WO1999034152A1 - Dispositif de communication interieur-exterieur dans un conditionneur d'air - Google Patents

Dispositif de communication interieur-exterieur dans un conditionneur d'air Download PDF

Info

Publication number
WO1999034152A1
WO1999034152A1 PCT/JP1999/000002 JP9900002W WO9934152A1 WO 1999034152 A1 WO1999034152 A1 WO 1999034152A1 JP 9900002 W JP9900002 W JP 9900002W WO 9934152 A1 WO9934152 A1 WO 9934152A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
outdoor
power supply
commercial
unit
Prior art date
Application number
PCT/JP1999/000002
Other languages
English (en)
French (fr)
Inventor
Masaya Nishimura
Kunitoshi Hisaoka
Mitsuhiko Yamamoto
Akira Murai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP99900032A priority Critical patent/EP1036995B1/en
Priority to AT99900032T priority patent/ATE222343T1/de
Priority to DE69902511T priority patent/DE69902511T2/de
Publication of WO1999034152A1 publication Critical patent/WO1999034152A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/32Details or features not otherwise provided for preventing human errors during the installation, use or maintenance, e.g. goofy proof

Definitions

  • the present invention relates to an indoor / outdoor communication device in an air conditioner, and more specifically, to an outdoor unit via three connection lines including a commercial power supply line.
  • the present invention relates to an indoor / outdoor communication device in an air conditioner to which an indoor unit is connected.
  • BACKGROUND ART Conventionally, an air conditioner in which an indoor unit is connected to an outdoor unit via three indoor / outdoor connection lines including a commercial power supply line has been proposed. '
  • a different voltage detection protection unit is specially required, and furthermore, as a component constituting this different voltage detection protection unit ; It is necessary to use a device that has a sufficient withstand voltage with respect to the commercial power supply voltage, and it is irrelevant during normal indoor / outdoor communication operation. There is an inconvenience that it is difficult to keep it low. Of course, during normal indoor / outdoor communication operation, a mounting area for mounting an unrelated different voltage detection protection unit is required, and it is difficult to achieve space saving in the communication circuit unit. is there.
  • An indoor / outdoor communication device for an air conditioner according to claim 1 is provided with three connection lines including a commercial power line for an outdoor unit. Air conditioner that connects indoor units via
  • a first control means a first power supply means for supplying power to the first control means, and a first control means for transmitting and receiving signals to and from the commercial AC power supply via a DC power supply means.
  • the indoor unit the other of the indoor units
  • the indoor / outdoor communication device in the air conditioner according to claim 2 is configured such that a plurality of indoor units are connected in parallel to one outdoor unit via three connection lines including a commercial power supply line.
  • the outdoor unit transmits and receives signals between the outdoor control means, the outdoor control power supply means for supplying power to the outdoor control means, and the DC power supply means between the terminals of the commercial AC power supply.
  • An outdoor transmission photobra, an outdoor reception photobra, and an outdoor reception photobra connected in series with each other via And a first resistance means connected in parallel with the
  • Each indoor unit has an indoor control power supply connected to a terminal of a commercial AC power supply via a commercial power supply line, an indoor control power supplied by the indoor control power supply, and an indoor control.
  • a second resistance means connected in series with the indoor transmission photocoupler for suppressing an overcurrent at the time of erroneous wiring.
  • the room / indoor / outside communication device in the air conditioner according to claim 3 employs a positive temperature characteristic thermistor as the second resistance means.
  • An outdoor control means an outdoor control power supply means for supplying power to the outdoor control means, and a signal exchange between the outdoor control means and a DC power supply means between the terminals of the commercial AC power supply.
  • a transformer connected to a terminal of a commercial AC power supply via a commercial power supply line, rectifying means for converting an output voltage from the transformer into a DC voltage, and different voltage detecting means operating based on the converted DC voltage;
  • a second power supply means connected between the output terminals of the rectifying means, a room control means to which the converted DC voltage is applied, and a signal transmission / reception between the room control means and three connection lines. Connected in parallel with the outdoor reception And a second resistance means connected in series with the indoor transmission photo power blur.
  • the indoor / outdoor communication device in the air conditioner according to claim 5 is configured such that a plurality of indoor units are connected in parallel to one outdoor unit via three connection lines including a commercial power supply line.
  • the outdoor unit transmits and receives signals between the outdoor control means, the outdoor control power supply means, and the outdoor control means, and is connected in series between the terminals of the commercial AC power supply via the DC power supply means for outdoor transmission.
  • Each indoor unit has a transformer connected to a terminal of a commercial AC power supply via a commercial power supply line, rectifying means for converting an output voltage from the transformer into a DC voltage, and operates based on the converted DC voltage.
  • a photocoupler for indoor reception, a photobra for indoor transmission, and a photocoupler for indoor transmission connected in series with the outdoor reception photocabler via two of the three connection lines. This includes a second resistance means.
  • the indoor unit is connected to the outdoor unit via three connection lines including a commercial power supply line, and the outdoor unit and the indoor unit are connected to each other.
  • the AC power is supplied from the commercial AC power supply to either the outdoor unit or the indoor unit, and the outdoor unit or indoor unit is connected via the commercial power line. Supply power to the other machine.
  • the communication signal from the first control means is received by the second receiving photo cover via the first transmitting photo cover, and the second receiving photo cover is received.
  • the signal received by the photocabler is supplied to the second control means to control the other of the outdoor unit and the indoor unit.
  • the communication signal from the second control means is received by the first reception photo-coupler via the second transmission photo-focuser, and the signal received by the first reception photo-brabler is supplied to the first control means. It monitors the status of the other of the outdoor unit and the indoor unit.
  • the outdoor unit and the indoor unit are installed, and immediately after the three units are connected to each other, the respective control means are operated so that signals can be exchanged between the outdoor unit and the indoor unit. If the three connection lines are connected properly, the normal signal transmission and reception will be performed. Conversely, if the three connection lines are not correctly connected, the normal signal transmission and reception will be performed. Since it is not performed, it is possible to detect whether or not the connection of the three connection lines is normal.
  • the operation state of the second transmission photocoupler is forcibly set, and at the time of erroneous wiring, the current is limited by the second resistance means that suppresses overcurrent.
  • a plurality of indoor units are connected in parallel to one outdoor unit via three connection lines including a commercial power line.
  • AC power is supplied from a commercial AC power supply to the outdoor unit, and each indoor unit is connected via a commercial power line.
  • AC power is supplied to the indoor control power supply means.
  • the communication signal from the outdoor control means is transmitted to the indoor unit through the outdoor transmission photo cover.
  • the signal is received by a bra and the received signal from the indoor reception photocabler is supplied to the indoor control means to control the indoor unit.
  • the communication signal from the indoor control means is received by the outdoor receiving photocabler of the outdoor unit via the indoor transmitting photocabler, and the signal received by the outdoor receiving photocabler is supplied to the outdoor control means to be transmitted to the indoor control means. Monitor the status of the machine.
  • an outdoor unit and multiple indoor units are installed, and each control is performed so that signals can be exchanged between the outdoor unit and the indoor unit immediately after these units are connected using three connection lines.
  • a normal signal is sent and received when the three connection lines are connected properly, and conversely, when the three connection lines are not connected properly, Since signals are not exchanged, it is possible to detect whether or not the connection of the three connection lines is normal.
  • the operating state of the indoor transmission photocoupler is forcibly set, and the current is limited by the second resistance means that suppresses overcurrent in the case of incorrect wiring.
  • the occurrence of inconveniences such as disconnection can be prevented beforehand, and the communication speed can be improved by using a DC power supply for communication.
  • power supply switching means and different voltage detection protection unit Since no circuit components unrelated to signal transmission and reception are not required at all, the cost can be prevented and the mounting area can be prevented from increasing.
  • the other of the outdoor unit and the indoor unit is connected to one of the outdoor unit and the indoor unit via three connection lines including a commercial power supply line.
  • a commercial power supply line To send and receive signals between the outdoor unit and the indoor unit.
  • the second unit of the outdoor unit and the indoor unit via the commercial power supply line and transformer Supply AC power to the power supply means.
  • the communication signal from the first control means is received by the second receiving photopower blur of the outdoor unit and the indoor unit via the first transmitting photopower blur
  • the second receiving photopower blur is received by the second receiving photopower blur.
  • the received signal is supplied to the second control means to control the other of the outdoor unit and the indoor unit. Also, the communication signal from the second control means is received by the first receiving photocoupler of the outdoor unit or the indoor unit via the second transmitting photocabler, and the signal received by the first receiving photocabler is received by the first transmitting photocabler. 1 Supply to the control means to monitor the other state of the outdoor unit and the indoor unit.
  • the outdoor unit and the indoor unit are installed, and immediately after the three units are connected to each other, the respective control means are operated so that signals can be exchanged between the outdoor unit and the indoor unit. For example, when three connection lines are connected properly, a normal signal is transmitted and received. Conversely, when three connection lines are not connected properly, a normal signal is transmitted and received. Since it is not connected, it is possible to detect whether or not the connection of the three connecting wires is normal. Then, in the case of incorrect wiring, a normal voltage is not generated at the output side of the transformer due to the formation of a current loop passing through the first resistance means. Can be recognized.
  • the indoor / outdoor communication device in the air conditioner of claim 5 one room Multiple indoor units are connected in parallel to the outdoor unit via three connection lines including the commercial power line, and the air conditioner transmits and receives signals between the outdoor unit and the indoor unit.
  • the AC power is supplied from the commercial AC power supply to the outdoor unit, and the AC power is supplied to the indoor control power supply means of each indoor unit via the commercial power supply line and the transformer.
  • the communication signal from the outdoor control means is received by the indoor reception photocabler of the indoor unit via the outdoor transmission photocabler, and the reception signal by the indoor reception photocabler is supplied to the indoor control means to receive the signal. Control the machine.
  • the communication signal from the indoor control means is received by the outdoor receiving photo power blur of the outdoor unit via the indoor transmitting photo cover, and the reception signal by the outdoor receiving photo power blur is supplied to the outdoor control means. To monitor the state of the indoor unit.
  • an outdoor unit and a plurality of indoor units are installed, and these control units are connected to each other using three connection lines, and then control signals are transmitted and received between the outdoor unit and the indoor unit.
  • the normal signal transmission / reception is performed when the three connection lines are connected properly, and the normal signal is transmitted when the three connection lines are not connected properly. Is not performed, it is possible to detect whether or not the connection of the three connection lines is normal. Then, at the time of erroneous wiring, since a normal voltage is not generated on the output side of the transformer due to the formation of a current loop passing through the first resistance means, this state is detected by the different voltage detection means, and The type of wiring can be recognized.
