光又は屈折光 3 7に変え、 その一部を貫通穴 3の側壁面に向かわ せるように制御するものである (図 6 4参照) 。 光制御シート 3 4としては、 例えば拡散シ一トのように表面に微細凹凸を設けたり、 あるいは内部に微粒子 や気泡を含有させたりしたシートや、 プリズムシートのように表面にプリズム 状の突起を設けたシートを使用することができる。 光制御シ一ト 3 4がなけれ ば、 マスク 3 3の光透過部 3 5を透過した光はほとんど貫通穴 3の側壁面を照 射せず、 貫通穴 3の側壁面にパターン化されたエッチングレジスト層又はメッ キレジスト層を形成することはできない。 つまり、 光制御シ一ト 3 4とマスク 3 3とを用いて露光することによって、 基板 3 8の表面又は裏面又は表裏両面 と貫通穴 3の側壁面とに同時にエッチングレジスト層又はメツキレジスト層を 形成することができ、 工程の省略化が図れるのである。
ここで、 光制御シート 3 4として、 プリズムシートを用いた場合と、 拡散シ ートを用いた場合とを比較検討する。 プリズムシート (2方向性屈折シート) は、 その形状から 2方向への光の向かう量は拡散シートよりも多くなる。 逆に 言えば、 拡散シートの場合、 2方向以外への方向へも光が向かうため、 その分 だけ 2方向へ向かう量がプリズムシートより少なくなり、 露光が甘くなる。 よ つて、 拡散シートよりもプリズムシートを用いた方が、 光が進む方向の端面、 言い換えれば、 基板シ一トの貫通穴 3の側壁面又は基板シートの端縁の側壁面 に接続部を形成しょうとする場合には、 比較的シャープな画像を形成すること ができて好ましい。
なお、 マスク 3 3と光制御シート 3 4の重ねる順番は、 光制御シート 3 4力 S 下になつてもよい (図 6 5参照) 。 露光のために使用する光は、 太陽光、 水銀 灯、 キセノンランプ、 アーク灯、 あるいはアルゴンレーザ一等を光源する光な どを用いる。 なお、 基板 3 8の一方の面への露光と他方の面への露光とは、 同 時に行なってもよいし、 片面づっ順番に行なってもよい。 また、 図 6 4及び図 6 5はエッチングレジスト層を形成する場合の例を示しているが、 メツキレジ スト層の場合は金属層 3 1が省略される。
一方、 上記現像工程では、 感光性レジスト膜 3 2が光硬化型の場合、 炭酸ソ ーダなどを現像液として使用することにより、 感光性レジスト膜 3 2の未硬化 部分を選択的に除去することにより行なわれる。 また、 感光性レジスト膜 3 2 が光分解型の場合、 メタケイ酸ソ一ダなどを現像液として使用することにより、 感光性レジスト膜 3 2の光分解されている部分を選択的に除去することにより 行なわれる。
また、 貫通穴 3内へ接続部 7のパターンを形成する方法としては、 上記のェ ツチングレジスト層又はメツキレジスト層を用いる方法が最も好ましいが、 レ 一ザ一その他の物理的手段で金属層 3 1を削り取ることもできる。
また、 インナ一リード部 5、 又は、 ァウタ一リード部 6の一部にソルダーレ ジストにて絶縁処理を施してもよい。 ソルダ一レジストの材料としては、 ェポ キシ樹脂、 ワニス、 若しくは、 エナメルなどがある。 ソルダーレジストの形成 方法としては、 スクリーン印刷、 ロールコ一ター、 カーテンコ一ター、 スプレ ―、 若しくは、 静電塗布などの方法がある。
また、 インナーリード部 5、 又は、 アウターリード部 6の一部又は全部に表 面処理を施してもよい。 表面処理としては、 ハンダレべラー、 金メッキ、 ハン ダメツキ、 ニッケルメツキ、 銀メツキ、 若しくは、 パラジウムメツキなどの方 法がある。 これらの表面処理により形成する表面処理層は、 適宜、 組み合わせ て複数層にしてもよいし、 単層でもよい。 例外として、 金メッキ層単層だけで は無理であり、 通常、 金メッキ層はニッケルメツキ層の上に積層させる。 また、 表面処理のメツキ層は、 貫通穴 3の内側にリードを出すタイプの場合は、 無電 解メツキのみであるが、 貫通穴 3の外側にリードを出すタイプの場合は、 無電 解メツキの他に、 図 5 9のように表面処理用のリード 2 0 0を基体シート 8 m に設けるようにすれば、 電解メツキも可能である。 なお、 このリード 2 0 0は、 後に各半導体パッケージ又は各基台を分離切断する際に避けて切断することに よって、 半導体モジュール又は半導体パッケージには残らないようにしなけれ ばならない。
なお、 上記マスク 3 3において、 リードパターン形成部 3 3 aはインナーリ
—ド部 5に対応してパターン形成され、 接続部パターン形成部 3 3 bは上記ィ ンナーリード部 5に接続される接続部 7に対応してパターン形成されかつ上記 リードパターン形成部 3 3 aに連結され、 リードパターン形成部 3 3 cはァゥ ターリード部 6に対応してパターン形成され、 接続部バタ一ン形成部 3 3 dは 上記ァウタ一リード部 6に接続される上記接続部 7に対応してパターン形成さ れかつ上記リードパターン形成部 3 3 cに連結されるものであるが、 これに限 られるものではない。 すなわち、 基板 3 8に対する二枚のマスク 3 3の配置位 置関係を逆にすることにより、 リードパターン形成部 3 3 aはアウターリード 部 6に対応してパターン形成され、 接続部パターン形成部 3 3 bは上記ァウタ 一リード部 6に接続される接続部 7に対応してパターン形成されかつ上記リ一 ドパターン形成部 3 3 aに連結され、 リードパターン形成部 3 3 cはインナー リード部 5に対応してパターン形成され、 接続部パターン形成部 3 3 dは上記 -ーリード部 5に接続される上記接続部 7に対応してバタ一ン形成されか つ上記リードパターン形成部 3 3 cに連結されるようにしてもよい。
同様に、 リードパターン遮蔽部 3 3 f はインナーリード部 5に対応してパタ ーン形成され、 接続部パターン遮蔽部 3 3 gは上記インナーリード部 5に接続 される接続部 7に対応してパターン形成されかつ上記リードパターン遮蔽部 3 3 f に連結され、 リードパターン遮蔽部 3 3 hはアウターリード部 6に対応し てパターン形成されているが、 これに限られるものではない。 すなわち、 基板 3 8に対する二枚のマスク 3 3の配置位置関係を逆にすることにより、 リード パターン遮蔽部 3 3 f はァウタ一リード部 6に対応してパターン形成され、 接 続部パターン遮蔽部 3 3 gは上記ァウタ一リード部 6に接続される接続部 7に 対応してパターン形成されかつ上記リードパターン遮蔽部 3 3 f に連結され、 リードパターン遮蔽部 3 3 hはインナーリード部 5に対応してパターン形成さ れているようにしてもよい。 レーザーなどの物理的手段で削る場合を除き、 露 光による上記これらの方法は、 インナーリード部、 接続部、 アウターリード部 を連続した工程で、 又は同時に露光し、 一回の現像工程でインナ一リード部、 接続部、 アウターリード部のエッチングレジスト、 メツキレジストを形成する ことができ、 従ってインナーリード部、 接続部、 アウターリ一ド部がエツチン グ又は、 メツキにより同時に効率的に安価に形成できる。
