WO1999027117A1 - Vecteur d'expression inductible a froid - Google Patents

Vecteur d'expression inductible a froid Download PDF

Info

Publication number
WO1999027117A1
WO1999027117A1 PCT/JP1998/005171 JP9805171W WO9927117A1 WO 1999027117 A1 WO1999027117 A1 WO 1999027117A1 JP 9805171 W JP9805171 W JP 9805171W WO 9927117 A1 WO9927117 A1 WO 9927117A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plasmid
region
sequence
expression
Prior art date
Application number
PCT/JP1998/005171
Other languages
English (en)
French (fr)
Inventor
Masanori Takayama
Yoshiko Nomura
Ikunoshin Kato
Original Assignee
Takara Shuzo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co., Ltd. filed Critical Takara Shuzo Co., Ltd.
Priority to CA002309600A priority Critical patent/CA2309600C/en
Priority to US09/554,813 priority patent/US6479260B1/en
Priority to JP2000522258A priority patent/JP4057237B2/ja
Priority to AU10546/99A priority patent/AU1054699A/en
Priority to EP98953080A priority patent/EP1033408B1/en
Priority to DE69838680T priority patent/DE69838680T2/de
Priority to KR1020007005452A priority patent/KR100596070B1/ko
Publication of WO1999027117A1 publication Critical patent/WO1999027117A1/ja
Priority to US10/268,229 priority patent/US6897042B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • C12N15/72Expression systems using regulatory sequences derived from the lac-operon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Definitions