  • FIG. 1 is an electric circuit diagram showing one embodiment of an indoor / outdoor communication device in an air conditioner of the present invention.
  • FIG. 2 is a flowchart illustrating the process of determining the incorrect wiring of the indoor unit c .
  • FIG. 3 is a flowchart illustrating the process of determining the incorrect wiring of the outdoor unit c .
  • FIG. 4 is a signal waveform diagram for explaining the incorrect wiring determination timing.
  • FIG. 5 is a signal waveform diagram showing communication from the outdoor unit to the indoor unit when no miswiring occurs.
  • FIG. 6 is a signal waveform diagram showing extra communication from the indoor unit 1 to the outdoor unit and the indoor unit 2 when no miswiring occurs.
  • FIG. 7 is a signal waveform diagram illustrating the operation of indoor and outdoor communication data and communication signal lines when no miswiring occurs.
  • FIG. 8 is a schematic diagram illustrating a miswiring pattern when an outdoor unit and one indoor unit are present.
  • FIG. 9 is a schematic diagram illustrating a miswiring pattern when an outdoor unit and two indoor units are present.
  • FIG. 10 is a diagram showing a state in which the commercial power supply line 3a and the signal line 3c are incorrectly wired.
  • FIG. 11 is a diagram showing a state in which the commercial power supply line 3b and the signal line 3c are incorrectly wired.
  • FIG. 12 is a diagram showing a state in which the commercial power lines 3a and 3b are incorrectly wired.
  • FIG. 13 shows that the commercial power line 3a is the signal line 3c and the signal line 3c is the commercial line.
  • FIG. 4 is a diagram showing a state in which the power supply line for use 3b and the commercial power supply line 3b are miswired with the commercial power supply line 3a.
  • Fig. 14 shows the situation where the commercial power line 3a is miswired with the commercial power line 3b, the signal line 3c with the commercial power line 3a, and the commercial power line 3b with the signal line 3c.
  • FIG. 15 is an electric circuit diagram showing another embodiment of the indoor / outdoor communication device in the air conditioner of the present invention.
  • FIG. 16 is a flowchart for explaining an incorrect wiring determination process for an indoor unit.
  • BEST MODE FOR CARRYING OUT THE INVENTION an embodiment of an indoor / outdoor communication device in an air conditioner of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is an electric circuit diagram showing an embodiment of an indoor / outdoor communication device in the air conditioner of the present invention.
  • This air conditioner has one outdoor unit 1 and a plurality of indoor units 2.
  • the plurality of indoor units 2 are connected in parallel to the outdoor unit 1 via three connection lines 3.
  • the outdoor unit 1 includes a half-wave rectified DC power supply circuit (DC power supply means) 12 connected between terminals of a commercial AC power supply 10, and an outdoor control power supply connected between terminals of the commercial AC power supply 10.
  • 15 f is a resistor connected between the output terminal of the outdoor control DC power supply 11 and the light emitting element 15 a of the outdoor transmission photocoupler 15.
  • the emitter terminal of the light receiving element 16b of the outdoor reception photocoupler 16 is grounded via the resistor 16c, and the connection point between the emitter terminal of the light receiving element 16b and the resistor 16c is connected to the outdoor microcomputer. 14 Connected to receiving port 4.
  • a digital transistor can be used instead of the electric circuit composed of the transistor 15c and the resistors 15d and 15e, and the polarity can be set according to a signal to be output. Possible It is.
  • the three indoor / outdoor connection lines 3 include a pair of commercial power lines 3a and 3b and a communication signal line 3c, and the pair of commercial power lines 3a and 3b are used for commercial purposes. Connected to both terminals of the AC power supply 10, one communication signal line 3c is connected to a connection point between the third resistor 18b and the second diode 18c.
  • the indoor unit 2 includes a control DC power supply 21 as an indoor control power supply connected between a pair of commercial power supply lines 3a and 3b, and an indoor microcomputer 2 as an indoor control means. 2, an indoor photocoupler 23 connected to the transmission port of the indoor microcomputer 22, a photocoupler 24 for indoor reception connected to the reception port of the indoor microcomputer 22, and a photocoupler for indoor transmission. Tokabura 2 3 follower being phototransistor 2 3 b series connected to the collector terminal of the first having a positive temperature coefficient; and a second positive temperature characteristic thermistor 2 5 overcurrent protection as a resistance means.
  • the third diode 26a and the fifth resistor (current can be limited to a degree that can prevent the destruction of the light emitting element 24a of the indoor receiving photocoupler 24 in the case of incorrect wiring, and the indoor receiving photocoupler 24 26 b, the light-emitting element 24 a of the indoor receiving photocoupler 24 and the Zener diode 26 c are connected in series. It is connected in parallel with the termination resistor 17 via a commercial power supply line 3b and a communication signal line 3c.
  • the series connection circuit of the positive temperature characteristic thermistor 25 and the light receiving element 23 b of the indoor transmission photocoupler 23 is connected to the fifth resistor 26 b, the light emitting element 24 a of the indoor reception photocoupler 24, and the Zener diode.
  • the emitter terminal of the photodetector 24 b of the photoreceiver for indoor reception 24 is grounded via a resistor 24 c, and the emitter terminal of the photodetector 24 b is connected to the resistor 2.
  • the connection point with 4c is connected to the reception port of the indoor microcomputer 22. It is possible to use a digital transistor instead of the electric circuit composed of the transistor 23c and the resistor 23d.23e, and to set the polarity according to the signal to be output. is there. Further, the positive temperature characteristic thermistor .25 has a function of protecting the switching overcurrent of the light receiving element 23b of the indoor transmission photocoupler 23 during the normal communication operation.
  • FIG. 2 is a flowchart illustrating the process of determining an incorrect wiring of an indoor unit.
  • step SP1 set the transmission port of the indoor microcomputer 22 to ON.
  • step SP2 The light-receiving element 23 b of the indoor transmission photobra 23 is set to OFF, and in step SP2, the judgment of the commercial power supply frequency interrupt is performed. If it is determined that there is a commercial power frequency interrupt, in step SP3 it is recognized that the connection of the indoor / outdoor connection line 3 is abnormal, and in step SP4, the indoor microcomputer 2 2 Turn off the transmission port (turn on the light-receiving element 23 b of the indoor transmission photocoupler 23), and end the series of processing.
  • step SP5 it is recognized that the connection of the indoor / outdoor connection line 3 is normal, and in step SP6, the normal Perform the operation based on the sequence.
  • FIG. 3 is a flowchart for explaining an incorrect wiring determination process of the outdoor unit.
  • step SP1 the transmission port of the outdoor microcomputer 14 is turned off (the light-receiving element 15b of the outdoor transmission photobra 15 is turned off), and in step SP2, the reception data interrupt is determined. .
  • step SP8 it is recognized that the connection of the indoor / outdoor connection line 3 is abnormal, and the process of the replay step SP1 is performed.
  • step SP3 If it is determined in step SP2 that there is no reception data interrupt, in step SP3, wait processing is performed until the erroneous wiring determination period of the indoor unit 2 elapses, and in step SP4, the outdoor processing is performed.
  • the transmission port of the microcomputer 14 is turned on (the light receiving element 15b of the outdoor transmission photocoupler 15 is turned on), and in step SP5, it is determined whether or not the transmission output and the reception input are equal to each other. . Then, when the transmission output and the reception input are not equal to each other, the processing of step SP8 is performed.
  • step SP5 determines that the transmission output and the reception input are equal to each other. It is recognized in step SP6 that the connection of the indoor / outdoor connection line 3 is normal, and in step SP7, The operation is performed based on the normal sequence.
  • FIG. 4 is a signal waveform diagram for explaining an incorrect wiring determination timing at power-on.
  • the reception data interruption determination in step SP2 of the flowchart in FIG. 3 is performed.
  • the wait process in step SP3 of the flowchart in FIG. 3 is performed, and the subsequent third period (in FIG. During the input / output match determination period), the input / output match determination in step SP5 of the flowchart in FIG. 3 is performed, and it can be determined whether the connection of the indoor / outdoor connection line 3 is normal.
  • a fourth period after the reset (a period longer than the first period and shorter than the total period of the first period and the second period described above). In the determination period), the determination of the commercial power supply frequency interrupt in step SP2 of the flowchart of FIG. 2 is performed.
  • the signal waveform in the case where an erroneous wiring occurs is indicated by a broken line.
  • the photodetector 15b of the outdoor transmission photocoupler 15 that is responsible for generating the outdoor unit transmission signal is turned off, and any pulse signal is output to the outdoor unit even though the outdoor unit is not supplying power for communication. If the receiving circuit of the outdoor unit receives the signal, the outdoor unit determines that the wiring is incorrect, and keeps the light receiving element 15b of the outdoor transmission photocoupler 15 OFF and keeps the communication circuit element from the incorrect wiring state. Protect.
  • the light receiving element 23 of the indoor transmission photo power blur 23 and the light receiving element of the outdoor transmission photo coupler 15 are changed.
  • the outdoor unit transmits data without knowing that the indoor unit is miswired Protects the voltage exceeding the breakdown voltage of the photocabler from being applied to the photodetector 23 b of the indoor transmission photocoupler 23.
  • this pattern causes a short circuit between the commercial power lines in a pattern with miswiring.
  • FIG. 5 is a signal waveform diagram showing an example of communication from the outdoor unit to the indoor unit when no miswiring occurs.
  • (D), (E), and (F) i show the outdoor transmission waveform, the outdoor reception waveform, the indoor 1 transmission waveform, the indoor 1 reception waveform, the indoor 2 transmission waveform, and the indoor 2 reception waveform, respectively.
  • the actual communication waveform is not always the waveform shown in Fig. 5, because it is determined by the communication rules between the outdoor unit and the indoor unit.
  • the outdoor transmission waveform is turned ON for a predetermined time from OFF, it is turned OFF-ON according to the transmission signal.
  • the light emitting element 15a of the outdoor transmission photocoupler 15 is controlled by an electric circuit composed of a transistor 15c, resistors 15d and 15e, and the outdoor reception photocoupler 16
  • the reception signal extraction terminal from the light receiving element 16b and the reception signal extraction terminal from the light receiving element 24b of the indoor reception photocoupler 24 are set as shown in the figure, so that the outdoor reception waveform is the same as the outdoor transmission waveform.
  • the indoor 1 receive waveform and the indoor 2 receive waveform become the same as the outdoor transmit waveform.
  • FIG. 6 is a signal waveform diagram showing an example of communication from the indoor unit 1 to the outdoor unit and the indoor unit 2 when no miswiring occurs. In Fig. 6,
  • (B), (C), (D), (E), and (F) show the outdoor transmission waveform, the outdoor reception waveform, the indoor one transmission waveform, the indoor one reception waveform, the indoor two transmission waveform, and the indoor two reception waveform, respectively.
  • the actual communication waveform is not always the waveform shown in Fig. 6, since it is determined by the rules for communication between outdoor units and indoor units.
  • OFF-ON is performed in accordance with the transmission signal. It is controlled by an electric circuit composed of the light emitting element 23a of the indoor transmission photocoupler 23, the transistor 23c, the resistors 23d, and 23e, and the outdoor reception photobrush.
  • the reception signal extraction terminal from the light receiving element 16b of 16 and the reception signal extraction terminal from the light receiving element 24b of the photoreceiver for indoor reception 24 are set as shown in the figure.
  • the 1st indoor transmission waveform is the same as the 1st indoor transmission waveform and the 2nd indoor reception waveform is the same as the 1st indoor transmission waveform. Since the outdoor unit and the indoor unit 2 do not transmit signals, both the outdoor transmission waveform and the indoor 2 transmission waveform remain ON.
  • FIG. 7 is a signal waveform diagram illustrating an example of indoor / outdoor communication data and communication signal line operation when no miswiring occurs.
