WO1999021456A1 - Synchrotilt chair with adjustable seat, back and energy mechanism - Google Patents

Synchrotilt chair with adjustable seat, back and energy mechanism Download PDF

Info

Publication number
WO1999021456A1
WO1999021456A1 PCT/US1998/022047 US9822047W WO9921456A1 WO 1999021456 A1 WO1999021456 A1 WO 1999021456A1 US 9822047 W US9822047 W US 9822047W WO 9921456 A1 WO9921456 A1 WO 9921456A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
die
chair
support
base assembly
Prior art date
Application number
PCT/US1998/022047
Other languages
French (fr)
Inventor
Kurt R. Heidmann
Larry Dekraker
Robert J. Battey
Glenn A. Knoblock
Michelle R. Johnson
Robert M. Scheper
Arnold B. Dammermann
Kevin A. Ekdahl
Gardner J. Ii Klaasen
James A. Perkins
Gordon J. Peterson
Edward H. Punches
Charles P. Roossien
David S. Teppo
Michael J. Yancharas
Original Assignee
Steelcase Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT98953703T priority Critical patent/ATE297672T1/en
Priority to AU11013/99A priority patent/AU750107B2/en
Priority to IL13552998A priority patent/IL135529A/en
Priority to ES03078406T priority patent/ES2290401T3/en
Priority to EP98953703A priority patent/EP1033927B1/en
Priority to JP2000517628A priority patent/JP4104286B2/en
Priority to ES98953703T priority patent/ES2246540T3/en
Priority to BR9813119-2A priority patent/BR9813119A/en
Application filed by Steelcase Inc. filed Critical Steelcase Inc.
Priority to ES03078405T priority patent/ES2277026T3/en
Priority to KR1020007004400A priority patent/KR100543155B1/en
Priority to DE69830610T priority patent/DE69830610T2/en
Priority to CA002304816A priority patent/CA2304816C/en
Publication of WO1999021456A1 publication Critical patent/WO1999021456A1/en
Priority to HK01101072A priority patent/HK1031810A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/022Reclining or easy chairs having independently-adjustable supporting parts
    • A47C1/023Reclining or easy chairs having independently-adjustable supporting parts the parts being horizontally-adjustable seats ; Expandable seats or the like, e.g. seats with horizontally adjustable parts
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03205Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest having adjustable and lockable inclination
    • A47C1/03233Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest having adjustable and lockable inclination by means of a rack-and-pinion or like gearing mechanism
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03205Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest having adjustable and lockable inclination
    • A47C1/03238Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest having adjustable and lockable inclination by means of peg-and-notch or pawl-and-ratchet mechanism
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03255Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest with a central column, e.g. rocking office chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03272Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with coil springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03272Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with coil springs
    • A47C1/03274Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with coil springs of torsion type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/02Seat parts
    • A47C7/14Seat parts of adjustable shape; elastically mounted ; adaptable to a user contour or ergonomic seating positions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/02Seat parts
    • A47C7/24Upholstered seats
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/445Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with bar or leaf springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/46Support for the head or the back for the back with special, e.g. adjustable, lumbar region support profile; "Ackerblom" profile chairs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S297/00Chairs and seats
    • Y10S297/02Molded

Definitions

  • the present invention concerns chairs having a reclineable back, a forwardly movable/tiltable seat that moves with a synchronous movement as the back is reclined, and an adjustable energy mechanism for supporting the back during recline.
  • a synchrotilt chair is described in U.S. Patent Nos. 5,050,931; 5,567,012; 4,744.603; and 4,776,633 (to Knoblock et al.) having a base assembly with a control, a reclineable back pivoted to the control, and a seat operably mounted to the back and control for synchronous motion as the back is reclined.
  • This prior art chair incorporates a semi-rigid flexible shell that, in combination with the chair support structure, provides a highly-controlled postural support during the body movements associated with tasks/ work (e.g., when the back is in an upright position) and during the body movements associated with recline/relaxation (e.g., when the chair is in a reclined position).
  • seated users want to be able to easily adjust the spiing tension for providing support to the back during recline.
  • heavier/larger people need greater/firmer back support than lighter/smaller people, but the amount of support required changes at a greater rate during recline.