以下に、 上記実施形態に基づく、 より具体的な実施例について説明する。 実施例 1
3 4 O m m X 5 1 O m mの三菱ガス化学 (株) 製 B Tレジン両面基板 C C L
H L - 8 0 0 ( 0 . 3 m m厚、 両面銅箔 1 8 μ m) を用意し、 この板が有する 2 8 m m角の半導体チップ配置領域 2 1 0 4個の各四辺上に、 四隅の連結部を 除いて幅 1 m m X長さ 2 6 . 3 m mの長方形の貫通穴をパンチングで設けた。 次に、 ィンナーリ一ド部が形成された面の各半導体チップ配置領域 2の中央 に半導体チップを搭載できるように正方形の凹部を形成した。 凹部の深度は半 導体チップの厚み以下の 0 . 2 m mとし、 凹部の外形は半導体チップ外形より も少し大きい 1 1 m mとなるように、 ドリルを用いて加工した。
次いで、 凹部を含めた全面に無電解メツキ及び電解メツキにて 1 8 μ m厚の 銅メツキを施し、 光硬化型の感光性レジス ト膜を基材の表面、 貫通穴の側壁面、 裏面に形成した後、 露光、 現像してパターン化し、 エッチングにて感光性レジ ストパターンで覆われていない部分の銅メツキ層及び銅箔を除去することによ り、 絶縁基板の片面においては各半導体チップ配置領域 2の貫通穴から中央域 に向かう多数のインナーリード部をパターン形成し、 絶縁基板の他面において は各半導体チップ配置領域 2の貫通穴から中央域に向かう多数のァウタ一リー ド部をパターン形成し、 貫通穴の側壁面においては絶縁基板の両面に設けられ たインナーリード部とアウターリード部との間に多数の接続部をパターン形成 した。 インナーリード部端部での配線ピッチは 0 . 2 3 mm、 アウターリード 部端部では 0 . 5 mmとした。 なお、 上記感光性レジスト膜の露光については、 リードパターン形成部と分割された接続部パタ一ン形成部とが光を透過するマ スク及び入射した光を散乱又は屈折させて反対側より出射させる光制御シート を基板の一方の面に重ねて露光するとともに、 リ一ドパターン形成部と接続部 パターン形成部とが光を透過する別のマスク及び光制御シートを基板の他方の 面に重ねて行なった。
次に、 表面処理として導体面に N i ZA uメツキを施し、 半導体モジュール 用基体シートを得た。
以上のような半導体モジュール用基体シートを用い、 インナーリード部の設 けられた面の各半導体チップ配置領域 2の中央に、 2 0 0個の電極端子を有す る半導体チップを搭載し、 半導体チップの各電極端子とィンナーリード部とを 金線のワイヤーボンディングにて電気的に接合した。
次に、 半導体モジュール用基体シートを射出成形用金型内に配置し、 ェポキ シ樹脂を射出することにより半導体チップ及びィンナーリ一ド部の少なくとも 貫通穴側を封止した。
最後に、 半導体モジュール用基体シートの貫通穴間の連結部をプレスにて切 断することにより、 1 0 4個のモノリシック I Cを得た。
実施例 2
3 4 0 mm X 2 5 5 mmの三菱ガス化学 (株) 製 B Tレジン両面基板 C C L H L—8 3 0 ( 0 . 1 mm厚、 両面銅箔 1 8 μ πι) を用意し、 この板に縦 2 . 4 mm X横 3 mmの半導体チップ配置領域を横方向にピッチ 3 mmで 8個、 縦 方向にピッチ 2 . 4 mmで 4 1個並べたものを 1セットとし、 これを横方向に 6セット、 縦方向に 3セット並べ、 各セットが有する半導体チップ配置領域の 横方向の辺上に幅 0 . 9 mm X長さ 2 5 mm (ただし、 両端の各 0 . 5 mm分 は半導体チップ配置領域を超えるように設定) の貫通穴をパンチングで設けた。 すなわち、 この板が有する 5 9 0 4個の半導体チップ配置領域の各対向する二 辺上に貫通穴を設けた。
次に、 全面に無電解メツキ及び電解メツキにて 1 8 // m厚の銅メツキを施し、 光分解型の感光性レジス ト膜を基材の表面、 貫通穴の側壁面、 裏面に形成した 後、 露光、 現像してパターン化し、 エッチングにて感光性レジストパターンで 覆われていない部分の銅メツキ層及び銅箔を除去することにより、 絶縁基板の 片面においては各半導体チップ配置領域 2の貫通穴から中央域に向かう多数の インナーリード部をパターン形成し、 絶縁基板の他面においては各半導体チッ プ配置領域 2の貫通穴から中央域に向かう多数のアウターリード部をパターン 形成し、 貫通穴の側壁面においては絶縁基板の両面に設けられたィンナ一リ一 ド部とアウターリード部との間に多数の接続部をパターン形成した。 インナー リード部端部での配線ピッチは 0 . 2 3 mm、 アウターリード部端部では 0 . 5 mmとした。 なお、 上記感光性レジスト膜の露光については、 リードパター ン遮蔽部と接続部パターン遮蔽部とが光を遮蔽するマスク及び入射した光を散 乱又は屈折させて反対側より出射させる光制御シートを基板の一方の面に重ね て露光するとともに、 リードパターン遮蔽部と接続部パターン遮蔽部とが光を 遮蔽する別のマスク及び光制御シートを基板の他方の面に重ねて行なった。 次に、 表面処理として導体面に N i ZA uメツキを施した後、 プレスにて切 断することにより横方向の 2セットを有する縦 1 0 3 mm X横 6 5 mmの半導 体モジュール用基体シートを 9枚得た。
以上のような各半導体モジュール用基体シートを用い、 インナーリード部の 設けられた面の各半導体チップ配置領域 2の中央に 8個の電極端子の半導体チ ップを搭載し、 半導体チップの各電極端子とインナ一リード部とを金線のヮィ ヤーボンディングにて電気的に接合した。
次に、 半導体モジュール用基体シートを射出成形用金型内に配置し、 ェポキ シ樹脂を射出することにより半導体チップ及びィンナーリ一ド部の少なくとも 貫通穴側を封止した。
最後に、 半導体モジュール用基体シートの各半導体チップ配置領域 2の外側 で、 かつ、 各半導体チップ配置領域 2の残された辺に大略平行にダイサ一にて 切断することにより、 1枚の半導体モジュール用基体シートから 656個のモ ノリシック I Cを得た。
また、 接続部形成工程に関しての具体的な実施例を示す。
実施例 3
基板材料としては、 三菱ガス化学 (株) 製ガラスクロス入り BT (ビスマレ イミド ' トリアジン) 樹脂の 0. 1mm厚の板の両面に、 0. 0 18mm厚の 箔をラミネートしたものを使用した。 金属層は、 無電解メツキと電解メッ キとにより 1 8 / m厚の Cu層を形成した。 レジストは日本ペイント (株) 製 ポジ型電着エッチングレジスト (光分解性) を塗布した。 その厚みは 0. 00 7mm〜0. 008mmであった。 露光は高圧水銀ランプ使用で 600 m J cm2で行った。 現像は 32°C、 1 %メタ珪酸ソーダ水溶液をスプレー噴射した。 時間は約 60秒であった。 ェツチングは 50 °C、 45ボーメの第二塩化鉄水溶 液をスプレー噴射した。 時間は約 4分であった。 レジスト剥離は、 常温で 3〜
5%苛性ソーダ水溶液に約 5分間浸漬した。 これにより、 接続部 7が形成でき た。