  • (A), (B), (C), (D), and (E) show the outdoor transmission waveform, the outdoor reception waveform, the communication line waveform, the indoor one transmission waveform, and the indoor one reception waveform, respectively.
  • the actual communication waveform is not always the waveform shown in Fig. 7, since it is determined by the communication rules between the outdoor unit and the indoor unit.
  • the outdoor transmission waveform is turned ON for a predetermined time from OFF, the data is transmitted by performing OFF-ON in accordance with the transmission signal.
  • the light-emitting element 23a of the indoor transmission photopower bracket 23 is controlled by an electric circuit composed of a transistor 23c, resistors 23d, and 23e.
  • the reception signal extraction terminal from the light receiving element 16b of the outdoor reception photocoupler 16 is set as shown in the figure, so the outdoor reception waveform is the same as the outdoor transmission waveform, and the transmission data is monitored. be able to.
  • this data is supplied to the indoor unit 1 through the signal line 3c, and the receiving signal extraction terminal from the light receiving element 24b of the indoor receiving photo cover 24 is set as shown in the figure.
  • the communication line waveform and the indoor 1 receive waveform are the same as the outdoor transmit waveform. Then, since indoor unit 1 does not transmit a signal, indoor 1 transmission waveform remains ON.
  • the indoor 1 transmission waveform is turned OFF in accordance with the transmission signal to transmit the data.
  • the light-emitting element 23a of the indoor transmission photobra 23 is controlled by an electric circuit composed of a transistor 23c, resistors 23d, and 23e (in-room photocoupler). Since the reception signal extraction terminals of the 24 light receiving elements 24b are set as shown in the figure, the reception waveform in one room is the same as the transmission waveform in one room, and the transmission data can be monitored. This data is supplied to the outdoor unit through the signal line 3c, and the receiving signal extraction terminal from the light receiving element 16b of the outdoor receiving photocoupler 16 is set as shown in the figure.
  • the communication line waveform and the outdoor reception waveform are the same as the indoor 1 transmission waveform, and the outdoor transmission waveform remains ON because no signal is sent from the outdoor unit.
  • FIG. 8 shows a case where an outdoor unit and one indoor unit are present
  • FIG. 9 shows a case where an outdoor unit and two indoor units are present.
  • (AA) (AB) (AC) (AD) (AE) in Fig. 9 indicates that incorrect wiring of the pattern shown in (A) in Fig. 8 occurs between the outdoor unit and the first indoor unit.
  • (D) shows a state in which erroneous wiring of the pattern shown in (E) has occurred, that is, a state in which the above erroneous wiring patterns are combined. Therefore, the miswiring pattern in FIG. 9 is basically the same as the miswiring pattern in FIG. Then, even if the number of erroneously wired indoor units increases, the erroneous wiring pattern is basically the same as the erroneous wiring pattern in FIG.
  • FIG. 10 is a diagram showing a state in which the commercial power supply line 3a and the signal line 3c are incorrectly wired.
  • the third diode 26a, the fifth resistor 26b, the light-emitting element 2a of the indoor reception photopower 24 and the Zener die are connected between the output terminals of the commercial AC power supply 10. Since the circuit 26c is connected in series, a current flows as shown by an arrow A1 in FIG. 10 every half cycle of the commercial AC power supply 10. In this case, since the indoor control DC power supply 21 is cut off from the commercial AC power supply 10, no operation power is supplied to the indoor microcomputer 22. 2 2 does not work. Also, in this case, the current flows directly to the light emitting element 24a of the photoreceiver 24 for indoor reception, but the light emitting element 24a is destroyed because the fifth resistor 26b is connected in series. The inconvenience of being done does not occur. Further, in this case, since the signal from the indoor unit 2 is not supplied to the outdoor unit 1, in the outdoor unit 1, miswiring is performed based on the time-out after the signal is transmitted. Can be detected.
  • FIG. 11 is a diagram showing a state in which the commercial power line 3b and the signal line 3c are incorrectly wired.
  • the current passes through the control DC power supply 21 of the indoor unit 2, passes through the second diode 18 c, and the fourth resistor 18 d
  • An electric current flows through a series connection circuit of the light receiving element 16a and the Zener diode 18e of the outdoor reception photocoupler 16 and a termination resistor 17 connected in parallel with this series connection circuit.
  • a receive data interrupt occurs for microcomputer 14.
  • the third diode 26a, the fifth resistor 26b, and the light-emitting element 24 A current flows through a series connection circuit of a and a zener diode 26 c and a termination resistor 17 connected in parallel with the series connection circuit, and furthermore, the control DC power supply 21 of the indoor unit 2 is turned on. Electric current flows through it.
  • the indoor microcomputer 22 since the control DC power supply 21 of the indoor unit 2 rises, the indoor microcomputer 22 also rises and a commercial power frequency interrupt to the room microcomputer 22 can be detected. Therefore, it is possible to detect the occurrence of erroneous wiring by the processing of the flowchart of FIG.
  • the fifth resistor 26 b is connected in series with the light emitting element 24 a of the indoor receiving photocoupler 24, and the commercial power supply is connected via the control DC power supply 21. Since the light is supplied to the series connection circuit, there is no inconvenience that the light emitting element 24a is destroyed, and further, the light emitting element 16a of the outdoor reception photopower bra 16 is connected in series with the light emitting element 16a. 4 A resistor 18 d is connected, and a termination resistor 17 is connected in parallel with the light-emitting element 16 a of the outdoor reception photo cover 16, but the commercial power supply controls these circuits. Since the power is supplied via the direct-current power supply 21, there is no disadvantage that the light emitting element 16a is destroyed.
  • FIG. 12 is a diagram showing a state in which the commercial power lines 3a and 3b are incorrectly wired.
  • a current flows only through the control DC power supply 21 of the indoor unit 2 as indicated by an arrow A1.
  • a termination resistor 17 In the other half cycle of the commercial AC power supply 10, as shown by an arrow A2, a termination resistor 17, a third diode 26a, and a fifth resistor 26b.
  • a current flows through the light-emitting element 24 a of 24 and a series-connected circuit of the Zener diode 26 c and the DC power supply 21 for control of the indoor unit 2.
  • Fig. 13 shows a state in which the commercial power line 3a is incorrectly wired as the signal line 3c, the signal line 3c is commercial power line 3b, and the commercial power line 3b is commercial wire 3a.
  • the fifth resistor 26 b and the termination resistor 17 are connected in series with the light emitting element 24 a of the indoor reception photocoupler 24, and the indoor reception photocoupler 2 is connected. Since the fifth resistor 26 b, the fourth resistor 18 d, and the light receiving element 16 a of the outdoor reception 16 are connected in series with the light emitting element 24 a of 4, the light receiving element 16 a of the outdoor reception 16 is connected. There is no inconvenience that the light emitting element 24 a of 4 is destroyed, and that the light emitting element 16 a of the outdoor reception photocabler 16 is destroyed.
  • Fig. 14 shows a state where the commercial power line 3a is miswired with the commercial power line 3b, the signal line 3c with the commercial power line 3a, and the commercial power line 3b with the signal line 3c.
  • the commercial AC power is directly applied to the series connection circuit of the light emitting element 24a and the fifth resistor 26b of the indoor reception photocoupler 24. Since the fifth resistor 26 b is connected in series with the light emitting element 24 a of the tokabura 24, the inconvenience that the light emitting element 24 a of the indoor receiving photocoupler 24 is destroyed does not occur. Furthermore, a fourth resistor 1 Sd is connected in series with the light emitting element 16 a of the outdoor receiving photocoupler 16, and a termination resistor 1 is connected in parallel with the light emitting element 16 a of the outdoor receiving photocoupler 16. Since 7 is connected, the disadvantage that the light emitting element 16a is destroyed does not occur.
  • the positive temperature characteristic thermistor 25 for overcurrent protection is connected in series with the light receiving element 23 b of the indoor transmission photocoupler 23. Therefore, even when the commercial AC power supply voltage is directly applied to this series connection circuit and the light receiving element 23 b of the indoor transmission photocoupler 23 is turned on, the indoor transmission photocoupler 23 The destruction of the light receiving element 23 b can be prevented beforehand.
  • a low-cost and space-saving communication control circuit can be provided because it is necessary only when wiring is incorrect and does not require a special wiring protection circuit that is not related to operation during normal operation. In addition, even in the case of erroneous wiring, it operates safely without damaging the transmission / reception circuit components, so that it is possible to provide a system with excellent maintainability that does not require replacement of a board or the like.
  • a positive A positive temperature characteristic thermistor for overcurrent protection is used as the second resistance means having a temperature coefficient.
  • conductive force, polyolefin, and fluorine resin are used instead of a positive temperature characteristic thermistor for overcurrent protection. It is possible to adopt a resistance element that is blended with a polymer such as
  • FIG. 15 is an electric circuit diagram showing another embodiment of the indoor / outdoor communication device in the air conditioner of the present invention.
  • This air conditioner is different from the air conditioner shown in Fig. 1 in that a positive temperature characteristic thermistor 25 is replaced with a damping resistor 25 ', and the power supply 21 has a primary winding with a commercial AC power supply.
  • the rectified output from the transformer 21 1a connected between the output terminals of 1 and the rectifier circuit 21b and the rectifier circuit 21b connected between the terminals of the secondary winding of the transformer 21a.
  • the only difference is that the system accepts input for detection. You.
  • a resistor 21 d between the output terminal of the indoor control DC power supply circuit 21 c and the abnormality detection input of the indoor microcomputer 22, and connect the abnormality detection input of the indoor microcomputer 22 to a transistor 21 e. Grounded via the collector-emitter terminal of Then, a resistor 21 f is connected between the base terminal of the transistor 21 e and the emitter terminal, and a Zener diode is connected between the input terminal of the indoor control DC power supply circuit 21 c and the base terminal of the transistor 21 e.
  • a diode (different voltage detecting means) 21 g and a resistor 21 h are connected in series in this order.
  • the transistor 21e, the resistors 21d, 21f, 21h and the Zener diode 21g constitute a different voltage detecting means (circuit).
  • Fig. 16 is a flowchart explaining the miswiring determination process of the indoor unit.
  • step c1 the transmission port of the indoor microcomputer 22 is turned on (the light receiving element 23 of the indoor transmission photocoupler 23). To OFF), and in step SP2, determine the commercial power frequency interrupt. If it is determined that there is a commercial power frequency interrupt, the connection of the indoor / outdoor connection line 3 is recognized to be abnormal in step SP3, and an abnormal voltage is detected in step SP4. Is determined. If an abnormal voltage is detected, in step SP5, it is recognized that incorrect wiring other than polarity reversal (wrong wiring in FIG. 11 or FIG. 14) is detected.
  • step 6 the transmission port of the indoor microcomputer 22 is turned on (the light receiving element 23b of the indoor transmission photocoupler 23 is turned off), and the series of processing is terminated. If it is determined in step SP4 that no abnormal voltage has been detected, in step SP7, it is recognized that incorrect polarity inversion wiring (wrong wiring in Fig. 12) has been detected. In, the transmission port of the indoor microcomputer 22 is turned off (the light receiving element 23 b of the indoor transmission photocoupler 23 is turned on), and the series of processing is terminated as it is.
  • step SP9 it is recognized that the connection of the indoor / outdoor connection line 3 is normal, and in step SP10, the normal sequence is performed. Perform the base action.
  • the indoor / outdoor communication device in the air conditioner of the present invention is an air conditioner in which an indoor unit is connected to an outdoor unit via three connection lines including a commercial power supply line. This eliminates the need for extraneous circuit configurations during normal indoor / outdoor communication operations, such as power supply switching means and different voltage detection protection sections, and allows the transmission and reception circuit components to be used even if incorrect wiring occurs. Problems such as destruction and disconnection can be prevented before they occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Transceivers (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Description