  • lighter/smaller people need a lesser initial level of support as they begin to recline and need a moderately increased level of support as they continue to recline; while heavier/larger people need a significantly higher minimum initial level of support as they begin to recline and need a significantly increased level of support as they continue to recline.
  • an adjustable lumbar system is desired that is constructed to vary the shape and force of lumbar support.
  • the adjustable lumbar system must be simple and easy to operate, easily reached while seated, mechanically non-complex and low cost, and aesthetically/visually pleasing.
  • adjustment of the shape and/or force in the lumbar area should not result in wrinkles in the fabric of the chair, nor unacceptable loose/saggy patches in the fabric.
  • synchrotilt chairs where the seat and the back pivot with synchronized angular movements
  • many synchrotilt chairs have been designed to pivot seats rearwardly as a user reclines.
  • these known seat constructions pivot about a seat pivot axis located rearward of a front edge of the seat. The result is that the knees of a seated user are lifted, resulting in undesired pressure on the seated user's thighs upon recline.
  • Designing a flexible front lip into the seat does not fully resolve the undesired thigh pressure since the tliighs are not supported only at a front lip of the seat, but instead are supported along at least about half of the seat.
  • Locating a flexible zone substantially rearwardly in a seat also does not resolve the situation since the weight of a seated user's upper torso tends to cause a seated user to slip/slide downwardly and forwardly off of a chair back when the chair back is reclined. This in turn causes the seated user to slide forward and off of the seat unless the seat includes a rear zone shaped and oriented to support the seated user against such forward slip/slide movement.
  • the problem is compounded by the fact that the hip joint of different seated user's are not always located in the same relative location on the chair seat, such that one seat design may work well for one seated user, but not for another seated user.
  • Reclineable chairs have gained wide and enthusiastic support in the chair industry. Reclineable chairs often include a back frame pivoted by back pivots to opposite sides of a base or control housing to define a back-tilt axis.
  • a problem is that the back pivots do not always align perfectly with the back-tilt axis. This misalignment can be a result of the back pivots being skewed at an angle to the back-tilt axis, or from the back pivots being parallel to the back-tilt axis but non-aligned with it, or from the back pivots changing orientation as a person sits in the chair or reclines in the chair.
  • a net result is that, during recline of the back, at least one chair component must flex and mechanically give to prevent binding.
  • either the control housing or back frame structure deforms, and/or the bearing is sloppy enough to compensate for the misalignment. If the deforaiation is large enough or if the chair components are not designed for such flexing, one of the chair components may break, fail, or fracture over time due to cyclical fatigue failure. Mother problem is that bearings of the back pivots will rapidly wear from the high forces generated by the misalignment. This results in looseness in the back, which can be objectionable in some situations. Similar problems can occur in synchrotilt chairs where a seat has spaced apart seat pivots that do not accurately align with a seat-tilt axis. It is noted that seat pivots must also support a large portion of the weight of a seated user, thus adding to their stress level.
  • a chair in one aspect of the present invention, includes a base assembly with a control housing having opposing side flanges and a side pivot, a back pivoted to the base assembly for movement between upright and reclined positions, and a seat operably supported on the base assembly and connected to the back for coordinated synchronous movement with the back.
  • An energy mechanism is provided for biasing the back toward the upright position.
  • the energy mechanism includes an extendable/compressible spring positioned transversely in the control housing with one end supported on one of the side flanges, and further includes a lever pivoted to the side pivot and having a spring-engaging portion engaging a free end of the spring and also having a seat-biasing portion operably connected to the seat.
  • a chair has a control housing including a pivot member, a reclineable back operably connected to the control housing for movement between upright and reclined positions, and an energy source in the control housing.
  • the chair also includes an improved adjustable back tension controller for the chair wherein the pivot member is adjustable, and a lever engages the energy source and the pivot member and is operably connected to the back for biasing the back to the upright position.
  • a chair in Y et another aspect of the present invention, includes a base assembly, a component comprising one of a reclineable back and a movable seat pivoted to the base assembly for movement between first and second positions, and a spring with one end supported on the base assembly and another end operably connected to the component.
  • the spring has a length and, when the component is moved from the first position to the second position, is simultaneously longitudinally compressed along the length and also laterally bent in a direction transverse to the length.