上記各実施形態のさらに変形例として、 図 1に対応して図 82に、 図 14, 1 5に対応して図 83, 84に、 図 1 5に対応して図 84, 85に、 それぞれ 示すように、 上記半導体チップ配置領域 2に上記半導体チップのサイズと同等 以上の大きさを持つ金属導体部 800 A, 800 B, 800 C, 800Dを配 置することもできる。
このように、 半導体チップ配置領域に金属導体部を設けると、 次の効果があ る。
① 半導体チップを半導体チップ配置領域に接着する際、 特に金属接着剤、 拡散接合により接着する場合、 金属導体部が半導体チップとの接着に対し、 強 度的に有効である。
② 金属導体部が金属層であるため、 半導体チップからの熱伝導が良く、 特 に半導体チップより金属導体部が大きい場合、 熱放散に有効で、 金属カバーや セラミックのカバーもこの金属導体部に接続すると更に熱放散が有効に働く。 ③ インナーリード部を延長して金属導体部とすることもできる。
また、 図 9 3, 9 4に示すように、 上記半導体チップ配置領域 2に上記半導 体チップのサイズと同等以上の大きさを持つ第 1金属導体部 8 1 0を配置する とともに、 上記絶縁基板 1の表面側の上記第 1金属導体部 8 1 0と上記絶縁基 板 1を介して対向する上記絶縁基板 1の裏面側の領域に第 2金属導体部 8 2 0 を設け、 上記第 1金属導体部 8 1 0と上記第 2金属導体部 8 2 0とをスルーホ ール 8 1 0 aの内壁に形成された金属層で接続することもできる。 このように、 スルーホール 8 1 0 aにより、 表裏金属導体部すなわち上記第 1金属導体部 8
1 0と上記第 2金属導体部 8 2 0とを接続すると、 半導体チップからの熱をス ルーホールにより伝導して、 表面のみならず、 裏面金属導体部からも熱放散さ せることができる。
また、 図 9 5に示すように、 図 9 4の上記第 1金属導体部 8 1 0と上記第 2 金属導体部 8 2 0を接続する上記スルーホ一ル 8 1 0 aの穴部を樹脂 8 3 0で 埋めることもできる。 このようにすれば、 上記スルーホールにより表裏金属導 体部を接続する効果に加えて、 スルーホールを樹脂埋めすることにより、 半導 体チップを保護することができる。
また、 図 9 6, 9 7に示すように、 図 9 5の上記スルーホール 8 1 0 aで接 続され、 上記スルーホール 8 1 0 aの穴部を上記樹脂埋めされた上記第 1金属 導体部 8 1 0と上記第 2金属導体部 8 2 0とのそれぞれに、 更に上から金属層 8 4 0, 8 4 1を配置して、 上記第 1金属導体部 8 1 0と上記第 2金属導体部 8 2 0と上記樹脂埋めされた上記スルーホール 8 1 0 aの穴部とを覆うように することもできる。 このように、 スルーホールに樹脂埋めし、 更にその上から 金属層を設けることにより、 上記第 1金属導体部 8 1 0と上記第 2金属導体部 8 2 0とを接続するスルーホール 8 1 0 aが半導体チップに覆われるように設 けられる場合には、 特に金属接着剤等の接着硬化時において、 スルーホール内 に埋められた樹脂が加熱される温度に耐えないため、 樹脂の表面を更に金属層 で覆うことで、 上記問題を解決できる。
上記金属導体部は、 図 8 2の 8 0 0 xで示すように、 上記ィンナーリ一ド部 5又は上記ァウタ一リード 6の一部を上記半導体チップ配置領域 2まで延長し、 上記半導体チップが載置可能な大きさに形成することもできる。
また、 図 8 5に示すように、 絶縁基板 1に貫通穴をあけ半導体チップ配置領 域側とは反対側の側壁面に接続部 7を設け、 該接続部 7から遠ざかる方向にィ ンナーリード部 5が配置され、 上記接続部 7から上記半導体チップ配置領域 2 の裏面に対応する領域から遠ざかる方向にアウターリ一ド部 6が配置されてい る半導体基体シートにおいて、 上記半導体チップ配置領域 2に金属導体部 8 0 0 Cを形成することもできる。
さらに、 絶縁基板 1に貫通穴をあけ、 半導体チップ配置領域側とは反対側の 側壁面に接続部 7を設け、 該接続部 7から遠ざかる方向にィンナーリード部 5 が配置され、 上記接続部 7から半導体チップ配置領域 2の裏面に対応する領域 から遠ざかる方向にアウターリード部 6が配置されている半導体基体シートに おいて、 図 8 6, 9 8, 9 9に示すように、 上記貫通穴の上記半導体チップ配 置領域側の側壁面に上記接続部と接触しないように別の接続部 8 5 1を設け、 上記半導体チップ配置領域 2に金属導体部 8 5 0 (図 8 6では 8 0 0 D) を設 け、 上記半導体チップ配置領域 2の裏面に対応する領域に金属層部 8 5 2を設 け、 上記基体シートの表側の上記金属導体部 8 5 0と上記基体シートの裏面の 金属層部 8 5 2とを上記別の接続部 8 5 1により接続される。
このような構成によれば、 上記貫通穴の半導体配置領域側の側壁面に別の接 続部 8 5 1を形成し金属導体部 8 5 0と裏面金属層部 8 5 2とを形成すること により、 半導体チップからの熱を表面から放散すると共に別の接続部 8 5 1、 裏面金属層部 8 5 2からも熱伝導により熱放散できる。
上記構成において、 さらに、 図 1 0 0に示すように、 上記貫通穴を樹脂 8 5 3で埋めることもできる。 このようにすれば、 インナーリード部 5及びァウタ 一リード部 6と半導体配置領域 2にある貫通穴を樹脂により埋めることにより、 基体シート、 半導体モジュール、 半導体パッケージとしての機械的強度を増加 させることができる。
また、 上記ィンナーリード部 5が形成された基体シート側の面に配置された 上記金属導体部の表面の形状は平面とすることがてきる。 このようにすれば、 上記金属導体部の表面の平面形状により半導体チップの傾きを無くすことがで きる。
また、 上記ィンナーリード部 5が形成された基体シート側の面に配置された 上記金属導体部 (ダイパッド部) 8 0 0 Eの平面上に、 図 8 7, 8 8に示すよ うな細かな凹凸を有することもできる。 また、 上記インナーリード部 5が形成 された基体シート側の面に配置された上記金属導体部 (ダイパッド部) 8 0 0 Fの平面上に、 図 8 9, 9 0に示すようなパターン化された凹部 8 0 0 rを有 することもできる。 また、 上記インナーリード部 5が形成された基体シート側 の面に配置された上記金属導体部 (ダイパッド部) 8 0 0 Gの平面上に、 図 9 1, 9 2に示すようなパターン化された凹部 8 0 0 tを有することもできる。 このように、 上記金属導体部の表面に、 細かな凹凸や、 パターン化された凹部 を形成することにより、 半導体チップを金属導体部に接着剤にて接着する場合、 接着強度を増加させることができる。
上記各金属導体部の形成方法は以下のとおりである。
基体シートの半導体チップ配置領域の表面及び裏面の金属導体部は、 インナ ーリ一ド部及びァゥターリード部の形成と同じ工程と同じ方法で、 ィンナーリ 一ド部及ぴァゥターリード部の形成と同時に形成する。