明細書 空気調和装置における室内外通信装置 技術分野 この発明は空気調和装置における室内外通信装置に関し、 さらに詳細 にいえば、 室外機に対して、 商用電源線路を含む 3本の接続線を介して 室内機を接続してなる空気調和装置における室内外通信装置に関する。 背景技術 従来から、 室外機に、 商用電源線路を含む 3本の室内外接続線を介し て室内機を接続してなる空気調和装置が提案されている。 '
このような空気調和装置は、 室外機の設置、 室内機の設置および 3本 の室内外接続線の配線を現場で行わなければならないので、 常に誤配線 が発生する可能性がある。 そして、 誤配線が発生すると、 室外機と室内 機との間の信号授受を正常に行うことができなくなるだけでなく、 場合 によっては回路素子の破壊などを引き起こす可能性があるので、 空気調 和装置が通常動作を行う前に誤配線の発生を検出することが必要である c このような要求を満足するために、 従来から、 一定時間室内外の通信 が成立しないとき、 タイマ手段によって電源開閉手段を O F Fする構成
(特開平 6— 1 4 7 6 1 6号公報参照) 、 異電圧検出保護部を設けて、 送受信回路部の送信スィツチ部の動作を中止する構成 (特開平 8 - 2 7 1 0 2 2号公報参照) が提案されている。
そして、 これらの構成を採用すれば、 誤配線が発生した場合に、 空気 調和装置を誤配線が発生したまま動作させてしまうという不都合を未然 に防止することができる。
しかし、 特開平 6 - 1 4 7 6 1 6号公報に示す構成を採用した場合に は、 電源開閉手段が特別に必要であり、 しかも、 この電源開閉手段は商 用電源電圧に対して.十分な耐圧を有していることが要求されるとともに, 通常の室内外通信動作時には無関係なものであるから、 通信回路部とし てのコス トを低く抑えることが困難であるという不都合がある。 もちろ ん、 通常の室内外通信動作時には無関係な電源開閉手段を実装するため の実装面積が必要であるから、 通信回路部の省スペース化を達成するこ とも困難であるという不都合がある。
また、 特開平 8 - 2 7 1 0 2 2号公報に示す構成を採用した場合には、 異電圧検出保護部が特別に必要であり、 しかも、 この異電圧検出保護部 を構成する部品とし ;て商用電源電圧に対して十分な耐圧を有しているも のを採用することが要求されるとともに、 通常の室内外逋信動作時には 無関係なものであるから、 通信回路部としてのコス トを低く抑えること が困難であるという不都合がある。 もちろん、 通常の室内外通信動作時 には無関係な異電圧検出保護部を実装するための実装面積が必要である から、 通信回路部の省スペース化を達成することも困難であるという不 都合がある。
また、 1台の室外機に対して、 商用電源線路を含む 3本の接続線を介 して複数台の室内機を互いに並列に接続してなるマルチ式空気調和装置 においても、 これらの問題が同様に発生する。
この発明は上記の問題点に鑑みてなされたものであり、 電源開閉手段、 異電圧検出保護部などのように通常の室内外通信動作時には無関係な回 路構成を必要とせず、 しかも誤配線が発生した場合であっても送受信回 路部品の破壊、 断線などの不都合の発生を未然に防止することができる 空気調和装置における室内外通信装置を提供することを目的としている 発明の開示 請求項 1の空気調和装置における室内外通信装置は、 室外機に対して, 商用電源線路を含む 3本の接続線を介して室内機を接続してなる空気調 和装置において、
室外機、 室内機の一方は、
第 1制御手段と、 第 1制御手段に対する電源供給を行う第 1電 源手段と、 第 1.制御手段との間で信号授受を行いかつ商用交流電源の端 子間に直流電源手段を介して互いに直列接続した第 1送信用フォ トカプ ラ、 第 1受信用フォ ト力ブラと、 第 1受信用フォ ト力ブラと並列接続し た第 1抵抗手段とを舍み、
室内機、 室内機の他方は、 '
第 2制御手段と、 第 2制御手段との間で信号授受を行いかつ 3 本の接続線のうちの 2本を介して第 1受信用フォ トカブラと並列接続さ れた第 2受信用フォ ト力ブラ、 第 2送信用フォ ト力ブラと、 第 2送信用 フォ トカブラと直列接続した、 誤配線時の過電流を抑制する第 2抵抗手 段とを含むものである。
請求項 2の空気調和装置における室内外通信装置は、 1台の室外機に 対して、 商用電源線路を含む 3本の接続線を介して複数台の室内機を互 いに並列に接続してなる空気調和装置において、
室外機は、 室外用制御手段と、 室外用制御手段に対する電源供 給を行う室外制御用電源手段と、 室外用制御手段との間で信号授受を行 いかつ商用交流電源の端子間に直流電源手段を介して互いに直列接続し た室外送信用フォ ト力ブラ、 室外受信用フォ ト力ブラと、 室外受信用フ ォ トカブラと並列接続した第 1抵抗手段とを含み、
各室内機は、 商用交流電源の端子に対して商用電源線路を介し て接続される室内制御用電源手段と、 室内制御用電源手段により電源供 給が行われる室内用制御手段と、 室内用制御手段との間で信号授受を行 いかつ 3本の接続線のうちの 2本を介して室外受信用フォ トカブラと並 列接続された室内受信用フォ ト力ブラ、 室内送信用フォ ト力ブラと、 室 内送信用フォ トカブラと直列接続した、 誤配線時の過電流を抑制する第 2抵抗手段とを含むものである。
請求項 3の空気調和装置における室.内外通信装置は、 第 2抵抗手段と して正温度特性サーミスタを採用するものである。
請求項 4の空気調和装置における室内外通信装置は、. 室外機に対して、 商用電源線路を含む 3本の接続線を介して室内機を接続してなる空気調 和装置において、 ;
室外機、 室内機の一方は、
室外用制御手段と、 室外用制御手段に対する電源供袷を行う室 外制御用電源手段と、 室外用制御手段との間で信号授受を行いかつ商用 交流電源の端子間に直流電源手段を介して互いに直列接続した室外送信 用フォ ト力ブラ、 室外受信用フォ ト力ブラと、 室外受信用フォ ト力ブラ と並列接続した第 1抵抗手段とを含み、
室外機、 室内機の他方は、
商用交流電源の端子に対して商用電源線路を介して接続される トランスと、 トランスからの出力電圧を直流電圧に変換する整流手段と、 変換された直流電圧に基づいて動作する異電圧検出手段と、 整流手段の 出力端子間に接続される第 2電源手段と、 変換された直流電圧が印加さ れる室內用制御手段と、 室內用制御手段との間で信号授受を行いかつ 3 本の接続線のうちの 2本を介して室外受信用フォ トカブラと並列接続さ れた室内受信用フォ ト力ブラ、 室内送信用フォ ト力ブラと、 室内送信用 フォ ト力ブラと直列接続した第 2抵抗手段とを含むものである。
請求項 5の空気調和装置における室内外通信装置は、 1台の室外機に 対して、 商用電源線路を含む 3本の接続線を介して複数台の室内機を互 いに並列に接続してなる空気調和装置において、
室外機は、 室外用制御手段と、 室外制御用電源手段と、 室外用 制御手段との間で信号授受を行いかつ商用交流電源の端子間に直流電源 手段を介して互いに直列接続した室外送信用フォ トカブラ、 室外受信用 フォ ト力ブラと、 室外受信用フォ トカブラと並列接続した第 1抵抗手段 とを含み、
各室内機は、 商用交流電源の端子に対して商用電源線路を介し て接続される トランスと、 トランスからの出力電圧を直流電圧に変換す る整流手段と、 変換された直流電圧に基づいて動作する異電圧検出手段 と、 整流手段の出力端子間に接続される室内制御用電源手段と、 変換さ れた直流電圧が印加される室内用制御手段と、 室内用制御手段との間で 信号授受を行いかつ 3本の接続線のうちの 2本を介して室外受信用フォ トカブラと並列接続された室内受信用フォ トカブラ、 室内送信用フォ ト 力ブラと、 室内送信用フォ トカブラと直列接続した第 2抵抗手段とを含 むものである。
請求項 1の空気調和装置における室内外通信装置であれば、 室外機に 対して、 商用電源線路を含む 3本の接続線を介して室内機を接続して、 室外機と室内機との間で信号の授受を行いながら空気調和装置を動作さ せるに当って、 商用交流電源から、 室外機、 室内機の一方に対して交流 電力を供給するとともに、 商用電源線路を介して室外機、 室内機の他方 に電力を供給する。 そして、 第 1制御手段からの通信信号を第 1送信用 フォ トカブラを介して第 2受信用フォトカブラで受信し、 第 2受信用フ ォ トカブラによる受信信号を第 2制御手段に供給して室外機、 室内機の 他方を制御する。 また、 第 2制御手段からの通信信号を第 2送信用フォ トカブラを介して第 1受信用フォ トカブラで受信し、 第 1受信用フォ ト 力ブラによる受信信号を第 1制御手段に供給して室外機、 室内機の他方 の状態の監視などを行う。
また、 室外機と室内機とを設置し、 これらの間を 3本の接続線を用い て接続した直後に室外機と室内機との間での信号授受を行わせるべく各 制御手段を動作させれば、 3本の接続線が正常に接続されている場合に 正常な信号の授受が行われ、 逆に、 3本の接続線が正常に接続されてい ない場合には正常な信号の授受が行われないので、 3本の接続線の接続 が正常か否かを検出することができる。
したがって、 第 2送信用フォ トカブラの動作状態を強制的に設定する とともに、 誤配線時 過電流を抑制する第 2抵抗手段により電流を制限 することにより、 誤配線に起因する送受信回路部品の破壊'、 断線などの 不都合の発生を未然に防止することができ、 しかも、 通信用の給電を直 流電源とすることにより、 通信速度を向上させることができ、 さらに電 源開閉手段、 異電圧検出保護部などのように信号授受に無関係な回路部 品を全く必要としないので、 コス トアップを防止できるとともに、 実装 面積の増加をも防止することができる。
請求項 2の空気調和装置における室内外通信装置であれば、 1台の室 外機に対して、 商用電源線路を含む 3本の接続線を介して複数台の室内 機を互いに並列に接続して、 室外機と室内機との間で信号の授受を行い ながら空気調和装置を動作させるに当って、 商用交流電源から室外機に 交流電力を供給するとともに、 商用電源線路を介して各室内機の室内制 御用電源手段に交流電力を供給する。 そして、 室外用制御手段からの通 信信号を室外送信用フォトカブラを介して室内機の室内受信用フ才トカ ブラで受信し、 室内受信用フォ トカブラによる受信信号を室内用制御手 段に供給して室内機を制御する。 また、 室内用制御手段からの通信信号 を室内送信用フォ トカブラを介して室外機の室外受信用フォ トカブラで 受信し、 室外受信用フォ トカブラによる受信信号を室外用制御手段に供 給して室内機の状態の監視などを行う。
また、 室外機と複数台の室内機とを設置し、 これらの間を 3本の接続 線を用いて接続した直後に室外機と室内機との間での信号授受を行わせ るべく各制御手段を動作させれば、 3本の接続線が正常に接続されてい る場合に正常な信号の授受が行われ、 逆に、 3本の接続線が正常に接続 されていない場合には正常な信号の授受が行われないので、 3本の接続 線の接続が正常か否かを検出することができる。
したがって、 室内送信用フォ トカブラの動作状態を強制的に設定する とともに、 誤配線時あ過電流を抑制する第 2抵抗手段により電流を制限 することにより、 誤配線に起因する送受信回路部品の破壊、 断線などの 不都合の発生を未然に防止することができ、 しかも、 通信用の給電を直 流電源とすることにより、 通信速度を向上させることができ、 さらに電 源開閉手段、 異電圧検出保護部などのように信号授受に無関係な回路部 品を全く必要としないので、 コス トアップを防止できるとともに、 実装 面積の増加をも防止することができる。
請求項 3の空気調和装置における室内外通信装置であれば、 第 2抵抗 手段として正温度特性サーミスタを採用するのであるから、 誤配線時の 電流抑制効果を高めることができるほか、 請求項 1または請求項 2と同 様の作用を達成することができる。
請求項 4の空気調和装置における室内外通信装置であれば、 室外機、 室内機の一方に対して、 商用電源線路を含む 3本の接続線を介して室外 機、 室内機の他方を接続して、 室外機と室内機との間で信号の授受を行 いながら空気調和装置を動作させるに当って、 商用交流電源から室外機, 室内機の一方に交流電力を供給するとともに、 商用電源線路およびトラ ンスを介して室外機、 室内機の他方の第 2電源手段に交流電力を供給す る。 そして、 第 1制御手段からの通信信号を第 1送信用フォト力ブラを 介して室外機、 室内機の他方の第 2受信用フォ ト力ブラで受信し、 第 2 受信用フォ ト力ブラによる受信信号を第 2制御手段に供給して室外機、 室内機の他方を制御する。 また、 第 2制御手段からの通信信号を第 2送 信用フォ トカブラを介して室外機、 室内機の一方の第 1受信用フォ トカ ブラで受信し、 第 1受信用フォ トカブラによる受信信号を第 1制御手段 に供給して室外機、 室内機の他方の状態の監視などを行う。
また、 室外機と室内機とを設置し、 これらの間を 3本の接続線を用い て接続した直後に室外機と室内機との間での信号授受を行わせるべく各 制御手段を動作させ ば、 3本の接続線が正常に接続されている場合に 正常な信号の授受が行われ、 逆に、 3本の接続線が正常に接続されてい ない場合には正常な信号の授受が行われないので、 3本の接耩線の接続 が正常か否かを検出することができる。 そして、 誤配線時には、 第 1抵 抗手段を通る電流ループが構成されることに起因してトランスの出力側 に正常な電圧が発生しないので、 この状態を異電圧検出手段によって検 出し、 誤配線の種別を認識することができる。