  • a chair in yet another aspect of the present invention, includes a base assembly including a control housing, a seat slidingly supported on the control housing, a back frame pivoted to the base assembly for movement between upright and reclined positions and operably attached to the seat, so that pivotal movement of the back frame and sliding movement of the seat are synchronized, and an energy mechanism including a spring having a length and an L- shaped torque member with a first leg engaging an end of the coil spring, and a second leg extending generally parallel the length of the spring.
  • the first leg pivotally engages the control housing at a location spaced from the end of the spring.
  • the second leg is operably connected to one of the seat and the back frame so that the spring biases the torque member in a manner biasing the back frame toward the upright position.
  • a chair in yet another aspect of the present invention, includes a base assembly including a control housing, a seat slidingly supported on the control housing, a back assembly pivoted to the base frame for movement between upright and reclined positions and operably attached to the seat, so that pivotal movement of the back frame and sliding movement of the seat are synchronized.
  • the control housing defines a relatively-thin horizontally-extending compartment under the seat.
  • An adjustable energy mechanism is operably positioned in the compaitment.
  • the adjustable energy mechanism includes an extensible energy source, a lever operably connected between the energy source and the seat, and an adjustment member adjustably pivotally supporting the lever for adjustably controlling force transmitted from the energy source through the lever to the seat.
  • the energy source, the lever, and the adjustment member are movable in horizontal directions only so as to operate within the relatively-thin horizontally-extending compartment.
  • a chair control in yet another aspect of the present invention, includes a control housing, a component operably attached to the control housing for movement between a plurality of positions, an actuator on the control housing operably connected to the component for controlling movement of the component, a manually-operable handle for operating the actuator, and an overtorque device connecting the handle to the actuator.
  • the overtorque device is constructed to limit force transmitted from the handle to the actuator to a maximum amount to prevent damage to the chair control.
  • the present invention includes a chair having a base assembly including opposing side aims, a back frame having configured end sections pivoted to the side aims at back pivots for rotation about a back-tilt axis, and a seat pivoted to the configured end sections at seat pivots for rotation about a seat-tilt axis.
  • At least one of the back pivots and the seat pivots include a rotatable bearing element and a support element flexibly supporting the bearing element for rotational movement misaligned with the tilt axis associated with the at least one axis so that the bearing element rotates about the stud without binding even when the stud is misaligned with an associated one of the back-tilt axis and the seat-tilt axis.
  • the support element is made from a resilient rubber.
  • a chair has a base assembly including side aims, and a back frame having configured end sections pivoted to the side arms at back pivots for rotation about a back-tilt axis.
  • the back frame is flexible enough to permit the configured ends to be flexed apart during assembly.
  • the configured end sections and the side arms have adjacent faces, one of which has a recess therein.
  • a bearing arrangement is located at each back pivot for pivotally connecting the side arms to the respective configured end sections.
  • the bearing arrangement includes a stud that extends into the recess, and a bearing rotatably engaging the stud, the bearing being removable from the recess but held therein in part by the proximity of the adjacent faces.
  • the present invention includes a method of assembling a chair comprising steps of providing a chair component with laterally-extending oppositely-facing protrusions, and providing a back frame with configured end sections having recesses.
  • the method further includes flexing apart the configured end sections of the back frame and simultaneously positioning the recesses of the configured end sections on the protrusions, and releasing the back frame so that the back frame resiliently returns to an original shape which holds the back frame in place and pivotally connects the back frame to the chair component.
  • a control in yet another aspect of the present invention, includes a control housing, a single stored energy source positioned in the control housing providing a compressive force, and a lever operably interconnected with said single energy source for movement between upright and reclined positions.
  • the single stored energy source both exerts pretension to bias the lever toward the upright position and provides resistance to tilting of the lever when reclining.
  • the control further includes a controller for regulating the pretension of the stored energy source and tilt rate of the lever, with the controller being configured for adjustment without an operator having to overcome a compressive force of the said single stored energy source.
  • a chair in yet another aspect of the present invention, includes a base assembly including a control housing, a single stored energy source positioned in the control housing providing a compressive force, and a back support operably interconnected with said single energy source for movement between upright and reclined positions.
  • the single stored energy source both exerts pretension to bias the back support toward the upright position and provides resistance to tilting of the back support when reclining.