また、 スルーホールで表面側の金属導体部と裏面側の金属導体部とを電気的 に接続する方法は、 接続部用の貫通穴を形成するとき、 貫通穴と同様にドリル、 ルーター、 若しくはレーザーなどでスル一ホールをあけ、 貫通穴の側壁に接続 部としての金属層を形成するのと同じ工程で同じ方法でスルーホールの壁面に も金属層を形成し。 その後、 インナーリード部及びアウターリード部の形成と 同じ工程と同じ方法で同時に表面側の金属導体部と裏面側の金属導体部とを形 成する。
又、 スルーホールを穴埋めするにはエポキシ樹脂等をディスペンサー、 スク リーン印刷、 若しくはブレード等により充填し硬化させて形成する。穴埋めし た金属導体部及び裏面金属導体部の上から、 更に金属層を設けるには、 穴埋め 後、 更に絶縁基板全面に無電解メツキ、 電解メツキにより金属層を形成し、 そ の後、 インナーリード部、 アウターリード部を形成するのと同じ工程で同じ方 法で同時に上記金属層を形成する。
また、 上記別の接続部の形成方法としては以下のようなものである。
上記別の接続部 8 5 1は、 ィンナーリ一ド部及びァゥターリード部の接続部 と同じ工程、 同じ方法でィンナ一リ一ド部及びァゥターリード部の接続部の形 成と同時に貫通穴の半導体チップ配置領域側の側壁面に形成する。 尚、 この別 の接続部の側壁面における形状は、 インナーリード部、 アウターリード部の形 状と同じであっても良いし、 別の形状でも良い。 また、 例えばパターンがなく ても良い。 又、 この例で貫通穴を樹脂で埋めるには、 上記スルーホールの穴埋 めと同じ方法で行う。
上記各金属導体部の形状は、 半導体チップのサイズ以上の大きさとする。 半 導体チップのサイズより金属導体部が小さいと、 金属導体部からはみ出した半 導体チップの部分が割れる恐れがあるためである。
又、 上記各金属導体部はインナーリード部と接触しない形状とする。 但し、 インナーリード部の一部を半導体チップ配置領域内まで延長し、 金属導体部と して使用する場合は他のインナーリード部と接触しない形状とする。
金属導体部の表面はィンナ一リ一ド部及びァゥターリード部の表面と同様な 平面とするが、 必要に応じて細かな凹凸やパターン化された凹部を形成しても 良い。 また、 金属導体部の表面処理としては、 インナーリード部、 アウターリ ード部、 接続部と同じ表面処理を行うか、 全く表面処理をしなくても良い。 本発明の上記各実施形態にかかる半導体モジュール用基体シートと半導体モ ジュール用基体シートの製造方法と半導体モジュールとその製造方法は、 以上 のような構成及び作用であるので、 次の効果が奏される。
すなわち、 半導体チップが配置可能な半導体チップ配置領域を有する絶縁基 板と、 上記絶縁基板の上記半導体チップ配置領域と同じ側の面に形成され、 か つ、 半導体モジュールを構成するように上記半導体チップ配置領域に配置され る上記半導体チップの複数の電極端子とそれぞれ電気的に接続される複数のィ ンナーリード部と、 上記絶縁基板の上記半導体チップ配置領域とは反対側の面 に形成された複数のアウターリード部と、 上記絶縁基板の側壁面においてた上 記複数のィンナーリ一ド部と上記複数のァウタ一リード部とをそれぞれ接続す る複数の接続部と、 を備えるように構成している。
より具体的には、 単数又は複数の半導体チップ配置領域を有する絶縁基板と、 半導体チップ配置領域の一部の連結部を除く四辺上又は各半導体チップ配置領 域の対向する二辺上に配置された貫通穴、 窪み、 又は端縁と、 絶縁基板の片面 において貫通穴、 窪み、 又は端縁から各半導体チップ配置領域に向かってバタ ーン形成された多数のインナ一リード部と、 絶縁基板の他面において貫通穴、 窪み、 又は端縁から各半導体チップ配置領域に向かつてパターン形成された多 数のアウターリード部と、 貫通穴、 窪み、 又は端縁の側壁面において絶縁基板 の両面に設けられたインナーリード部とアウターリード部との間にパターン形 成された多数の接続部とを有する半導体モジュール用基体シートを用い、 各半 導体チップ配置領域毎又は複数の半導体チップ配置領域毎に対応して各半導体 チップ配置領域又は複数の半導体チップ配置領域の外側で切断する前あるいは 切断した後に、 半導体チップを搭載し、 半導体チップの電極端子とインナーリ —ド部とを電気的に接合して半導体モジュールを得るとともに、 さらに、 半導 体チップ及びィンナーリ一ド部の少なくとも貫通穴側を封止する各工程を経る ことにより半導体パッケージを得るように構成した。
したがって、 半導体モジュールの基台にインナーリード部が直接形成されて いるので、 半導体モジュールの製造工程が少なくてすむ。 さらに、 半導体モジュールの基台にインナ一リード部が直接形成されている ので、 一部の半導体モジュールのように多ピンで狭ピッチのィンナーリ一ド部 を形成する場合であっても、 多ピンで狭ピッチのインナ一リード部の寸法精度 を維持しつつ、 高密度で小型化された半導体モジュールを製造することができ る。
なお、 半導体モジュールの基台の裏面にアウターリード部が設けられ、 イン ナ一リード部とアウターリード部とが基台の側面に設けられた接続部によって それぞれ接続されていることにより半導体モジュール又は半導体パッケージが 面実装されるので、 リ一ド材料に剛性が必要ない。
本発明の半導体モジュール用基体シートと半導体モジュール用基体シートの 製造方法と半導体モジュールは、 以上のような構成及び作用であるので、 次の 効果が奏される。
すなわち、 半導体チップが配置可能な半導体チップ配置領域を有する絶縁基 板と、 上記絶縁基板の上記半導体チップ配置領域と同じ側の面に形成され、 か つ、 半導体モジュールを構成するように上記半導体チップ配置領域に配置され る上記半導体チップの複数の電極端子とそれぞれ電気的に接続される複数のィ ンナーリード部と、 上記絶縁基板の上記半導体チップ配置領域とは反対側の面 に形成された複数のアウターリード部と、 上記絶縁基板の側壁面においてた上 記複数のィンナーリ一ド部と上記複数のァウタ一リード部とをそれぞれ接続す る複数の接続部と、 を備えるように構成している。
したがって、 半導体モジュールの基台となる基体シートにインナーリード部 が直接形成されているので、 半導体モジュールの製造工程が少なくてすむ。 さらに、 半導体モジュールの基台となる基体シートにィンナ一リード部が直 接形成されているので、 一部の半導体モジュールのように多ピンで狭ピッチの インナーリード部を形成する場合であっても、 多ピンで狭ピッチのインナーリ 一ド部の寸法精度を維持しつつ、 高密度で小型化された半導体モジュールを製 造することができる。
なお、 半導体モジュールの基台となる基体シ一トの裏面にアウターリード部 が設けられ、 ィンナーリード部とアウターリード部とが基台となる基体シート の側壁面に設けられた接続部によってそれぞれ接続されている状態で半導体モ ジュール又は半導体パッケージが面実装されるので、 リ一ド材料に剛性が必要 ない。
本発明は、 添付図面を参照しながら好ましい実施形態に関連して充分に記載 されているが、 この技術の熟練した人々にとつては種々の変形や修正は明白で ある。 そのような変形や修正は、 添付した請求の範囲による本発明の範囲から 外れない限りにおいて、 その中に含まれると理解されるべきである。