したがって、 誤配線に起因する送受信回路部品の破壊、 断線などの不 都合の発生を未然に防止することができ、 しかも、 通信用の給電を直流 電源とすることにより、 通信速度を向上させることができ、 さらに電源 開閉手段、 異電圧検出保護部などのように信号授受に無関係な回路部品 を全く必要としないので、 コス トアップを防止できるとともに、 実装面 積の增加をも防止することができる。
請求項 5の空気調和装置における室内外通信装置であれば、 1台の室 外機に対して、 商用電源線路を含む 3本の接続線を介して複数台の室内 機を互いに並列に接続して、 室外機と室内機との間で信号の授受を行い ながら空気調和装置を動作させるに当って、 商用交流電源から室外機に 交流電力を供給するとともに、 商用電源線路およびトランスを介して各 室内機の室内制御用電源手段に交流電力を供給する。 そして、 室外用制 御手段からの通信信号を室外送信用フォ トカブラを介して室内機の室内 受信用フォ トカブラで受信し、 室内受信用フォ トカブラによる受信信号 を室内用制御手段に供給して室内機を制御する。 また、 室内用制御手段 からの通信信号を室内送信用フォ トカブラを介して室外機の室外受信用 フォ ト力ブラで受信し、 室外受信用フォ ト力ブラによる受信信号を室外 用制御手段に供給して室内機の状態の監視などを行う。
また、 室外機と複数台の室内機とを設置し、 これらの間を 3本の接続 線を用いて接続した 後に室外機と室内機との間での信号授受を行わせ るべく各制御手段を動作させれば、 3本の接続線が正常に接続されてい る場合に正常な信号の授受が行われ、 逆に、 3本の接続線が正常に接続 されていない場合には正常な信号の授受が行われないので、 3本の接続 線の接続が正常か否かを検出することができる。 そして、 誤配線時には, 第 1抵抗手段を通る電流ループが構成されることに起因してトランスの 出力側に正常な電圧が発生しないので、 この状態を異電圧検出手段によ つて検出し、 誤配線の種別を認識することができる。
したがって、 誤配線に起因する送受信回路部品の破壊、 断線などの不 都合の発生を未然に防止することができ、 しかも、 通信用の給電を直流 電源とすることにより、 通信速度を向上させることができ、 さらに電源 開閉手段、 異電圧検出保護部などのように信号授受に無関係な回路部品 を全く必要としないので、 コス トアップを防止できるとともに、 実装面 積の増加をも防止することができる。 図面の簡単な説明 第 1図は、 この発明の空気調和装置における室内外通信装置の一実施 態様を示す電気回路図である。
第 2図は、 室内機の誤配線判定処理を説明するフローチヤ一トである c 第 3図は、 室外機の誤配線判定処理を説明するフローチヤ一トである c 第 4図は、 電源投入時の誤配線判定タイミングを説明する信号波形図 である。
第 5図は、 誤配線が発生していない場合における室外機から室内機へ の通信を示す信号波形図である。
第 6図は、 誤配線が発生していない場合における室内機 1から室外機, 室内機 2への通信を余す信号波形図である。
第 7図は、 誤配線が発生していない場合における室内外通信データと 通信信号線動作を説明する信号波形図である。
第 8図は、 室外機と 1台の室内機とが存在している場合における誤配 線のパターンを説明する概略図である。
第 9図は、 室外機と 2台の室内機とが存在している場合における誤配 線のパターンを説明する概略図である。
第 1 0図は、 商用電源線路 3 a と信号線路 3 c とを誤配線した状態を 示す図である。
第 1 1図は、 商用電源線路 3 b と信号線路 3 c とを誤配線した状態を 示す図である。
第 1 2図は、 商用電源線路 3 a、 3 bを誤配線した状態を示す図であ る。
第 1 3図は、 商用電源線路 3 aが信号線路 3 c と、 信号線路 3 cが商 用電源線路 3 b と、 商用電源線路 3 bが商用電源線路 3 a と、 それぞれ 誤配線された状態を示す図である。
第 1 4図は、 商用電源線路 3 aが商用電源線路 3 b と、 信号線路 3 c が商用電源線路 3 a と、 商用電源線路 3 bが信号線路 3 c と、 それぞれ 誤配線された状態を示す図である。
第 1 5図は、 この発明の空気調和装置における室内外通信装置の他の 実施態様を示す電気回路図である。
第 1 6図は、 室内機の誤配線判定処理を説明するフローチヤ一トであ る。 発明を実施するための最良の形態 以下、 添付図面を参照して、 この発明の空気調和装置における室内外 通信装置の実施の態様を詳細に説明する。
第 1図はこの発明の空気調和装置における室内外通信装置の一実施態 様を示す電気回路図である。
この空気調和装置は、 1台の室外機 1 と、 複数台の室内機 2とを有し ている。 そして、 複数台の室内機 2は、 3本の接続線 3を介して室外機 1に対して互いに並列接続されている。
前記室外機 1は、 商用交流電源 1 0の端子間に接続される半波整流直 流電源回路 (直流電源手段) 1 2と、 商用交流電源 1 0の端子間に接続 される室外制御用電源手段としての室外制御用直流電源 1 1 と、 室外用 制御手段としての室外用マイコン 1 4と、 室外用マイコン 1 4の送信ポ 一トに接続された室外送信用フォ トカブラ 1 5 と、 室外用マイコン 1 4 の受信ポートに接続された室外受信用フォ ト力ブラ 1 6 と、 室外受信用 フォ ト力ブラ 1 6 と並列接続された第 1抵抗手段としてのターミネーシ ヨン抵抗 1 7 {通信線路のインピーダンスを一定にし、 室内機と室外機 とを接続する配線ケーブル (通信線路) の浮遊容量に起因する誤動作対 策をとるための抵抗であり、 通常の通信に必要な抵抗である } とを有し ている。 そして、 室外送信用フォ トカブラ 1 5の受光素子 1 _5 b、 第 1 ダイオード 1 8 a.、 第 3抵抗 (誤配線時に室外送信用フォ トカブラ 1 5 の受光素子 1 5 bに対する十分な電流制限を達成できるとともに、 室外 送信用フォ トカブラ 1 5の受光素子 1 5 bによる通信を達成できる抵抗 値を有する抵抗) 1 8 b、 第 2ダイオード 1 8 c、 第 4抵抗 (誤配線時 に室外受信用フォ トカブラ 1 6の発光素子 1 6 aの破壊を阻止できる程 度に電流を制限できるとともに、 室外受信用フォ トカプラ 1 6の発光素 子 1 6 aによる通信を達成できる抵抗値を有する抵抗). 1 8 d、 室外受 信用フォ トカプラ 1 6の発光素子 1 6 aおよびツエナーダイォード 1 8 eを直列接続し、 こ 直列接続回路を半波整流直流電源回路 1 2の平滑 回路部と並列接続している。 前記室外送信用フォ トカブラ 1 5の発光素 子 1 5 a と直列にトランジスタ 1 5 cのコレクタ端子を接続レ、 トラン ジスタ 1 5 cのエミ ッタ端子を接地しているとともに、 トランジスタ 1 5 cのベース端子とエミッタ端子との間に抵抗 1 5 dを接続し、 トラン ジスタ 1 5 cのベース端子と室外用マイコン 1 4の送信ポートとの間に 抵抗 1 5 eを接続している。 なお、 1 5 f は室外制御用直流電源 1 1の 出力端子と室外送信用フォ トカブラ 1 5の発光素子 1 5 a との間に接続 される抵抗である。 前記室外受信用フォ トカブラ 1 6の受光素子 1 6 b のエミッタ端子を抵抗 1 6 cを介して接地し、 受光素子 1 6 bのェミツ タ端子と抵抗 1 6 c との接続点を室外用マイコン 1 4の受信ポートに接 続している。 なお、 前記トランジスタ 1 5 c、 抵抗 1 5 d、 1 5 eで構 成される電気回路に代えてデジタルトランジスタを採用することが可能 であるとともに、 出力したい信号に合わせて極性を設定することが可能 である。
前記 3本の室内外接続線 3は、 1対の商用電源線路 3 a、 3 b と、 1 本の通信信号線路 3 c とからなり、 1対の商用電源線路 3 a、 3 bが商 用交流電源 1 0の両端子に接続されているとともに、 1本の通信信号線 路 3 cが第 3抵抗 1 8 bと第 2ダイオード 1 8 c との接続点に接続され ている。
前記室内機 2は、 1対の商用電源線路 3 a、 3 bの間に接続された室 内制御用電源手段としての制御用直流電源 2 1 と、 室内用制御手段とし ての室内用マイコン 2 2と、 室内用マイコン 2 2の送信ポートに接続さ れた室內送信用フォ トカプラ 2 3 と、 室内用マイコン 2 2の受信ポート に接続された室内受信用フォトカブラ 2 4と、 室内送信用フォ トカブラ 2 3のフォ ト トランジスタ 2 3 bのコレクタ端子に直列接続された、 正 温度係数を有する第 ;2抵抗手段としての過電流保護用の正温度特性サー ミスタ 2 5とを有している。 そして、 第 3ダイオード 2 6 a、 第 5抵抗 (誤配線時に室内受信用フォ トカプラ 2 4の発光素子 2 4 aの破壊を阻 止できる程度に電流を制限できるとともに、 室内受信用フォ トカブラ 2 4の発光素子 2 4 aによる通信を達成できる抵抗値を有する抵抗) 2 6 b、 室内受信用フォ トカプラ 2 4の発光素子 2 4 aおよびツエナーダイ オード 2 6 cを直列接続し、 この直列接続回路を商用電源線路 3 bおよ ぴ通信信号線路 3 cを介して前記ターミネーショ ン抵抗 1 7 と並列接続 している。 また、 正温度特性サーミスタ 2 5と室内送信用フォ トカプラ 2 3の受光素子 2 3 b との直列接続回路を第 5抵抗 2 6 b、 室内受信用 フォトカプラ 2 4の発光素子 2 4 aおよびツエナーダイォ一ド 2 6 cの 直列接続回路と並列接続している。 さらに、 室内送信用フォ ト力ブラ 2 3の発光素子 2 3 aのカソード端子を抵抗 2 3 cを介して接地している と ともに、 この発光素子 2 3 aのァノード端子をトランジスタ 2 3 dの コレクタ端子と接続し、 このトランジスタ 2 3 dのエミ ッタ端子とベー ス端子との間に抵抗 2 3 eを接続し、 トランジスタ 2 3 dのベース端子 を抵抗 2 3 f を介して室内用マイ コン 2 2の送信ポートに接続している { なお、 2 3 gは室内用マイコン 2 2の送信ポートに接続されたブルアッ プ抵抗である。 さらにまた、 室内受信用フォ ト力ブラ 2 4の受光素子 2 4 bのエミ ッタ端子を抵抗 2 4 cを介して接地しているとともに、 受光 素子 2 4 bのエミ ッタ端子と抵抗 2 4 c との接続点を室内用マイ コン 2 2の受信ポートに接続している。 前記トランジスタ 2 3 c、 抵抗 2 3 d . 2 3 eで構成される電気回路に代えてデジタルトランジスタを採用する ことが可能であると ともに、 出力したい信号に合わせて極性を設定する ことが可能である。 また、 前記正温度特性サーミスタ.2 5は、 通常の通 信動作時の室内送信用フォ トカプラ 2 3の受光素子 2 3 bのスィッチン グ過電流を保護する、機能を有している。
第 2図は室内機の誤配線判定処理を説明するフローチ ートである。 ステップ S P 1において、 室内用マイコン 2 2の送信ポートを O N
(室内送信用フォ ト力ブラ 2 3の受光素子 2 3 bを O F F ) にし、 ステ ップ S P 2において、 商用電源周波数割込みの判定を行う。 そして、 商 用電源周波数割込みがあると判定された場合には、 ステップ S P 3にお いて、 室内外接続線 3の接続が異常であることを認識し、 ステップ S P 4において、 室内用マイコン 2 2の送信ポートを O F F (室内送信用フ オ トカプラ 2 3の受光素子 2 3 bを O N ) にし、 そのまま一連の処理を 終了する。
逆に、 ステップ S P 2において商用電源周波数割込みがないと判定さ れた場合には、 ステップ S P 5において、 室内外接続線 3の接続が正常 であることを認識し、 ステップ S P 6において、 通常のシーケンスに基 く動作を行う。 第 3図は室外機の誤配線判定処理を説明するフローチヤ一トである。 ステップ S P 1において、 室外甩マイコン 1 4の送信ポートを O F F (室外送信用フォ ト力ブラ 1 5の受光素子 1 5 bを O F F) にし、 ステ ップ S P 2において、 受信データ割込みの判定を行う。 そして、 受信デ ータ割込みがあると判定された場合には、 ステップ S P 8において、 室 内外接続線 3の接続が異常であることを認識し、 再ぴステップ S P 1の 処理を行う。 逆に、 ステップ S P 2において受信データ割込みがないと 判定された場合には、 ステップ S P 3において、 室内機 2の誤配線判定 期間が経過するまでウェイ ト処理を行い、 ステップ S P 4において、 室 外用マイコン 1 4の送信ポ一トを ON (室外送信用フォ トカブラ 1 5の 受光素子 1 5 bを ON) にし、 ステップ S P 5において、 送信出力と受 信入力とが互いに等しいか否かを判定する。 そして、 送信出力と受信入 力とが互いに等しく い場合には、 ステップ S P 8の処理を行う。 逆に、 ステップ S P 5において送信出力と受信入力とが互いに等しいと判定さ れた場合には、 ステップ S P 6において、 室内外接続線 3の接続が正常 であることを認識し、 ステップ S P 7において、 通常のシーケンスに基 く動作を行う。