  • the present invention relates to a vector used in a gene recombination technique, and a method for expressing a protein using the vector.
  • Conventional technology a method for expressing a protein using the vector.
  • pET using a promoter recognized by the RNA polymerase of bacteriophage T7 that infects Escherichia coli was used.
  • System manufactured by Novagen [Jan Mol. Biol., 189, 113-130 (1986), Gene, 56 125-135 (1987)].
  • T7 RNA polymerase is expressed in Escherichia coli, and the T7 RNA polymerase transcribes the gene of interest located downstream of the T7 promoter on the expression vector.
  • the target protein is synthesized by the host translation system.
  • the target protein when expressed at a high level in many Escherichia coli expression systems including the pET-system, the target protein is an insoluble complex, so-called inclusion complex. It becomes a John body, and the amount of the active form of the target protein is often very low.
  • an active polypeptide has been reported to be obtained by solubilizing the inclusion body and then performing a refolding operation.However, the recovered amount is generally low in many cases.
  • the formation of the inclusion body is an intermediate step before the translated polypeptide chain folds into the correct conformation, and becomes entangled with other polypeptide chains by intermolecular interaction, resulting in a huge insoluble complex. It is thought to be due to body.
  • the culture temperature of the recombinant Escherichia coli is lower than the usually used temperature of 37 ° C (20 to 30 ° C)
  • the expression level of the active protein increases. This is because the slower ribosome translation provides time to allow the intermediate to fold into the correct structure, and slows down the activity of intracellular proteases at low temperatures. It is speculated that the stability of the active protein is increased.
  • the method of culturing recombinant Escherichia coli under low-temperature conditions has been attracting attention as an effective method for the production of proteins that become inclusion bodies.
  • the culture temperature of Escherichia coli during the logarithmic growth phase is reduced from 37 ° C to 10 to 20 ° C, the growth of Escherichia coli is temporarily stopped, during which expression of a group of proteins called cold shock proteins is induced.
  • the proteins are classified into Group I (10-fold or more) and Group II (less than 10-fold) according to the induction level. Examples of the proteins in Group I include CspA, CspB, CspG, and CsdA. No.
  • the expression level of CspA reaches 13% of the total cell protein 1.5 hours after the temperature shift from 37 ° C to 10 ° C. [Procedures of the National Academy of Sciences] Off 'the USA (Proc. Natl. Acad. Sci. USA), Vol. 87, pp. 283-287 (1990)].
  • the use of the cspA gene promoter for the production of recombinant proteins at low temperatures. Have been tried The recombinant protein expression system under low temperature conditions using the cspA gene has the following effectiveness, in addition to the fact that the promoter of the gene initiates transcription at low temperature and high efficiency as described above. It is shown.
  • translatable mRNA transcribed from the cspA gene does not encode a functional CspA protein, more specifically, only a part of the N-terminal sequence of the CspA protein is copied.
  • mRNAs When such mRNAs are expressed, such mRNAs inhibit the expression of other Escherichia coli proteins, including the cold shock protein, for a long time, during which translation of the mRNAs is preferentially performed [Journal of Bacterial Bacteria]. J. Bacteriol., Vol. 178, pp. 4919-4925 (1996)].
  • downstream box consisting of 15 bases at a position 12 bases downstream from the start codon of the cs ⁇ gene, which enhances the translation efficiency under low-temperature conditions.
  • U.S. Patent No. 5,654,169 discloses that expression plasmids using the promoter of the cspA gene are commonly used to evaluate promoters. It is described that it is difficult to maintain the construct in Escherichia coli even due to the expression product even when the custosidase gene is inserted.
  • the +96 region is shown, which region is transcribed into mRNA and the protein also contains a region that does not code for nearly 100 bases. Thus, the minimum region of the cspA promoter required to achieve efficient transcription at low temperatures has not yet been determined.
  • an object of the present invention is to express a gene even if it is difficult to construct an expression system or efficiently produce a gene product in the prior art because the gene product is harmful to the host.
  • An object of the present invention is to provide a vector which can be used to produce a transformant of the present invention and which can express the gene product with high efficiency even under low temperature conditions.
  • the present inventors have achieved the above object by inserting a sequence of 1 ac operator downstream of the promoter of the cspA gene, thereby constructing the plasmid and culturing it to an inducible state.
  • the expression vector using the cspA promoter having no 1ac operator sequence can be obtained.
  • the enzyme-expressed plasmid into which the gene encoding the end-type fucose sulfate-containing polysaccharide-degrading enzyme (Fdase 2) which could not be constructed was successfully introduced.
  • the 1 ac operator was inactivated, and It has been found that by reducing the degree, the enzyme can be induced and expressed. This indicates that the introduction of the operator sequence has made it possible to construct a low-temperature expression vector that can control expression at room temperature (37 ° C).
  • the present inventors have determined the minimum necessary region of the cspA promoter that can maintain the function, and have completed the present invention.
  • the first invention of the present invention relates to a vector, and comprises the following elements:
  • the second invention of the present invention relates to a method for expressing a target protein, comprising the following steps:
  • the third invention of the present invention relates to the isolated cspA promoter, which comprises the nucleotide sequence shown in SEQ ID NO: 5 in the sequence listing and has a nucleotide sequence of 135 bases or less.
  • the promoter of the first aspect of the present invention (1) is not particularly limited, and any promoter having an activity of initiating transcription into RNA in a host to be used may be used. Any step By using an oral motor in combination with the region encoding the untranslated region derived from the cold shock protein gene mRNA described in (3) above, it can be used as a low-temperature responsive promoter. When high transcription efficiency is desired at the time of induction of expression, promoters derived from cold shock protein genes such as cspA, cspB, cspG, and csdA are suitable for the present invention. Promoters derived from genes are preferred.
  • the regulatory region of (2) is not particularly limited as long as it can control the expression of a gene located downstream of the promoter of (1).
  • Promo Overnight Introduce a region that transcribes RNA (antisense RNA) complementary to transcribed mRNA into a vector to inhibit translation of the target protein from genes downstream of the promoter. can do.
  • antisense RNA RNA complementary to transcribed mRNA into a vector to inhibit translation of the target protein from genes downstream of the promoter.
  • an operator present in the expression control regions of various genes may be used.
  • the 1 ac operator from E. coli lactose operon can be used in the present invention.
  • ac operator One activates the promoter by releasing its function by the use of a suitable inducer, such as lactose or its structural analogues, particularly preferably isoprene pill-/?-D-thiogalactoside (IPTG). It is possible to do.
  • a suitable inducer such as lactose or its structural analogues, particularly preferably isoprene pill-/?-D-thiogalactoside (IPTG). It is possible to do.
  • IPTG isoprene pill-/?-D-thiogalactoside
  • the region coding for the 5, untranslated region derived from the cold shock protein mRNA in (3) above is a region coding for the portion on the 5th side of the mRNA from the start codon. This region is characteristically found in the cold shock protein genes of Escherichia coli (cspA, cspB, cspG, and csdA) [Journal of Pacteriology, Vol. 178, pp. 4919-4925 ( 1996), Journal of Pacteriology, Vol. 178, pp. 2994-2997 (1996)], Of the mRNAs transcribed from these genes, more than 100 bases from the 5 'end of the mRNA are not translated into proteins. .
  • the 5, untranslated region derived from the cold shock protein mRNA may have one or more bases substituted, deleted, inserted, or added to its nucleotide sequence within a range that retains its function.
  • region refers to a certain region on a nucleic acid (DNA or RNA).
  • DNA or RNA nucleic acid
  • the “5, untranslated region of mRNA” described in this specification is present on the 5, side of mRNA synthesized by transcription from DNA, and does not encode a protein. Refers to the area. In the following specification, this region is referred to as "5, -UTR (5'-Untranlated Region)". Unless otherwise specified, 5, -UTR refers to the mRNA of the Escherichia coli cspA gene or the unmodified region of the modified version of the cspA gene.
  • a region encoding 5 5 one UTR derived from cold-shock protein genes listed above can be preferably used in the vectors of the present invention.
  • the base sequence may be partially modified, for example, the base sequence of this region may be modified by the introduction of the operator shown in (2) or the like.
  • mRNA containing the nucleotide sequence shown in SEQ ID NO: 1 of the Sequence Listing for example, a region encoding the mRNA of the nucleotide sequence shown in SEQ ID NO: 2, 3 or 4 in the Sequence Listing, Further, a region containing a region encoding mRNA in which these sequences are modified can be used.
  • the region encoding 5, -UTR of the cold shock protein gene is located between the promoter of (1) and the start codon of the gene encoding the protein to be expressed, and an operator is introduced into the region. It may be.
  • 5-1 UTR of the nucleotide sequence shown in SEQ ID NOs: 2 to 4 in the sequence listing contains the 1 ac operator sequence in its nucleotide sequence, which is effective for selective expression of the target protein at low temperatures. is there.
  • anti-dow of ribosomal RNA of the host used Expression efficiency can be increased by including a nucleotide sequence complementary to the upstream box sequence downstream of the untranslated region.
  • an anti-downstream box sequence is present at position 1467-1481 of 16S ribosomal RNA and contains a base sequence showing high complementarity with this sequence.
  • a region encoding the N-terminal peptide of the cold shock protein can be used.
  • the base sequence shown in SEQ ID NO: 28 in the sequence listing or a sequence having high homology to the base sequence may be artificially introduced. It is effective that the sequence having complementarity with the anti-downstream box sequence is arranged so as to start from about 1 to 15 bases counted from the start codon.
  • the gene encoding the protein of interest is integrated into a vector so that the protein is expressed as a fusion protein with these N-terminal peptides, or the gene encoding the protein of interest is complementary to the anti-downstream box sequence.
  • the base substitution is introduced by the site-directed mutagenesis method so as to have the property.
  • the peptide may be of any length as long as the target protein does not lose its activity.
  • Such a fusion protein expression vector is, for example, one whose connection portion is devised so that the target protein can be isolated from the fusion protein by an appropriate protease, and can be used for purification or detection.
  • a vector in which a transcription termination sequence (Yuichi Minei Yoichii) is located downstream of the target protein gene improves the stability of the vector and is advantageous for high expression of the target protein.
  • the vector of the present invention may be any of commonly used vectors, for example, plasmids, phages, viruses, etc., as long as they can achieve the purpose of the vector.
  • regions other than the above-mentioned components contained in the vector of the present invention include, for example, an origin of replication, a drug resistance gene used as a selection marker, a regulatory gene necessary for the function of an operator, and the like.
  • a 1 ac operator can have 1 acl q gene, etc.
  • the vector of the present invention may be integrated on its genomic DNA after being introduced into a host.
  • expression of a target protein using the vector of the present invention constructed as a plasmid is carried out in the following steps. By cloning the gene encoding the target protein into the plasmid vector of the present invention and transforming a suitable host with the plasmid, a transformant for expressing the protein can be obtained.
  • the action of the operator is released to induce transcription, and the target protein is recovered. To be expressed.
  • the target protein can be inhibited from forming an inclusion body to obtain the target protein in an active form. it can.
  • the present invention will be described in more detail with reference to the construction of a specific plasmid vector. In this specification, unless otherwise specified, the E.
  • CspA coli CspA protein
  • cspA gene the region on the gene involved in the expression of the protein
  • cspA gene the promoter of the gene
  • One area is described as "cs pA promotion evening”.
  • nucleotide sequence of the natural cspA gene registered and published as Accession No. M30139 in the GenBank gene database is shown in SEQ ID NO: 6 in the sequence listing.
  • base numbers 426 to 430 and 448 to 453 are the promoter core sequence
  • base number 462 is the major transcription start site (+1)
  • base numbers 609 to 611 are the SD sequence (Liposo).
  • the base numbers 621 to 623 and 832 to 834 are the start codon and stop codon of CspA, respectively. Therefore, it is the portion of nucleotide numbers 462 to 620 that encodes the 5,1 UTR in the sequence.
  • the plasmid pMMO31 is a lac promoter between the Af1III-EcoRI site of the plasmid vector pTV118N (Takara Shuzo) containing the pUC plasmid origin of replication and the ambicillin resistance gene. Structure in which the overnight region is replaced with the promoter overnight region of the cspA gene, the region encoding 5'-UTR, and the region encoding the N-terminal portion of CspA of 13 amino acid residues I am doing.
  • the codon encoding asparagine at the thirteenth position from the N-terminus of CspA has been changed to that encoding lysine.
  • the promoter overnight region of the cspA gene used in these pMM031 series is a region at or after 167 counted from the transcription start point of the gene, including a region essential for its function.
  • the region encoding 13 amino acid residues at the N-terminal part of CspA sufficiently contains a downstream box sequence that is responsible for high translation efficiency of the cspA gene under low-temperature conditions.
  • the pMM031 series is an expression vector that can sufficiently reflect the high protein expression efficiency of the cspA gene under low-temperature conditions.
  • the PMM031 series plasmid functions as a cold-inducible expression vector and can express a useful protein as an active protein is described in Example 11 (2) in Rous associated virus 2, RAV — 2) Confirmed using reverse transcriptase gene as an example.
  • the E. coli transformed by the reverse transcriptase expression vector constructed using the PMM031 series was treated at 37 ° C, the phenotype of the pMMO31 series of plasmids containing no foreign gene was observed. It was observed that the formed colonies were smaller than those of the transformants, and that the growth rate of the bacteria was slow. This suggests that when the cspA gene, particularly the promoter of the gene, is used, the expression at 37 ° C.
  • Example 1- (3) when an attempt was made to construct an expression plasmid for an endo-fucose sulfate-containing polysaccharide degrading enzyme (Fdase 2) using a plasmid vector of the pMM 031 series, the host of the expression product was The construction of the plasmid was not possible due to its toxicity to E. coli.
  • Fue 2 endo-fucose sulfate-containing polysaccharide degrading enzyme
  • the inability to construct an expression vector because the expressed Fdase 2 exerts an effect on the host means that one or two bases in the gene encoding the enzyme may be a by-product of the construction operation. It is easily presumed from the fact that a plasmid in which the reading frame has been shifted due to the deletion and the enzyme can no longer be expressed has been obtained. Furthermore, regarding the toxicity of Fdase 2 to host Escherichia coli, the enzyme expression vector was constructed using the plasmid pET3d of the pET-system (manufactured by Novagen) introduced as a conventional technique, and then T7 RNA polymerase was used. This is also indicated by the fact that no transformant was obtained when trying to transform E. coli BL21 (DE3), an expression host having the gene. Thus, the present inventors have developed a practically effective new expression vector based on these results, and have found the plasmid vector of the present invention.
  • pMMO 37 low-temperature expression plasmid vector pMMO 37 that can reduce the expression level in a non-induced state (37 ° C.) and control the expression of a target protein.
  • pMMO 37 was designed so that a functional lac operator could be formed instead of the +2 to 18 region downstream of the transcription start site (+1) on pMM031F1 of the pMMO31 series 31 It has exactly the same structure as pMMO31F1, except that a base sequence is inserted.
  • SEQ ID NO: 2 in the sequence listing shows the 5'-UTR encoded on plasmid vector pMM037, that is, the nucleotide sequence from the transcription start point to the base immediately before the start codon of CspA.
  • this expression plasmid vector contains the sequence of the region upstream of the transcription start site of the cspA gene and the sequence of the 1 ac operator, which is designed so that a functional 1 ac operet is formed at every downstream of the csp A promoter.
  • Primer CSA + 1RLAC SEQ ID NO: 11 in the sequence listing shows the base sequence of the primer
  • a restriction enzyme recognition sequence was designed near the end of the primer to be used, such as the NcoI site on the primer CSA-67 FN and the 1 ⁇ 116 I site on the primer CSA + 11800. This is convenient for subsequent construction and modification.
  • plasmid pMMO34 can be constructed by inserting it between Nc0I and SmaI of plasmid pTV118N (Takara Shuzo).
  • the obtained PMM034 was digested with Ncol site and Af1III site on pTVl18N, blunt-ended using Klenow fragment, and then self-ligated to obtain pTVll8N.
  • Plasmid pMMO 35 can be constructed excluding the 1-ac promo overnight. Then, it is possible to insert a 1 ac Opere Isseki sequences encoding 5 5 untranslated region of c SpAmRNA downstream of a region of p MM 035. That is, the pMMO31F1 constructed as in Example 11 (1) was
  • PCR was performed using 20 FN (SEQ ID NO: 12 in the sequence listing shows the nucleotide sequence of primer CSA + 20 FN) and M13 primer M4 (manufactured by Takara Shuzo Co., Ltd.) to determine the transcription start site of the cspA gene.
  • a DNA fragment containing from the 19th base downstream to the multicloning site of pMMO31F1 can be obtained. This DNA fragment was placed on CSA + 20 FN at NheI site and at Xba site on multi-cloning site. After cutting at the I site, pMMO 37 can be constructed by inserting between the Nhel and Xba I of the previously obtained pMM035 in the direction in which each site reproduces.
  • the effectiveness of the plasmid pMMO37 thus obtained in controlling the expression of the target protein at room temperature (37 ° C) and the ability to express the target protein at low temperatures was confirmed by the pTV018N-derived multicloning site on pMM037.
  • the gene can be examined by introducing a gene encoding the target protein into the cell.
  • plasmid MFDA102 which is an expression plasmid constructed by inserting the gene into the plasmid vector pMMO37 so as to have the same reading frame as the sequence coding for the N-terminal portion of CspA, contains 1 ac It is stably maintained in a repressor high expression strain E. coli, for example, E. coli JM109.
  • the above plasmid vector has a substantially effective expression control ability.
  • the obtained transformant is cultured at normal temperature (37 ° C), and when the turbidity suitable for induction is reached, the culture temperature is lowered to, for example, 15 ° C, and at the same time, a suitable inducer, For example, add 1 mM of isoprovir 1 /?-1 D-thiogalactoside (hereinafter abbreviated as IPTG) at a final concentration of 1 mM, and continue culturing for an appropriate time.
  • IPTG isoprovir 1 /?-1 D-thiogalactoside
  • the expressed protein was analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and the band of the fusion polypeptide was detected by detecting the band of the fusion polypeptide.
  • SDS-PAGE SDS-polyacrylamide gel electrophoresis
  • the target protein expressed as an active form can be obtained. You can know the amount of. Escherichia coli transformed with the above plasmid pMFD A102 expressed the active Fdase2 protein by the above-described induction procedure.
  • the cspA gene Despite the introduction of the 1 ac operator immediately after the transcription start point of the offspring (the position after +2), the cspA promoter overnight maintained its original function of transcription initiation at low temperatures. I was This indicates that the cspA promoter overnight retains its function in the region up to the transcription start point. Accordingly, the function of the cspA promoter is as follows: the region from position 37 to the transcription start point, that is, the base sequence of the natural cspA gene shown in SEQ ID NO: 6 in the nucleotide sequence of base sequence 425 Only ⁇ 461 part is mandatory.
  • the nucleotide sequence of the essential region of this cspA promoter is shown in SEQ ID NO: 5 in the sequence listing.
  • the plasmid vector pMMO 37 thus constructed can be modified by introducing mutations such as deletion, addition, insertion, and substitution of bases, and these mutations are introduced into the constituent elements of the present invention. Those are also within the scope of the present invention.
  • a modified example of the vector of the present invention performed by the present inventors using pMM037 as a basic structure will be described.
  • deletion mutations can be introduced into the region encoding the 5,1 UTR.
  • a plasmid in which the SD sequence of the cspA gene was linked immediately after the 1 ac operator region of pMMO37 that is, a plasmid represented by SEQ ID NO: 2 in the sequence listing
  • a plasmid vector pMM036 can be constructed which encodes the 5'-UTR encoded on pMMO 37 in which the portion of base numbers 33 to 161 has been deleted.
  • This pMM036 has exactly the same structure as PMM037 except for a deletion mutation introduced into the sequence encoding 5'-UTR.
  • the length of the amino acid residue at the N-terminal portion of CspA to be fused to the protein to be expressed can be changed.
  • the region encoding the N-terminal portion of CspA on pMMO37 was designated as the entire amino acid sequence coding region of CspA (70 amino acid residues)
  • a multicloning site can be arranged to construct a plasmid vector pMMO38 in which the target gene is expressed as a fusion polypeptide with 70 amino acid residues of CspA.
  • This pMM038 contains the sequence encoding CspA expressed as a fusion polypeptide. It has exactly the same structure as pMM037 except that it contains the full length.
  • substitution mutations can be introduced into the sequence encoding the 5,1-UTR.
  • Example 3 As described in (3), a region corresponding to +20 to +26 counted from the transcription start point of the natural cspA gene on the region encoding 5, —UTR on pMM037
  • a plasmid vector pMM047 into which a substitution mutation has been introduced can be constructed.
  • O This pMM047 has exactly the same structure as pMMO37 except for the above-mentioned substitution mutation.
  • Escherichia coli JM109 transformed with plasmid vector pMMO47 was named and displayed as Escherichia coli JM109 / pMM047.
  • Example 3 As described in (4), constructing a plasmid vector pMMO48 in which a deletion mutation of 30 bases was further introduced into the sequence encoding the 5, —UTR of the above plasmid pMM047. Can be.
  • This pMM048 has the same substitution mutation of 6 bases as pMMO 47 and the region corresponding to +56 to +85 counted from the transcription start point of the natural cspA gene, that is, the base sequence shown in SEQ ID NO: 3 in the sequence listing. It has exactly the same structure as pMMO37 except that the part encoding the sequence of base numbers 70 to 99 is deleted.
  • SEQ ID No. 4 in the sequence listing shows the nucleotide sequence of 5′-UTR encoded by plasmid vector pMMO48.
  • the modified plasmid vector of pMMO 37 thus constructed, the ability of pMMO 36, pMM038, pMM047, and pMMO48 to regulate the expression of the target protein at normal temperature (37 ° C) and to target at low temperature
  • the effectiveness of the protein expression ability can be evaluated using, for example, a galactosidase gene (lacZ gene) which is often used for evaluating the expression ability of an expression vector.
  • Plasmid pKMO05 [1983, published by New York Academic Press, edited by Masanori Inoue, Experimental Manipulation of Gene Expression, Exp. Pages 15 to 32]
  • the DNA fragment of about 6.2 kbp containing the 1 ac Z gene obtained from the plasmid was inserted into the plasmid vector pMM037 and its modified plasmid to obtain the 1 ⁇ terminal of 03. It is possible to construct a fusion galactosidase expression vector in which 12 amino acid residues and 10 amino acid residues derived from the multiple cloning site are connected at the 10th amino acid residue of?
  • plasmids containing the 1 ac Z gene are plasmids pMM0371ac, pMM0361ac, pMM038, respectively. lac, pMMO 471 ac, and pMM 0481 ac.
  • Escherichia coli JM109 transformed with each plasmid is cultured at room temperature (37 ° C), and when the turbidity suitable for induction is reached, the culture temperature is lowered to a low temperature, for example, 15 ° C, and at the same time, After adding an appropriate inducer, for example, IPTG at a final concentration of ImM, and continuing the culture for an appropriate period of time, the /?-Galactosidase activity in the obtained culture solution is measured to obtain protein at low temperature. The expression ability can be compared. In addition, using the cells just before induction, the expression level in the non-induced state at 37 ° C can be compared. it can.
  • an appropriate inducer for example, IPTG at a final concentration of ImM
  • the galactosidase activity was determined by the method described in Cold Spring Harbor Laboratory, 1972, by JH Miller, Experiments in Molecular Genetics, pages 352-355. Can be measured. As shown in Table 1, in all E. coli transformed with each plasmid, the activity of /?-Galactosidase at 37 ° C was determined by introducing the lacZ gene downstream of the 1ac promoter used overnight as a control. This level is almost the same as that of pTV118N1ac, indicating that expression at 37 ° C is effectively controlled. In this case, 37 was detected. The /? — Galactosidase activity in C was determined using the LB medium used for culture (1% tryptone, 0.5% yeast extract, 0.5% NaCl).
  • results obtained for pMM0471 ac and pMM0481 ac show that mutations introduced into the 5'-UTR of mRNA encoded by these plasmids do not adversely affect protein expression at low temperatures. In other words, it shows that the region in which these mutations, whose base sequence is shown in SEQ ID NO: 1 in the sequence listing, has not been introduced is essential for the function.
  • the plasmid pMM0481 ac showed a high expression level at a low temperature of 20 ° C or lower with pTVl18Nlac and an equivalent expression level at 37 ° C. This indicates that as a result of the mutation introduced into pMMO48, the plasmid has acquired a high protein expression ability at both normal temperature and low temperature.
  • the vector of the present invention can have various functions in regions other than the components of the present invention.
  • the vector of the present invention can contain a transcriptional promoter for stabilization of a multicloning site plasmid which is substantially free of a stop codon.
  • the site containing the start codon of the cspA gene is converted to an NcoI site or an NdeI site, following the region encoding the N-terminus of CspA.
  • the multi-cloning site has been changed to a sequence that does not substantially contain a stop codon, has a sequence in which a stop codon appears in any of the three reading frames downstream, and is further downstream from the cspA gene
  • a series of vectors can be constructed on the multicloning site, each of which has a different reading frame, including the transcription / mineral / mouse region.
  • Plasmids based on pMMO 47 are pC01d01 NC series (including Nc0I site) or pCo IdO 1ND series (including NdeI site) Plasmid, PMM048 as basic skeleton These plasmids are named pC01d02NC series or pCo1d02ND series plasmids. As described above, a series plasmid having a multiple cloning site that does not substantially contain a stop codon and has a different reading frame from one to another can easily insert a foreign gene and can easily construct an expression vector.
  • the vectors of the present invention specifically exemplified so far all use 1 ac operet as an operator, and therefore, when gene expression is intended, a 1 ac repressor with a high expression strain is used as a host. It is necessary to use E. coli (1 ac Iq strain), for example, E. coli JM109. Other operators can be used in the vector of the present invention. In this case, it is natural that a control method suitable for the operator is used. Also, it will be obvious to those skilled in the art that even when 1 ac operelle is used as in the above-mentioned pCold series plasmid, the 1 ac repressor gene (lac I By introducing the gene, the restrictions on the host can be eliminated.
  • pC01d03 series and pCoId04 series plasmids containing the 1 acI gene can be constructed. These plasmids have exactly the same structure as the pCo1d01 series and pC01d02 series plasmids, respectively, except that they have a 1 acI gene. Further, a 1 ac repressor one highly expressed gene in place of the lac I gene in the same manner 1 ac I q gene plasmid using, for example p C o 1 d 05 Series and p C o 1 d 06 Series Brass Mi de It is also possible to build.
  • a base sequence (downstream box sequence) having high complementarity to the anti-downstream box sequence present in 16 S ribosomal RNA is used as a vector of the present invention.