Claims

請 求 の 範 囲
1. 半導体チップ (i o, I 0 b, 10 V, 1 0 w) が配置可能な半導体チ ップ配置領域 (2) を有する絶縁基板 (1) と、
上記絶縁基板の上記半導体チップ配置領域と同じ側の面に形成され、 かつ、 半導体モジュール (1 00, 1 00 b, 600, 700, 70 1, 70 2) を 構成するように上記半導体チップ配置領域に配置される上記半導体チップの複 数の電極端子とそれぞれ電気的に接続される複数のインナーリード部 (5) と、 上記絶縁基板の上記半導体チップ配置領域とは反対側の面に形成された複数 のアウターリード部 (6) と、
上記絶縁基板の側壁面において上記複数のィンナーリード部と上記複数のァ ウタ一リード部とをそれぞれ接続する複数の接続部 (7) と、
を備える半導体モジュール用基体シート。
2. 上記半導体チップ配置領域において、 上記半導体チップを収容可能な大 きさの凹部 (9) を有している請求項 1に記載の半導体モジュール用基体シー
3. 上記絶縁基板は貫通穴 (3, 3 b, 3 c , 3 f , 3 g, 3 j , 3 k) を 有しており、 該貫通穴の側壁面に上記複数の接続部が形成されている請求項 1 又は 2に記載の半導体モジュール用基体シート。
4. 上記絶縁基板の上記貫通穴 (3 b, 3 c , 3 k) は、 矩形の上記半導体 チップ配置領域の対向する 2辺に配置されている請求項 3に記載の半導体モジ ユール用基体シート。
5. 上記絶縁基板の上記貫通穴 (3) は、 矩形の上記半導体チップ配置領域 の 4辺に配置されている請求項 3に記載の半導体モジュール用基体シ一ト。
6. 上記絶縁基板の端縁に窪み (3 e, 3 h) を有しており、 該窪みの側壁 面に上記複数の接続部が形成されている請求項 1又は 2に記載の半導体モジュ 一ル用基体シート。
7 . 上記絶縁基板の端縁の側壁面に上記複数の接続部が形成されている請求 項 1又は 2に記載の半導体モジュール用基体シート。
8 . 上記複数のインナーリード部の各々は、 上記複数の接続部の各々から上 記半導体チップ配置領域に向けて延びるように配置されているとともに、 上記 複数のアウターリード部の各々は、 上記複数の接続部の各々から、 基体シート 裏面側で上記半導体チップ配置領域に対応する領域に向けて延びるように配置 されている請求項 1〜 7のいずれかに記載の半導体モジュール用基体シート。
9 . 上記複数のインナーリード部の各々は、 上記複数の接続部の各々から上 記半導体チップ配置領域とは反対側に向けて延びるように配置されているとと もに、 上記複数のアウターリード部の各々は、 上記複数の接続部の各々から、 基体シート裏面側で上記半導体チップ配置領域に対応する領域とは反対側に向 けて延びるように配置されている請求項 3〜 5のいずれかに記載の半導体モジ ユール用基体シート。
1 0 . 請求項 1〜9のいずれかに記載の半導体モジュール用基体シートの製 造方法であって、
上記絶縁基板の両面及び上記絶縁基板の上記側壁面に金属層を設けた後、 上 記金属層上に感光性レジスト膜を形成し、 その後、 上記形成された感光性レジ スト膜を部分的に露光したのち現像することにより、 上記インナーリード部及 び上記ァウタ一リード部としてそれぞれ残すべき部分及び上記側壁面の上記接 続部として残すべき部分に存在するエッチングレジスト層としてパターン化し、 その後、 上記エッチングレジスト層で覆われていない部分の上記金属層をエツ チング除去したのち、 上記エッチングレジスト層を除去することによって、 上 記インナ一リード部、 上記アウターリード部、 及び上記接続部が形成される半 導体モジュール用基体シートの製造方法。
1 1 . 請求項 1〜 9のいずれかに記載の半導体モジュール用基体シートの製 造方法であって、
上記絶縁基板の両面及び上記絶縁基板の上記側壁面に感光性レジスト膜を形 成し、 その後、 上記感光性レジスト膜を部分的に露光したのち現像することに より、 上記ィンナーリ一ド部及び上記ァゥターリード部の不要な部分及び上記 側壁面の上記接続部の不要な部分に存在するメツキレジスト層としてパターン 化し、 その後、 無電解メツキ又は電解メツキを行なうことにより、 上記絶縁基 板両面及び上記側壁面の上記メツキレジスト層で覆われていない部分に、 上記 インナ一リード部、 上記アウターリード部、 及び上記接続部が形成される半導 体モジュール用基体シ一トの製造方法。
1 2 . 上記エッチングレジスト層をパターン化する場合、 上記感光性レジス ト膜が光硬化型のものであり、 上記ィンナーリ一ド部を形成するリ一ドパター ン形成部 (3 3 a ) と上記接続部を形成する接続部パターン形成部 (3 3 b ) とが光を透過し他の部分は透過しない第 1マスク (3 3 ) 及び入射した光を散 乱又は屈折させて入射側とは反対側より出射させる光制御シート (3 4 ) を上 記基板の一方の面に重ねて露光するとともに、 上記アウターリ一ド部を形成す るリードパターン形成部 (3 3 c ) と上記接続部を形成する接続部パターン形 成部 (3 3 d ) とが光を透過し他の部分は透過しない第 2マスク (3 3 ) 及び 入射した光を散乱又は屈折させて入射側とは反対側より出射させる光制御シ一 ト (3 4 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜の うち露光された部分のみを硬化させた後、 上記感光性レジスト膜を現像して上 記硬化した部分以外の未硬化部分を除去することにより、 上記ィンナ一リード 部、 上記アウターリード部、 及び上記接続部が形成される部分に上記エツチン グレジスト層を形成するようにした請求項 1 0に記載の半導体モジュール用基 体シートの製造方法。
1 3 . 上記エッチングレジスト層をパターン化する場合、 上記感光性レジス ト膜が光分解型のものであり、 上記インナーリード部を形成するリードパター ン形成部 (3 3 a ) と上記接続部を形成する接続部パターン形成部 (3 3 b ) とが光を遮蔽し他の部分は透過する第 3マスク (3 3 ) 及び入射した光を散乱 又は屈折させて入射側とは反対側より出射させる光制御シート (3 4 ) を上記 基板の一方の面に重ねて露光するとともに、 上記ァゥターリード部を形成する リードパターン形成部 (3 3 c ) と上記接続部を形成する接続部パターン形成 部 (3 3 d ) とが光を遮蔽し他の部分は透過する第 4マスク (3 3 ) 及び入射 した光を散乱又は屈折させて入射側とは反対側より出射させる光制御シ一ト ( 3 4 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜のう ち露光された部分のみを光分解させた後、 上記感光性レジスト膜を現像して上 記光分解した部分のみを除去することにより、 上記インナーリード部、 上記ァ ウタ一リ一ド部、 及び上記接続部が形成される部分に上記エッチングレジスト 層を形成するようにした請求項 1 0に記載の半導体モジュール用基体シートの 製造方法。