第 4図は電源投入時の誤配線判定タイ ミングを説明する信号波形図で ある。
第 4図中 (A) に示すように電源が ONになり、 第 4図中 (B) に示 すようにリセッ トが行われると、 第 4図中 (C) (D) に示すように、 室外送信出力および室外受信入力が共にローレベルになり、 第 4図中
(E) (F) に示すように、 室内送信出力がハイレベルになるとともに, 室内受信入力が口一レベルになる。
そして、 リセッ ト後の第 1の期間 (第 4図の割込み判定期間) におい て第 3図のフロ一チヤ一トのステップ S P 2の受信データ割込みの判定 が行われ、 続く第 2の期間 (第 4図の室内機判定期間 W a i t ) におい て第 3図のフローチャートのステップ S P 3のウェイ ト処理が行われ、 続く第 3の期間 (第 4図の入出力一致判定期間) において第 3図のフロ 一チャートのステップ S P 5の入出力一致判定が行われ、 室内外接続線 3の接続が正常か否かを判定することができる。
また、 リセッ ト後の第 4の期間 (前記第 1の期間より も長く、 かつ前 記第 1の期間と第 2の期間との合計期間よりも短い期間であり、 第 4図 の商用電源周波数判定期間) において第 2図のフローチャー トのステツ プ S P 2の商用電源周波数割込みの判定が行われる。
なお、 第 4図において、 誤配線が発生した場合の信号波形を破線で示 している。
さらに詳細に説明する。
電源投入後、 室外機送信信号発生を司る室外送信用フォトカブラ 1 5 の受光素子 1 5 bを O F Fにし、 室外機が通信用電源供給を行っていな いにも拘らず、 何らかのパルス信号を室外機受信回路が受信した場合、 室外機は誤配線であると判定し、 室外送信用フォ トカブラ 1 5の受光素 子 1 5 bを O F Fにしたまま保持し、 誤配線状態から通信回路素子を保 護する。
また、 室内機受信回路にて商用電源周波数のパルスが受信回路入力に 基いて検出されると、 室内送信用フォト力ブラ 2 3の受光素子 2 3 bを 室外送信用フォ トカブラ 1 5の受光素子 1 5 b と逆に O Nにし、 通信信 号線路 3 c と商用電源線路の一方とをショートさせることにより、 室内 機が誤配線であることを知らずに室外機がデータを送信した時でも、 フ ォ トカブラの耐圧を越える電圧が室内送信用フォ トカプラ 2 3の受光素 子 2 3 bに印加されないように保護する。 さらに、 誤配線のあるパター ンではこの動作を行う と商用電源線路間をショートしてしまうため、 た とえ商用電源線路間がショートしても室内機の送受信回路にダメージを 与えないように、 室内送信用フォトカブラ 2 3の受光素子 2 3 b と直列 に通信電流制限およびダンピングを行う 目的で過電流保護用の正温度特 性サーミスタ 2 5を揷入し、 ショートされた場合はこの正温度特性サー ミスタ 2 5の自己発熱で抵抗値が急激に増加し、 ひいてはショート電流 を抑制して室内送信用フォ トカプラ 2 3の受光素子 2 3 bの保護を行う。
さらに、 第 4図には示されていないが、 ウォッチドッグタイマでマイ コンが自己リセッ トできるように構成しておけば、 誤配線時にマイコン が暴走した場合であっても、 自動復帰が可能であり、 通信回路は破壊に 至る前に保護可能となる。
第 5図は誤配線が発生していない場合における室外機から室内機への 通信の一例を示す信号波形図である。 なお、 第 5図中 (A) (B) (C)
(D) (E) (F) iは、 それぞれ室外送信波形、 室外受信波形、 室内 1 送信波形、 室内 1受信波形、 室内 2送信波形、 室内 2受信波形を示して いる。 ただし、 実際の通信波形は室外機、 室内機での通信の取決めによ り定まるので、 必ずしも第 5図に示す波形にはならない。
この場合には、 室外送信波形が O F Fから所定時間だけ O Nになった 後、 送信信号に合わせて O F F— ONを行う。 そして、 室外送信用フォ トカプラ 1 5の発光素子 1 5 aカ トランジスタ 1 5 c、 抵抗 1 5 d、 1 5 eで構成される電気回路により制御されているとともに、 室外受信用 フォ トカプラ 1 6の受光素子 1 6 bからの受信信号取出し端子および室 内受信用フォ トカブラ 24の受光素子 24 bからの受信信号取出し端子 が図示のように設定されているので、 室外受信波形は室外送信波形と同 一になり、 室内 1受信波形、 室内 2受信波形も室外送信波形と同一にな る。 そして、 室内機 1、 室内機 2は信号を送出していないので、 室内 1 送信波形、 室内 2送信波形は共に ONのままである。 第 6図は誤配線が発生していない場合における室内機 1から室外機、 室内機 2への通信の一例を示す信号波形図である。 なお、 第 6図中
(B) (C) (D) (E) (F) は、 それぞれ室外送信波形、 室外受信 波形、 室内 1送信波形、 室内 1受信波形、 室内 2送信波形、 室内 2受信 波形を示している。 .ただし、 実際の通信波形は室外機、 室内機での通信. の取決めにより定まるので、 必ずしも第 6図に示す波形にはならない。 この場合には、 室内 1送信波形が所定時間だけ ONを継続した後、 送 信信号に合わせて O F F— ONを行う。 そして、 室内送信用フォ トカブ ラ 2 3の発光素子 2 3 aカ トランジスタ 2 3 c、 抵抗 2 3 d、 2 3 eで 構成される電気回路により制御されているとともに、 室外受信用フォ ト 力ブラ 1 6の受光素子 1 6 bからの受信信号取出し端子および室内受信 用フォ ト力ブラ 24の受光素子 24 bからの受信信号取出し端子が図示 のように設定されでいるので、 室内 1受信波形は室内 1送信波形と同一 になり、 室外受信波形、 室内 2受信波形も室内 1送信波形と同一になる。 そして、 室外機、 室内機 2は信号を送出していないので、 室外送信波形、 室内 2送信波形は共に ONのままである。
第 7図は誤配線が発生していない場合における室内外通信データと通 信信号線動作の一例を説明する信号波形図である。 なお、 第 7図中 (A) (B) (C) (D) (E) は、 それぞれ室外送信波形、 室外受信波形、 通信線路波形、 室内 1送信波形、 室内 1受信波形を示している。 ただし、 実際の通信波形は室外機、 室内機での通信の取決めにより定まるので、 必ずしも第 7図に示す波形にはならない。
この場合には、 室外送信波形が O F Fから所定時間だけ ONになった 後、 送信信号に合わせて O F F—ONを行ってデータを送出する。 そし て、 室内送信用フォ ト力ブラ 2 3の発光素子 2 3 aがトランジスタ 2 3 c、 抵抗 2 3 d、 2 3 eで構成される電気回路により制御されていると ともに、 室外受信用フォ トカブラ 1 6の受光素子 1 6 bからの受信信号 取出し端子が図示のように設定されているので、 室外受信波形は室外送 信波形と同一になり、 送出データをモニタすることができる。 もちろん、 このデータは信号線路 3 cを通して室内機 1に供給されるとともに、 室 内受信用フォトカブラ 24の受光素子 24 bからの受信信号取出し端子 が図示のように設定されているのであるから、 通信線路波形、 室内 1受 信波形も室外送信波形と同一になる。 そして、 室内機 1は信号を送出し ていないので、 室内 1送信波形は ONのままである。
以上のようにして室外機から室内機 1へのデータ伝送が行われた後は、 室内 1送信波形が送信信号に合わせて O F F一 ONを行ってデータを送 出する。 そして、 室内送信用フォ ト力ブラ 2 3の発光素子 2 3 aがトラ ンジスタ 2 3 c、 抵抗 2 3 d、 2 3 eで構成される電気回路により制御 されているとともに( 室内受信用フォトカブラ 24の受光素子 24 b力、 らの受信信号取出し端子が図示のように設定されているので、 室内 1受 信波形は室内 1送信波形と同一になり、 送出データをモニタすることが できる。 もちろん、 このデータは信号線路 3 cを通して室外機に供給さ れるとともに、 室外受信用フォ トカブラ 1 6の受光素子 1 6 bからの受 信信号取出し端子が図示のように設定されているのであるから、 通信線 路波形、 室外受信波形も室内 1送信波形と同一になる。 そして、 室外機 は信号を送出していないので、 室外送信波形は ONのままである。
次いで、 誤配線のパターンを第 8図中 (A) (B) (C) (D) (E) および第 9図中 (AA) (AB ) (AC) (AD) (A E) に示す。 なお、 第 8図は室外機と 1台の室内機とが存在している場合を示し、 第 9図は室外機と 2台の室内機とが存在している場合を示している。 なお、 第 9図中 (AA) (AB) (AC) (AD) (AE) は、 室外 機と 1台目の室内機との間で第 8図中 (A) に示すパターンの誤配線が 発生し、 2台目の室内機との間でそれぞれ第 8図中 (A) (B) (C)
(D) (E) に示すパターンの誤配線が発生した状態、 すなわち上記の 誤配線パターンが組み合わされた状態を示している。 したがって、 第 9 図の誤配線のパターンは第 8図の誤配線のパターンと基本的に同じ誤配 線パターンとなる。 そして、 誤配線された室内機の台数が増加しても、 第 8図の誤配線のパターンと基本的に同じ誤配線パターンとなる。
次いで、 第 8図中 (A) (B) (C) (D) (E) に示すように誤配 線が発生した場合の動作を第 1 0図から第 1 4図を参照して詳細に説明 する。
第 1 0図は商用電源線路 3 a と信号線路 3 c とを誤配線した状態を示 す図である。
第 1 0図においては、 商用交流電源 1 0の出力端子間に、 第 3ダイォ ード 2 6 a、 第 5抵 2 6 b、 室内受信用フォ ト力ブラ 24の発光素子 2 aおよびツエナーダイォード 2 6 cが直列接続されているので、 商 用交流電源 1 0の半周期ごとに第 1 0図に矢印 A 1で示すように電流が 流れる。 なお、 この場合には、 室内制御用直流電源 2 1が商用交流電源 1 0から遮断された状態であるから、 室内用マイコン 2 2に対して動作 用電源が供給されず、 したがって、 室内用マイコン 2 2は動作しない。 また、 この場合には、 室内受信用フォ ト力ブラ 24の発光素子 24 aに 直接電流が流れることになるが、 第 5抵抗 2 6 bが直列接続されている ので、 発光素子 24 aが破壊されてしまうという不都合は発生しない。 また、 この場合には、 室内機 2からの信号が室外機 1に供給されるこ とはないのであるから、 室外機 1においては、 信号送出後のタイムァゥ トに基づいて誤配線がなされていることを検出することができる。
第 1 1図は商用電源線路 3 b と信号線路 3 c とを誤配線した状態を示 す図である。 第 1 1図では、 商用交流電源 1 0の半周期において、 矢印 A 1で示す ように、 室内機 2の制御用直流電源 2 1を通り、 第 2ダイオード 1 8 c、 第 4抵抗 1 8 d、 室外受信用フォトカブラ 1 6の発光素子 1 6 aおよび ツエナーダイォード 1 8 eの直列接続回路と、 この直列接続回路と並列 接続されたターミネーション抵抗 1 7とを通って電流が流れ、 室外用マ イコン 1 4に対して受信データ割込みが発生する。 また、 商用交流電源 1 0の他の半周期において、 矢印 A 2で示すように、 第 3ダイオード 2 6 a、 第 5抵抗 2 6 b、 室内受信用フォ ト力ブラ 2 4の発光素子 2 4 a およびツエナーダイォード 2 6 cの直列接続回路と、 この直列接続回路 と並列接続されたターミネーシヨン抵抗 1 7とを通って電流が流れ、 さ らに室內機 2の制御用直流電源 2 1を通って電流が流れる。 この結果、 室内機 2の制御用直流電源 2 1が立ち上がるので、 室内用マイコン 2 2 も立ち上がり、 室^用マイコン 2 2に対する商用電源周波数割込みを検 出することができる。 したがって、 第 2図のフローチャートの処理およ ぴ第 3図のフローチャートの処理によって、 誤配線が発生していること を検出できる。 また、 この場合には、 室内受信用フォ トカプラ 2 4の発 光素子 2 4 a と直列に第 5抵抗 2 6 bが接続されているとともに、 商用 電源が制御用直流電源 2 1を介してこの直列接続回路に供給されている ので、 発光素子 2 4 aが破壊されてしまう という不都合は発生せず、 さ らに、 室外受信用フォ ト力ブラ 1 6の発光素子 1 6 a と直列に第 4抵抗 1 8 dが接続されているとともに、 室外受信用フォトカブラ 1 6の発光 素子 1 6 a と並列にターミネーション抵抗 1 7が接続されており、 しか も商用電源がこれらの回路に対して制御用直流電源 2 1を介して供給さ れているので、 発光素子 1 6 aが破壊されてしまうという不都合も発生 しない。