  • Can be introduced to The downstream box sequence present in the region encoding the N-terminal part of E. coli CspA has only 67% complementarity to the above anti-downstream box sequence.
  • the vector of the present invention may contain a nucleotide sequence encoding an evening sequence, which is a peptide for facilitating purification of the expressed target gene product, or a target gene product such as the evening sequence.
  • a nucleotide sequence encoding a protease-recognizing amino acid sequence that is used to remove excess peptide from the protein can be introduced.
  • a histidine tag consisting of several histidine residues, a maltose binding protein, glutathione-1S-transferase, etc. can be used as an amino acid sequence for purification.
  • Histidine-tagged proteins can be easily purified using a chelating column, and other tag sequences can be easily purified by using ligands with specific affinity for them. be able to.
  • Factor-1Xa, thrombin, enterokinase and the like can be used as proteases used for removing extra peptides, and amino acids specifically cleaved by these proteases in the vector of the present invention can be used. What is necessary is just to introduce a base sequence coding the sequence.
  • Example 6 contains a downstream box sequence completely complementary to the anti-downstream sequence present in 16S ribosomal RNA, a histidine tag consisting of 6 histidine residues, and a factor 1 Xa.
  • a plasmid (pCoIdO7 series and pCo1d08 series) into which a nucleotide sequence encoding a recognition amino acid sequence has been introduced is described.
  • the expressed 5-galactosidase activity is significantly higher than that of a plasmid having a downstream box sequence with low complementarity. It is shown to rise.
  • the /? One-galactosidase expression in pre-induced slightly increased this is an acceptable level, as described above to change the 1 ac I gene on those flops Rasumi de to 1 ac I q gene This can be effectively suppressed.
  • the target protein was a peptide encoded by a downstream box sequence, histidine, and a recognition amino acid for factor Xa. It is expressed as a fusion protein with a leader peptide containing an acid sequence. Since this fusion protein contains a histidine tag, it can be purified in one step using a chelating column. Next, the protein is treated with factor Xa to cleave the leader peptide from the target protein, and then passed again through a chelating column. -Only the target protein from which the peptide has been removed can be obtained.
  • Plasmid p JJG 02 containing the csp A gene [Journal of Pactology, Vol. 178, pp. 4919-4925 (1996)] was used as a type I synthetic primer CSA-67FN and CSA13R (primer).
  • (1) Perform the PCR using the nucleotide sequences of CSA-67FN and CSA13R as shown in SEQ ID NOs: 7 and 8 in the sequence listing, respectively, and perform The resulting DNA fragment was obtained. This DNA fragment is cut at the NcoI and EcoRI sites arranged on each of the above-mentioned primers, and inserted between Ncol and EcoRI of plasmid pTV118N (Takara Shuzo). Plasmid pMM030 was constructed.
  • the plasmid was digested with NcoI (manufactured by Takara Shuzo) and Af1III (manufactured by NEB), and the ends were blunted using Klenow fragment (manufactured by Takara Shuzo), followed by self-ligation.
  • NcoI manufactured by Takara Shuzo
  • Af1III manufactured by NEB
  • Klenow fragment manufactured by Takara Shuzo
  • Plasmid pMM031 is composed of one region of the cspA gene promoter (67 bases), 5, an untranslated region (159 bases), and a region encoding the 13th amino acid residue from the N-terminus of CspA ( This is a plasmid vector having a multiple cloning site of EcoRI-Hindlll derived from pTV118N downstream of (39 bases).
  • Plasmid pMM031F1 was completely identical to the construction of pMMO31 except that primer CSA13R2 was replaced by primer CSA13R2 (SEQ ID NO: 9 in the sequence listing, primer—showing the nucleotide sequence of CSA13R2). Built in the same way.
  • this plasmid is the same as pMMO31 except that the N-terminal coding region of CspA on pMM031 is one base less than the 3 'end. By the deletion of one base, the 13th amino acid residue from the N-terminus of CspA encoded by the plasmid pMMO31F1 is substituted with lysine from asparagine.
  • Plasmid PT8RA containing a gene encoding a reverse transcriptase derived from Rous associated virus 2 (RAV-2) from Escherichia coli JM109 / pT8RAV (FERM P-13716) described in JP-A-7-39378 V was prepared.
  • the plasmid was digested with EcoRI and Sail (both manufactured by Takara Shuzo) to obtain a DNA fragment containing the above-mentioned reverse transcriptase-encoding gene and a transcription termination sequence downstream thereof. This DNA fragment was inserted between EcoRI-Sail of pMMO31F1 obtained in (1) to construct plasmid pMM031 RAV.
  • EcoRI and Sail both manufactured by Takara Shuzo
  • coli JM109 (manufactured by Takara Shuzo) was transformed using pMMO 31 RAV and pMMO 31, and a colony of each transformant was formed on an LB plate containing 100 ⁇ g / ml ambicilin. E. coli colonies transformed by 31 RAV were clearly observed to be smaller than colonies of transformants with pMM031. Next, each of the obtained transformants was inoculated into an LB medium containing 100 ⁇ g / ml of ambicilin, and cultured at 37 ° C. aerobically overnight.
  • the culture was centrifuged to collect the cells, and the cells were analyzed by SDS polyacrylamide gel electrophoresis.As a result, only the transformant with pMM 031 RAV cultured at 15 ° C had a molecular weight of about 100,000. A band considered to be reverse transcriptase was observed, confirming that the protein expression system derived from cspA on pMMO31 was of low temperature induction type.
  • the culture was centrifuged to collect the cells, and the cells were disrupted with a disruption buffer [5 OmM Tris monochloride (pH 8.3), 6 OmM NaCl, 1 mM EDTA, 1% NP-40, 1 mM DTT, 54-amidinophenylmethanesulfonylfluoride hydrochloride] was suspended in 4.7 ml, and the cells were disrupted by sonication. This was centrifuged to recover the supernatant, and an E. coli extract was obtained.
  • a disruption buffer [5 OmM Tris monochloride (pH 8.3), 6 OmM NaCl, 1 mM EDTA, 1% NP-40, 1 mM DTT, 54-amidinophenylmethanesulfonylfluoride hydrochloride] was suspended in 4.7 ml, and the cells were disrupted by sonication. This was centrifuged to recover the supernatant, and an E.
  • This extract was diluted 10-fold with an enzyme diluent [5 OmM Tris-HCl (pH 8.3), 10% glycerol, 0.1% NP-40, 2 mM DTT]. It was measured by the method described in Japanese Patent Publication No. 7-39378. Reverse transcriptase activity was detected. This indicated that at least 10 units of reverse transcriptase were expressed per 1 ml of the culture solution, and that the expression level of pMMO31 at low temperatures was high.
  • Endo-fucose sulfate-containing polysaccharide-degrading enzyme (ORF-2, hereinafter abbreviated as Fdase 2) derived from Alteromonas sp. Strain SN-1009.
  • Fdase 2 Endo-fucose sulfate-containing polysaccharide-degrading enzyme
  • the nucleotide sequence of the gene encoding the enzyme is shown in the sequence listing. Escherichia coli JM109 strain into which plasmid PS FDA7 containing the gene encoding
  • Plasmid was prepared from Escherichia coli JM109 / pSFDA7, FERM BP-6340 according to a conventional method.
  • the obtained pSFDA7 is digested with Hindlll (Takara Shuzo), separated by 1% agarose gel electrophoresis, and an approximately 4.8 kb DNA fragment encoding the C-terminal region of Fdase 2 is cut out and extracted and purified. did.
  • This DNA fragment was inserted into the Hindlll site of pMM031 so that the orientation of the cspA promoter was the same as that of the Fdase 2 gene in the same manner to obtain pMMO31-Fdase2C.
  • pS FDA7 was digested with SnaB I (Takara Shuzo Co., Ltd.), and a DNA fragment of about 2.5 kb containing a region encoding the fourth amino acid residue to the C-terminal amino acid of Fdase 2 was isolated. .
  • SnaB I Takara Shuzo Co., Ltd.
  • the primer CSA + 1RLAC (SEQ ID NO: 11 in the sequence listing shows the nucleotide sequence of the primer CS A + 1 RL AC) Designed and synthesized.
  • a megalabel kit MEGALABEL, manufactured by Takara Shuzo Co., Ltd.
  • PCR was performed using plasmid p JJG02 as the type III together with the above-mentioned primer CSA-67FN, and csp A DNA fragment was obtained in which the 1 ac region was placed downstream of the A gene promoter.
  • pMM034 was constructed by inserting it between Ncol-Smal sites of plasmid pTV118N (Takara Shuzo).
  • the plasmid was treated with Nco I and Af 1 III. After digestion and blunt-ending with Klenow fragment, self-ligation was performed to obtain plasmid pMMO35 excluding lac promoter overnight derived from pTV118N.
  • the plasmid vector pMMO31F1 obtained in Example 1- (1) was used as a ⁇ type, and the primer CSA + 20 FN (SEQ ID NO: 12 in the sequence listing, the primer CSA + 20 FN PCR was performed using Ml3 primer-M4 (manufactured by Takara Shuzo Co., Ltd.), and pMM031F1 was deleted from the 19th base downstream of the transcription start site of the cspA gene on the plasmid vector. A DNA fragment containing up to the multicloning site was obtained.
  • This DNA fragment was cut at the NheI site placed on the primer CSA + 20 FN and at the XbaI site on the multicloning site, and then the Nhel-Xbal site of pMM035 obtained above was cut. In between, the plasmids were inserted in the direction in which each site was to be reproduced to construct a plasmid vector pMMO37.
  • This pMM037 contains the promoter region of the cspA gene (67 bases), the transcription initiation base (1 base), the 5 derived from the 1 ac operator, the untranslated region (31 bases), the cspA derived 5, and the untranslated region (141 bases) ), And a plasmid having a multicloning site of Ec0RI-Hindlll derived from pTV118N downstream of the coding region (38 bases) in the N-terminal part of CspA.
  • nucleotide sequence of the 5'-UTR encoded on the plasmid vector pMMO 37 that is, the nucleotide sequence from the transcription start point to the base immediately before the CspA start codon is shown in SEQ ID NO: 2 in the sequence listing.
  • Example 2 Examination of the inducibility of cold-induced plasmid vector pMMO37 using a gene encoding an endo-fucose sulfate-containing polysaccharide degrading enzyme (Fdase 2)
  • an F base 2 expression plasmid was constructed using the plasmid vector pMMO37. That is, the plasmid pSFDA7 obtained in Example 11- (3) was digested with SnaBI, and the plasmid pSFDA7 was digested with SnaBI to obtain a plasmid of about 2.5 kb including a region encoding from the 4th amino acid residue to the C-terminal amino acid. The SnaBI fragment was isolated.
  • E. coli JM109 was transformed with pMFDA102 and pMMO37. At this time, there was no difference in the size of the colonies of both transformants formed on the plate.
  • the resulting transformants were each inoculated into an LB medium containing 100 ⁇ g / ml ampicillin and cultured aerobically overnight at 37 ° C.
  • IPTG was added to a concentration of mM, the culture temperature of one of them was set to 15 ° C., and the cells were further cultured for 4 hours.
  • the average molecular weights of the reaction products were compared.
  • one prepared under the same conditions using a cell disrupter containing no Escherichia coli extract and the other prepared using water instead of the sulfated-fucose-sulfate-containing polysaccharide 1F solution were prepared. And analyzed by HP LC.
  • One unit of the enzyme is the amount of the enzyme that cuts the fucosyl bond of 1 fmocosyl sulfate-containing polysaccharide 1F per minute in the above reaction system.
  • the amount of cleaved fucosyl bond was determined by the following equation.
  • a plasmid PJJG21 containing a cspA gene in which an XbaI site has been introduced upstream of the SD sequence [Molecular microbiology, Vol. 23, pp. 355-364 (1997)] Primer PCR was performed using CSA + 20 FN and CSA13R2. The amplified DNA fragment obtained was digested with XbaI and EcoRI (Takara Shuzo Co., Ltd.). A DNA fragment containing a region encoding the second amino acid residue was obtained. This DNA fragment was used in Example 2—
  • Plasmid vector pMM036 was constructed by inserting the plasmid vector pMM037 obtained in (1) between NheI and EcoRI. This pMM036 has a deletion of the nucleotide sequence of nucleotides 33 to 161 in the nucleotide sequence encoding 5, -UTR on the plasmid pM037 shown in SEQ ID NO: 2 in the sequence listing. Is Plasmi De The same structure as pMMO 37.
  • pMMO 37 has a multicloning site downstream of the coding region (38 bases) of the N-terminal region of CspA, and the target gene is expressed as a fusion polypeptide with the N-terminal 12 amino acid residue of CspA.
  • a multicloning site was placed after the entire coding region (70 amino acid residues) of CspA. Then, a plasmid vector pMMO 38 capable of expressing the target gene in the form of a fusion polypeptide with 70 amino acid residues of CspA was constructed.
  • PCR was performed using the above-mentioned plasmid pJJG02 as a type I and primers CSA + 20FN and CSA70R (the base sequence of the primer — CSA70R is shown in SEQ ID NO: 13 in the sequence listing), A DNA fragment containing from the 19th base downstream of the transcription start point of the cspA gene on the plasmid to the region encoding the 70th amino acid residue of CspA was obtained. This DNA fragment was digested with NheI and EcoRI sites arranged on each primer, and inserted between Nhel-EcoRI of pMM037 obtained in Example 2 (1) to insert plasmid vector pMM. 038 was constructed.
  • This pMM038 is a plasmid in which the region coding for the 13 amino acid residues from the N-terminus of CspA on pMM037 has been replaced with that encoding the entire amino acid sequence of CspA (70 amino acid residues). This is a vector.
  • Primer CSA + 27NF1 (SEQ ID NO: 14 in the Sequence Listing shows the nucleotide sequence of primer CSA + 27NF1) to introduce a mutation of 6 bases into the region encoding 5 and 1 UTR on plasmid vector pMMO37.
  • pMMO 47 was constructed in the same manner as in the construction of pMM037. That is, PCR was performed using the plasmid vector pMM03IF1 obtained in Example 11- (1) as type III, using the primer CSA + 27NF1 and the M13 primer M4 to obtain an amplified DNA fragment.
  • a plasmid vector pMMO48 was constructed by introducing a 30-base deletion mutation into the sequence encoding the 5,1 UTR of the plasmid vector pMMO47. That is, the primers D3F and D3R were deleted so that the portion corresponding to the region from +56 to +85 downstream of the transcription start site of the natural cspA gene present on MMO 47 was deleted.
  • the base sequences of the primers D 3 F and D 3 R are shown in SEQ ID NOS: 15 and 16 in the sequence listing, respectively.
  • PCR was performed using a combination of primer D3R and CSA + 27NF1, and a combination of primer D3F and CSA13R2. This reaction solution was subjected to polyacrylamide gel electrophoresis, and the amplified DNA fragment separated from the primer was extracted from the gel and purified. Each of the obtained amplified DNA fragments was mixed in a PCR reaction buffer, denatured by heat, and then gradually cooled to form a heteroduplex. Add Taq DNA polymerase to this mixture.
  • SEQ ID NO: 4 in the Sequence Listing shows the 5, -UTR, which is encoded on the plasmid vector pMM048, that is, the nucleotide sequence from the transcription start point to the base immediately before the CspA start codon.
  • the obtained DNA fragment was ligated with the above plasmid vector pMM036, pMM038, pMM047, pMM048 and the plasmid vector pMMO37 obtained in Example 2 (1) BamHI-Sa1I.
  • the resulting plasmids were named plasmids pMMO 361 ac, pMMO 381 ac, pMM0471 ac, pMM0481 ac, and pMM0371 ac, respectively.
  • the N-terminal 12 amino acid residues of CspA and the 10 amino acid residues from the multicloning site were connected at the 10th amino acid residue of?
  • PMM0381 ac is a fusion of a 70-amino acid residue corresponding to the entire length of CspA and a 9-amino acid residue derived from the multicloning site joined at the 10th amino acid residue of galactosidase. Is code.
  • Escherichia coli JM109 was transformed with each of the above plasmids, and the resulting transformants were each inoculated into LB medium containing 100 / g / ml ampicillin and cultured aerobically overnight at 37 ° C. did.
  • This culture was inoculated in a fresh 5 ml of the same medium at 1% each and cultured aerobically at 37 ° C.
  • OD600 0.6 to 0.8
  • IPTG was added to a final concentration of 1 mM, and the cells were further cultured at a culture temperature of 15 ° C.
  • Example 3 Using the transformants prepared in Example 3 (5) other than those transformed with the plasmid pMM0371 ac, the protein expression ability of each transformant at 37 ° C. was evaluated.
  • M 9 medium culture ImM MgS0 4, 1 m M CaC l 2, 0. 2% glucose, 0.2% casamino acid, 0. 05mg / m 1 Toributofan, 2 ⁇ G / ml thiamine, 100 g / ml ampicillin
  • the experiment was performed in the same manner as in Example 3- (5) except that the culture temperature was kept at 37 ° C even after the addition of IPTG. Further, the galactosidase activity was measured at two points immediately before induction and two hours after induction. Table 2 shows the obtained results.
  • Example 3-(5) Among the transformants prepared in Example 3-(5), those other than those transformed with the plasmid pMM036 1 ac were used, at 10 ° C and 20 ° C of each transformant. The protein expression ability was evaluated. The experiment was performed in the same manner as in Example 3- (5) except that the culture temperature after the addition of IPTG was kept at 10 ° C or 20 ° C. 5 The activity of galactosidase was 3 hours after induction at 10 ° C, and 3 points after 7 hours induction, 21 hours after induction, 1 hour after induction at 20 ° C, 3 hours after induction, and Measurements were made at three points 7 hours after induction. Table 3 shows the results at 10 ° C and Table 4 shows the results at 20 ° C.
  • pMMO 481 ac in which a 30-base deletion mutation has been introduced into the 5,-UTR, shows equivalent or slightly higher expression levels than pMM0471 ac, which has no mutation. This shows that it is also effective for protein expression under low temperature conditions.
  • Table 4 under the temperature condition of 20 ° C, the expression of pMM047 lac was lower than that of the transformants containing other plasmids, indicating that the induction of galactosidase activity was lower. Was observed.
  • pMM047 mainly contained 15 ° C
  • Plasmid pJJG02 containing the cspA gene is designated as type II, and the synthetic DNA primers CSA-ter-FHX and CSA-ter-R (primers CSA-ter-FHX and CSA-ter-R PCR was performed using SEQ ID NOs: 17 and 18 in the sequence listing) to obtain a DNA fragment containing the entire transcription terminus region of the cspA gene. After cutting this DNA fragment at the HindllKeco0109I site arranged on each primer, the Hind at the end of the pMM038 multi-cloning site obtained in Example 3 (2) was obtained. PMM039 was constructed by insertion between III and the downstream Eco109I site.
  • KS-linker1 and KS-1inker2 were synthesized.
  • the base sequence of SEQ ID NO: 2 is shown in SEQ ID NOS: 19 and 20, respectively). Forty built.
  • primers CSA1NC-F and CSA1NCR base sequences of primers CSA1NC-F and CSA1NC-R, (Shown in SEQ ID Nos. 21 and 22 in the column list) were synthesized.
  • the first PCR reaction was performed. This reaction solution was subjected to 3% agarose gel electrophoresis, and the amplified DNA fragment separated from the primers was extracted and purified from the gel.
  • the obtained amplified DNA fragments were mixed in a PCR reaction buffer, heat-denatured, and then gradually cooled to form a heteroduplex. To this mixture, add Taq DNA polymerase (Takara Shuzo), incubate at 72 ° C to complete double-stranded synthesis, and then combine primers CSA + 27NF1 and CSA13R for the second PCR. Was performed.
  • the obtained amplified DNA fragment was subcloned into pT7B1ueT—vector-1 (Novagen) to confirm the nucleotide sequence, and then the NheI and EcoRI sites were placed on each primer. The DNA fragment released by cleavage with the plasmid was inserted between NheI-EcoRI of plasmid vector pMM040 to construct a plasmid vector pC01d01NC1.
  • the second PCR reaction was performed using primer CSA 13R 2 or CSA 13 R 3 (SEQ ID NO: 23 in the sequence listing shows the nucleotide sequence of primer CSA 13 R 3) instead of primer CSA 13 R.
  • primer CSA 13R 2 or CSA 13 R 3 SEQ ID NO: 23 in the sequence listing shows the nucleotide sequence of primer CSA 13 R 3
  • a plasmid vector pCo1d01NC2 with 1 and 3 bases deleted by deleting 3 bases and 1 base of the N-terminal region of CspA inserted into pColdOlNCl
  • the resulting plasmid vector—pCo 1 d01 NC3 was constructed in the same manner.
  • These three plasmids have an Nc0I site at the start codon of the cspA gene on each plasmid, and the open reading frame starting there is different from the series vector on the multiplex site.
  • these plasmids have a sequence in which a stop codon appears in any of the three reading frames downstream of the multiple cloning site, and a transcription terminus derived from the cspA gene further downstream. —Includes the evening area.
  • the deletion of this one base resulted in the substitution of the 13th amino acid residue from the N-terminus of CspA encoded by the plasmid from asparagine to lysine. Is done.
  • primers CSA1ND-F and CSA1ND-R primers CSA1ND-F and CSA1ND-R (primers CSA1ND-F and CSA1ND-R were replaced with primers CSA1NC-F and CSA1NC-R)
  • Each of the first PCR reactions is performed using SEQ ID Nos. 24 and 25 in the sequence listing to obtain the translation initiation codon of the pCo1d0 INC series plasmid.
  • PCo1d01ND series plasmids, pCold01ND1, ND2, and ND3, in which the Ncol site was replaced with the Ndel site, were constructed in exactly the same way.
  • the six types of pCo1d01 series plasmids constructed in this way have an expression system with pMM047 as the basic skeleton, a restriction enzyme site and a multicloning site located at the start codon. Except for the subsequent sequence, it is the same as pMMO47.
  • Example 4 Six kinds of pCo1d02 series plasmids were constructed in the same manner as in Example 1 (1). That is, in the first PCR reaction using the combination of the primers CSA1NC-R and CSA + 27NF1 or the combination of the primer CSA1ND-R and CSA + 27NF1, plasmid pMM By using the plasmid pMMO48 in place of 047 as the ⁇ type, pCold02 series plasmid, pCold02NCl, NC2 in exactly the same process as in Example 4 (1). , NC3, ND1, ND2, and NO3 were constructed.
  • the six types of pCoId02 series plasmids constructed in this way have an expression system based on pMM048 and have a restriction enzyme site and a multicloning site located at the start codon. Except for the subsequent sequence, it is the same as pMM048. In addition, these are derived from the natural cspA gene, which is characteristic of pMMO48, and the deletion of a part corresponding to the region +56 to 85 from the transcription start point of the UTR It is the same as the corresponding plasmid in the Co1d01 series. (3) Investigation of inducibility of pCo1d01 and pCold02 using ⁇ -galactosidase gene
  • Example 3 the inducibility of pC01d01 and pCo1d02 was examined using the /?-Galactosidase gene.
  • the plasmids were named plasmids pColdO1NC2lac, pCold01ND21ac, pCo1d02NC21ac, and pCold02ND21ac, respectively.
  • Escherichia coli JM109 was transformed with each of the above plasmids, and the resulting transformants were subjected to an expression induction experiment at 15 ° C by the same operation as in Example 3- (5).
  • -Galactosidase activity was measured at three points immediately before induction, 3 hours after induction, and 10 hours after induction.
  • Table 5 shows the results for pCold01NC21ac and pCo1d02NC21ac.
  • the induction performance was almost equivalent to that when the corresponding NC series vector was used.
  • pMM040 obtained in Example 4- (1) was digested with EcoT22I, and the ends were blunted using T4 DNA polymerase.
  • pET21b manufactured by Nopadin
  • Sphl and PshAI both manufactured by Takara Shuzo
  • the DNA fragment containing the lacI gene obtained by blunting the ends using T4DN A polymerase was inserted.
  • a plasmid in which the direction of the 1 acI gene was inserted in the direction opposite to that of the cspA promoter was constructed and named pMMO40I.
  • the pCo1d03 and pC01d04 series plasmids constructed in this way are the pCo1d01 series and pC01d, respectively, except that they have a 1 acI gene. 0 It has the same structure as the 2 series plasmid.
  • the pC01d05 and pCo1d06 series plasmids each have a lacl gene of pCold03 and pCo1d04 series plasmids of 1 acI. It has been replaced by a gene.
  • Example 3 Similar to (5), after digesting plasmid pKMO05 with BamHI and SaII, contains 1 acZ gene The DNA fragment was extracted and purified. The obtained DNA fragment was inserted between the BamHI-Sail of NC2 that matches the frame of the above plasmid vector pCo1d03, 04, 05, and 06 series, The obtained plusmids are pC old 0 3 NC 21 ac, p C old 04 NC 21 ac, p Co 1 d 0 5 NC 21 ac, p Co 1 d 0 6 NC 21 ac It was named.
  • Example 4 pCold01NC21ac, pCold02NC21ac and the above plasmid pCold03NC21ac, pCo1d04 constructed in (3) NC 2 1 ac, p C old 0 5 NC 2 1 ac, p C old 0 6 Escherichia coli DH 5 strain not carrying the 1 ac repressor gene (Takara Shuzo Co., Ltd.) was attempted. At the same time, transformation was attempted with plasmid pC01d01NC2, which does not have the 1acZ gene, as a control.
  • Transformation of Escherichia coli DH5 strain was performed by the competent cell method in accordance with a conventional method.When plasmids other than PC old 0 2 NC 21 ac were used, all transformations were performed with the same transformation efficiency as the control. A transformant was obtained, but p Co I d In the case of 02 NC 21 ac, no transformant was obtained. In the case of pCold01NC2lac, the obtained transformant colonies were smaller than those of the other transformants.
  • Example 6 Construction of low-temperature induction vectors PCo1d07 and pC01d08 series plasmids having highly complementary downstream box sequences and purification tags and examination of inducibility
  • nucleotide sequence encoding the N-terminus of CspA is substituted with the nucleotide sequence shown in SEQ ID NO: 28, which is completely complementary to the above-mentioned 15 nucleotide sequence, and further downstream of the tag sequence for purification. Encodes a sequence encoding six histidine residues, and a recognition amino acid sequence of protease factor Xa for excision of a leader peptide encoded by these nucleotide sequences. Plasmids pCold07NC2 and pColdO8NC2 into which the nucleotide sequences were introduced were constructed.
  • the plasmid pCold03NC2 was digested with NcoI and EcoRI to prepare a single fragment except for the region encoding the N-terminal sequence of the cspA gene on pCold03NC2.
  • synthetic oligonucleotides DB-3 and DB-4 (the base sequences of DB-3 and DB-4 are shown in SEQ ID NOs: 26 and 27, respectively) are synthesized and annealed.
  • the plasmid was inserted between NcoI-EcoRI of the prepared pCold03NC2 to construct a plasmid pCold07NC2.
  • plasmid pCold08NC2 in which the region encoding the N-terminal sequence of the cspA gene on plasmid pCold04NC2 was replaced with the synthetic DNA linker was constructed.
  • Example 4 After digesting the plasmid vector pCold01NC21ac constructed in step (3) with BamHI and Sa1I, an approximately 6.2 kb DNA fragment containing the 1acZ gene was extracted and purified. did. Each of the obtained DNA fragments was inserted between BamHI-Sa1I of the plasmids pCoIdO7NC2 and pCold08NC2. The resulting plasmids were named pCold07NC21ac and pCold08NC21ac, respectively.
  • Each of these plasmids has 16 amino acids at the N-terminus, a 5-amino acid residue encoded in a downstream box sequence that is completely complementary to the anti-downstream box sequence in malRNA, and a tag sequence for purification.
  • an N-terminal leader peptide consisting of a total of 25 residues, consisting of 6 histidine residues, 4 amino acid residues that are a Factor Xa recognition amino acid sequence, and 10 amino acid residues derived from a multi-cloning site, is /? — Fusion linked at the 10th amino acid residue of galactosidase /? — Encoding galactosidase.
  • pET 2 lb manufactured by Novagen
  • pET-system plasmid as an expression plasmid having other promoters all over the same manner was also used for the 1 ac Z gene between BamHI-Sa1I.
  • Plasmid pET21b1ac into which a DNA fragment of about 6.2 kb containing was inserted was constructed, and the inducibility was compared.
  • transformants containing pCold07NC21ac and pCold08NC21ac only expressed low? -Galactosidase activity before induction at 37 ° C. It was shown that the action of each plasmid over the cspA promoter was precisely controlled. At 7 hours after the induction, the transformant containing the plasmid pCold07NC21ac had a /?-Galactosidase activity at least 5 times that of the transformant containing pCo1d03NC21ac.
  • pCo1d07 series and pCo1d08 series plasmids are notable compared to the pET system, which is one of the most prominent expression vectors among existing expression vectors.
  • Table 7 shows that galactosidase activity (unit) plasmid is high in a short time after low-temperature induction.
  • an expression vector whose expression at normal temperature can be controlled and which exhibits high expression efficiency under low temperature conditions.
  • a transformant containing a gene encoding a protein that has a harmful effect on the host can be obtained.
  • formation of an inclusion body can be suppressed, and a protein having an activity can be efficiently obtained.
  • SEQ ID NO: 7 shows the nucleotide sequence of primer CSA-67FN.
  • SEQ ID NO: 8 shows the nucleotide sequence of primer C S A 13 R.
  • SEQ ID NO: 9 shows the nucleotide sequence of primer CSA13R2.
  • SEQ ID NO: 11 shows the nucleotide sequence of primer CSA + 1 RLAC
  • SEQ ID NO: 12 shows the nucleotide sequence of primer CSA + 20 FN.
  • SEQ ID NO: 13 shows the nucleotide sequence of primer CS A70R.
  • SEQ ID NO: 14 shows the nucleotide sequence of primer CSA + 27 NF1.
  • SEQ ID NO: 15 shows the nucleotide sequence of primer D 3 F.
  • SEQ ID NO: 16 shows the nucleotide sequence of primer D 3 R.
  • SEQ ID NO: 17 shows the nucleotide sequence of primer-CSA-ter-FHX.
  • SEQ ID NO: 18 shows the nucleotide sequence of primer CSA—teR—R.
  • SEQ ID NO: 19 shows the nucleotide sequence of synthetic oligonucleotide K S -linker 1.
  • SEQ ID NO: 20 shows the nucleotide sequence of synthetic oligonucleotide KS-linker 2.
  • SEQ ID NO: 21 shows the nucleotide sequence of primer CS A 1 NC-F.
  • SEQ ID NO: 22 shows the nucleotide sequence of primer C S A 1 NC-R.
  • SEQ ID NO: 23 shows the nucleotide sequence of primer CSA13R3.
  • SEQ ID NO: 24 shows the nucleotide sequence of primer CS A 1 ND-F.
  • SEQ ID NO: 25 shows the nucleotide sequence of primer CS A1NDR.
  • SEQ ID NO: 26 shows a base sequence of synthetic oligonucleotide DB-3.
  • SEQ ID NO: 27 shows the nucleotide sequence of synthetic oligonucleotide DB-4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Eye Examination Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