1 4 . 上記エッチングレジスト層をパターン化する場合、 上記感光性レジス ト膜が光硬化型のものであり、 上記インナーリード部と上記アウターリード部 のいずれか一方を形成するリードパターン形成部 (3 3 a ) と上記接続部を形 成する接続部パターン形成部 (3 3 b ) とが光を透過し他の部分は透過しない 第 5マスク (3 3 ) 及び入射した光を散乱又は屈折させて入射側とは反対側よ り出射させる光制御シート (3 4 ) を上記基板の一方の面に重ねて露光すると ともに、 上記インナーリード部と上記アウターリード部のいずれか他方を形成 するリードパターン形成部 (3 3 c ) のみが光を透過し他の部分は透過しない 第 6マスク (3 3 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジ スト膜のうち露光された部分のみを硬化させた後、 上記感光性レジスト膜を現 像して上記硬化した部分以外の未硬化部分を除去することにより、 上記ィンナ —リード部、 上記アウターリード部、 及び上記接続部が形成される部分に上記 エッチングレジスト層を形成するようにした請求項 1 0に記載の半導体モジュ 一ル用基体シートの製造方法。
1 5 . 上記エッチングレジスト層をパターン化する場合、 上記感光性レジス ト膜が光分解型のものであり、 上記インナーリード部と上記アウターリード部 のいずれか一方を形成するリードパターン形成部 (3 3 a ) と上記接続部を形 成する接続部パターン形成部 (3 3 b ) とが光を遮蔽し他の部分は透過する第 7マスク (3 3 ) 及び入射した光を散乱又は屈折させて入射側とは反対側より 出射させる光制御シート (3 4 ) を上記基板の一方の面に重ねて露光するとと もに、 上記ィンナーリード部と上記ァゥターリード部のいずれか他方を形成す るリードパターン形成部 (3 3 c ) と貫通穴 (3 ) に重ね合わせられる部分
( 3 3 e ) とが光を遮蔽し他の部分は透過する第 8マスク (3 3 ) を上記基板 の他方の面に重ねて露光して、 上記感光性レジスト膜のうち露光された部分の みを光分解させた後、 上記感光性レジスト膜を現像して上記光分解した部分の みを除去することにより、 上記インナーリード部、 上記アウターリード部、 及 び上記接続部が形成される部分に上記ェッチンダレジスト層を形成するように した請求項 1 0に記載の半導体モジュール用基体シートの製造方法。
1 6 . 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜 が光硬化型のものであり、 上記インナーリード部を形成するリードパターン形 成部 (3 3 a ) と上記接続部を形成する接続部パターン形成部 (3 3 b ) とが 光を透過せず他の部分は透過する第 9マスク (3 3 ) 及び入射した光を散乱又 は屈折させて入射側とは反対側より出射させる光制御シート (3 4 ) を上記基 板の一方の面に重ねて露光するとともに、 上記ァウターリ一ド部を形成するリ —ドパターン形成部 (3 3 c ) と上記接続部を形成する接続パターン形成部
( 3 3 d ) とが光を透過せず他の部分は透過する第 1 0マスク (3 3 ) 及び入 射した光を散乱又は屈折させて入射側とは反対側より出射させる光制御シート ( 3 4 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜のう ち露光された部分のみを硬化させた後、 上記感光性レジスト膜を現像して上記 硬化した部分以外の未硬化部分を除去することにより、 上記インナーリード部、 上記アウターリード部、 及び上記接続部が形成される部分以外の部分に上記メ ツキレジスト層を形成するようにした請求項 1 1に記載の半導体モジュール用 基体シートの製造方法。
1 7 . 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜 が光分解型のものであり、 上記インナーリード部を形成するリードパターン形 成部 (3 3 a ) と上記接続部を形成する接続部パターン形成部 (3 3 b ) とが 光を透過し他の部分は遮蔽する第 1 1マスク (3 3 ) 及び入射した光を散乱又 は屈折させて入射側とは反対側より出射させる光制御シート (3 4 ) を上記基 板の一方の面に重ねて露光するとともに、 上記アウターリード部を形成するリ —ドパターン形成部 (3 3 c ) と上記接続部を形成する接続部パターン形成部 ( 3 3 d ) とが光を透過し他の部分は遮蔽する第 1 2マスク (3 3 ) 及び入射 した光を散乱又は屈折させて入射側とは反対側より出射させる光制御シート ( 3 4 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジスト膜のう ち露光された部分のみを光分解させた後、 上記感光性レジスト膜を現像して上 記光分解した部分のみを除去することにより、 上記インナ一リード部、 上記ァ ウタ一リード部、 及び上記接続部が形成される部分以外の部分に上記メツキレ ジスト層を形成するようにした請求項 1 1に記載の半導体モジュール用基体シ ートの製造方法。
1 8 . 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜 が光硬化型のものであり、 上記インナーリード部と上記アウターリード部のい ずれか一方を形成するリードパターン形成部 (3 3 a ) と上記接続部を形成す る接続部パターン形成部 (3 3 b ) とが光を透過せず他の部分は透過する第 1 3マスク (3 3 ) 及び入射した光を散乱又は屈折させて入射側とは反対側より 出射させる光制御シート (3 4 ) を上記基板の一方の面に重ねて露光するとと もに、 上記ィンナーリード部と上記ァゥターリード部のいずれか他方を形成す るリードパターン形成部 (3 3 c ) と貫通穴 (3 ) に重ね合わせられる部分 ( 3 3 e ) とが光を透過せず他の部分は透過する第 1 4マスク (3 3 ) を上記 基板の他方の面に重ねて露光して、 上記感光性レジスト膜のうち露光された部 分のみを硬化させた後、 上記感光性レジスト膜を現像して上記硬化した部分以 外の未硬化部分を除去することにより、 上記インナーリード部、 上記アウター リード部、 及び上記接続部が形成される部分以外の部分に上記メツキレジスト 層を形成するようにした請求項 1 1に記載の半導体モジュール用基体シートの 製造方法。
1 9 - 上記メツキレジスト層をパターン化する場合、 上記感光性レジスト膜 が光分解型のものであり、 上記ィンナーリード部と上記ァウターリ一ド部のい ずれか一方を形成するリードパターン形成部 (3 3 a ) と上記接続部を形成す る接続部パターン形成部 (3 3 b ) とが光を透過し他の部分は遮蔽する第 1 5 マスク (3 3 ) 及び入射した光を散乱又は屈折させて入射側とは反対側より出 射させる光制御シート (3 4 ) を上記基板の一方の面に重ねて露光するととも に、 上記ィンナーリ一ド部と上記アウターリ一ド部のいずれか他方を形成する リードパターン形成部 (3 3 c ) のみが光を透過し他の部分は遮蔽する第 1 6 マスク (3 3 ) を上記基板の他方の面に重ねて露光して、 上記感光性レジスト 膜のうち露光された部分のみを光分解させた後、 上記感光性レジスト膜を現像 して上記光分解した部分のみを除去することにより、 上記ィンナーリ一ド部、 上記アウターリード部、 及び上記接続部が形成される部分以外の部分に上記メ ツキレジスト層を形成するようにした請求項 1 1に記載の半導体モジュール用 基体シートの製造方法。
2 0 . 請求項 1 0〜 1 9のいずれかに記載の半導体モジュール用基体シート の製造方法により製造された半導体パッケージ用基体シ一ト。