第 1 2図は商用電源線路 3 a、 3 bを誤配線した状態を示す図である。 第 1 2図では、 商用交流電源 1 0の半周期において、 矢印 A 1で示す ように、 室内機 2の制御用直流電源 2 1のみを通って電流が流れる。 ま た、 商用交流電源 1 0の他の半周期において、 矢印 A 2で示すように、 ターミネーショ ン抵抗 1 7 と、 第 3ダイォード 2 6 a、 第 5抵抗 2 6 b . 室内受信用フォ トカプラ 2 4の発光素子 2 4 aおよびツエナーダイォー ド 2 6 cの直列接続回路とを通るとともに、 室内機 2の制御用直流電源 2 1を通って電流が流れる。 この場合には、 商用交流電源 1 0の両端子 が入れ替わった状態で、 室内機 2の制御用直流電源 2 1に接続されてい るので、 制御用直流電源 2 1は通常どおり動作し、 室内用マイコン 2 2 も通常どおり動作する。 この結果、 室内受信用フォ ト力ブラ 2 4の発光 素子 2 4 aに通電されることにより、 室内用マイコン.2 2に対して商用 電源周波数割込みが発生する。 したがって、 第 2図のフローチャートの 処理および第 3図の1フローチヤ一トの処理によって、 誤配線が発生して いることを検出できる。 すなわち、 入出力の一致、 不一致を判定するこ とによって、 結果的に誤配線の有無を判定することができる。 また、 こ の場合には、 室内受信用フォトカブラ 2 4の発光ダイオード 2 4 a と直 列に第 5抵抗 2 6 bが接続されており、 ターミネーション抵抗 1 7およ ぴこの直列接続回路を通して通電されるので、 室内受信用フォ トカブラ 2 4の発光素子 2 4 aが破壊されてしまう という不都合は発生しない。 第 1 3図は商用電源線路 3 aが信号線路 3 c と、 信号線路 3 cが商用 電源線路 3 b と、 商用電源線路 3 bが商用電源線路 3 a と、 それぞれ誤 配線された状態を示す図である。
第 1 3図では、 商用交流電源 1 0の半周期において、 矢印 A 1で示す ように、 第 3ダイオード 2 6 a、 第 5抵抗 2 6 b、 室内受信用フォ ト力 プラ 2 4の発光素子 2 4 aおよびツエナ一ダイォード 2 6 cの直列接続 回路とを通り、 第 2ダイォ一ド 1 8 c、 第 4抵抗 1 8 d、 室外受信用フ ォ トカプラ 1 6の発光素子 1 6 aおよびツエナーダイォード 1 8 eの直 列接続回路と、 この直列接続回路と並列接続されたターミネーション抵 抗 1 7とを通って電流が流れる。 この場合には、 室內機 2の制御用直流 電源 2 1が立ち上がらないので、 室内用マイコン 2 2も立ち上がらず、 商用電源周波数割込みは発生しない。 ただし、 室外用マイコン 1 4に対 しては受信データ割込みが発生する。 したがって、 第 3図のフローチヤ ートの処理によって、 誤配線が発生していることを検出できる。 また、 この場合には、 室内受信用フォ トカブラ 2 4の発光素子 2 4 a と直列に 第 5抵抗 2 6 bおよびターミネーション抵抗 1 7が接続されているとと もに、 室内受信用フォ トカプラ 2 4の発光素子 2 4 a と直列に第 5抵抗 2 6 b、 第 4抵抗 1 8 dおよび室外受信用フォ トカブラ 1 6の発光素子 1 6 aが接続されているので、 室内受信用フォ トカブラ 2 4の発光素子 2 4 aが破壊されてしまうという不都合、 室外受信用フォ トカブラ 1 6 の発光素子 1 6 aが破壊されてしまうという不都合も発生しない。
また、 この場合には、 室内機 2からの信号が室外機 1に供給されるこ とはないのであるから、 室外機 1においては、 信号送出後のタイムァゥ トに基づいて誤配線がなされていることを検出することもできる。
第 1 4図は商用電源線路 3 aが商用電源線路 3 bと、 信号線路 3 cが 商用電源線路 3 a と、 商用電源線路 3 bが信号線路 3 c と、 それぞれ誤 配線された状態を示す図である。
第 1 4図では、 商用交流電源 1 0の半周期において、 矢印 A 1で示す ように、 室内機 2の制御用直流電源 2 1を通り、 第 2ダイオード 1 8 c 第 4抵抗 1 8 d、 室外受信用フォ トカブラ 1 6の発光素子 1 6 aおよび ツエナーダイォ一ド 1 8 eの直列接続回路と、 この直列接続回路と並列 接続されたターミネーション抵抗 1 7とを通って電流が流れ、 室外用マ イコン 1 4に対して受信データ割込みが発生する。 また、 商用交流電源 1 0の他の半周期において、 矢印 A 2で示すように、 ターミネーシヨン 抵抗 1 7、 室内機 2の制御用直流電源 2 1を通って電流が流れるととも に、 第 3ダイオード 2 6 a、 第 5抵抗 2 6 b、 室内受信用フォ トカブラ 2 4の発光素子 2 4 aおよびッヱナ一ダイオード 2 6 cの直列接続回路 を通って電流が流れ、 室内機 2の制御用直流電源 2 1が立ち上がつてい るので、 室内用マイコン 2 2に対して商用電源周波数割込みが発生する c したがって、 第 2図のフローチヤ一トの処理おょぴ第 3図のフローチヤ ートの処理によって、 誤配線が発生していることを検出できる。 また、 この場合には、 室内受信用フォ トカブラ 2 4の発光素子 2 4 a と第 5抵 抗 2 6 b との直列接続回路に商用交流電源が直接印加されているが、 室 内受信用フォ トカブラ 2 4の発光素子 2 4 a と直列に第 5抵抗 2 6 bが 直列接続されているので、 室内受信用フォ トカプラ 2 4の発光素子 2 4 aが破壊されてしまう という不都合は発生しない。 さらに、 室外受信用 フォ トカプラ 1 6の発光素子 1 6 a と直列に第 4抵抗 1 S dが接続され ているとともに、 室外受信用フォ トカブラ 1 6の発光素子 1 6 a と並列 にターミネーション抵抗 1 7が接続されているので、 発光素子 1 6 aが 破壊されてしまう という不都合も発生しない。
もちろん、 第 1 0図から第 1 4図の何れにおいても、 室内送信用フォ トカブラ 2 3の受光素子 2 3 b と直列に過電流保護用の正温度特性サー ミスタ 2 5が接続されているのであるから、 この直列接続回路に商用交 流電源電圧が直接印加されかつ室内送信用フォ トカブラ 2 3の受光素子 2 3 bがオンになった場合であっても、 室内送信用フォ トカプラ 2 3の 受光素子 2 3 bの破壊を未然に防止することができる。
以上から明らかなように、 商用電源周波数割込みの有無、 受信データ 割込みの有無を判定するとともに、 室外用マイコン 1 4の送信ポートを O Nにして送信出力と受信入力との一致、 不一致を判定することにより . 誤配線か否かを判定することができる。
また、 誤配線時のみに必要であり、 かつ通常動作時には動作と無関係 な特別な誤配線保護回路などを必要としないので、 ローコス トで省スぺ ースな通信制御回路を提供することができ、 さらに誤配線時も送受信回 路部品にダメージを与えることなく安全に動作するので、 基板交換など が不要な保守性に優れたシステムを提供することができる。
また、 内外送受信データパターンは送信したデータがそのままの形で 受信ポートに現れるので、 室外機と室内機との通信処理プログラムを共 通化でき、 初期通信状態は室外機、 室内機の何れからでも送受信が可能 であり、 さらに、 1台の機器が送信したデータが同時に各機器で受信で きるため、 通信効率、 開発効率のよいシステムを提供することができる c なお、 上記の実施態様においては、 正温度係数を有する第 2抵抗手段 として過電流保護用の正温度特性サーミスタを採用しているが、 過電流 保護用の正温度特性サーミスタに代えて、 導電性の力一ボンとポリォレ フィン、 フッ素樹脂などのポリマーとを配合してなる抵抗素子を採用す ることが可能である。
第 1 5図はこの発明の空気調和装置における室内外通信装置の他の実 施態様を示す電気回路図である。
この空気調和装置が第 1図の空気調和装置と異なる点は、 正温度特性 サーミスタ 2 5に代えてダンピング抵抗 2 5 ' を採用した点、 電源 2 1 として、 1次側卷線が商用交流電源 1 1の出力端子間に接続されたトラ ンス 2 1 a、 トランス 2 1 aの 2次側卷線の端子間に接続された整流回 路 2 1 b、 整流回路 2 1 bからの整流出力を入力として、 平滑化処理、 電圧安定化処理などを行う室内制御用直流電源回路 2 1 cを含むものを 採用した点、 異電圧検出回路および室内用マイコン 2 2 として異電圧検 出回路からの異常検出用の入力を受け入れるものを採用した点のみであ る。
さらに詳細に説明する。
室内制御用直流電源回路 2 1 cの出力端子と室内用マイコン 2 2の異 常検出入力との間に抵抗 2 1 dを接続し、 室内用マイコン 2 2の異常検 出入力をトランジスタ 2 1 eのコレクターエミッタ端子を介して接地し ている。 そして、 トランジスタ 2 1 eのベース端子とェミッタ端子との 間に抵抗 2 1 f を接続し、 室内制御用直流電源回路 2 1 cの入力端子と トランジスタ 2 1 eのベース端子との間にツエナーダイォード (異電圧 検出手段) 2 1 gと抵抗 2 1 hとをこの順に直列接続している。 したが つて、 トランジスタ 2 1 e、 抵抗 2 1 d、 2 1 f 、 2 1 hおよびツエナ 一ダイオード 2 1 gで異電圧検出手段 (回路) を構成している。 なお、 トランジスタ 2 1 e、 抵抗 2 1 f 、 2 1 hで構成される電気回路に代え てデジタルトランジスタを採用することが可能であるとともに、 出力し たい信号に合わせて極性を設定することが可能である。 '
第 1 6図は室内機の誤配線判定処理を説明するフローチヤ一トである c ステップ S P 1において、 室内用マイコン 2 2の送信ポートを O N (室内送信用フォ トカプラ 2 3の受光素子 2 3 bを O F F ) にし、 ステ ップ S P 2において、 商用電源周波数割込みの判定を行う。 そして、 商 用電源周波数割込みがあると判定された場合には、 ステップ S P 3にお いて、 室内外接続線 3の接続が異常であることを認識し、 ステップ S P 4において、 異常電圧が検出されたか否かを判定する。 そして、 異常電 圧が検出された場合には、 ステップ S P 5において、 極性反転以外の誤 配線 (第 1 1図、 または第 1 4図の誤配線) であることを認識し、 ステ ップ S P 6において、 室内用マイコン 2 2の送信ポートを O N (室内送 信用フォ トカプラ 2 3の受光素子 2 3 bを O F F ) にし、 そのまま一連 の処理を終了する。 ステップ S P 4において異常電圧が検出されていないと判定された場 合には、 ステップ S P 7において、 極性反転の誤配線 (第 1 2図の誤配 線) であることを認識し、 ステップ S P 8において、 室内用マイコン 2 2の送信ポートを O F F (室内送信用フォ トカブラ 2 3の受光素子 2 3 bを O N ) にし、 そのまま一連の処理を終了する。
ステップ S P 2において商用電源周波数割込みがないと判定された場 合には、 ステップ S P 9において、 室内外接続線 3の接続が正常である ことを認識し、 ステップ S P 1 0において、 通常のシーケンスに基く動 作を行う。
さらに詳細に説明する。
誤配線時には、 ターミネーショ ン抵抗 1 7を必ず通る力レン トループ が構成される。 したがって、 ターミネーシヨ ン抵抗 1 7の抵抗値をトラ ンス 2 1 a のイ ンピーダンスよ り も大き く設定しておけば、 トランス 2 1 aの 2次側には正常な電圧が発生しない。 そして、 誤配線時において も、 室内用マイ コン 2 2の電源 (室内制御用直流電源回路 2 1 c ) が立 ち上がっていれば、 トランス 2 1 aの 2次側の電圧をモニターすること ができ、 また、 誤配線時には室内用マイ コン 2 2の受信ポートに商用電 源周波数のパルスが入力されるのであるから、 トランス 2 1 aの 2次側 の電圧および商用電源周波数のパルスの有無に基いて誤配線の種別を検 出することができるとともに、 誤配線の種別に応じて最適な保護処理を 行って通信回路素子の保護を達成することができる。 また、 表示装置な どを介して設置作業者に誤配線の種別を示す情報を伝達することにより、 誤配線解消のための作業性の向上を図ることができるとともに、 安全な 接続を促すことができる。 なお、 第 1 6図のフローチャートの処理で検 出可能な誤配線以外の誤配線 (第 1 0図、 第 1 3図の誤配線) の場合に は、 室内機 2の室内制御用直流電源回路 2 1 cが立ち上がらないので、 通信回路素子が破壊されるおそれはない。
さらに、 通信用の給電を直流電源により行うことにより、 従来のシス ; テム (商用電源周波数の 2倍のポーレートまでしか同期して伝送できな かった通信回路を含むシステム) と比較して通信速度の著しい向上を達 成することができ、 図示しないリモコンからの入力に対して殆ど遅れる ことなく動作する、 操作的に違和感のないシステムを構築することがで きる。 なお、 この作用は、 他の全ての実施態様において達成することが できる。
前記の各実施態様において、 1台の室外機 1に対して 1台の室内機 2 が設けらる構成を採用する場合には、 室内機 1の回路構成と室内機 2の 回路構成とを入れ替えることが可能である。 産業上の利用の可能性 この発明の空気調和装置における室内外通信装置は、 室外機に対して, 商用電源線路を含む 3本の接続線を介して室内機を接続してなる空気調 和装置に適用することによって、 電源開閉手段、 異電圧検出保護部など のように通常の室内外通信動作時には無関係な回路構成を必要とせず、 しかも誤配線が発生した場合であっても送受信回路部品の破壊、 断線な どの不都合の発生を未然に防止することができる。