明 細 書 低温誘導発現ベクター 発明の属する技術分野
本発明は、 遺伝子組換え技法において使用されるべクタ一、 及び該ベクタ一を 用いた蛋白質の発現方法に関する。 従来の技術
遺伝子組換え技術を用いた有用蛋白質の生産は、 今日では広く用いられている 技術である。 中でも大腸菌を宿主とした発現系は最も一般的に用いられている発 現系であり、 多くの蛋白質が組換体によって生産されるようになってきた。 これ ら組換体による有用蛋白質の生産には、 RN Aポリメラ一ゼに認識されるプロモ —夕一支配下に目的遺伝子を配置した、 いわゆる発現べクタ一を構築して用いる のが一般的である。 発現べクタ一に用いられるプロモー夕一の例としては、 例え ば大腸菌を宿主とする場合には、 l ac、 t rp、 t ac、 gal, ara等の プロモー夕一等が使用されている。 また、 これら大腸菌の RNAポリメラ一ゼに 直接認識されるプロモーター以外のものを利用した発現ベクターとして、 大腸菌 に感染するバクテリオファ一ジ T 7の RN Aポリメラーゼに認識されるプロモー 夕一を利用した pET—システム (ノバジェン (Nova gen)社製) [ジャ —ナル ォブ モレキュラー バイオロジー (J. Mol. Biol. ) 、 第 189巻、 第 113〜 130頁 (1986) 、 ジーン (Gene) 、 第 56卷、 第 125〜 135頁 ( 1987) ] がある。 pET—システムの場合、 T 7RNAポリメラ ーゼを大腸菌内で発現させ、 この T 7 RN Aポリメラーゼにより発現べクタ一上 の T 7プロモー夕一下流に配置された目的遺伝子の転写が行われ、 更に宿主の翻 訳システムによって目的蛋白質の合成が行われる。
しかしながら、 pE T—システムも含めた多くの大腸菌発現系で目的蛋白質が 高レベルで発現された場合、 目的蛋白質が不溶性の複合体、 いわゆるインクルー ジョンボディとなり、 活性型の目的蛋白質の量が非常に低くなる場合が多い。 い くつかのポリべプチドでは、 インクルージョンボディを可溶化後リフォールディ ング操作を行って活性型ポリべプチドを得た例が報告されているが、 一般的にそ の回収量は低い場合が多く、 また、 各目的蛋白質ごとに適切なリフォールディン グ条件を検討する必要がある。 そのため、 活性型蛋白質を直接大腸菌内で発現さ せるシステムが求められていた。
ィンクルージョンボディの形成は、 翻訳されたポリべプチド鎖が正しい立体構 造にフォールディングする前の中間体の段階で、 分子間相互作用により他のポリ ぺプチド鎖と絡み合い、 巨大な不溶性の複合体となることによると考えられてい る。 このような場合、 組換体大腸菌の培養温度を通常用いられる 37°Cよりも低 い温度 (20〜30°C) で行うと活性型蛋白質の発現量が増加することが知られ ている。 これは、 リボソームによる翻訳の速度が遅くなることにより、 中間体が 正しい構造にフォールデイングする時間的ゆとりが得られることと、 低温条件下 で細胞内蛋白質分解酵素の働きが遅くなり、 発現された活性型蛋白質の安定性が 増すためと推測されている。 このように、 インクル一ジョンボディとなる蛋白質 の生産には、 低温条件下で組換体大腸菌を培養する方法は有効な方法として注目 されてきた。 一方、 対数増殖期の大腸菌の培養温度を 37°Cから 10〜20°Cに低下させる と大腸菌の増殖は一時的に止まり、 その間にコールドショック蛋白質と呼ばれる 一群の蛋白質の発現が誘導される。 該蛋白質はその誘導レベルに応じて第 I群 ( 10倍以上) 第 II群 (10倍未満) に分けられ、 第 I群の蛋白質としては、 Cs pA、 CspB、 CspG、 及び C s d Aなどが挙げられる。 中でも CspAは 、 37°Cから 10°Cへの温度シフトの 1. 5時間後にその発現量は全菌体蛋白質 の 13%までに達することから [プロシ一ディングズ ォブ ザ ナショナル アカデミー ォブ サイエンシーズ オフ' ザ USA (Proc. Natl. Acad. Sc i. USA) 、 第 87巻、 第 283〜 287頁 ( 1990) ]、 低温における組換え 蛋白質の生産に c s p A遺伝子のプロモータ一を利用することが試みられてきた c s p A遺伝子を用いた低温条件下での組換体蛋白質発現系は、 上述のように 該遺伝子のプロモ一夕一が低温で高効率で転写を開始させること以外に、 以下の ような有効性が示されている。
( 1 ) c s p A遺伝子から転写された翻訳可能な mRNAが機能を有する C s p A蛋白質をコードしていない場合、 より具体的には、 C s pA蛋白質の N末端配 列の一部のみをコ一ドしている場合には、 このような mRNAはコールドショッ ク蛋白質も含めた他の大腸菌蛋白質の発現を長時間阻害し、 その間は該 mRNA の翻訳が優先的に行われる [ジャーナル ォブ バクテリオロジ一 (J. Bacteri ol. ) , 第 178巻、 第 49 1 9〜 4925頁 ( 1 99 6) ] 。
(2) c s ρΑ遺伝子の開始コ ドンから 12塩基下流の位置には、 1 5塩基から なるダウンストリームボックス (downstream box) と呼ばれる配列があり、 低温 条件下での翻訳効率を高いものにしている。
(3) c s p A遺伝子 mRNAの転写開始点から開始コ ドンまでにある 159塩 基からなる 5' 非翻訳領域は、 C s pAの発現に対して、 37°Cでは負の、 低温 条件下では正の影響を与えている。 しかしながら、 該遺伝子のプ口モー夕一は確かに低温で高効率で転写を開始す ることが可能であるが、 実際には通常の培養に用いられる温度 (37°C) におい ても作用しており、 該遺伝子から転写される mR N Aの安定性が該遺伝子の発現 を調節していることが示唆されている [モレキュラー マイクロバイオロジー ( Molecular Microbiology) 、 第 23卷、 第 355〜 364頁 ( 1997) ] 。 そ のため、 c s p A遺伝子のプロモ一夕一を用いて構築されている発現べクタ一で は発現調節が不完全であり、 その産物が宿主にとつて有害であるような遺伝子の 場合、 発現ベクターを含有する大腸菌を誘導可能な状態まで培養するのが困難で あったり、 あるいは発現べクタ一の構築すら不可能なこともある。
例えば、 米国特許第 5654 1 69号明細書には、 c s p A遺伝子のプロモー 夕一を用いた発現プラスミ ドに、 プロモーターの評価に一般に用いられる/?ガラ クトシダーゼ遺伝子を挿入した場合ですら、 発現産物の影響で構築物を大腸菌に 保持することが困難であると記載されている。
一方、 c s p A遺伝子のプロモ一夕一の有する転写開始能力は転写開始点から —3 7の位置より下流の領域に保持されていることは知られているが、 その必須 領域は確認されていない。 また、 上記の米国特許明細書には c s p A遺伝子のプ ロモ—夕—としての機能に必須な領域として該遺伝子の転写開始点から— 4 0〜
+ 9 6の領域が示されているが、 該領域は m R N Aに転写され、 かつ蛋白質はコ ードしない領域を 1 0 0塩基近くも含んでいる。 このように、 低温において効率 のよい転写を達成しょうとする場合に必要とされる、 c s p Aプロモー夕一の最 小領域はいまだ明らかにされていない。
発明が解決しょうとする課題
したがって、 本発明の目的は、 その遺伝子産物が宿主にとって有害であるため 、 従来技術では発現系の構築あるいは効率よい遺伝子産物の生産が困難であった 遺伝子であっても、 該遺伝子を発現させるための形質転換体が作製可能であり、 かつ低温条件下でも該遺伝子産物を高効率で発現させることが可能なベクタ一を 提供することにある。
課題を解決するための手段
本発明者らは、 かかる目的を達成するために c s p A遺伝子のプロモーターの 下流に 1 a cオペレータ一配列を挿入することにより、 プラスミ ドの構築や誘導 可能状態までの培養中に、 該プロモーターからの遺伝子発現を調節することを試 みた。 こうして構築された 1 a cオペレータ一により調節可能な c s p Aプロモ 一夕一を有する発現べクタ一を用いることにより、 1 a cオペレータ一配列を持 たない c s p Aプロモータ一を利用した発現べクタ一では構築不可能であったェ ンド型フコース硫酸含有多糖分解酵素 (F d a s e 2 ) をコードする遺伝子が揷 入された該酵素発現プラスミ ドの構築に成功した。 更に該プラスミ ドで形質転換 された形質転換体の培養中に 1 a cオペレータ一を不活性化すると同時に培養温 度を低くすることにより、 該酵素を誘導発現することができることを見出した。 このことは、 オペレーター配列の導入により、 常温 (37°C) での発現が制御可 能な低温発現べク夕一の構築が可能となったことを示している。
更に、 本発明者らはその機能を保持しうる c s p Aプロモ一夕一の最小必要領 域を決定し、 本発明を完成するに至った。 本発明を概説すれば、 本発明の第 1の発明はべクタ一に関するものであって、 下記の各要素を含有することを特徴とする :
( 1) 使用する宿主中でその作用を示すプロモー夕一、
(2) ( 1) のプロモーターの作用を調節するための調節領域、 及び
(3) コールドショック蛋白質遺伝子 mRNA由来の 5, 非翻訳領域をコードす る領域、 あるいは該非翻訳領域に少なくとも 1以上の塩基の置換、 欠失、 挿入、 付加が施された領域をコ一ドする領域。
本発明の第 2の発明は、 下記工程を包含することを特徴とする目的蛋白質の発 現方法に関する :
( 1 ) 発現させようとする目的蛋白質をコードする遺伝子を組込んだ本発明の第 1の発明のベクターで宿主を形質転換する工程、
(2) 得られた形質転換体を培養する工程、
(3) 調節領域の機能を介してプロモーターの作用を誘導すると共に培養温度を 通常の温度より低下させて目的蛋白質を発現させる工程。
更に、 本発明の第 3の発明は、 単離された c s p Aプロモーターに関し、 配列 表の配列番号 5に示される塩基配列を含み、 かつ 1 35塩基以下の塩基配列から なることを特徴とする。 発明の実施の形態
以下に本発明を具体的に説明する。
本発明の第 1の発明の ( 1) のプロモ一夕一としては特に限定はなく、 使用す る宿主中で R N Aへの転写を開始する活性を有するものであればよい。 任意のプ 口モータ—を上記 (3) のコールドショック蛋白質遺伝子 mRNA由来の 5, 非 翻訳領域をコ一ドする領域と組合せて使用することにより、 低温応答性のプロモ 一夕一として使用することができる。 なお、 発現誘導時に高い転写効率が望まれ る場合には、 上記の c s p A、 c spB、 c spG、 c sdAといったコ一ルド ショック蛋白質遺伝子由来のプロモーターが本発明に適しており、 特に c s p A 遺伝子由来のプロモー夕一が好適である。
また、 上記 (2) の調節領域としては、 ( 1) のプロモーターの下流に位置す る遺伝子の発現を制御可能なものであれば特に限定はない。 例えば、 プロモ一夕 —より転写された mRNAに相補的な RNA (アンチセンス RNA) を転写する ような領域をベクターに導入しておくことにより、 プロモーター下流の遺伝子か らの目的蛋白質の翻訳を阻害することができる。 アンチセンス RNAの転写を ( 1 ) のプロモ一夕一とは異なる適当なプロモ一夕一の制御下におくことにより、 目的蛋白質の発現を調節することができる。 また、 種々の遺伝子の発現調節領域 に存在するオペレータ一を利用してもよい。 例えば、 大腸菌ラクトースォペロン 由来の 1 a cオペレーターを本発明に使用することができる。 1 a cオペレータ 一は適当な誘導物質、 例えばラク トースやその構造類似体、 特に好適にはイソプ 口ピル—/?— D—チォガラクトシド (I PTG) の使用によってその機能を解除 し、 プロモーターを作用させることが可能である。 このようなオペレーター配列 は、 通常、 プロモーター下流の転写開始点付近に配置される。
上記 (3) のコールドショック蛋白質 mRNA由来の 5, 非翻訳領域をコード する領域とは、 mRNAの開始コドンよりも 5, 側の部分をコードしている領域 である。 大腸菌のコールドショック蛋白質遺伝子 ( c s pA、 c spB、 c s p G、 及び c sdA) にはこの領域が特徴的に見出されており [ジャーナル ォブ パクテリォロジ一、 第 178巻、 第 4919〜 4925頁 (1996) 、 ジャ ーナル ォブ パクテリォロジ一、 第 178卷、 第 2994〜2997頁 ( 19 96) ]、 これらの遺伝子から転写された mRNAのうちの 5, 末端より 100 塩基以上の部分が蛋白質に翻訳されない。 この領域は遺伝子発現の低温応答性に 重要であり、 任意の蛋白の mRNAの 5, 末端にこの 5, 非翻訳領域を付加する ことにより、 該 mRNAから蛋白質への翻訳が低温条件下で起こるようになる。 このコールドショック蛋白質 mRN A由来の 5, 非翻訳領域は、 その機能を保持 する範囲においてその塩基配列に 1以上の塩基の置換、 欠失、 挿入、 付加が施さ れたものであってもよい。
本明細書において 「領域」 とは核酸 (DNA又は RNA) 上のある範囲を指す 。 また、 本明細書に記載の 「mRNAの 5, 非翻訳領域」 とは、 DNAからの転 写によって合成される mRNAのうち、 その 5, 側に存在し、 かつ蛋白質をコ一 ドしていない領域をいう。 以降の本明細書においては該領域を 「5, -UTR ( 5' - Untranlated Region) 」 と記載する。 なお、 特に断らない限り 5, -UTR は大腸菌 c s p A遺伝子の mRNA、 あるいはこれが改変されたものの 5, 非翻 訳領域をさす。 本発明のベクターには上記に列記されたコールドショック蛋白質遺伝子由来の 55 一 UTRをコードする領域を使用することができる力 特に c spA遺伝子 由来のものが好適に使用できる。 更にその塩基配列を一部改変したものであって もよく、 例えば上記 (2) に示したオペレータ一の導入等によってこの領域の塩 基配列が改変されたものであってもよい。 下記実施例に示されるように、 配列表 の配列番号 1に示される塩基配列を含む mRN A、 例えば配列表の配列番号 2、 3あるいは 4に示される塩基配列の mRNAをコ一ドする領域、 更にこれらの配 列に改変を加えた mRN Aをコードする領域を含む領域を使用することができる 。 このコールドショック蛋白質遺伝子の 5, —UTRをコードする領域は (1) のプロモーターと発現させようとする蛋白質をコードする遺伝子の開始コドンと の間に配置され、 また、 該領域上にオペレーターが導入されていてもよい。 例え ば配列表の配列番号 2〜4に示される塩基配列の 5, 一 UTRは、 その塩基配列 中に 1 a cオペレーター配列を含んでおり、 低温での選択的な目的蛋白質の発現 に効果的である。 また、 上記構成要素に加えて、 用いる宿主のリボソ一マル RNAのアンチダウ ンストリームボックス配列と相補性を有する塩基配列を 5, 非翻訳領域の下流に 含有させることにより発現効率を上昇させることができる。 例えば大腸菌の場合 、 1 6 Sリボソ一マル R N Aの 1 4 6 7— 1 4 8 1の位置にアンチダウンストリ —ムボックス配列が存在し、 この配列と高い相補性を示す塩基配列を含有するコ ールドショック蛋白質の N末端ぺプチドをコ一ドする領域を用いることができる 。 例えば、 配列表の配列番号 2 8に示される塩基配列あるいはその配列に高い相 同性を有する配列を人工的に導入してもよい。 アンチダウンストリームボックス 配列と相補性を有する配列は、 開始コドンから数えて 1〜1 5塩基目程度のとこ ろから始まるように配置されると効果的である。 目的蛋白質をコードする遺伝子 は、 該蛋白質がこれらの N末端べプチドとの融合蛋白質として発現されるように ベクターに組込まれるか、 あるいは、 目的蛋白質をコードする遺伝子がアンチダ ゥンストリームボックス配列と相補性を有するように、 部位特異的変異導入法に より塩基置換が導入される。 目的蛋白質が融合蛋白質として発現されるようにべ クタ一に組込まれている場合、 該ぺプチドは目的蛋白質が活性を失わない範囲で 任意の長さのものであってよい。 このような融合蛋白質発現用べクタ一は、 例え ば適当なプロテア一ゼによって該融合蛋白質から目的蛋白質を単離できるよう、 その接続部分に工夫が施されたもの、 精製あるいは検出に利用可能なぺプチドと 融合蛋白質として発現されるように工夫が施されたもの等であることができる。 更に、 目的蛋白質遺伝子の下流に転写終結配列 (夕一ミネ一夕一) が配置された ベクターはべク夕一の安定性が向上し目的蛋白質の高発現に有利である。 本発明のベクターは、 ベクターとしての目的を達成できるものであれば一般的 に用いられるベクタ一、 例えばプラスミ ド、 ファ一ジ、 ウィルス等のいずれであ つてもよい。 また、 本発明のベクタ一に含有される上記の構成要素以外の領域と しては、 例えば複製起点、 選択マーカーとして使用される薬剤耐性遺伝子、 オペ レ一夕一の機能に必要な調節遺伝子、 例えば 1 a cオペレーターに対しては 1 a c l q遺伝子、 等を有することができる。 また、 本発明のベクタ一は宿主に導入 された後にはそのゲノム D N A上に組込まれてもかまわない。 例えば、 プラスミ ドとして構築された本発明のベクタ一を使用した目的蛋白質 の発現は以下のような工程で実施される。 本発明のプラスミ ドベクターに目的の 蛋白質をコードする遺伝子をクローニングし、 該プラスミ ドで適当な宿主を形質 転換することにより、 該蛋白質を発現させるための形質転換体を得ることができ る。 このような形質転換体はプロモー夕一の作用がオペレーターによって抑制さ れているため、 非誘導状態では上記蛋白質が発現されず、 仮に上記蛋白質が宿主 にとつて有害なものであっても上記ベクターは宿主中に安定に保持される。
上記の形質転換体を通常の培養温度、 例えば 37°C、 非誘導状態で培養してそ の細胞数を増加させた後、 オペレータ一の作用を解除して転写を誘導し、 目的の 蛋白質を発現させる。 この際、 転写誘導を行う前、 あるいは転写誘導と同時に培 養温度を下げることにより、 目的蛋白質がインクル一ジョンボディを形成するこ とを抑制して活性を有する形の目的蛋白質を取得することができる。 以下に、 具体的なプラスミ ドベクタ一の構築を挙げて、 本発明について更に詳 しく説明する。 なお、 本明細書においては特に断らない限り、 大腸菌 C s pA蛋 白質を 「C s pA」 、 該蛋白質の発現に関与する遺伝子上の領域を 「c s pA遺 伝子」 、 該遺伝子のプロモー夕一領域を 「c s pAプロモー夕一」 と記載する。 また、 GenB ank 遺伝子デ一夕べ一スに受託番号 M 30 139として登録 、 公開されている天然の c sp A遺伝子の塩基配列を配列表の配列番号 6に示す 。 該配列中、 塩基番号 426〜430及び 448〜453がプロモー夕一のコア 配列、 塩基番号 462が主要な (major) 転写開始点 (+ 1 ) 、 塩基番号 609 〜 6 1 1が S D配列 (リポソ一ム結合配列) 、 塩基番号 62 1〜 623及び 83 2〜834がそれそれ C s p Aの閧始コ ドン及び終止コドンである。 したがって 該配列中で 5, 一 UTRをコ一ドするのは塩基番号 462から 620の部分であ
まず、 c s pA遺伝子を利用した発現プラスミ ドとして、 c spA遺伝子をそ のまま用いたプラスミ ドベクター p MM 03 1シリーズ (pMMO 31及び pM MO 3 I F 1) を構築し、 これらに外来遺伝子を導入した外来遺伝子発現プラス ミ ドの構築及び該プラスミ ドを使用した蛋白質発現について説明する。
これらの発現プラスミ ドの詳細な構築方法は実施例 1— (1) に記載されてい る。 例えばプラスミ ド pMMO 31は、 pUC系プラスミ ドの複製起点、 アンビ シリン耐性遺伝子などを含むプラスミ ドベクター p TV 1 18 N (宝酒造社製) の A f 1 III — E c o R Iサイ ト間の lacプロモ一夕一を含む領域が、 c s p A遺伝子のプロモ一夕一領域、 5' — UTRをコードする領域、 及び 13ァミノ 酸残基の C s p Aの N末端部分をコードする領域と置き換えられた構造をしてい る。 なお、 プラスミ ド pMMO 31 F 1では、 C s pAの N末端より 13番目の ァスパラギンをコードするコドンがリジンをコードするものに変化している。 こ れらの pMM 031シリーズに用いられている c s p A遺伝子のプロモ一夕一領 域は、 その機能に必須な領域を含む該遺伝子の転写開始点から数えて一 67以降 の領域である。 また、 CspAの N末端部分 13アミノ酸残基をコードする領域 は、 c s p A遺伝子の低温条件下での高い翻訳効率を担っているダウンストリ一 ムボックス配列を十分に含んでいる。 これらのことから、 pMM031シリーズ は、 c s p A遺伝子の低温条件下での高い蛋白質発現効率を十分に反映すること のできる発現ベクターである。
実際に PMM031シリーズのプラスミ ドが低温誘導型の発現べクタ一として 機能し、 有用蛋白質を活性型の蛋白質として発現できることは、 実施例 1一 (2 ) にラウス関連ウィルス (Rous associated virus 2、 RAV— 2) 由来の逆転 写酵素遺伝子を例として用いて確認された。 しかしながら、 PMM031シリ一 ズを用いて構築された該逆転写酵素発現べクタ一により形質転換された大腸菌を 37°Cで取扱った場合、 外来の遺伝子を含有しない pMMO 31シリーズのブラ スミ ドの形質転換体と比べて形成されるコロニーが小さく、 また菌の生育速度が 遅いことが観察された。 このことは、 cspA遺伝子、 特に該遺伝子のプロモー 夕一を利用した場合には 37 °Cにおける発現の制御が不十分であり、 蛋白質の生 産には問題のあることを示唆する。 37°Cにおける c s p A遺伝子の発現制御の不正確さは、 発現しょうとする蛋 白質が宿主にとって更に毒性の高いものである場合には発現プラスミ ドを構築す ることが不可能となるほど致命的なものであることが示された。 実施例 1— (3 ) に示したように、 pMM 031シリーズのプラスミ ドベクタ一を用いたエンド 型フコース硫酸含有多糖分解酵素 (Fdas e 2) 発現プラスミ ドの構築を試み たとき、 発現産物の宿主に対する毒性のために該プラスミ ドの構築は不可能であ つた。 発現された Fd as e 2が宿主に対して影響を与えるために発現ベクター の構築が不可能となることは、 その構築操作時の副産物として、 該酵素をコード する遺伝子中の 1あるいは 2塩基の欠失によって読取り枠がずれ、 該酵素を発現 できなくなったプラスミ ドは得られていることから容易に推測される。 更に、 F d a s e 2の宿主大腸菌に対する毒性については、 従来の技術として紹介した p ET—システム (ノバジェン社製) のプラスミ ド pET 3 dを用いて該酵素発現 ベクタ一を構築した後、 T 7RNAポリメラーゼ遺伝子を持つ発現用宿主大腸菌 BL 21 (DE 3) を形質転換しようとした際に形質転換体が得られないことか らも示される。 そこで、 本発明者らはこれらの結果を基に実用上有効な新たな発現ベクターの 開発を行い、 本発明のプラスミ ドベクタ一を見い出すに至った。
すなわち、 本発明者らは、 非誘導状態 (37°C) での発現レベルを下げ、 目的 蛋白質の発現をコントロールできるような低温発現プラスミ ドベクター pMMO 37を開発した。 pMMO 37は、 pMMO 31シリーズの p MM 031 F 1上 にある転写開始点 (+ 1) 下流の +2〜十 18の領域のかわりに、 機能的な l a cオペレーターが形成できるようにデザィンされた 31塩基の配列が挿入されて いる以外、 pMMO 31 F 1と全く同じ構造をしている。 プラスミ ドベクタ一 p MM 037上にコードされた 5 ' — UTR、 すなわち転写開始点〜 C s p A開始 コドン直前の塩基までの塩基配列を配列表の配列番号 2に示す。 この発現プラスミ ドベクタ一の構築方法は実施例 2— ( 1) に記載されている 。 すなわち、 機能的な 1 a cォペレ一夕一が c s p Aプロモ一夕一下流に形成さ れるようにデザィンされた、 c s p A遺伝子転写開始点上流の領域の配列と 1 a cオペレータ一の配列とを含むプライマ一 C SA+ 1 RL AC (配列表の配列番 号 1 1に該プライマ一の塩基配列を示す) を合成することができる。 5, 末端を リン酸化したこのプライマーと、 pMMO 31シリーズのプラスミ ド構築に用い られたプライマ一 C SA— 67 FN (配列表の配列番号 7に該プライマ一の塩基 配列を示す) とを用い、 野生型 c s p A遺伝子を含むプラスミ ド p J J G 02 [ ジャーナル ォブ バクテリォロジ一、 第 178卷、 第 4919〜4925頁 (
1996 ) ] を鍊型として PCRを行うことにより、 c spA遺伝子のプロモー 夕一の下流に 1 a cォペレ一夕一領域を配した DNA断片を得ることができる。 このとき、 プライマ一 C S A— 67 FN上の N c o Iサイ ト、 プライマ一 CSA + 11 八〇上の1^116 Iサイ 卜のように、 用いるプライマーの末端近くに制限 酵素認識配列をデザインしておくとその後の構築、 改変に便利である。 得られた
DNA断片をNco I消化した後、 プラスミ ド pTV1 18N (宝酒造社製) の Nc 0 I -Sma I間に挿入してプラスミ ド pMMO 34を構築できる。
得られた PMM034を Nc o lサイ ト及び pTVl 18 N上にある A f 1 II I サイ トで切断し、 クレノウフラグメントを用いて末端を平滑化した後、 セルフ ライゲーシヨンすることにより、 pTVl l 8N由来の 1 a cプロモ一夕一を除 いたプラスミ ド pMMO 35を構築できる。 次に、 p MM 035の 1 a cォペレ一夕一領域の下流に c spAmRNAの 5 5 非翻訳領域をコードする配列を挿入することができる。 すなわち、 実施例 1一 ( 1 ) のように構築された pMMO 31 F 1を錶型として、 プライマ一 C S A +
20 FN (配列表の配列番号 12にプライマ一 C S A + 20 FNの塩基配列を示 す) 及び M 13プライマ一 M 4 (宝酒造社製) を用いて PCRを行い、 c spA 遺伝子の転写開始点の下流 19塩基目から pMMO 31 F 1のマルチクローニン グサイ 卜までを含む DNA断片を得ることができる。 この DNA断片を CSA + 20 FN上に配した Nh e Iサイ ト、 及びマルチクロ一ニングサイ ト上の Xb a Iサイ トで切断した後、 先に得られた p MM 035の Nhe l— Xba I間に、 それぞれのサイ トが再生する方向に挿入して pMMO 37を構築できる。
こうして得られたプラスミ ド pMMO 37の常温 (37°C) における目的蛋白 質の発現制御の能力及び低温における目的蛋白質の発現能力の有効性は、 pMM 037上にある pTVl 18 N由来のマルチクローニングサイ 卜に目的蛋白質を コ一ドする遺伝子を導入して調べることができる。