2 1 . 上記半導体チップ配置領域に上記半導体チップのサイズと同等以上の 大きさを持つ金属導体部 (8 0 0 A, 8 0 0 B , 8 0 0 C, 8 0 0 D, 8 0 0
F, 8 0 0 G, 8 1 0, 8 2 0 ) を配置した請求項:!〜 9、 請求項 2 0のいず れかに記載の基体シ一ト。
2 2 . 上記半導体チップ配置領域に上記半導体チップのサイズと同等以上の 大きさを持つ第 1金属導体部 (8 1 0 ) を配置するとともに、 上記絶縁基板の 表面側の上記第 1金属導体部と上記絶縁基板を介して対向する上記絶縁基板の 裏面側の領域に第 2金属導体部 (8 2 0 ) を設け、 上記第 1金属導体部と上記 第 2金属導体部とをスルーホール (8 1 0 a ) で接続する請求項 1〜9、 請求 項 2 0のいずれかに記載の基体シート。
2 3 . 上記第 1金属導体部と上記第 2金属導体部を接続する上記スルーホー ルの穴部を樹脂 (8 3 0 ) で埋める請求項 2 2に記載の基体シート。
2 4 . 上記スルーホールで接続され、 上記スルーホールの穴部を上記樹脂埋 めされた上記第 1金属導体部と上記第 2金属導体部とのそれぞれに、 更に上か ら金属層 (8 4 0, 8 4 1 ) を配置して、 上記第 1金属導体部と上記第 2金属 導体部と上記樹脂埋めされた上記スルーホールの穴部とを覆うようにした請求 項 2 3に記載の基体シ一ト。
2 5 . 上記金属導体部 ( 8 0 0 X ) は、 上記ィンナーリ一ド部又は上記ァゥ ターリードの一部を上記半導体チップ配置領域まで延長し、 上記半導体チップ が載置可能な大きさに形成された請求項 2 1〜2 4のいずれかに記載の基体シ ート。
2 6 . 絶縁基板に貫通穴をあけ半導体チップ配置領域側とは反対側の側壁面 に接続部を設け、 該接続部から遠ざかる方向にィンナーリ一ド部が配置され、 上記接続部から上記半導体チップ配置領域の裏面に対応する領域から遠ざかる 方向にアウターリード部が配置されている半導体基体シートにおいて、
上記半導体チップ配置領域に金属導体部 (8 0 0 C) を形成するようにした 基体シート。
2 7 . 絶縁基板に貫通穴をあけ、 半導体チップ配置領域側とは反対側の側壁 面に接続部を設け、 該接続部から遠ざかる方向にインナーリード部が配置され、 上記接続部から半導体チップ配置領域の裏面に対応する領域から遠ざかる方向 にアウターリード部が配置されている半導体基体シ一トにおいて、
上記貫通穴の上記半導体チップ配置領域側の側壁面に上記接続部と接触しな いように別の接続部 (8 5 1 ) を設け、 上記半導体チップ配置領域に金属導体 部 (8 5 0 ) を設け、 上記半導体チップ配置領域の裏面に対応する領域に金属 層部 (8 5 2 ) を設け、 上記金属導体部と上記金属層部とを上記別の接続部に より接続される基体シート。
2 8 . 上記貫通穴に樹脂を埋めた請求項 2 6又は 2 7に記載の基体シ一ト。 2 9 . 上記ィンナーリ一ド部が形成された基体シ一ト側の面に配置された上 記金属導体部の表面の形状が平面である請求項 2 1〜 2 8のいずれかに記載の 半導体基体シ一ト。
3 0 . 上記インナーリード部が形成された基体シート側の面に配置された上 記金属導体部の平面上に細かな凹凸又はパターン化された凹部を有する請求項 2 1〜 2 8のいずれかに記載の半導体基体シート。
3 1 . 請求項 1 〜 9、 請求項 2 0〜 2 9のいずれかの基体シ一トの上記半導 体チップ配置領域に上記半導体チップを配置し、 上記半導体チップの上記複数 の電極端子の各々と上記複数のィンナーリ一ド部の各々とを電気的に接合する ようにした半導体モジユーノレ。
3 2 . 請求項 1 ~ 9、 請求項 2 0〜 2 9のいずれかの基体シートの上記半導 体チップ配置領域に上記半導体チップを配置し、 上記半導体チップの上記複数 の電極端子の各々と上記複数のインナ一リード部の各々とをワイヤ (1 1 ) に より電気的に接合するようにした半導体モジュール。
3 3 . 請求項 1 〜 9、 請求項 2 0〜 2 9のいずれかの基体シートの上記半導 体チップ配置領域に上記半導体チップを配置し、 上記半導体チップの裏面の上 記複数の電極端子にそれぞれ形成されたバンプ (4 0 ) の各々と上記複数のィ ンナーリード部の各々とを電気的に接合するようにした半導体モジュール。
3 4 . 請求項 1 〜 9、 請求項 2 0〜 2 9のいずれかの基体シートの上記半導 体チップ配置領域に上記半導体チップを配置し、 上記半導体チップの裏面の上 記複数の電極端子の各々と上記複数のィンナーリ一ド部の各々とを異方導電接 着剤 (4 2 ) を介して電気的に接合するようにした半導体モジュール。
3 5 . 請求項 1 〜 9、 請求項 2 0〜 2 9のいずれかの基体シートの上記半導 体チップ配置領域の凹部内に上記半導体チップを収容して保持された半導体モ ジュール。
3 6 . 請求項 1 〜 9、 請求項 2 0〜 2 9のいずれかの基体シートには上記半 導体チップ配置領域が矩形でかつ複数設けられて、 上記複数の半導体チップ配 置領域の各々に半導体チップを配置し、 上記半導体チップの上記複数の電極端 子と上記複数のィンナーリード部とをそれぞれ電気的に接合した後、 上記各半 導体チップ配置領域毎に対応して切断して得られた半導体モジュール。
PCT/JP1999/000576 1998-02-10 1999-02-10 Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module WO1999041781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/601,766 US6573028B1 (en) 1998-02-10 1999-02-10 Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module
EP99903905A EP1063699A4 (en) 1998-02-10 1999-02-10 BASIC FOIL FOR SEMICONDUCTOR MODULE, METHOD FOR PRODUCING A BASE FOIL FOR A SEMICONDUCTOR MODULE, AND SEMICONDUCTOR MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/44628 1998-02-10
JP4462898 1998-02-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/601,766 A-371-Of-International US6573028B1 (en) 1998-02-10 1999-02-10 Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module
US10/396,419 Division US6733954B2 (en) 1998-02-10 2003-03-26 Semiconductor module substrate sheet, semiconductor module substrate sheet fabricating method and semiconductor module