Claims

請求の範囲
1. 室外機 ( 1 ) に対して、 商用電源線路 (3 a ) ( 3 b ) を含む 3本の接続線 ( 3 ) を介して室内機 (2) を接続してなる空気調和装置 において、
室外機 ( 1 ) 、 室内機 ( 2) の一方は、
第 1制御手段 ( 1 4) と、 第 1制御手段 ( 1 4 ) に対する電源 供給を行う第 1電源手段 ( 1 1 ) と、 第 1制御手段 ( 1 4) との間で信 号授受を行いかつ商用交流電源 ( 1 0) の端子間に直流電源手段 ( 1 2 ) を介して互いに直列接続した第 1送信用フォ ト力ブラ ( 1 5 ) 、 第 1受 信用フォ ト力ブラ ( 1 6 ) と、 第 1受信用フォ トカブ.ラ ( 1 6 ) と並列 接続した第 1抵抗手段 ( 1 7) とを含み、
室外機 ( 1 ) 、 室内機 ( 2) の他方は、
第 2制御手段 (2 2) と、 第 2制御手段 (2 2 ) との間で信号 授受を行いかつ 3本の接続線 ( 3) のうちの 2本を介して第 1受信用フ オ ト力ブラ ( 1 6 ) と並列接続された第 2受信用フォ トカブラ ( 24 ) 、 第 2送信用フォ ト力ブラ ( 2 3 ) と、 第 2送信用フォ ト力ブラ ( 2 3 ) と直列接続した、 誤配線時の過電流を抑制する第 2抵抗手段 ( 2 5) と を含む
ことを特徴とする空気調和装置における室内外通信装置。
2. 1台の室外機 ( 1 ) に対して、 商用電源線路 ( 3 a ) ( 3 b ) を含む 3本の接続線 (3 ) を介して複数台の室内機 ( 2 ) を互いに並列 に接続してなる空気調和装置において、
室外機 ( 1 ) は、 室外用制御手段 ( 1 4 ) と、 室外制御用電源 手段 ( 1 1 ) と、 室外用制御手段 ( 1 4) との間で信号授受を行いかつ 商用交流電源 ( 1 0 ) の端子間に直流電源手段 ( 1 2) を介して互いに 直列接続した室外送信用フォ トカブラ ( 1 5) 、 室外受信用フォ トカプ ラ ( 1 6 ) と、 室外受信用フォ ト力ブラ ( 1 6 ) と並列接続した第 1抵 抗手段 ( 1 7) とを含み、
各室内機 (2) は、 商用交流電源 ( 1 0) の端子に対して商用 電源線路 ( 3 a ) ( 3 b ) を介して接続される室內制御用電源手段 ( 2 1 ) と、 室内用制御手段 ( 2 2 ) と、 室内用制御手段 ( 2 2) との間で 信号授受を行いかつ 3本の接続線 (3) のうちの 2本を介して室外受信 用フォ ト力ブラ ( 1 6 ) と並列接続された室内受信用フォ ト力ブラ ( 2 4) 、 室内送信用フォ ト力ブラ ( 2 3 ) と、 室内送信用フォ ト力ブラ ( 2 3 ) と直列接続した、 誤配線時の過電流を抑制する第 2抵抗手段 ( 2 5 ) とを含む
ことを特徴とする空気調和装置における室内外通信装置。
3. 前記第 2抵抗手段 (2 5 ) は正温度特性サーミスタ (2 5) で ある請求項 1または請求項 2に記載の空気調和装置における室内外通信 装置。
4. 室外機 ( 1 ) に対して、 商用電源線路 ( 3 a ) ( 3 b) を含む 3本の接続線 ( 3 ) を介して室内機 (2) を互いに並列に接続してなる 空気調和装置において、
室外機 ( 1 ) 、 室内機 (2) の一方は、
第 1制御手段 ( 1 4) と、 第 1制御手段 ( 1 4 ) に対する電源 供給を行う第 1電源手段 ( 1 1 ) と、 第 1制御手段 ( 1 4) との間で信 号授受を行いかつ商用交流電源 ( 1 0) の端子間に直流電源手段 ( 1 2 ) を介して互いに直列接続した第 1送信用フォ トカブラ ( 1 5) 、 第 1受 信用フォ ト力ブラ ( 1 6 ) と、 第 1受信用フォ トカブラ ( 1 6) と並列 接続した第 1抵抗手段 ( 1 7) とを含み、
室内機 (2) 、 室内機 ( 2) の他方は、 商用交流電源 ( 1 0) の端子に対して商用電源線路 ( 3 a ) ( 3 b ) を介して接続される トランス ( 2 1 a ) と、 トランス ( 2 1 a ) からの出力電圧を直流電圧に変換する整流手段 (2 1 b ) と、 変換され た直流電圧に基づいて動作する異電圧検出手段 (2 1 g ) と、 整流手段 ( 2 1 b ) の出力端子間に接続される第 2電源手段 (2 1 c ) と、 変換 された直流電圧が印加される第 2制御手段 ( 2 2) と、 第 2制御手段 ( 2 2 ) との間で信号授受を行いかつ 3本の接続線 ( 3 ) のうちの 2本 を介して第 1受信用フォ ト力ブラ ( 1 6 ) と並列接続された第 2受信用 フォ ト力ブラ ( 24) 、 第 2送信用フォ ト力ブラ (2 3 ) と、 第 2送信 用フォ ト力ブラ ( 2 3) と直列接続した第 2抵抗手段 ( 2 5 ' ) とを含 む
ことを特徴とする空気調和装置における室内外通信装置。
5. 1台の室外機 ( 1 ) に対して、 商用電源線路 ( 3 a ) ( 3 b ) を含む 3本の接続線 (3 ) を介して複数台の室内機 (2 )'を互いに並列 に接続してなる空気調和装置において、
室外機 ( 1 ) は、 室外用制御手段 ( 1 4) と、 室外用制御手段 ( 1 4 ) に対する電源供給を行う室外制御用電源手段 ( 1 1 ) と、 室外 用制御手段 ( 1 4) との間で信号授受を行いかつ商用交流電源 ( 1 0) の端子間に直流電源手段 ( 1 2 ) を介して互いに直列接続した室外送信 用フォ ト力ブラ ( 1 5 ) 、 室外受信用フォ トカブラ ( 1 6 ) と、 室外受 信用フォ ト力ブラ ( 1 6 ) と並列接続した第 1抵抗手段 ( 1 7 ) とを含 み、
各室内機 ( 2) は、 商用交流電源 ( 1 0) の端子に対して商用 電源線路 (3 a ) ( 3 b ) を介して接続される トランス ( 2 1 a ) と、 トランス (2 1 a ) からの出力電圧を直流電圧に変換する整流手段 (2 l b ) と、 変換された直流電圧に基づいて動作する異電圧検出手段 ( 2 1 g) と、 整流手段 (2 1 b ) の出力端子間に接続される室内制御用電 源手段 ( 2 1 c ) と、 変換された直流電圧が印加される室内用制御手段 ( 2 2) と、 室内用制御手段 (2 2) との間で信号授受を行いかつ 3本 の接続線 ( 3 ) のうちの 2本を介して室外受信用フォ トカブラ ( 1 6 ) と並列接続された室内受信用フォ ト力ブラ (24) 、 室内送信用フォ ト 力ブラ ( 2 3) と、 室内送信用フォ ト力ブラ ( 2 3) と直列接続した第 2抵抗手段 ( 2 5 ' ) とを含む
ことを特徴とする空気調和装置における室内外通信装置。
PCT/JP1999/000002 1997-12-29 1999-01-04 Dispositif de communication interieur-exterieur dans un conditionneur d'air WO1999034152A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99900032A EP1036995B1 (en) 1997-12-29 1999-01-04 Indoor-outdoor communication device for use in an air conditioner
AT99900032T ATE222343T1 (de) 1997-12-29 1999-01-04 Innen/aussenkommunikationsgerät für eine klimaanlage
DE69902511T DE69902511T2 (de) 1997-12-29 1999-01-04 Innen/aussenkommunikationsgerät für eine klimaanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/367968 1997-12-29
JP36796897A JP3399337B2 (ja) 1997-12-29 1997-12-29 空気調和装置における室内外通信装置

Publications (1)

Publication Number Publication Date
WO1999034152A1 true WO1999034152A1 (fr) 1999-07-08

Family

ID=18490648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000002 WO1999034152A1 (fr) 1997-12-29 1999-01-04 Dispositif de communication interieur-exterieur dans un conditionneur d'air

Country Status (7)

Country Link
EP (1) EP1036995B1 (ja)
JP (1) JP3399337B2 (ja)
CN (1) CN1116556C (ja)
AT (1) ATE222343T1 (ja)
DE (1) DE69902511T2 (ja)
ES (1) ES2182477T3 (ja)
WO (1) WO1999034152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158253A3 (en) * 2000-05-23 2003-02-05 Mitsubishi Denki K.K. Control circuit for an air conditioner
CN113587385A (zh) * 2021-07-13 2021-11-02 Tcl空调器(中山)有限公司 一种空调内外机通讯故障处理方法、控制系统及空调器
CN115773564A (zh) * 2022-06-23 2023-03-10 珠海格力电器股份有限公司 空调控制方法、系统、电路、设备及存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002300420B2 (en) * 2000-05-23 2005-02-24 Mitsubishi Denki Kabushiki Kaisha Control circuit for an air conditioner
KR20060092251A (ko) * 2003-10-21 2006-08-22 마츠시타 덴끼 산교 가부시키가이샤 설비 기기용 통신 회로
JP4547950B2 (ja) * 2004-03-15 2010-09-22 ダイキン工業株式会社 空気調和機及び制御方法
JP3806882B2 (ja) 2004-11-29 2006-08-09 ダイキン工業株式会社 空気調和機
WO2007138704A1 (ja) * 2006-06-01 2007-12-06 Mitsubishi Electric Corporation 設備機器管理システム、その制御方法並びに設備機器管理装置
JP2009079811A (ja) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd 空気調和システムおよび室内機
JP4958936B2 (ja) * 2009-04-13 2012-06-20 三菱電機株式会社 空気調和システム診断装置
CN105229388B (zh) * 2013-05-14 2018-03-20 三菱电机株式会社 保护装置以及保护方法
CN104390306B (zh) * 2014-10-24 2017-09-08 珠海格力电器股份有限公司 空调通讯系统、空调通讯方法及空调器
WO2016067356A1 (ja) * 2014-10-28 2016-05-06 三菱電機株式会社 通信システム、及び、送信装置
JP6368663B2 (ja) * 2015-02-27 2018-08-01 日立ジョンソンコントロールズ空調株式会社 空気調和機システム、及びプログラム
CN104990197B (zh) * 2015-05-13 2017-10-31 广东美的制冷设备有限公司 空调器、室外机及其供电控制系统
CN109764503B (zh) 2019-01-15 2021-04-16 海信(广东)空调有限公司 一种空调室外供电控制电路及空调器
CN110470037B (zh) * 2019-08-01 2021-06-22 广东美的制冷设备有限公司 变频空调电源线的防反接电路、方法、装置及空调器
CN115247870B (zh) * 2022-05-31 2023-09-08 浙江中广电器集团股份有限公司 一种空调器及其节能运转控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110556A (ja) * 1990-08-31 1992-04-13 Toshiba Corp 空気調和機
JPH06123479A (ja) * 1992-10-12 1994-05-06 Sharp Corp 空気調和機
JPH06147616A (ja) 1992-11-13 1994-05-27 Matsushita Electric Ind Co Ltd 空気調和機の室内外通信制御装置
JPH07133950A (ja) * 1993-11-09 1995-05-23 Sharp Corp 空気調和機の信号伝送回路
JPH0835715A (ja) * 1994-07-25 1996-02-06 Mitsubishi Electric Corp 空気調和機の制御装置
JPH08271022A (ja) 1995-03-30 1996-10-18 Mitsubishi Electric Corp マルチ式空気調和機の運転制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110556A (ja) * 1990-08-31 1992-04-13 Toshiba Corp 空気調和機
JPH06123479A (ja) * 1992-10-12 1994-05-06 Sharp Corp 空気調和機
JPH06147616A (ja) 1992-11-13 1994-05-27 Matsushita Electric Ind Co Ltd 空気調和機の室内外通信制御装置
JPH07133950A (ja) * 1993-11-09 1995-05-23 Sharp Corp 空気調和機の信号伝送回路
JPH0835715A (ja) * 1994-07-25 1996-02-06 Mitsubishi Electric Corp 空気調和機の制御装置
JPH08271022A (ja) 1995-03-30 1996-10-18 Mitsubishi Electric Corp マルチ式空気調和機の運転制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158253A3 (en) * 2000-05-23 2003-02-05 Mitsubishi Denki K.K. Control circuit for an air conditioner
CN113587385A (zh) * 2021-07-13 2021-11-02 Tcl空调器(中山)有限公司 一种空调内外机通讯故障处理方法、控制系统及空调器
CN115773564A (zh) * 2022-06-23 2023-03-10 珠海格力电器股份有限公司 空调控制方法、系统、电路、设备及存储介质

Also Published As

Publication number Publication date
CN1292077A (zh) 2001-04-18
JPH11193950A (ja) 1999-07-21
CN1116556C (zh) 2003-07-30
JP3399337B2 (ja) 2003-04-21
EP1036995B1 (en) 2002-08-14
DE69902511D1 (de) 2002-09-19
EP1036995A4 (en) 2000-12-06
EP1036995A1 (en) 2000-09-20
DE69902511T2 (de) 2003-04-03
ES2182477T3 (es) 2003-03-01
ATE222343T1 (de) 2002-08-15

Similar Documents

Publication Publication Date Title
WO1999034152A1 (fr) Dispositif de communication interieur-exterieur dans un conditionneur d'air
US8302418B2 (en) Indoor unit and air conditioning system with faulty wiring discrimination
US8042345B2 (en) Outdoor unit and air conditioning system using the same
JP2009079810A (ja) 空気調和システムおよび室外機
KR20090045472A (ko) 절전형 전원멀티탭 및 그 제어방법
WO2018229976A1 (ja) 通信装置、通信方法及びプログラム
JP2916656B2 (ja) 空気調和機
JP2016161188A (ja) 空気調和機システム、及びプログラム
JP3434098B2 (ja) 双方向信号転送回路の保護装置
EP1158253B1 (en) Control circuit for an air conditioner
JP2002039603A (ja) 通信装置
JP6801100B2 (ja) 空気調和機の通信回路
EP1020785B1 (en) A comfort controls system
JP3598945B2 (ja) 空気調和機の通信回路保護装置
JP4687364B2 (ja) 端末器、負荷制御システム
CN217010337U (zh) 二总线的短路隔离电路和二总线的短路保护系统
EP1020783A2 (en) A comfort controls system
JP3855159B2 (ja) 誤配線保護装置および誤配線保護装置を搭載した機器
JP2004030930A (ja) 通信及び電源制御機能付きテーブルタップ
TWI656706B (zh) 判斷電器過載時自動斷電之系統及其方法
KR100192044B1 (ko) 교류전원선을 이용한 공기조화기의 실내외기 직렬통신장치
EP1020688B1 (en) A comfort controls system
KR200379400Y1 (ko) 컴퓨터 연동형 멀티 콘센트
JP3463724B2 (ja) 電気機器における保護回路
JP2515413B2 (ja) コンセントアダプタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803408.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999900032

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999900032

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999900032

Country of ref document: EP