上記のェンド型フコース硫酸含有多糖分解酵素 (Fdas e 2) をコードする 遺伝子を有する発現プラスミ ドはォペレ一夕一を持たない pMMO 31シリーズ のプラスミ ドベクタ一では構築することすらできない。 しかしながら、 該遺伝子 を C s p Aの N末端部分をコ一ドする配列と同じ読取り枠となるようプラスミ ド ベクタ一 pMMO 37に挿入して構築された発現プラスミ ドであるプラスミ ド MFDA102は、 1 acリブレッサー高発現株の大腸菌、 例えば大腸菌 JM1 09中に安定に保持される。 このように、 上記のプラスミ ドベクタ一が実質上有 効な発現制御の能力を有することが示される。 さらに、 得られた形質転換体を常温 (37°C) にて培養し、 誘導に適した濁度 に達した際に培養温度を低温、 例えば 15°Cに下げると同時に、 適当な誘導剤、 例えば終濃度 1 mMのィソプロビル一/?一 D—チォガラクトシド (以下 I P TG と略す) を添加し、 更に適当な時間培養を続ける。 この培養液より得られた菌体 について、 そこで発現されている蛋白質を SD Sポリアクリルアミ ドゲル電気泳 動 (SDS— PAGE) により分析し、 該融合ポリペプチドのバンドを検出する ことにより、 pMM037の低温における目的蛋白質の発現能力を確認すること ができる。 あるいは、 得られた菌体を超音波処理等に付して菌体抽出液を調製し 、 その菌体抽出液に含まれる目的蛋白質の生理活性を測定すれば、 活性型として 発現された目的蛋白質の量を知ることができる。 上記のプラスミ ド pMFD A 1 02で形質転換された大腸菌は、 上記の誘導操作により活性を有する Fd as e 2蛋白質を発現した。
なお、 上記のプラスミ ドベクタ一 pMMO 37の構築において、 cspA遺伝 子の転写開始点直後 (+2以降の位置) に 1 a cオペレーターが導入されたにも かかわらず、 c s p Aプロモ一夕一はその本来の機能である低温での転写閧始活 性を保持していた。 このことから、 c s pAプロモ一夕一は転写開始点までの領 域にその機能を保持していることがわかる。 したがって c s p Aプロモータ一の 機能には、 上記の一 37の位置から転写開始点までの領域、 すなわち配列表の配 列番号 6に示した天然の c sp A遺伝子の塩基配列のうち、 塩基番号 425〜4 61の部分のみが必須である。 この c s p Aプロモー夕一の必須領域の塩基配列 を配列表の配列番号 5に示す。 このようにして構築されたプラスミ ドベクタ一 pMMO 37は、 塩基の欠失、 付加、 挿入、 置換等の変異を導入し改変することが可能であり、 本発明の構成要 素にこれら変異を導入したものも本発明の範囲内である。 以下に、 pMM037 を基本構造として本発明者らが行った、 本発明のベクタ一の改変例について説明 する。
まず、 5, 一UTRをコードする領域に欠失変異を導入できる。 実施例 3_ ( 1 ) に記載されているようにして、 pMMO 37の 1 a cオペレータ一領域の直 後に c s p A遺伝子の SD配列をつないだプラスミ ド、 すなわち、 配列表の配列 番号 2に示された pMMO 37上にコードされた 5 ' — UTRのうち、 塩基番号 33〜16 1の部分が欠失したものをコードするプラスミ ドベクタ一 p MM 03 6を構築することができる。 この pMM036は、 5' — UTRをコードする配 列に導入された欠失変異以外は P MM 037と全く同じ構造をしている。
次に、 発現させようとする蛋白質に融合させる C s p Aの N末端部分のァミノ 酸残基の長さを変えることができる。 実施例 3— (2) に記載されているように して、 pMMO 37上の C sp Aの N末端部分をコードする領域を Cs p Aの全 アミノ酸配列コード領域 (70アミノ酸残基) とし、 その後ろにマルチクロ一二 ングサイ トを配して、 目的遺伝子が C s p Aの 70アミノ酸残基との融合ポリべ プチドとして発現されるプラスミ ドベクター pMMO 38を構築できる。 この p MM 038は、 融合ポリべプチドとして発現される Cs p Aをコードする配列の 全長が含まれている以外は p MM 037と全く同じ構造をしている。
また、 5, 一UTRをコードする配列に置換変異を導入できる。 実施例 3— ( 3) に記載のように、 pMM037上の 5, — U T Rをコードする領域上の天然 の c s p A遺伝子の転写開始点から数えて + 20から + 26に当る領域に 6塩基 の置換変異を導入したプラスミ ドベクター p MM 047を構築することができる o この pMM047は、 上記の置換変異以外は pMMO 37と全く同じ構造をし ている。 なお、 プラスミ ドベクタ一 pMMO 47で形質転換された大腸菌 JM 1 09は、 Escherichia coli JM109/pMM047と命名、 表示され、 平成 9年 10月 3 1曰 (原寄託日) より通商産業省工業技術院生命工学工業技術研究所 (日本国茨 城県つくば巿東 1丁目 1番 3号 (郵便番号 305-8566) ) に FERM P— 164 96として寄託され、 前記通商産業省工業技術院生命工学工業技術研究所に受託 番号 FERM BP— 6523 (国際寄託への移管請求日 :平成 10年 9月 24 日) として寄託されている。 プラスミ ドベクタ一 pMMO 47にコードされてい る 5' — UTR、 すなわち転写開始点から CspA開始コドン直前の塩基までの 塩基配列を配列表の配列番号 3に示す。
更に、 これらの変異を同時に 2つ以上導入することが可能である。 実施例 3— (4 ) に記載のように、 上記のプラスミ ド pMM 047の 5, — UTRをコード する配列上に更に 30塩基の欠失変異を導入したプラスミ ドベクタ一 pMMO 4 8を構築することができる。 この pMM048は、 pMMO 47と同じ 6塩基の 置換変異及び天然の c s p A遺伝子の転写開始点から数えて + 56から + 85に 当る領域、 すなわち配列表の配列番号 3に示された塩基配列中の塩基番号 70〜 99の配列をコードする部分が欠失している以外は pMMO 37と全く同じ構造 をしている。 配列表の配列番号 4に、 プラスミ ドベクタ一 pMMO 48にコード されている 5' — UTRの塩基配列を示す。
上記のプラスミ ドベクター pMMO 47、 pMMO 48が低温での蛋白質発現 能力を保持していることから、 これら 2つのプラスミ ド構築に当って c s p A遺 伝子由来の 5 ' 一 UTRに導入された変異はその機能に影響を与えないことが示 された。 したがって低温での蛋白質発現に必須な c sp A遺伝子由来の 5' — U TR上の領域は、 プラスミ ド pMM048にコードされた天然の c s p A遺伝子 の転写開始点から数えて + 27〜十 55及び + 86~+ 159の領域であること が示される。 該領域の塩基配列を配列表の配列番号 1に示す。
このようにして構築された、 pMMO 37の改変プラスミ ドベクタ一 pMMO 36、 p MM 038、 p MM 047、 及び pMMO 48の常温 (37°C) におけ る目的蛋白質の発現制御の能力及び低温における目的蛋白質の発現能力の有効性 は、 例えば発現ベクターの発現能の評価によく用いられる/?ガラクトシダーゼ遺 伝子 (l acZ遺伝子) を利用して評価することができる。
すなわち、 実施例 3— ( 5 ) に記載のごとく、 プラスミ ド pKMO 05 [19 83年、 ニューヨーク アカデミック プレス発行、 井上正順編集、 ェクスペリ メンタル マニピュレーション ォブ ジーン エクスプレッション (Experime ntal Manipulation of Gene Expression) 、 第 15〜 32頁] 力 ^ "ら得た 1 a c Z 遺伝子を含む約 6. 2 kb pの DNA断片をプラスミ ドベクタ一 p MM 037及 びその改変プラスミ ドに揷入することにより、 03 の1^末端12アミノ酸残 基及びマルチクローニングサイ ト由来の 10アミノ酸残基が ?—ガラクトシダ一 ゼの 10番目のアミノ酸残基のところでつながった融合 ガラク トシダーゼ発 現べクタ一を構築することができる。 なお pMMO 38の場合は、 CspAのN 末端 70アミノ酸残基及びマルチクロ一ニングサイ ト由来の 9アミノ酸残基が/? 一ガラクトシダ一ゼの 10番目のアミノ酸残基のところでつながった融合 /5—ガ ラク トシダ一ゼをコ一ドしている。 得られた 1 a c Z遺伝子を含むプラスミ ドは 、 それそれプラスミ ド pMM0371ac、 pMM0361ac、 p MM 038 lac, pMMO 471 a c, 及び pMM 0481 a cと命名されている。
各プラスミ ドを用いて形質転換した大腸菌 JM 109を常温 (37°C) にて培 養し、 誘導に適した濁度に達した際に培養温度を低温、 例えば 15°Cに下げると 同時に、 適当な誘導剤、 例えば終濃度 ImMの IPTGを添加し、 更に適当な時 間培養を続けた後、 得られた培養液中の/?—ガラク トシダーゼ活性を測定するこ とにより、 低温における蛋白質の発現能力を比較することができる。 また、 誘導 直前の菌体を用いれば、 37 °Cにおける非誘導状態での発現量も比較することが できる。
ガラク トシダ一ゼ活性は、 1972年、 コールド スプリング ハーバ一 ラボラ トリー発行、 J. H. ミラ一 (J.H.Miller) 著、 ェクスペリメンッ ィ ン モレキュラー シェ不テイクス (Experiments in Molecular Genetics ) 、 第 352〜355頁に記載の方法で測定できる。 表 1に示されるとおり、 いずれのプラスミ ドで形質転換した大腸菌でも 37°C における/?一ガラク トシダ一ゼ活性は、 コントロールとして用いた 1 a cプロモ 一夕一の下流に l ac Z遺伝子を導入した p TV 1 18 N 1 a cとほぼ同じレべ ルであり、 37 °Cにおける発現が効果的にコントロールされていることがわかる 。 なお、 このとき検出された 37。Cにおける/?—ガラク トシダ一ゼ活性は、 培養 に使用された LB培地 (トリプトン 1%、 酵母エキス 0. 5%、 NaCl 0.
5%、 pH7. 0) 中に混在するラクト一ス等により若干誘導が行われている レベルである。 一方、 いずれのプラスミ ドで形質転換した大腸菌でも 15°Cへの温度シフト及 び誘導剤の添加によって 5—ガラク トシダ一ゼ活性の増加が見られた。 このこと は、 各プラスミ ドが低温において目的蛋白質を高発現する能力を有することを示 している。 なお、 c s p A遺伝子 mRNA由来の 5, — UTRの大部分を欠失し たプラスミ ド pMMO 36に関しては、 他のプラスミ ドに比べて/?—ガラクトシ ダ一ゼ発現量が低い。
また、 pMM 0471 ac、 p MM 0481 a cについて得られた結果は、 こ れらのプラスミ ドがコードする mRNAの 5 ' — U TRに導入された変異が低温 での蛋白質発現に関して悪影響を及ぼさないこと、 すなわち、 配列表の配列番号 1にその塩基配列を示したこれらの変異が導入されなかった領域がその機能に必 須であることを示している。
さらに、 これらのプラスミ ドで形質転換された形質転換体について各温度にお ける/?—ガラク トシダーゼ発現量を調べてみたところ、 10°Cあるいは 15°C のような低温状態ではプラスミ ド pMM 0381 a c;、 pMM0371 ac 及び p MM 0471 a cはいずれもコントロールである p TV 118 N 1 a cと 比較して高い発現量を、 20°Cでは同レベルの発現量を、 37°Cでは低い発現量 をそれそれ示した。 このことは、 これらのプラスミ ドがコードする mRNAの 5 , 一 UTRが、 主に 15°C以下の低温状態での蛋白質発現に有効であることを示 している。 一方、 プラスミ ド pMM0481 acは pTVl 18Nlacと 20 °C以下のような低温状態で高い発現量を、 37°Cでも同等の発現量を示した。 こ のことは、 pMMO 48に導入された変異の結果、 該プラスミ ドが常温、 低温双 方での高い蛋白質発現能力を獲得したことを示している。 一方、 本発明のベクターは本発明の構成要素以外の領域に様々な機能をもつこ とができるのは当然である。 例えば、 本発明のベクタ一は、 実質的に終止コドン を含まないようなマルチクローニングサイ トゃプラスミ ドの安定化のための転写 夕一ミネ一ターなどを含むことができる。 実施例 4に記載のように、 c spA遺 伝子の開始コドンを含む部位が N c 0 Iサイ トあるいは Nd e Iサイ トに変換さ れ、 C s p Aの N末端をコードする領域に続くマルチクロ一ニングサイ 卜が実質 的に終止コ ドンを含まない配列に変更され、 その下流には 3つの読み取り枠いず れにも終止コドンが出現する配列を持ち、 さらに下流には c sp A遺伝子由来の 転写夕一ミネ一夕一領域を含む、 読取り枠がマルチクローニングサイ ト上で一つ ずつ異なるシリーズベクターを構築することができる。 pMMO 47を基本骨格 としたプラスミ ドは p C 01 d 01 NCシリーズ ( Nc 0 Iサイ トを含む) あ るいは p Co IdO 1NDシリーズ ( Nde Iサイ トを含む) プラスミ ド、 P MM048を基本骨格としたプラスミ ドは p C 01 d 02 NCシリーズあるいは p C o 1 d 02NDシリーズプラスミ ドと命名されている。 このように実質的に 終止コドンを含まず読取り枠が一つずつ異なるマルチクローニングサイ トを持つ たシリーズプラスミ ドは、 外来遺伝子の挿入が容易であり発現ベクターが容易に 構築できる。
これら pCo ldO lシリ一ズおよび p C o 1 d 02シリ一ズブラスミ ドが、 その基本骨格となったプラスミ ド pMMO 47あるいは pMMO 48とそれそれ 同等の発現能を保持していることは、 l a c Z遺伝子を利用して評価することが できる。 表 5に示されるとおり、 上記のプラスミ ドに 1 a c Z遺伝子が挿入され たプラスミ ドで形質転換された大腸菌は、 表 1に示された p MM 0471 a cあ るいは pMMO 481 a cで形質転換された大腸菌とそれぞれ同等の/?—ガラク トシダ一ゼ発現パターンを示し、 上記のプラスミ ドがプラスミ ド pMM047あ るいは pMMO 48とそれそれ同等の発現能を保持していることが示される。 これまで具体的に例示してきた本発明のベクタ一は、 すべてオペレータ一とし て 1 a cォペレ一夕一を用いているため、 遺伝子発現が目的の場合には宿主とし て 1 a cリプレッサ一高発現株の大腸菌 ( 1 a c I q株) 、 例えば大腸菌 J M 1 09を使う必要がある。 本発明のベクターには他のオペレーターを使用すること も可能であり、 この場合には当該オペレータ一に適した制御方法が用いられるの は当然である。 また、 当業者には自明なことであるが、 上記の pC o l dシリ一 ズブラスミ ドのように 1 a cォペレ一夕一を用いている場合でも、 このプラスミ ド上に 1 a cリプレッサ一遺伝子 ( l a c I遺伝子) を導入することにより、 宿 主に関する制限をなくすことができる。
例えば、 実施例 5に記載のように、 1 a c I遺伝子を含む p C 01 d 03シリ ーズ及び p Co I d 04シリーズプラスミ ドを構築することができる。 これらの プラスミ ドは 1 ac I遺伝子を持つ以外はそれそれ p C o 1 d 0 1シリーズ及び p C 01 d 02シリーズプラスミ ドとそれぞれ全く同じ構造をしている。 また、 同様にして l a c I遺伝子の代わりに 1 a cリプレッサ一高発現遺伝子である 1 a c I q遺伝子を用いたプラスミ ド、 例えば p C o 1 d 05シリーズ及び p C o 1 d 06シリーズブラスミ ドを構築することも可能である。
このようにして構築された l a c I遺伝子あるいは 1 a c I q遺伝子を含むプ ラスミ ドの目的蛋白質の発現制御の能力、 ならびに低温における目的蛋白質の発 現能力の有効性は、 これらのプラスミ ドに 1 a c Z遺伝子を揷入し、 l a c l遺 伝子を持たない大腸菌 DH 5ひを宿主として用いることにより容易に評価できる o 表 6には 1 a c I、 1 a c I q遺伝子の効果が示されている。 非誘導状態であ る 37°Cにおいて、 l ac I遺伝子を持たない p C o 1 d 01 N C 21 a cでは 発現が十分にコントロールされておらず、 高い/?—ガラク トシダ一ゼ活性が認め られる。 なお、 37 Cにおいて p C o 1 d 01より高い発現能を有する p C o 1 d 02 (pMMO 48の誘導体) の場合、 大腸菌 D H 5ひを宿主として形質転 換体が得られない。 それに対して、 1 a c I遺伝子を持つ p C 01 d 03 NC 2 1 a c及び p Co l d 04NC21acは 37 °Cにおける発現が効果的にコント ロールされており、 さらに 1 a c I q遺伝子が存在する pCo ld 05NC21 ac及び pCo ld06NC21acは、 より効果的に発現が抑制され効果的に コントロールされていることがわかる。 また、 これらのプラスミ ドについて、 誘 導状態での目的蛋白質の発現能力には実質上変化は見られていない。 したがって 、 1 a cォペレ一夕一を構成要素として含む本発明のベクターに l ac I遺伝子 あるいは 1 a c I q遺伝子を導入することにより、 1 a cリプレッサ一の有無に よる宿主に制限がなくなることが示される。 また、 目的の遺伝子の発現効率を向上させるために、 16 Sリボソ一マル RN A中に存在するアンチダウンストリームボックス配列に高い相補性を有する塩基 配列 (ダウンストリームボックス配列) を本発明のベクタ一に導入することがで きる。 大腸菌 C s p Aの N末端部分をコードする領域に存在するダウンストリー ムボックス配列は、 上記のアンチダウンストリームボックス配列に対して 67% の相補性しか有していない。 これをより高い相補性、 好ましくは 80%以上の相 補性を有する塩基配列とすることにより、 その下流に接続された遺伝子をより高 い効率で発現させることが可能になる。 さらに、 本発明のベクターは、 発現された目的の遺伝子産物の精製を容易にす るためのぺプチドである夕グ配列をコードする塩基配列や、 夕グ配列のような目 的の遺伝子産物中の余分なぺプチドの除去に利用されるプロテア一ゼ認識アミノ 酸配列をコードする塩基配列を導入することができる。 精製用の夕グ配列としては、 数個のヒスチジン残基からなるヒスチジンタグや マルトース結合蛋白質、 グル夕チオン一 S—トランスフェラーゼ等が使用できる
。 ヒスチジンタグを付加された蛋白質はキレ一ティングカラムを使用して容易に 精製することができ、 他のタグ配列についてもこれらに特異的な親和性を有する リガンドを使用することにより、 簡便に精製することができる。 また、 余分なぺ プチドの除去に利用されるプロテアーゼとしてはファクタ一 X a、 スロンピン、 ェンテロキナーゼ等を使用することができ、 本発明のベクターにこれらのプロテ ァ一ゼによって特異的に切断されるアミノ酸配列をコ一ドする塩基配列を導入す ればよい。 例えば、 実施例 6には 1 6 Sリボソ一マル R N A中に存在するアンチダウンス トリーム配列に完全に相補的なダウンストリームボックス配列、 6個のヒスチジ ン残基からなるヒスチジンタグおよびファクタ一 X aの認識ァミノ酸配列をコー ドする塩基配列が導入されたプラスミ ド (p C o I d O 7シリーズ及び p C o 1 d 0 8シリーズ) が記載されている。 当該プラスミ ドのタンパク発現能を 1 a c Z遺伝子を用いて評価することにより、 相補性の低いダウンストリームボックス 配列を有するプラスミ ドに比較して、 発現される 5—ガラク トシダ一ゼ活性が著 しく上昇することが示される。 また、 誘導前における/?一ガラクトシダーゼ発現 量は多少増加するが、 これは許容できるレベルであり、 上記のようにこれらのプ ラスミ ド上の 1 a c I遺伝子を 1 a c I q遺伝子に変更することにより、 効果的 に抑制できる。
また、 p C o l d 0 7シリーズあるいは p C o 1 d 0 8シリーズを用いた場合 には、 目的蛋白質はダウンストリームボックス配列にコードされるペプチド、 ヒ スチジン夕グ、 ならびにファクタ一 X aの認識ァミノ酸配列を含むリーダーぺプ チドとの融合蛋白質として発現される。 この融合蛋白質はヒスチジンタグを含む ことから、 キレーティングカラムを用いて 1ステップで精製することができる。 次に、 該蛋白質をファクター X aで処理することによりリーダーべプチドを目的 蛋白質から切断し、 さらにキレ一ティングカラムを再度通過させることによりリ —ダーぺプチドが除去された目的蛋白質のみを取得することができる。 実施例
以下に実施例を挙げて本発明を更に具体的に説明するが、 本発明は以下の実施 例のみに限定されるものではない。
また、 本明細書に記載の操作のうち、 プラスミ ドの調製、 制限酵素消化などの 基本的な操作については 1989年、 コールド スプリング ハーバー ラボラ トリ一発行、 T. マニアテイス (T. Maniatis ) ら編集、 モレキュラー クロ一 ニング: ァ ラボラトリー マニュアル第 2版 (Molecular Cloning : A Labora tory Manual 2nd ed. ) に記載の方法によった。 更に、 以下に示すプラスミ ドの 構築には、 特に記載の無い限り大腸菌 JM109を宿主とし、 100〃g /mlの アンビシリンを含む LB培地 (トリプトン 1%、 酵母エキス 0. 5%、 Na C 1 0. 5%、 H 7. 0) あるいは LB培地に 1. 5%の寒天を加え固化さ せた LBプレートを用いて 37°Cで好気的に培養した。 実施例 1. p MM 031シリーズ低温誘導ベクターの構築及び誘導能の検討 ( 1 ) プラスミ ドベクタ一 pMMO 31及び pMM 031 F 1の構築
c s p A遺伝子を含むプラスミ ド p J J G 02 [ジャーナル ォブ パクテリ ォロジ一、 第 178卷、 第 49 19〜 4925頁 (1996) ] を錶型として、 合成プライマ一 C S A— 67 FN及び C S A 13 R (プライマ一 CSA— 67F N及び CSA13Rの塩基配列をそれそれ配列表の配列番号 7、 8に示す) を用 いて P CRを行い、 c s p A遺伝子のプロモーターから 13番目のアミノ酸残基 をコードする領域までを含む DNA断片を得た。 この DNA断片を上記の各ブラ イマ一上に配した N c o I、 E c o R Iサイ トで切断した後、 プラスミ ド p TV 118 N (宝酒造社製) の Nc o l— E coRI間に挿入してプラスミ ド pMM 030を構築した。 次に該プラスミ ドを Nc o I (宝酒造社製) 及び Af 1III (NEB社製) で消化し、 クレノウフラグメント (宝酒造社製) を用いて末端を 平滑化した後、 セルフライゲーシヨンを行って P TV 1 18 N由来の 1 a cプロ モー夕一を除いたプラスミ ド p MM 031を得た。 プラスミ ド pMM 031は、 c s p A遺伝子のプロモータ一領域 ( 67塩基) 、 5, 非翻訳領域 ( 159塩基 ) 、 及び C s p Aの N末端から 13番目のアミノ酸残基までをコ一ドする領域 ( 39塩基) の下流に、 p T V 1 18 N由来の E c o R I -H i ndlll のマルチ クローニングサイ トをもつプラスミ ドベクターである。
次に、 pMMO 31上の c s pA遺伝子の開始コ ドンから始まる読取り枠をマ ルチクロ一ニングサイ ト上でずらすために、 pMMO 31に挿入された C s p A の N末端部分をコードする領域の 3, 末端を 1塩基欠失させたプラスミ ドベクタ 一 p MM 031 F 1を構築した。 プラスミ ド p MM 031 F 1は、 プライマー C S A 13 Rの代りにプライマ一 C S A 13 R 2 (配列表の配列番号 9にブラィマ — CSA13R2の塩基配列を示す) を用いたほかは pMMO 31の構築と全く 同じ方法で構築した。 したがって、 このプラスミ ドは、 pMM031上の Csp Aの N末端領域のコード領域の 3, 末端が 1塩基少ないこと以外は pMMO 31 と同じである。 なお、 この 1塩基の欠失により、 該プラスミ ド pMMO 31 F 1 にコードされる C s p Aの N末端から 13番目のアミノ酸残基はァスパラギンか らリジンに置換される。
(2) ラウス関連ウィルス (Rous associated virus 2、 R A V- 2 ) 由来の逆 転写酵素をコードする遺伝子を用いた、 pMM031シリーズ低温誘導ベクター の誘導能の検討
特開平 7— 39378号公報に記載の Escherichia coli JM109/pT8RAV (F E RM P— 13716) よりラウス関連ウィルス (Rous associated virus 2、 RAV- 2) 由来の逆転写酵素をコードする遺伝子を含むプラスミ ド PT8RA Vを調製した。 該プラスミ ドを E c oR I、 Sai l (共に宝酒造社製) で消化 し、 上記の逆転写酵素をコードする遺伝子及びその下流にある転写終結配列を含 む含む DNA断片を得た。 この DNA断片を (1) で得られた pMMO 31 F 1 の EcoRI— Sa i l間に挿入してプラスミ ド pMM 031 RAVを構築した pMMO 31 RAV及び pMMO 31を用いて大腸菌 JM 109 (宝酒造社製 ) を形質転換し、 100〃g/mlのアンビシリンを含む LBプレート上にそれ それの形質転換体のコロニーを形成させたところ、 pMMO 31 RAVにより形 質転換された大腸菌のコロニーは、 明らかに p MM 031による形質転換体のコ ロニ一よりも小さいことが観察された。 次に、 得られた形質転換体をそれそれ 1 00〃g/mlのアンビシリンを含む LB培地に接種し、 37°Cで好気的に一晩 培養した。 この培養液をそれそれ 2本ずつ新鮮な 5 mlの同じ培地に 1 %ずっ植 菌して 37°Cで好気的に培養し、 濁度が OD600=0. 6に達した時点でその一方 の培養温度を 15 °Cとし更に 20時間培養した。 この培養中、 pMM031RA Vによる形質転換体の誘導濁度到達までの培養時間は、 pMM031による形質 転換体の約 2倍程度要した。 培養終了後、 培養液を遠心分離して菌体を集め、 S DSポリアクリルアミ ドゲル電気泳動で分析した結果、 15°Cで培養した pMM 031 RAVによる形質転換体でのみ、 分子量約 10万の逆転写酵素と考えられ るバンドが観察され、 pMMO 31上の c s p A由来の蛋白質発現システムが低 温誘導型であることが確認できた。
次に、 大腸菌抽出液を調製し逆転写酵素活性を測定した。 すなわち、 pMMO 31 HA Vにより形質転換された大腸菌 JM 109を 100〃g/mlのアンピ シリンを含む LB培地に接種し、 37°Cで好気的に一晩培養した。 この培養液を 新鮮な 10 Omlの同じ培地に 4%植菌して 37 °Cで好気的に培養し、 濁度が〇 D600=O. 6に達した時点で培養温度を 15 °Cとし更に 5時間培養した。 培養終 了後、 培養液を遠心分離して菌体を集め、 破砕用緩衝液 [5 OmM トリス一塩 酸 (pH8. 3) 、 6 OmM NaCl、 1 mM EDTA、 1 % NP - 40 、 1 mM DTT、 5 4一アミジノフエニルメタンスルホニルフルオラィ ドハイ ドロクロライ ド] 4. 7 mlに懸濁し、 超音波処理により菌体を破砕した 。 これを遠心分離して上清を回収し、 大腸菌抽出液を得た。 この抽出液を酵素希 釈液 〔5 OmM トリス—塩酸 (pH8. 3) 、 10% グリセロール、 0. 1 % NP— 40、 2mM D T T〕 で 10倍希釈した後、 逆転写酵素活性を特開 平 7— 39378号公報記載の方法で測定したところ、 全体で約 1061ュニッ トの逆転写酵素活性が検出された。 これは少なくとも培養液 lml当り 10ュニ ッ 卜の逆転写酵素が発現されていることを示し、 pMMO 3 1の低温時の発現量 が高いことが明らかになった。