Publications (1)

Publication Number Publication Date
WO1999041781A1 true WO1999041781A1 (en) 1999-08-19

Family

ID=12696699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000576 WO1999041781A1 (en) 1998-02-10 1999-02-10 Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module

Country Status (5)

Country Link
US (2) US6573028B1 (ja)
EP (1) EP1063699A4 (ja)
KR (1) KR100690917B1 (ja)
TW (1) TW456004B (ja)
WO (1) WO1999041781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006846A (ja) * 2014-05-27 2016-01-14 京セラ株式会社 配線基板および電子装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760731B2 (ja) * 2000-07-11 2006-03-29 ソニーケミカル株式会社 バンプ付き配線回路基板及びその製造方法
US6843421B2 (en) * 2001-08-13 2005-01-18 Matrix Semiconductor, Inc. Molded memory module and method of making the module absent a substrate support
US6951980B2 (en) * 2001-09-29 2005-10-04 Texas Instruments Incorporated Package for an electrical device
US20050013106A1 (en) * 2003-07-17 2005-01-20 Takiar Hem P. Peripheral card with hidden test pins
US7416132B2 (en) * 2003-07-17 2008-08-26 Sandisk Corporation Memory card with and without enclosure
KR101199600B1 (ko) * 2003-07-17 2012-11-12 샌디스크 테크놀로지스, 인코포레이티드 융기 부분을 구비한 메모리 카드
TWI233674B (en) * 2003-07-29 2005-06-01 Advanced Semiconductor Eng Multi-chip semiconductor package and manufacturing method thereof
US8610145B2 (en) * 2003-09-30 2013-12-17 Kabushiki Kaisha Toshiba Light emitting device
JP2009515352A (ja) 2005-11-09 2009-04-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも1つのマイクロエレクトロニクス素子を密封するパッケージキャリアの製造方法及び診断素子の製造方法
JP2007184426A (ja) * 2006-01-06 2007-07-19 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP4595835B2 (ja) * 2006-03-07 2010-12-08 株式会社日立製作所 鉛フリーはんだを用いたリード付き電子部品
JP2008130701A (ja) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd 配線基板とそれを用いた半導体装置及び半導体装置の製造方法
JP5015705B2 (ja) * 2007-09-18 2012-08-29 ルネサスエレクトロニクス株式会社 層間絶縁膜形成方法、層間絶縁膜、半導体デバイス、および半導体製造装置
US8520399B2 (en) * 2010-10-29 2013-08-27 Palo Alto Research Center Incorporated Stretchable electronics modules and circuits
US8654537B2 (en) 2010-12-01 2014-02-18 Apple Inc. Printed circuit board with integral radio-frequency shields
US8279625B2 (en) 2010-12-14 2012-10-02 Apple Inc. Printed circuit board radio-frequency shielding structures
TWI432116B (zh) * 2011-03-23 2014-03-21 Unimicron Technology Corp 線路板的內埋式線路結構的製造方法
US9179538B2 (en) 2011-06-09 2015-11-03 Apple Inc. Electromagnetic shielding structures for selectively shielding components on a substrate
JP5583815B1 (ja) * 2013-04-22 2014-09-03 株式会社フジクラ 多層配線基板及びその製造方法
US9831144B2 (en) * 2013-08-28 2017-11-28 Qubeicon Ltd. Semiconductor die and package jigsaw submount
US11348806B2 (en) * 2014-12-23 2022-05-31 Texas Instruments Incorporated Making a flat no-lead package with exposed electroplated side lead surfaces
DE102015115812A1 (de) * 2015-09-18 2017-03-23 Osram Opto Semiconductors Gmbh Bauelement sowie Verfahren zur Herstellung eines Bauelements
CN107932765B (zh) * 2017-11-23 2019-07-05 京东方科技集团股份有限公司 一种切割基台及切割设备
JP6550516B1 (ja) * 2018-09-18 2019-07-24 レノボ・シンガポール・プライベート・リミテッド パネル、pcbおよびpcbの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567694A (ja) * 1991-09-09 1993-03-19 Nec Corp リードレスチツプキヤリア用フレーム基板
JPH09129780A (ja) * 1995-09-01 1997-05-16 Canon Inc Icパッケージ、光センサicパッケージおよびこれらの組立方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2501414A1 (fr) * 1981-03-06 1982-09-10 Thomson Csf Microboitier d'encapsulation de pastilles de semi-conducteur, testable apres soudure sur un substrat
FR2521350B1 (fr) * 1982-02-05 1986-01-24 Hitachi Ltd Boitier porteur de puce semi-conductrice
JPS5954247A (ja) * 1982-09-21 1984-03-29 Nec Corp 電子部品
US4804615A (en) * 1985-08-08 1989-02-14 Macdermid, Incorporated Method for manufacture of printed circuit boards
JPS63182888A (ja) * 1987-01-26 1988-07-28 関西ペイント株式会社 プリント配線板の製造方法
US5319159A (en) * 1992-12-15 1994-06-07 Sony Corporation Double-sided printed wiring board and method of manufacture thereof
JP3511656B2 (ja) * 1993-11-17 2004-03-29 イビデン株式会社 リードレスチップキャリアの製造方法
JPH07212013A (ja) * 1994-01-25 1995-08-11 Pack Vision:Kk ボール・グリッド・アレイ及びボール・グリッド・アレイ用のプリント回路基板の製造方法
JPH07235621A (ja) * 1994-02-22 1995-09-05 Ibiden Co Ltd リードレスチップキャリア及びその製造方法
SE509938C2 (sv) * 1996-07-09 1999-03-29 Ericsson Telefon Ab L M Förfarande och anordning vid mönsterkort

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567694A (ja) * 1991-09-09 1993-03-19 Nec Corp リードレスチツプキヤリア用フレーム基板
JPH09129780A (ja) * 1995-09-01 1997-05-16 Canon Inc Icパッケージ、光センサicパッケージおよびこれらの組立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1063699A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006846A (ja) * 2014-05-27 2016-01-14 京セラ株式会社 配線基板および電子装置

Also Published As

Publication number Publication date
US6733954B2 (en) 2004-05-11
TW456004B (en) 2001-09-21
EP1063699A1 (en) 2000-12-27
US20030157437A1 (en) 2003-08-21
EP1063699A4 (en) 2007-07-25
KR20010040531A (ko) 2001-05-15
US6573028B1 (en) 2003-06-03
KR100690917B1 (ko) 2007-03-08

Similar Documents

Publication Publication Date Title
WO1999041781A1 (en) Base sheet for semiconductor module, method for manufacturing base sheet for semiconductor module, and semiconductor module
US4965702A (en) Chip carrier package and method of manufacture
US20120181072A1 (en) Printed wiring board and method for manufacturing same
JP2008300636A (ja) プリント配線板及びその製造方法、並びに、このプリント配線板を用いた電子部品収容基板及びその製造方法
US6329228B1 (en) Semiconductor device and method of fabricating the same
JP2019067904A (ja) 発光装置の製造方法
CN1498063A (zh) 电路装置的制造方法
US5953594A (en) Method of making a circuitized substrate for chip carrier structure
TWI403234B (zh) 安裝基板及使用該基板之薄型發光裝置的製造方法
JP2004071899A (ja) 回路装置およびその製造方法
JP2017157739A (ja) 電子部品付き配線板の製造方法
US6225028B1 (en) Method of making an enhanced organic chip carrier package
US10477692B2 (en) Printed board, light source device, semiconductor device, and methods of manufacturing same
US20190115288A1 (en) Lead frame and electronic component device
KR20120120789A (ko) 인쇄회로기판의 제조방법
JP6610497B2 (ja) 電子装置およびその製造方法
US11153963B2 (en) Circuit carrier structure and manufacturing method thereof
TW486798B (en) Method for laser removal of black oxide and via filling
JPH118335A (ja) 回路基板及びその製造方法とこれを用いた半導体パッケージの製造方法
JP4245365B2 (ja) 多層基板の製造方法およびそれを用いた回路装置の製造方法
JP2005158999A (ja) 半導体装置
KR101194448B1 (ko) 인쇄회로기판의 제조방법
JP6735793B2 (ja) 複合基板及びリジッド基板
JP4166065B2 (ja) 回路装置の製造方法
JP3913622B2 (ja) 回路装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007008396

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09601766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999903905

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999903905

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008396

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007008396

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999903905

Country of ref document: EP