(3) pMMO 3 1シリーズ低温誘導べクタ一を用いたェンド型フコース硫酸含 有多糖分解酵素 (F d a s e 2 ) 遺伝子のクローニング
アルテロモナス スビ一シーズ (Alteromonas sp.) S N- 1 009株由来の エンド型フコース硫酸含有多糖分解酵素 (ORF— 2、 以下 Fda s e 2と略す 。 また該酵素をコードする遺伝子の塩基配列を配列表の配列番号 10に示す) を コードする遺伝子を含むプラスミ ド PS FDA7を導入した大腸菌 JM 109株
(Escherichia col i JM109/pSFDA7、 FERM BP— 6340) より常法に従 つてプラスミ ドを調製した。 得られた p SFDA7を H i ndlll (宝酒造社製 ) で消化後、 1 %ァガロースゲル電気泳動により分離し、 Fd as e 2の C末端 領域をコードする約 4. 8kbの DNA断片を切り出して抽出精製した。 この DN A断片を p MM 03 1の H i ndlll サイ トに c s p Aプロモ一夕一と F d a s e 2遺伝子の向きが同じになるように揷入し pMMO 3 1—Fda s e 2 Cを得 た。 次に、 pS FDA7を SnaB I (宝酒造社製) で消化し、 Fd a s e 2の 4番目のアミノ酸残基から C末端アミノ酸までをコードする領域を含む約 2. 5 kbの DNA断片を単離した。 この DNA断片を先に得られた pMMO 3 1 -Fd as e 2 Cの Sma l— SnaB I間に挿入することにより、 pMMO 3 1上に ある C s p Aの N末端配列と同じ読取り枠に F d a s e 2の 4番目のアミノ酸残 基以降が接続された融合ポリべプチド発現べクタ一の構築を試みた。 しかしなが ら、 得られた形質転換体 26個についてプラスミ ドを抽出精製して解析したとこ ろ、 2 1個のプラスミ ドに約 2. 5kbの S n aB I断片が挿入されており、 その うち 2個のみで該断片が正しい向きに挿入されていた。 更にこの 2個のプラスミ ドについて結合部分の塩基配列を解析したところ、 Sma Iの切断箇所に起こつ た 1塩基の欠失のために C s p Aと F d a s e 2の読取り枠がずれており、 目的 の融合ポリべプチドを発現可能なプラスミ ドではなかった。 上記構築方法では、 挿入される DN A断片が平滑末端であり正逆両方向に挿入 されるため、 更に別の方法で融合ポリペプチド発現べクタ一の構築を試みた。 す なわち、 プラスミ ド p SFDA7を SnaB I、 Xba l (ともに宝酒造社製) で消化して得られる、 Fd a s e 2の 4番目のアミノ酸残基以降その約半分をコ ―ドする約 lkbの DNA断片を単離した。 この DNA断片を先に得ら'れた pMM 031— Fdas e 2 Cの Smal— Xba l間に挿入することにより、 上記の 融合ポリペプチド発現プラスミ ドの構築を試みた。 しかしながら、 得られた形質 転換体 12個についてプラスミ ドを抽出精製して解析したところ、 上記の約 lkb の DNA断片が挿入されたプラスミ ドは 3個のみで、 更にこれらの塩基配列解析 の結果、 やはり Sma Iの切断箇所に 1〜 2塩基の欠失が起こっており、 目的の 融合ポリぺプチドを発現しうるブラスミ ドは得られなかった。 以上のことから、 Fdas e 2のように発現産物が細胞の生育に大きな影響を与えるような遺伝子 の場合、 c s p Aプロモ一夕一の機能が 37°Cでは十分に抑制されておらず、 そ の下流にコードされた遺伝子産物が発現することが発現プラスミ ドを構築できな い原因であることが明らかとなった。 実施例 2. 低温誘導プラスミ ドベクタ一 pMM037の構築及び誘導能の検討 (1) プラスミ ドベクター p MM 037の構築
c s p Aプロモ一夕一の下流に 1 a cォペレ一夕一領域を導入するために、 プ ライマ一 CSA+1RLAC (配列表の配列番号 1 1にプライマー C S A+ 1 R L ACの塩基配列を示す) をデザインし、 合成した。 CSA+1RLACの 5, 末端をメガラベルキッ ト (MEGALABEL、 宝酒造社製) を用いてリン酸化した後、 上記のプライマ一 C S A— 67 FNと共にプラスミ ド p J J G 02を錶型とした P CRを行い、 c s p A遺伝子のプロモーターの下流に 1 a cォペレ一夕一領域 を配した DNA断片を得た。 この DNA断片を Nc o l (宝酒造社製) で消化し た後、 プラスミ ド p T V 1 18 N (宝酒造社製) の Nc o l— Smalサイ ト間 に挿入して p MM 034を構築した。 該プラスミ ドを Nc o I及び Af 1 III で 消化し、 クレノウフラグメントを用いて末端を平滑化した後、 セルフライゲ一シ ョンを行って p TV 1 18 N由来の lacプロモ一夕一を除いたプラスミ ド pM MO 35を得た。
次に、 実施例 1— ( 1 ) で得られたプラスミ ドベクタ一 pMMO 31 F 1を錡 型として、 プライマ一 CS A+20 FN (配列表の配列番号 12にプライマ一 C SA+20 FNの塩基配列を示す) 及び Ml 3プライマ一 M 4 (宝酒造社製) を 用いて PC Rを行い、 該プラスミ ドベクタ一上の c s p A遺伝子の転写開始点下 流の 19塩基目から p MM 031 F 1のマルチクローニングサイ トまでを含む D N A断片を得た。 この DNA断片をプライマー C S A + 20 FN上に配した Nh e Iサイ 卜、 及びマルチクローニングサイ ト上の Xb a Iサイ 卜で切断した後、 先に得られた p MM 035の Nhe l— Xbalサイ ト間に、 それそれのサイ ト が再生する方向に挿入してプラスミ ドベクタ一 pMMO 37を構築した。 この p MM037は、 c s pA遺伝子のプロモーター領域 (67塩基) 、 転写開始塩基 (1塩基) 、 1 acオペレーター由来 5, 非翻訳領域 (31塩基) 、 c spA由 来 5, 非翻訳領域 ( 141塩基) 、 及び C s pAの N末端部分のコ一ド領域 ( 3 8塩基) の下流に p TV 1 18N由来の E c 0 R I -H i ndlll のマルチクロ 一二ングサイ トをもつプラスミ ドである。 プラスミ ドベクタ一 pMMO 37上に コードされる 5' — UTR、 すなわち転写開始点から C s p A開始コドン直前の 塩基までの塩基配列を配列表の配列番号 2に示す。
(2) エンド型フコース硫酸含有多糖分解酵素 (Fdas e 2) をコードする遺 伝子を用いた、 低温誘導プラスミ ドベクタ一 pMMO 37の誘導能の検討 実施例 1— (3) と同様にして、 プラスミ ドベクタ一 pMMO 37を用いて F da s e 2発現プラスミ ドを構築した。 すなわち、 実施例 1一 (3) で得たブラ スミ ド pSFDA7を SnaB Iで消化し、 Fdas e 2の 4番目のアミノ酸残 基から C末端アミノ酸までをコードする領域を含む約 2. 5 kbの S n a B I断片 を単離した。 この DNA断片を (1) で構築したプラスミ ドベクター pMMO 3 7の BamHIサイ トをクレノウフラグメントにより平滑末端化したところに揷 入することにより、 pMM 037上にある C s p Aの N末端配列と同じ読取り枠 に F d a s e 2の 4番目のアミノ酸残基以降が接続された融合ポリべプチド発現 ベクタ一の構築を試みた。 得られた形質転換体 6個についてプラスミ ドを抽出精 製して解析したところ、 2個に約 2. 5kbの S naB I断片が正しい向きに挿入 されていた。 そのうち 1個の塩基配列を解析したところ、 目的通り CspAと F d a s e 2の読取り枠が一致した融合ポリべプチド発現べクタ一であることが明 らかとなつた。 こうして得られたプラスミ ドをプラスミ ド p M F D A 102と命 名した。
pMFD A 102及び pMMO 37を用いて大腸菌 JM 109を形質転換した 。 この時、 プレート上に形成された両形質転換体のコロニーの大きさに差は見ら れなかった。 得られた形質転換体をそれそれ 100〃g/mlのアンピシリンを 含む LB培地に接種し、 37°Cで好気的に一晩培養した。 この培養液をそれそれ 2本ずつ新鮮な 5mlの同じ培地に 1 %ずっ植菌して 37 °Cで好気的に培養し、 濁度が OD600= 0. 6に達した時点で終濃度 1 mMとなるように I P T Gを加 えた後、 それぞれその一方の培養温度を 15°Cとし更に 4時間培養した。 この培 養中、 誘導前の両形質転換体の生育速度はほぼ同じであった。 培養終了後、 培養 液を遠心分離して菌体を集め、 細胞破砕用緩衝液 〔2 OmMトリス塩酸緩衝液 ( H 7. 5) 、 10 mM CaCl2 、 10 mM KC1、 0. 3 M Na C 1 〕 1mlに懸濁し、 超音波処理により菌体を破砕した。 これを遠心分離して上清 を回収し、 大腸菌抽出液とした。 この大腸菌抽出液を SD Sポリアクリルアミ ド ゲル電気泳動で分析した結果、 15°Cで培養した pMFD A 102による形質転 換体でのみ、 分子量約 9万の C spA-Fdas e 2融合ポリべプチドと考えら れるバンドが観察された。 以上のことから、 1 a cオペレーターの導入により、 Fdas e 2のようにその発現産物が細胞の生育に大きな影響を与えるような遺 伝子についても発現プラスミ ドの構築が可能な低温誘導発現ベクターが構築され たことが示された。 次に、 上記の大腸菌抽出液のエンド型フコース硫酸含有多糖分解活性を、 WO 97/26896号公報に記載の方法で調製したフコース硫酸含有多糖一 Fを基 質に用いた下記の操作により測定した。
12 1の 2. 5 %のフコース硫酸含有多糖— F溶液、 6〃1の 1M C a C 12 溶液、 9〃1の 4M Na C 1溶液、 60 // 1の 50 mMの酢酸とィミダゾ —ルとトリス—塩酸を含む緩衝液 (PH7. 5) 、 21〃1の水、 12〃1の細 胞破碎用緩衝液により適当に希釈した大腸菌抽出液とを混合し、 30°C、 3時間 反応させた。 反応液を 100°C、 10分間処理した後、 遠心分離によって得られ た上清の 100 1をゲルろ過カラムを用いた HP LCにより分析し、 基質フコ ース硫酸含有多糖一 Fの平均分子量と反応生成物の平均分子量を比較した。 対照 として、 大腸菌抽出液を含まない細胞破砕用を用いて同様の条件により反応させ たもの及びフコース硫酸含有多糖一 F溶液の代りに水を用いて反応を行ったもの を用意し、 それそれ同様に HP L Cにより分析した。
1単位の酵素は、 上記反応系において 1分間に 1 zmo 1のフコース硫酸含有 多糖一 Fのフコシル結合を切断する酵素量とする。 切断されたフコシル結合の定 量は下記式により求めた。
{ (12x2.5)/(100 xMF) } x {(MF/M)-!} x {1/(180x0.01) } xlO00-U/ml (12 x2. 5 ) /100 xMF :反応系中に添加したフコース硫酸含有多糖 一 F (mg)
MF:基質フコース硫酸含有多糖— Fの平均分子量
M:反応生成物の平均分子量
(MF/M) —1 : 1分子のフコース硫酸含有多糖— Fが酵素により切断され た数
180 :反応時間 (分)
0. 01 :酵素液量 (ml)
なお、 HP L Cの条件は下記によった。
装置: L— 6200型 (日立製作所製)
カラム : OHpak S B- 806 ( 8mmx 30 Omm) (昭和電工社製) 溶離液: 5mM NaN3 、 25mM CaCl2 、 50mM NaClを含 む 25 mMのィミダゾ一ル緩衝液 ( p H 8 )
検出:視差屈折率検出器 (Shodex RI— 71、 昭和電工社製) 流速: 1 m 1 /分
カラム温度: 25°C なお、 反応生成物の平均分子量の測定のために、 市販の分子量既知のプルラン (STANDARD P— 82、 昭和電工社製) を上記の H P L C分析と同条件 で分析し、 プルランの分子量と OHp ak SB— 806の保持時間との関係を 曲線に表し、 上記酵素反応生成物の分子量測定のための標準曲線として用いた。 その結果、 15°。で培養した 1^1^0八 102による形質転換体の抽出液にのみ 明らかなェンド型フコース硫酸含有多糖分解活性が検出され、 該抽出液中のェン ド型フコース硫酸含有多糖分解活性は 42. 6mU/mlであった。 このことよ り、 pMMO 37が低温条件下で目的蛋白質を活性型として発現させることがで きることが示された。 実施例 3. 低温誘導プラスミ ドベクタ一 pMMO 37の改変及び誘導能の検討
( 1 ) プラスミ ドベクタ一 pMMO 36の構築
SD配列の上流に Xb a Iサイ 卜が導入されている c s p A遺伝子を含むブラ スミ ド PJJG21 [モレキユラ一 マイクロバイオロジー、 第 23巻、 第 35 5〜 364頁 (1997) ] を銪型として、 プライマ一 CSA+20 FN及び C S A 13 R 2を用いた P CRを行い、 得られた増幅 D N A断片を X b a I、 E c oR I (宝酒造社製) 消化して c s pA遺伝子の SD配列から 13番目のァミノ 酸残基をコードする領域を含む DNA断片を得た。 この DNA断片を実施例 2—
( 1 ) で得られたプラスミ ドベクタ一 pMM037の Nhe l—EcoRI間に 揷入してプラスミ ドベクター p MM 036を構築した。 この p MM 036は、 配 列表の配列番号 2に示されたプラスミ ド p M 037上の 5, — U T Rをコードす る塩基配列のうち、 塩基番号 33〜161の配列が欠失しているほかはプラスミ ド pMMO 37と同じ構造である。
(2) プラスミ ドベクタ一 p MM 038の構築
pMMO 37では C s p Aの N末端領域のコード領域 ( 38塩基) の下流にマ ルチクローニングサイ 卜があり、 目的遺伝子は C s p Aの N末端 12アミノ酸残 基との融合ポリべプチドとして発現される。 融合ポリべプチドの発現における C s p Aの N末端アミノ酸残基の長さを検討するために、 C s p Aの全コ一ド領域 (70アミノ酸残基) の後ろにマルチクロ一ニングサイ トを配し、 目的遺伝子が C s p Aの 70アミノ酸残基と融合ポリべプチドの形で発現することのできるプ ラスミ ドベクタ一 pMMO 38を構築した。 すなわち、 上記のプラスミ ド p J J G02を錶型として、 プライマ一 C S A+ 20 FN及び C S A 70 R (プライマ — CSA70 Rの塩基配列を配列表の配列番号 13に示す) を用いて PCRを行 い、 該プラスミ ド上の c s p A遺伝子の転写開始点下流の 19塩基目から C s p Aの 70番目のアミノ酸残基をコ一ドする領域までを含む DNA断片を得た。 こ の DNA断片を各プライマー上に配した Nhe I、 E c o R Iサイ 卜で切断した 後、 実施例 2— (1) で得られた pMM037の Nhe l— EcoRI間に挿入 してプラスミ ドベクタ一 pMM 038を構築した。 この pMM 038は、 pMM 037上の C s p Aの N末端から 13アミノ酸残基までをコ一ドする領域が C s p Aの全アミノ酸配列 (70アミノ酸残基) をコードするものに置き換えられた プラスミ ドベクターである。
(3) プラスミ ドベクタ一 p MM 047の構築
プラスミ ドベクタ一 pMMO 37上の 5, 一UTRをコードする領域に 6塩基 の変異を導入するために、 プライマー C S A+ 27 NF 1 (配列表の配列番号 1 4にプライマ一 CSA+27NF 1の塩基配列を示す) を合成し、 pMM037 の構築と同様な方法で pMMO 47を構築した。 すなわち、 実施例 1一 (1) で 得られたプラスミ ドベクタ一 p MM 03 I F 1を錡型として、 プライマ一 C S A + 27 NF 1及び M 13プライマー M 4を用いて P C Rを行い、 増幅 DNA断片 を得た。 この DNA断片を CSA+27 NF 1上に配した N he Iサイ ト、 及び マルチクロ一ニングサイ ト上の Xb a Iサイ トで切断した後、 実施例 2— ( 1 ) で得られた pMMO 35の Nh e I -Xb a I間に、 それぞれのサイ トが再生す る方向に揷入してプラスミ ドベクタ一 pMMO 47を構築した。 この pMMO 4 7は、 pMM037上の 5, 一 UT Rをコードする領域のうち、 l acォペレ一 夕一由来の部分の下流に 6箇所の塩基置換変異が導入されている。 プラスミ ドべ クタ一 pMMO 47上にコードされる 5, 一 UTR、 すなわち転写開始点から C s p A開始コ ドン直前の塩基までの塩基配列を配列表の配列番号 3に示す。
(4) プラスミ ドベクタ一 pMMO 48の構築
プラスミ ドベクター pMMO 47の 5, 一UTRをコードする配列上に 30塩 基の欠失変異を導入したプラスミ ドベクタ一 pMMO 48を構築した。 すなわち 、 MMO 47上に存在する天然の c s p A遺伝子の転写開始点下流の + 56か ら + 85の領域に相当する部分が欠失するように、 プライマ一 D 3 F及び D 3R
(プライマー D 3 F及び D 3 Rの塩基配列をそれそれ配列表の配列番号 15、 1 6に示す) デザィンし、 合成した。 プラスミ ド p J J G 02を錶型として、 ブラ イマ一 D 3Rと CSA+27NF 1の組合せ、 及びプライマ一 D 3 Fと CSA 1 3 R 2の組合せでそれぞれ P CRを行った。 この反応液をポリアクリルアミ ドゲ ル電気泳動に供し、 プライマ一と分離された増幅 DNA断片をゲルより抽出、 精 製した。 得られた各増幅 DNA断片を P CR反応緩衝液中で混合し、 熱変性後、 徐冷してヘテロ二本鎖を形成させた。 この混合液に T a q DNAポリメラ一ゼ
(宝酒造社製) を加え、 72°Cで保温して二本鎖の合成を完結させた後、 プライ マ一 C S A + 27NF 1と C S A 13R 2を加えて 2度目の P CRを行った。 得 られた増幅 DNA断片を各プライマー上に配した Nh e I、 E c oR Iサイ トで 切断した後、 実施例 2— ( 1 ) で得られたプラスミ ドベクター p MM 037の N he l-E c oR I間に挿入してプラスミ ドベクタ一 p MM 048を構築した。 この PMM048は、 pMM047上の 5' — U T Rをコードする領域のうち、 天然の c s p A遺伝子由来 5, — UTRの転写開始点から + 56〜十 85の領域 に相当する部分が欠失したものである。 プラスミ ドベクター pMM 048上にコ ードされる 5, — UTR、 すなわち転写開始点から C s p A開始コ ドン直前の塩 基までの塩基配列を配列表の配列番号 4に示す。
(5) ガラクトシダ一ゼ遺伝子を用いた、 改変型低温誘導べクタ一の誘導能 の検討
/5—ガラク トシダーゼ ( 1 a c Z) 遺伝子を含むプラスミ ド pKMO 05 [1 983年、 ニューヨーク アカデミック プレス発行、 井上正順編集、 ェクスぺ リメンタル マニピュレーション ォブ ジ一ン エクスプレッション、 第 15 〜32頁] を BamHI、 Sa i l (共に宝酒造社製) で消化後、 1%ァガロー スゲル電気泳動により分離し、 1 a c Z遺伝子を含む約 6. 2kbのDNA断片を 切出して抽出精製した。 得られた DNA断片を上記のプラスミ ドベクタ一 pMM 036、 p MM 038、 p MM 047、 pMM 048及び実施例 2— ( 1 ) で得 られたプラスミ ドベクター pMMO 37の B amH I - S a 1 I間に揷入し、 得 られたプラスミ ドをそれそれプラスミ ド pMMO 361 a c、 pMMO 381 a c、 pMM 0471 ac、 p MM 0481 a c及び p MM 0371 a cと命名し た。 これらのプラスミ ドは、 pMMO 381 a cを除いて、 いずれも CspAの N末端 12アミノ酸残基及びマルチクロ一ニングサイ ト由来の 10アミノ酸残基 が ?—ガラクトシダ一ゼの 10番目のアミノ酸残基のところでつながった融合 /5 —ガラクトシダ一ゼをコードしている。 また、 pMM0381 acは、 CspA 全長に当る 70アミノ酸残基及びマルチクローニングサイ ト由来の 9アミノ酸残 基が ?—ガラク トシダ一ゼの 10番目のアミノ酸残基のところでつながった融合 ?一ガラク トシダ一ゼをコ一ドしている。
一方、 同様にして実施例 1— (1) で得られた pMMO 31 F 1を用いて融合 ?—ガラク トシダーゼ発現べクタ一の構築を試みたが、 得られた形質転換体のコ ロニーは非常に小さく、 37°Cでも発現された遺伝子産物の影響が大きいと考え られたために以下の検討は行わなかった。 また、 ほかのプロモーターを持つ発現 プラスミ ドとして、 l acプロモ一夕——オペレータ一を含有するプラスミ ドべ クタ一 PTV1 18N (宝酒造社製) についても同様にして B amH I— S a 1 I間に 1 a c Z遺伝子を含む約 6. 2 kbの DN A断片を挿入したプラスミ ド p T VI 18N l acを構築し、 誘導能の比較検討を行った。 上記の各プラスミ ドを用いて大腸菌 JM109を形質転換し、 得られた形質転 換体をそれそれ 100/ g/mlのアンピシリンを含む LB培地に接種し、 37 °Cで好気的に一晩培養した。 この培養液をそれそれ新鮮な 5 mlの同じ培地に 1 %ずつ植菌して 37°Cで好気的に培養し、 濁度が OD600= 0. 6〜0. 8に達 した時点で一部サンプリングした後、 終濃度 1 mMとなるように I P TGを加え 、 培養温度を 15°Cとして更に培養した。 これら誘導直前の 37°C培養液及び誘 導後 3時間後、 10時間後にサンプリングされた培養液を試料として 1972年 、 コールド スプリング ハーバ一 ラボラ トリ一発行、 J. H. ミラ一 (J. H . Miller) 著、 ェクスペリメンッ イン モレキュラー ジエネテイクス、 第 3 52〜355頁に記載の方法で/?—ガラクトシダーゼ活性の測定を行った。
表 1に示されるように、 どのプラスミ ドを含有する形質転換体も、 誘導前には コントロールとして用いた p TV 118 N 1 a cと同等、 あるいはそれよりも低 い^—ガラクトシダ一ゼ活性しか発現しておらず、 各プラスミ ドの c s pAプロ モー夕一の作用が正確にコントロールされていることが示された。 また誘導後は プラスミ ド pMMO 361 a cを除くすべてのプラスミ ドを含有する形質転換体 で p TV 118 N 1 a cを含有するものの 10倍以上の/?—ガラク トシダ一ゼ活 性を発現していた。
表 1 ?ガラクトシダ一ゼ活性 (ュニッ ト) プラスミ ド
誘導 3時間後 誘導 10時間後 pMM0371 ac 186 7707 13193 pMMO 361 a c 242 1201 3437 pMMO 381 a c 311 17257 26203 pMM 0471 a c 99 9263 10421 pMM 0481 a c 472 10018 23133 pTV118Nl ac 262 404 1218
(6) 37 °Cでの蛋白質発現能力の評価
実施例 3— (5) で作製された形質転換体のうち、 プラスミ ド pMM 0371 a cで形質転換されたもの以外のものを使用して、 各形質転換体の 37°Cにおけ る蛋白質発現能力の評価を行った。 培養に M 9培地 (ImM MgS04 、 1 m M CaC l2 、 0. 2%グルコース、 0. 2%カザミノ酸、 0. 05mg/m 1トリブトファン、 2〃g /mlチアミン、 100 g/mlアンピシリンを含 有するもの) を使用し、 I PTG添加後も培養温度を 37 °Cに保ったほかは実施 例 3— (5) 同様の操作で実験を行った。 また、 ?一ガラク トシダーゼ活性は誘 導直前、 誘導 2時間後の 2点について測定した。 得られた結果を表 2に示す。
5 ' —UTRの大部分を欠失したプラスミ ド pMMO 361 a cで形質転換さ れた大腸菌の誘導 2時間後の/?一ガラクトシダ一ゼ活性は、 実施例 3— (5) の 結果とは逆に p MM 0381ac、 p MM 0471 a cを含有するものよりも高 い。 また pMMO 481acと pTV118Nl a cでは、 誘導後に発現される 活性に差は見られない。 このことは、 pMMO 48が低温条件下のみならず、 3 7 °Cにおける蛋白質発現にも有効であることを示している, 表 2
/5ガラク トシダ一ゼ活性 (ュニッ ト) プラスミ ド
誘導 2時間後 MM 0361 a c 秀 1515 24027
pMM 0381 a c 2695 9947
pMM 0471 a c 894 2637
pMM0481 ac 4527 48547
p T V 1 18 N 1 a c 5572 48051
(7) 10°C及び 20°Cでの蛋白質発現能力の評価
実施例 3— (5) で作製された形質転換体のうち、 プラスミ ド pMM036 1 a cで形質転換されたもの以外のものを使用して、 各形質 $云換体の 10°C及び 20°Cにおける蛋白質発現能力の評価を行った。 実験は I PTG添加後の培養温 度を 10°Cあるいは 20°Cに保ったほかは実施例 3— (5) 同様の操作で行った 。 5 ガラク トシダ一ゼ活性は、 10°Cの場合は誘導 3時間後、 及び誘導 7時間 後、 誘導 21時間後の 3点、 20°Cの場合は誘導 1時間後、 誘導 3時間後、 及び 誘導 7時間後の 3点について測定した。 10°Cの結果を表 3に、 20°Cの結果 を表 4にそれそれ示す。
表 3に示されるように、 10°Cのような低温条件下においても各プラスミ ドを 含有するすべての形質転換体で p TV 1 18 N 1 a cを含有するものよりはるか に高い/?—ガラクトシダ一ゼ活性の誘導発現が観察され、 これらべクタ一の低温 条件下での高発現性が確認された。 中でも pMMO 381 a cは発現量は他の構 造物より発現量が高く、 本発明のベクタ一に導入される目的遺伝子が C s p Aの 全コード領域との融合蛋白質として発現される場合、 特に効果的であることを示 している。 一方、 5, — UTRに 30塩基の欠失変異が導入された pMMO 48 1 a cでは、 変異を持たない pMM 0471 a cと比べて同等かあるいは若干高 い発現量を示し、 10°Cのような低温条件下における蛋白質発現にも有効である ことを示している。 また、 表 4に示されるように、 20°Cの温度条件下では p MM047 l acの場合、 他のプラスミ ドを含有する形質転換体より低い/?—ガ ラク トシダ一ゼ活性の誘導発現が観察された。
これらの実験結果と、 実施例 3— (5) 及び (6) で示された 15°C及び 37 °Cにおける 5—ガラク トシダ一ゼ活性の誘導量から、 pMM 047では主に 1 5 °C以下のような低温特異的な発現パターンを持つベクタ一、 pMMO 47の 5 , 一 UTRに 30塩基の欠失変異が導入された p MM 048は低温から常温 (3 7°C) までの広い温度範囲で効率的に目的蛋白質を発現することができるベクタ 一、 であることが示された。 表 3 ( 10°C) ?ガラクトシダーゼ活性 (ュニッ ト) プラスミ ド
誘導 3時間後 誘導 7時間後 誘導 21時間後 pMMO 371 a c 6290 10279 12066 pMMO 381 a c 9892 28399 33209 pMM 0471 a c 9168 12927 12098 pMMO 481 a c 8799 13021 18547 pTV1 18Nl ac 905 981 836 表 4 (20°C) ガラクトシダ一ゼ活性 (ュニッ ト) プラスミ ド
誘導 1時間後 誘導 3時間後 誘導 7時間後 pMMO 371 a c 7737 13351 27117 pMMO 381 a c 22840 27043 34171 pMMO 471 a c 6881 9946 12272 pMMO 481 a c 13423 27135 58333 pTV1 18Nlac 8914 22349 21238
実施例 4. p C o 1 d 01及び p C o 1 d 02シリーズプラスミ ドの構築およ び誘導能の検討
(1) p C o 1 d 01シリーズプラスミ ドの構築
c s p A遺伝子を含むプラスミ ド p J JG02を錡型として、 合成 DNAブラ イマ一 CSA— t e r— FHX及び CSA— t er— R (プライマー CSA— t e r一 FHX及び CSA— t e r— Rの塩基配列をそれぞれ配列表の配列番号 1 7、 18に示す) を用いて P CRを行い、 c s p A遺伝子の転写ターミネ一夕一 領域を含む DN A断片を得た。 この DN A断片を各プライマー上に配した H i n dllK E c o0109 Iサイ 卜で切断した後、 実施例 3— ( 2 ) で得られた p MM 038のマルチクロ一ニングサイ トの最後にある H i n d IIIとその下流に ある Ec o〇 109 Iサイ ト間に挿入して p MM 039を構築した。 次に、 pM M039のマルチクローニングサイ ト中にある ΚρηΙ— Sa l I間に、 合成ォ リゴヌクレオチド KS— l inke r l及び K S— 1 i nk e r 2 (KS— l i nk e r 1及び K S— l inker 2の塩基配列をそれそれ配列表の配列番号 1 9、 20に示す) をアニーリングさせた合成 DNAリンカ一を挿入して pMMO 40を構築した。
一方、 翻訳開始コ ドンの所に Nc o Iサイ トを導入するために、 プライマー C S A 1 N C— F及び C S A 1 N C-R (プライマー C S A 1 N C— F及び C S A 1 NC— Rの塩基配列をそれぞれ配列表の配列番号 21、 22に示す) を合成し た。 プラスミ ド p J J GO 2を錶型としてプライマー CS A INC— Fと CS A 7 ORの組合せで、 プラスミ ド pMMO 47を錶型としてプライマ一 C S A 1 N C— Rと CSA+27NF 1の組合せでそれそれ 1回目の P C R反応を行った。 この反応液を 3 %ァガ口一スゲル電気泳動に供し、 プライマーと分離された増幅 DNA断片をゲルより抽出、 精製した。 得られた各増幅 DNA断片を PCR反応 緩衝液中で混合し、 熱変性後、 徐冷してヘテロ二本鎖を形成させた。 この混合液 に Taq DNAポリメラーゼ (宝酒造社製) を加え、 72°Cで保温して二本鎖 の合成を完結させた後、 プライマ一 CSA+27NF 1と CSA13 Rの組合せ で 2回目の P CRを行なった。 得られた増幅 DNA断片を p T 7 B 1 u e T— ベクタ一 (ノバジェン社製) にサブクロ一ニングして塩基配列を確認した後、 各 プライマ一上に配した Nh e I、 E c o R Iサイ トで切断して遊離する D N A断 片をプラスミ ドベクター p MM 040の Nhe I— Ec oR I間に挿入してブラ スミ ドベクタ一 p C 01 d 01 NC 1を構築した。
さらに、 プライマ一 C S A 13 Rの代りにプライマ一 C S A 13 R 2あるいは C S A 13 R 3 (配列表の配列番号 23にプライマー C S A 13 R 3の塩基配列 を示す) を用いて 2回目の P CR反応を行うことにより、 pCo ldO lNC l に挿入された C s p Aの N末端部分をコードする領域の 3, 末端を 1塩基欠失さ せたプラスミ ドベクター p C o 1 d 01 NC 2および 1塩基付加させたプラスミ ドベクタ— pCo 1 d 01 NC 3をそれぞれ同様にして構築した。
これら 3種類のプラスミ ドは、 各プラスミ ド上の c s p A遺伝子の開始コドン のところに N c 0 Iサイ トがあり、 そこから始まる読取り枠がマルチク口一ニン グサイ ト上でそれそれ異なるシリーズベクタ一である。 また、 これらプラスミ ド は、 マルチクローニングサイ トの下流には、 3つの読み取り枠いずれにも終止コ ドンが出現する配列を持ち、 さらに下流には c s p A遺伝子由来の転写ターミネ —夕一領域を含む。 なお、 p C 0 1 d 0 1 N C 2では、 この 1塩基の欠失により 、 該プラスミ ドにコ一ドされる C s pAの N末端から 1 3番目のアミノ酸残基は ァスパラギンからリジンに置換される。
次に、 C SA 1 N C— Fと C SA 1 N C— Rの代りにプライマ一 C SA 1 ND 一 F及び C SA 1 ND-R (プライマー C S A 1 ND— F及び C S A 1 ND— R の塩基配列をそれそれ配列表の配列番号 24、 2 5に示す) を用いて 1回目の P CR反応をそれそれ行うことにより、 p C o 1 d 0 I N Cシリーズプラスミ ドの 翻訳開始コ ドンの所にある N c o lサイ トを N d e lサイ トに置き換えた p C o 1 d 0 1 NDシリーズプラスミ ド、 p C o l d 0 1 ND l、 ND 2、 及び ND 3を全く同様な方法で構築した。
このように構築された 6種類の p C o 1 d 0 1シリーズプラスミ ドは、 pMM 04 7を基本骨格とした発現システムを持ち、 開始コドンのところに配した制限 酵素サイ ト及びマルチクローニングサイ ト以降の配列以外は pMM O 4 7と同じ である。
( 2 ) p C o 1 d 0 2シリーズベクタ一の構築
実施例 4一 ( 1 ) と同様の方法で、 6種類の p C o 1 d 0 2シリーズプラスミ ドを構築した。 すなわち、 プライマー C SA 1 N C— Rと C S A+ 2 7 NF 1の 組合せあるいはプライマ一 C SA 1 ND—Rと C S A+ 2 7 NF 1の組合せによ る 1回目の P CR反応において、 プラスミ ド pMM 0 4 7の代わりにプラスミ ド pMMO 4 8を錶型として用いることにより、 実施例 4— ( 1 ) と全く同じ工程 で p C o l d 0 2シリーズプラスミ ド、 p C o l d 0 2 NC l、 N C 2、 NC 3 、 ND 1、 ND 2, 及び NO 3を構築した。
このように構築された 6種類の p C o I d 0 2シリーズプラスミ ドは、 pMM 04 8を基本骨格とした発現システムを持ち、 開始コドンのところに配した制限 酵素サイ ト及びマルチクローニングサイ ト以降の配列以外は p MM 04 8と同じ である。 また、 これらは、 pMMO 4 8に特徴的である天然の c s pA遺伝子由 来 5, — UTRの転写開始点から + 5 6〜十 8 5の領域に相当する部分の欠失以 外は、 p C o 1 d 0 1シリーズの相当するプラスミ ドとそれそれ同じである。 ( 3 ) ^—ガラク トシダーゼ遺伝子を用いた、 p C o 1 d 01及び p Co l d 02の誘導能の検討
実施例 3— ( 5 ) と同様の方法により、 p C 01 d 01及び p C o 1 d 02 の誘導能を/?—ガラク トシダ一ゼ遺伝子を用いて検討した。 まず、 pCo ldO 1NC2、 pCo l dO 1ND2N pCo ld02NC2、 及び p C o 1 d 0 2ND2の BamHI— Sai l間に l ac Z遺伝子を含む約 6. 2kbのDNA 断片を挿入し、 得られたプラスミ ドをそれそれプラスミ ド pCo ldO 1 NC 2 lac、 pCo ld01ND21 ac、 p C o 1 d 02 N C 21 a c、 及び p Co l d02ND 21 acと命名した。 これらのプラスミ ドは、 いずれも C s pAのN末端l 2アミノ酸残基及びマルチクローニングサイ ト由来の 10ァミノ 酸残基が ?—ガラク トシダーゼの 10番目のアミノ酸残基のところでつながった 融合/?—ガラク トシダ一ゼをコードしている。
上記の各プラスミ ドを用いて大腸菌 JM109を形質転換し、 得られた形質転 換体について、 実施例 3— (5) 同様の操作で 15 °Cにおける発現誘導実験を行 つた。 ?—ガラク トシダーゼ活性は誘導直前、 誘導 3時間後、 及び誘導 10時間 後の 3点について測定した。 pCo l d 01NC21 ac、 及び p C o 1 d 0 2NC21 a cについての結果を表 5に示す。 なお、 NDシリーズベクタ一を用 いた場合は、 それに相当する N Cシリーズべクタ一を用いた場合とほぼ同等の誘 導能を示した。
表 5に示されるように、 各プラスミ ドを含有する形質転換体は、 37°Cにおけ る誘導前では低い/?—ガラクトシダーゼ活性しか発現しておらず、 各プラスミ ド の c s p Aプロモーターの作用が正確にコントロ一ルされていることが示された また誘導後は実施例 3— ( 5 ) で示された p MM 0471 a c及び p MM 04 81 a cとそれそれほぼ同様の/?—ガラクトシダ一ゼ活性の増加が見られる。 従 つて、 pCo ldプラスミ ドは、 導入遺伝子の発現のために設計されたマルチク ローニングサイ トおよび転写夕一ミネ一夕一を持つと共に、 37°Cにおける発現 がコントロールされ、 低温条件下で高効率に導入遺伝子産物を発現させることが できるシリ一ズプラスミ ドである。 表 5 ガラクトシダ一ゼ活性 (ュニッ ト) プラスミ ド
3時間後 10時間後 pCo ldO 1 NC 21 a c 95 6819 9173 pCo ld02NC21 ac 256 7025 13529
実施例 5 l ac I遺伝子を導入した p C o 1 dシリーズプラスミ ドの構築およ び宿主の検討
(1) pCo ld03シリ一ズ及び p C 01 d 04シリーズプラスミ ドの構築 実施例 4— ( 1 ) 及び ( 2) で作製された p C o 1 d 01シリーズ及び p C o Id 02シリーズプラスミ ドは、 そのプラスミ ドベクター上にリブレッサー遺伝 子を持たないため宿主として 1 a cリプレッサー高発現の大腸菌株を使う必要が あった。 そこで p C 01 d 01、 02をもとにして、 これに l ac I遺伝子が導 入されたプラスミ ドベクター P C o 1 d 03、 04、 ならびに 1 a c I q遺伝子 が導入されたプラスミ ドベクタ一 p C 01 d 05, 06をそれそれ構築した。 まず実施例 4— ( 1 ) で得られた p MM 040を E c o T 22 Iで消化した後 、 T 4DNAポリメラ一ゼを用いて末端を平滑化した。 これに pET21b (ノ パジヱン社製) を Sphl、 PshAI (共に宝酒造社製) で消化し、 T4DN Aポリメラ一ゼを用いて末端を平滑化して得られた lac I遺伝子を含む DNA 断片を挿入し、 そのうち 1 a c I遺伝子の向きが c s p Aプロモーターと逆方向 に挿入されたプラスミ ドを構築し、 pMMO 40 Iと命名した。 同様に、 プラス ミ ド PMJR 1560 [ジーン、 第 51卷、 第 225〜 267頁 ( 1987) ] を Kpnl、 Ps t l (共に宝酒造社製) で消化して得られる l ac Iq遺伝子 を含む DNA断片の末端を平滑化し、 これを pMMO 40の平滑化された E c o T 2 2 Iサイ トに導入した。 1 a c I q遺伝子の向きが c s p Aプロモー夕一と 逆方向に揷入されたプラスミ ドを選んで、 これを pMM 04ひ I qと命名した。 実施例 4一 ( 1 ) 及び ( 2 ) に記載された p C o 1 d 0 1及び 0 2の構築の際 と同様に、 pMM 0 4 0 I、 pMM 0 4 0 I。の Nh e I — E c o R I間に各シ リーズべクタ一用の N h e I— E c o R Iフラグメントを挿入してすることによ り、 p C o l d 0 3、 p C o l d 0 4、 p C o l d 0 5、 p C o l d 0 6各シリ —ズのプラスミ ドベクター、 それそれ 6種類を構築した。 このように構築された p C o 1 d 0 3及び p C 0 1 d 04シリーズプラスミ ドは、 1 a c I遺伝子を持 つ以外はそれそれ p C o 1 d 0 1シリーズ及び p C 0 1 d 0 2シリーズプラスミ ドと同じ構造をしている。 また、 p C 0 1 d 0 5及び p C o 1 d 0 6シリーズプ ラスミ ドは、 p C o l d 0 3及び p C o 1 d 0 4シリ一ズプラスミ ドの l a c l 遺伝子がそれそれ 1 a c I。遺伝子に置換されたものである。
( 2 ) ?一ガラクトシダーゼ遺伝子を用いた l a cリブレッサーの効果の検討 実施例 3— ( 5 ) と同様に、 プラスミ ド pKMO 0 5を B amH Iおよび S a I Iで消化後、 1 a c Z遺伝子を含む DN A断片を抽出精製した。 得られた DN A断片を、 上記のプラスミ ドベクター p C o 1 d 0 3、 0 4、 0 5、 0 6シリー ズのうちフレームの合う N C 2の B amH I— S a i l間に挿入し、 得られたプ ラスミ ドをそれぞれ p C o l d 0 3 NC 2 1 a c、 p C o l d 04 NC 2 1 a c 、 p C o 1 d 0 5 N C 2 1 a c、 p C o 1 d 0 6 N C 2 1 a cと命名した。 実施例 4— ( 3 ) で構築した p C o l d 0 1 NC 2 1 a c、 p C o l d 0 2 N C 2 1 a c及び上記プラスミ ド p C o l d 0 3 N C 2 1 a c、 p C o 1 d 0 4 N C 2 1 a c、 p C o l d 0 5 N C 2 1 a c, p C o l d 0 6 N C 2 1 a cの 計 6種類を用いて、 1 a c リプレッサ一遺伝子を保持していない大腸菌 D H 5 ひ株 (宝酒造社製) の形質転換を試みた。 また、 同時に 1 a c Z遺伝子を持たな いプラスミ ドベクタ一 p C 0 1 d 0 1 N C 2についてもコントロ一ルとして形質 転換を試みた。 常法にしたがって、 大腸菌 DH 5ひ株をコンビテントセル法で形 質転換を行ったところ P C o l d 0 2 N C 2 1 a c以外のプラスミ ドの場合はす ベてコントロールと同等の形質転換効率で形質転換体が得られたが、 p C o I d 02 NC 21 a cの場合は形質転換体が全く得られなかった。 また、 pCo l d 01 NC 2 l acの場合、 得られた形質転換体のコロニーは他の形質転換体のも のよりも小さかった。
次に、 各プラスミ ドの目的蛋白質の発現制御の能力及び低温における目的蛋白 質の発現能力を調べた。 すなわち、 得られた形質転換体をそれそれ 100〃g/ mlのアンピシリンを含む L B培地に接種し、 37 °Cで好気的に一晩培養した。 この培養液をそれそれ新鮮な 5 m 1の同じ培地に 2 %づっ植菌して 37 °Cで好気 的に培養し、 濁度が OD600= 0. 6前後に達した時点で一部サンプリングした 後、 終濃度 ImMとなるように IPTGを加え、 培養温度を 15°Cとして更に培 養した。 これら誘導直前の 37 °C培養液及び誘導後 3時間後、 7時間後、 24時 間後にサンプリングされた培養液を試料として、 実施例 3— (5) と同様にして ?—ガラクトシダーゼ活性の測定を行った。
表 6に示されるように、 lac I遺伝子を持たない p Co ld01NC21 a cを有する形質転換体は 37°Cの非誘導状態においても高い^一ガラク トシダ一 ゼ活性を示し、 l ac I遺伝子あるいは 1 a c I q遺伝子を含むその他のプラス ミ ドによる形質転換体では、 低い/?—ガラク トシダーゼ活性を示した。 このこと は、 プラスミ ド上に l ac lや l ac l q遺伝子を有する p C o 1 d 03から p C o 1 d 06までのシリーズのプラスミ ドは、 37 °Cの培養条件において発現の 抑制が実質上有効に行われていることを示している。 さらに、 このことは 37°C において c s p A遺伝子の 5, — U TRをコードする領域の機能だけでは発現調 節が不完全であり、 これらプラスミ ド上に配したオペレータ一配列が正常に機能 することによって実質的な発現調節が初めて可能であることを示している。 また 、 1 a c I q遺伝子を有する p C 01 d 05 N C 21 a c、 pCo ld06NC 21 a cの形質転換体の 5—ガラク トシダ一ゼ活性は、 l ac I遺伝子を有する pCo ld03NC21ac、 pCo l d 04NC21 acの形質転換体よりも 低くなり、 l ac Iq遺伝子の方が効果的に発現を制御できることが明らかとな つた。
一方、 低温への温度シフトと誘導剤の添加による発現誘導後は、 1 a c I遺伝 子あるいは 1 a c Iq遺伝子を含むプラスミ ドによる形質転換体のいずれの場合 も経時的な/?一ガラクトシダ一ゼ活性の上昇が見られた。 これらの誘導レベルは 、 表 5に示した lacリブレッサー高発現大腸菌株を p C o ld01NC21a cあるいは pCo ld02NC21 a cで形質転換した形質転換体の誘導パ夕一 ンと良く一致しており、 l ac I遺伝子をべクタ一上に配置しても目的蛋白質の 発現誘導能に影響を与えないことを示している。 このことは、 ォペレ一夕一とし て 1 a cオペレーターを用いた本発明のベクタ一の場合、 ベクター上に 1 a c I 遺伝子あるいは 1 a c I q遺伝子を導入することにより、 l ac I遺伝子に関す る宿主の制限が無くなることを示している。 表 6 ?ガラク トシダー 'ゼ活性 (ュニ 、 Jヽ 卜) プラスミ ド
誘導刖 3時間 7時間 24時間 pCo ld 01NC21ac 16672 12823 15866 22779 pCo ld 03NC21ac 109 7469 9414 27055 p C o 1 d 04NC 2 lac 190 6860 14523 45464 p C o 1 d 05NC 2 lac 48 3107 3985 9734 pCo ld06NC21ac 52 4340 9324 23161 pCo ld01NC2 16 141 148 7Z
実施例 6. 相補性の高いダウンストリームボックス配列と精製用のタグを持つ 低温誘導ベクター P C o 1 d 07及び p C 01 d 08シリーズプラスミ ドの構築 および誘導能の検討
(1) プラスミ ド pCo ld07NC2、 pCo ld08NC2の構築 p Co l d 03シリーズあるいは p C o 1 d 04シリーズプラスミ ドでは、 C s p Aの N末端コード領域の下流にマルチクローニングサイ 卜があり、 目的蛋白 質は C s p Aの N末端 12あるいは 13アミノ酸残基との融合蛋白質として発現 される。 この C s p Aの N末端コ一ド領域中にはダウンストリームボックス配列 が存在するが、 大腸菌のアンチダウンストリームボックス配列を 16 Sリポソ一 マル RNA中の 1467— 148 1の 15塩基と考えた場合、 この配列は該 15 塩基中 1 0塩基が結合する程度の相補性を示す。 C spAの N末端をコードする 塩基配列を上記の 1 5塩基の配列と完全に相補的な、 配列表の配列番号 28に示 される塩基配列に置換し、 さらにその下流に精製用のタグ配列として 6残基のヒ スチジン残基をコ一ドする配列、 及びこれらの塩基配列にコ一ドされるリーダ一 ぺプチドを切除するための、 プロテア一ゼファクタ一 X aの認識アミノ酸配列を コードする塩基配列を導入したプラスミ ド p C o l d 07NC 2、 pC o l d O 8NC 2を構築した。
まず、 プラスミ ド pC o l d 03 NC 2を Nc o Iおよび E c o R Iで消化し 、 pCo l d 03NC 2上の c s p A遺伝子の N末端配列をコードする領域を除 きべクタ一断片を調製した。 次に、 合成オリゴヌクレオチド DB— 3及び DB— 4 (DB- 3及び D B-4の塩基配列をそれそれ配列表の配列番号 26、 27に 示す) を合成し、 ァニーリングさせた後、 先に調製した p C o l d 03NC 2の Nc o I -E c oR I間に挿入して、 プラスミ ド p Co l d 07NC 2を構築し た。 また、 全く同じ工程により、 プラスミ ド p Co l d 04NC 2上の c s pA 遺伝子の N末端配列をコードする領域を該合成 D N Aリンカ一で置き換えたブラ スミ ド pC o l d 08N C 2を構築した。
(2) ?-ガラクトシダ一ゼ遺伝子を用いた、 改変型低温誘導べクタ一の誘導能 の検討
実施例 4一 (3) で構築したプラスミ ドベクタ一 p C o l d 0 1 NC 21 a c を B amH I及び S a 1 I消化後、 1 a c Z遺伝子を含む約 6. 2 kbの DNA 断片を抽出精製した。 得られた DNA断片を上記のプラスミ ド pC o I d O 7N C 2及び p C o l d 08NC 2の B amH I— S a 1 I間にそれそれ挿入し、 得 られたプラスミ ドを p C o l d 07 NC 2 1 a c及び p C o l d 08NC 2 1 a cとそれそれ命名した。 これらのプラスミ ドは、 いずれも N末端に 1 6 Sリボソ —マル RN A中のアンチダウンストリームボックス配列と完全に相補的なダウン ストリームボックス配列にコードされる 5アミノ酸残基、 精製用のタグ配列とし て 6残基のヒスチジン残基、 ファクター X a認識アミノ酸配列である 4アミノ酸 残基、 及びマルチクロ一ニングサイ ト由来の 1 0アミノ酸残基の合計 2 5残基か らなる N末端リーダーぺプチドが/?—ガラク トシダ一ゼの 1 0番目のアミノ酸残 基のところでつながった融合/?—ガラクトシダ一ゼをコードしている。 一方、 ほ かのプロモ一夕一を持つ発現プラスミ ドとして、 pET—システムプラスミ ドの pE T 2 l b (ノバジェン社製) についても同様にして B amH I— S a 1 I間 に 1 a c Z遺伝子を含む約 6. 2 kbの DN A断片を揷入したプラスミ ド p E T 2 1 b 1 a cを構築し、 誘導能の比較検討を行った。
上記の各プラスミ ド、 実施例 4で構築した p C o l d 0 1 NC 2 1 a c、 及び pC o l d 02 NC 2 1 a cを用いて大腸菌 J M 1 09 [pE T 2 1 b l a cの 場合は大腸菌 JM 1 0 9 (DE 3) 、 プロメガ社製] を形質転換し、 得られた形 質転換体について、 実施例 3— ( 5 ) と同様の操作で 1 5 Cにおける発現誘導実 験を行った。 ガラクトシダーゼ活性は誘導直前、 誘導 3時間後、 及び誘導 1 0時間後の 3点について測定した。
表 7に示されるように、 p C o l d 07NC 2 1 a c、 p C o l d 08NC 2 1 a cを含有する形質転換体は、 37°Cにおける誘導前では低い ?一ガラクトシ ダーゼ活性しか発現しておらず、 各プラスミ ドの c s p Aプロモ一夕一の作用が 正確にコントロールされていることが示された。 また誘導後 7時間においてブラ スミ ド p C o l d 07 NC 2 1 a cを含有する形質転換体では p C o 1 d 03 N C 2 1 a cを含有するものの 5倍以上の/?—ガラク トシダーゼ活性を、 プラスミ ド p Co l d 08NC 2 1 a cを含有する形質転換体では p C o l d 04NC 2 1 a cを含有するものの 4倍以上の/?—ガラク トシダーゼ活性を発現していた。 また、 既存の発現ベクターのなかで有力な発現ベクターである pE Tシステムと 比較して、 p C o 1 d 07シリーズ及び p C o 1 d 08シリーズプラスミ ドは特 に低温誘導後短時間で高い発現能を有することが明らかとなった, 表 7 ガラク トシダ一ゼ活性 (ユニット) プラスミ ド
二 、
誘導 3時間後 誘導 7時間後 p C o 1 d 03NC 2 lac 37 7253 9282 pCo ld04NC21ac 230 6311 12592 pCo ld 07NC21ac 359 31335 53069 pCo ld08NC21ac 705 33863 55850 pET21 b lac 144 6103 32934
発明の効果
本発明により、 常温での発現が制御可能であり、 かつ低温条件において高い発 現効率を示す発現ベクターが提供される。 該ベクタ一を用いることにより、 宿主 に対して有害な作用を示すような蛋白質をコ一ドする遺伝子を含有させた形質転 換体を得ることができる。 また該ベクターを利用して低温条件下で蛋白質発現を 行うことにより、 インクルージョンボディの形成を抑え、 活性を保持した蛋白質 を効率よく得ることが可能となる。
配列表フリーテキスト
配列番号 7はプライマー C SA— 67 FNの塩基配列を示す。
配列番号 8はプライマ一 C S A 13 Rの塩基配列を示す。
配列番号 9はプライマ一 C S A 13 R 2の塩基配列を示す。
配列番号 11はプライマー CSA+ 1 RLACの塩基配列を示す ( 配列番号 12はプライマー C S A + 20 FNの塩基配列を示す。
配列番号 13はプライマ一 C S A70 Rの塩基配列を示す。
配列番号 14はプライマ一 CSA+27 NF 1の塩基配列を示す。
配列番号 15はプライマー D 3 Fの塩基配列を示す。
配列番号 16はプライマー D 3 Rの塩基配列を示す。
配列番号 17はプライマ一 CSA— t e r一 FHXの塩基配列を示す。 配列番号 18はプライマ一 C S A— t e r— Rの塩基配列を示す。
配列番号 19は合成ォリゴヌクレオチド K S -linker 1の塩基配列を示す。 配列番号 20は合成ォリゴヌクレオチド K S— linker 2の塩基配列を示す。 配列番号 21はプライマー CS A 1 NC— Fの塩基配列を示す。
配列番号 22はプライマ一 C S A 1 NC— Rの塩基配列を示す。
配列番号 23はプライマ一 C S A 13 R 3の塩基配列を示す。
配列番号 24はプライマー C S A 1 ND— Fの塩基配列を示す。
配列番号 25はプライマー C S A 1 N D— Rの塩基配列を示す。
配列番号 26は合成ォリゴヌクレオチド D B— 3の塩基配列を示す。
配列番号 27は合成ォリゴヌクレオチド D B— 4の塩基配列を示す。

Claims

請 求 の 範 囲
1. 下記の各要素を含有するべクタ一:
( 1 ) 使用する宿主中でその作用を示すプロモーター、
( 2 ) ( 1 ) のプロモーターの作用を調節するための調節領域、 及び
( 3 ) コールドショック蛋白質遺伝子 mR N A由来の 5, 非翻訳領域をコードす る領域、 あるいは該非翻訳領域に少なくとも 1以上の塩基の置換、 欠失、 挿入、 付加が施された領域をコ一ドする領域。
2. プロモー夕一がコールドショック蛋白質遺伝子由来のプロモーターである 請求の範囲 1記載のベクター。
3. コールドショック蛋白質遺伝子由来のプロモーターが大腸菌 c s p A遺伝 子由来のプロモ一夕一である請求の範囲 2記載のベクタ一。
4. 大腸菌 c s p A遺伝子由来のプロモーターが、 配列表の配列番号 5に示さ れる塩基配列を含むプロモーターである請求の範囲 3記載のベクタ一。
5. 調節領域がオペレーターである請求の範囲 1〜4のいずれか 1項に記載の ベクター。
6. オペレーターが 1 a cオペレーターである請求の範囲 5記載のベクタ一。
7. 大腸菌 c s p A遺伝子 mR N A由来の 5, 非翻訳領域をコードする領域、 あるいは該非翻訳領域に少なくとも 1以上の塩基の置換、 欠失、 挿入、 付加が施 された領域をコードする領域を含有する請求の範囲 1〜 6のいずれか 1項に記載 のベクター。
8. 配列表の配列番号 1に示される塩基配列を含む 5 ' 非翻訳領域をコードす る領域を含有する請求の範囲 7記載のベクタ一。
9. 配列表の配列番号 2〜4に示される塩基配列のいずれか 1よりなる塩基配 列の 5, 非翻訳領域をコードする領域を含有する請求の範囲 8記載のベクタ一。
10. 用いる宿主のリボソ一マル R N Aのアンチダウンストリームボックス配列 と相補性を有する塩基配列を 5 ' 非翻訳領域の下流に更に含有する請求の範囲 1 〜 9のいずれか 1項に記載のベクタ一。
11. 配列表の配列番号 2 8に示される塩基配列と高い相同性を有する塩基配列 を 5 ' 非翻訳領域の下流に含有する請求の範囲 1 0記載のベクター。
12. 配列表の配列番号 2 8に示される塩基配列を 5 ' 非翻訳領域の下流に含有 する請求の範囲 1 1記載のベクタ一。
13. 下記工程を包含することを特徴とする目的蛋白質の発現方法:
( 1 ) 目的蛋白質をコードする遺伝子を組込んだ請求の範囲 1〜 1 2のいずれか 1項に記載のベクタ一で宿主を形質転換する工程、
( 2 ) 得られた形質転換体を培養する工程、
( 3 ) 調節領域の機能を介してプロモー夕一の作用を誘導すると共に培養温度を 通常の温度より低下させて目的蛋白質を発現させる工程。
14. 配列表の配列番号 5に示される塩基配列を含み、 かつ 1 3 5塩基以下の塩 基配列からなるプロモ一夕一。
PCT/JP1998/005171 1997-11-20 1998-11-17 Vecteur d'expression inductible a froid WO1999027117A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002309600A CA2309600C (en) 1997-11-20 1998-11-17 Low-temperature inducible expression vector
US09/554,813 US6479260B1 (en) 1997-11-20 1998-11-17 Cold-inducible expression vector
JP2000522258A JP4057237B2 (ja) 1997-11-20 1998-11-17 低温誘導発現ベクター
AU10546/99A AU1054699A (en) 1997-11-20 1998-11-17 Cold-inducible expression vector
EP98953080A EP1033408B1 (en) 1997-11-20 1998-11-17 Cold-inducible expression vector
DE69838680T DE69838680T2 (de) 1997-11-20 1998-11-17 Durch kälte induzierbarer expressionsvektor
KR1020007005452A KR100596070B1 (ko) 1997-11-20 1998-11-17 저온 유도성 발현벡터
US10/268,229 US6897042B2 (en) 1997-11-20 2002-10-10 Low-temperature inducible expression vector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/334792 1997-11-20
JP33479297 1997-11-20

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/554,813 A-371-Of-International US6479260B1 (en) 1997-11-20 1998-11-17 Cold-inducible expression vector
US09554813 A-371-Of-International 1998-11-17
US10/268,229 Continuation US6897042B2 (en) 1997-11-20 2002-10-10 Low-temperature inducible expression vector

Publications (1)

Publication Number Publication Date
WO1999027117A1 true WO1999027117A1 (fr) 1999-06-03

Family

ID=18281290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005171 WO1999027117A1 (fr) 1997-11-20 1998-11-17 Vecteur d'expression inductible a froid

Country Status (9)

Country Link
US (2) US6479260B1 (ja)
EP (1) EP1033408B1 (ja)
JP (1) JP4057237B2 (ja)
KR (2) KR100596071B1 (ja)
AT (1) ATE377647T1 (ja)
AU (1) AU1054699A (ja)
CA (1) CA2309600C (ja)
DE (1) DE69838680T2 (ja)
WO (1) WO1999027117A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011148A2 (en) * 1998-08-20 2000-03-02 The University Of Medicine And Dentistry Of New Jersey Cold-shock regulatory elements, constructs thereof, and methods of use
JP2001046086A (ja) * 1999-07-02 2001-02-20 Message Pharmaceuticals Inc 5’及び3’の転写後制御因子のための機能的ゲノミック・スクリーニング
WO2004053126A1 (ja) * 2002-12-11 2004-06-24 Takara Bio Inc. 低温誘導発現ベクター
WO2005017144A1 (ja) * 2003-08-14 2005-02-24 Takara Bio Inc. dsRNA分解およびRNA合成方法
WO2005113768A1 (ja) * 2004-05-21 2005-12-01 Takara Bio Inc. ポリペプチドの製造方法
WO2007142300A1 (ja) 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法
CN100385004C (zh) * 2002-03-01 2008-04-30 宝生物工程株式会社 冷休克诱导的异源多肽的表达和生产
US7429654B1 (en) 1994-03-01 2008-09-30 University Of Medicine And Dentistry Of New Jersey Cold-shock regulatory elements, constructs thereof, and method of use
US8034597B2 (en) 2005-03-08 2011-10-11 Takara Bio Inc. Microorganism-derived psychrophilic endonuclease

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE377647T1 (de) 1997-11-20 2007-11-15 Takara Bio Inc Durch kälte induzierbarer expressionsvektor
JPWO2005030948A1 (ja) * 2003-09-30 2007-11-15 タカラバイオ株式会社 RNaseIII活性を有するポリペプチド
EP1920057A4 (en) 2005-08-03 2009-03-18 Grains Res & Dev Corp POLYSACCHARIDE synthases
US20090215120A1 (en) * 2006-03-20 2009-08-27 University Of Medicine And Dentistry Of New Jersey The Use of Protein S Fusion for Protein Solubilization
CN101157729B (zh) * 2007-10-23 2011-01-12 南京大学 一种肿瘤坏死因子相关凋亡配体变体及其应用
US9145562B2 (en) * 2009-11-20 2015-09-29 Alberta Innovates—Technology Futures Variegation in plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003521A1 (en) * 1994-07-21 1996-02-08 Yissum Research And Development Co. Vectors and transformed host cells for recombinant protein production at reduced temperatures
US5714575A (en) * 1989-02-13 1998-02-03 The University Of Medicine And Dentistry Of New Jersey Nucleic acids sequence, stress-induced proteins and uses thereof
WO1998027220A1 (en) * 1996-12-19 1998-06-25 University Of Medicine And Dentistry Of New Jersey Method and constructs for inhibiting protein expression in bacteria

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2009917C (en) * 1989-02-13 2007-05-22 Joel Goldstein Cold shock protein, gene coding therefor, promoter for gene encoding cold shock and other proteins, methods and uses as antifreeze protein in agriculture and other applications
US5654169A (en) 1994-07-21 1997-08-05 Yissum Research & Development Company Of The Hebrew University Vectors and transformed host cells for recombinant protein production at reduced temperatures
ATE377647T1 (de) 1997-11-20 2007-11-15 Takara Bio Inc Durch kälte induzierbarer expressionsvektor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714575A (en) * 1989-02-13 1998-02-03 The University Of Medicine And Dentistry Of New Jersey Nucleic acids sequence, stress-induced proteins and uses thereof
WO1996003521A1 (en) * 1994-07-21 1996-02-08 Yissum Research And Development Co. Vectors and transformed host cells for recombinant protein production at reduced temperatures
WO1998027220A1 (en) * 1996-12-19 1998-06-25 University Of Medicine And Dentistry Of New Jersey Method and constructs for inhibiting protein expression in bacteria

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOLDSTEIN J, POLLITT N S, INOUYE M: "MAJOR COLD SHOCK PROTEIN OF ESCHERICHIA COLI", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 87, 1 January 1990 (1990-01-01), US, pages 283 - 287, XP002918607, ISSN: 0027-8424, DOI: 10.1073/pnas.87.1.283 *
MITTA M, FANG L, INOUYE M: "DELETION ANALYSIS OF CSPA OF ESCHERICHIA COLI: REQUIREMENT OF THE AT-RICH UP ELEMENT FOR CSPA TRANSCRIPTION AND THE DOWNSTREAM BOX INTHE CODING REGION FOR ITS COLD SHOCK INDUCTION", MOLECULAR MICROBIOLOGY., WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 26, no. 02, 1 October 1997 (1997-10-01), GB, pages 321 - 335, XP002918609, ISSN: 0950-382X, DOI: 10.1046/j.1365-2958.1997.5771943.x *
TANABE H, ET AL.: "IDENTIFICATION OF THE PROMOTER REGION OF THE ESCHERICHIA COLI MAJORCOLD SHOCK GENE, CSPA", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 174, no. 12, 1 June 1992 (1992-06-01), US, pages 3867 - 3873, XP002918608, ISSN: 0021-9193 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429654B1 (en) 1994-03-01 2008-09-30 University Of Medicine And Dentistry Of New Jersey Cold-shock regulatory elements, constructs thereof, and method of use
WO2000011148A2 (en) * 1998-08-20 2000-03-02 The University Of Medicine And Dentistry Of New Jersey Cold-shock regulatory elements, constructs thereof, and methods of use
WO2000011148A3 (en) * 1998-08-20 2000-07-13 Univ New Jersey Med Cold-shock regulatory elements, constructs thereof, and methods of use
JP2001046086A (ja) * 1999-07-02 2001-02-20 Message Pharmaceuticals Inc 5’及び3’の転写後制御因子のための機能的ゲノミック・スクリーニング
US7605000B2 (en) * 2002-03-01 2009-10-20 Takara Bio, Inc. Cold shock inducible expression and production of heterologous polypeptides
CN100385004C (zh) * 2002-03-01 2008-04-30 宝生物工程株式会社 冷休克诱导的异源多肽的表达和生产
JPWO2004053126A1 (ja) * 2002-12-11 2006-04-13 タカラバイオ株式会社 低温誘導発現ベクター
WO2004053126A1 (ja) * 2002-12-11 2004-06-24 Takara Bio Inc. 低温誘導発現ベクター
JPWO2005017144A1 (ja) * 2003-08-14 2007-10-04 タカラバイオ株式会社 dsRNA分解およびRNA合成方法
WO2005017144A1 (ja) * 2003-08-14 2005-02-24 Takara Bio Inc. dsRNA分解およびRNA合成方法
JPWO2005113768A1 (ja) * 2004-05-21 2008-03-27 タカラバイオ株式会社 ポリペプチドの製造方法
WO2005113768A1 (ja) * 2004-05-21 2005-12-01 Takara Bio Inc. ポリペプチドの製造方法
JP4988337B2 (ja) * 2004-05-21 2012-08-01 タカラバイオ株式会社 ポリペプチドの製造方法
US8034597B2 (en) 2005-03-08 2011-10-11 Takara Bio Inc. Microorganism-derived psychrophilic endonuclease
WO2007142300A1 (ja) 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法

Also Published As

Publication number Publication date
EP1033408A1 (en) 2000-09-06
JP4057237B2 (ja) 2008-03-05
US6897042B2 (en) 2005-05-24
EP1033408B1 (en) 2007-11-07
AU1054699A (en) 1999-06-15
KR20010032249A (ko) 2001-04-16
ATE377647T1 (de) 2007-11-15
EP1033408A4 (en) 2004-08-25
KR100596070B1 (ko) 2006-07-03
US20030082799A1 (en) 2003-05-01
KR20060032223A (ko) 2006-04-14
DE69838680T2 (de) 2008-08-28
DE69838680D1 (de) 2007-12-20
KR100596071B1 (ko) 2006-07-03
US6479260B1 (en) 2002-11-12
CA2309600C (en) 2009-08-25
CA2309600A1 (en) 1999-06-03

Similar Documents

Publication Publication Date Title
US6117651A (en) Expression vectors
WO1999027117A1 (fr) Vecteur d'expression inductible a froid
Aagaard et al. General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid
JP2000050888A (ja) 栄養要求性を相補することによる、抗生物質によらない選抜に基づく新規の大腸菌/宿主ベクタ―系
WO2007022623A1 (en) Regulation of heterologous recombinant protein expression in methylotrophic and methanotrophic bacteria
JP5808671B2 (ja) 機能グループii莢膜遺伝子クラスターを有しないe.colibl21株
Tojo et al. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein
Rubin et al. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides
JP4370353B2 (ja) Dna及びかかるdnaを用いた低温での目的蛋白質の発現方法
US6448034B1 (en) Production of variant nisin
Bloch et al. Comparison of the malA regions of Escherichia coli and Klebsiella pneumoniae
JPS63233790A (ja) 細菌中に含まれるプラスミドの安定化方法及びこれにより得られる菌株
JP3549210B2 (ja) プラスミド
JP4053572B2 (ja) 低温誘導発現プロモーター及びかかるプロモーターを含有する低温誘導発現ベクター
US5384259A (en) Construct and method for expression of tetracycline resistance genes in E. Coli
EP1582587B1 (en) Cold-induced expression vector
US20110212508A1 (en) Novel Synthetic Expression Vehicle
Lee et al. Development of a Plasmid Vector for Overproduction of $\beta $-Galactosidase in Escherichia coli by Using Genetic Components of groEx from Symbiotic Bacteria in Amoeba proteus
MXPA99004331A (es) Vectores de expresion mejorados

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2309600

Country of ref document: CA

Ref country code: CA

Ref document number: 2309600

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998953080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007005452

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09554813

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998953080

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007005452

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007005452

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998953080

Country of ref document: EP