  • the control further includes a controller for regulating the pretension of the stored energy source and tilt rate of the back support, the controller including a lever defining an adjustable fulcrum point that can be adjusted without overcoming the compressive force of the said single stored energy source.
  • a control in yet another aspect of the present invention, includes a control housing, a stored energy source positioned in the control housing, and a back-supporting first lever operably interconnected with said energy source for movement between upright and reclined positions.
  • the stored energy source both exerts pretension to bias the first lever toward -the upright position and provides resistance to tilting of the first lever when reclining.
  • the control further includes a controller for regulating the pretension of the stored energy source of the first lever.
  • the controller includes a crank lever within the control housing. The crank lever has one end engaging the stored energy source and the other end operably interconnected with the first lever. The crank lever has portions between the two ends foiming a fulcrum, so that the energy source biases the crank lever about the fulcrum to bias the first lever toward the upright position.
  • a control in yet another aspect of the present invention, includes a control housing, a stored energy source positioned in the control housing, and a first lever operably interconnected with said energy source for movement between upright and reclined positions.
  • the stored energy source both exerts pretension to bias the first lever toward the upright position and provides resistance to tilting of the first lever when reclining.
  • the control further includes an adjustable controller for adjustably regulatingl the pretension of the stored energy source.
  • the controller includes a manually-operable handle for regulating the pretension of the stored energy source, and an overtorque device configured to limit the physical force transmitted from the handle to the controller.
  • FIGURES Figs. 1-3 are front, rear, and side perspective views of a reclineable chair embodying the present invention
  • Fi ⁇ s * 4A and B are exploded perspective views of upper and lower portions of the chair shown in Fig. 1;
  • Figs. 5 and 6 are side views of the chair shown in Fig. 1, Fig. 5 showing the flexibility and adjustability of the chair when in the upright position and Fig. 6 showing the movements of the back and seat during recline;
  • Fig. 7 is a front view of the chair shown in Fig. 1 with an underseat aesthetic cover removed;
  • Fig. 8 is a top view of the control including the piimary energy mechanism, the moment arm shift adjustment mechanism, and the back-stop mechanism, the primary energy mechanism being adjusted to a relatively low torque position and being oriented as it would be when the back is in the upright position so that the seat is in its rearward at-rest position, the back-stop mechanism being in an intermediate position for limiting the back to allow a majcimum recline;
  • Fig. 8 A is a perspective view of the base frame and the chair control shown in Fig. 8, some of the seat and back support structure being shown in phantom lines and some of the controls on the control being shown in solid lines to show relative locations thereof;
  • Fig. 9 is a perspective view of the control and primary energy mechanism shown in
  • Fig. 8 the primaiy energy mechanism being adjusted to a low torque position and shown as if the back is in an upright position such that the seat is moved rearwardly;
  • Fig. 9 A is a perspective view of the control and primary energy mechanism shown in Fig. 9, the primary energy mechanism being adjusted to the low torque position but shown as if the back is in a reclined position such that the seat is moved forwardly and the spring is compressed;
  • Fig. 9B is a perspective view of the control and primary energy mechanism shown in Fig. 9, the primary energy mechanism being adjusted to a high torque position and shown as if the back is in an upright position such that the seat is moved rearwardly;
  • Fig. 9C is a perspective view of the control and primary energy mechanism shown in
  • Fig. 9D is a graph showing torsion ⁇ force versus angular deflection curves for the primaiy energy mechanism of Figs. 9-9C, the curves including a top curve showing the forces resulting from the high torque (long moment aim engagement of the main spring) and a bottom curve showing the forces resulting from the low torque (short moment arm engagement of the main spring);
  • Fig. 10 is an enlarged top view of the control and primary energy mechanism shown in Fig. 8, including controls for operating the back-stop mechanism, the back-stop mechanism being shown in an off position;
  • Fig. 11 is an exploded view of the mechanism for adjusting the primary energy mechanism, including the overtorque release mechanism for same;
  • Fig. 11A is a plan view of a modified back-stop control and related linkages
  • Fig. 11B is an enlarged fragmentary view, partially in cross section, of the circled area in Fig. 11 A
  • Fig. 11C is a cross-sectional view taken along the line XIC-XIC in Fig. 1 IA;
  • Fig. 12 is a side view of the back assembly shown in Fig. 1 including the back frame and the flexible back shell and including the skeleton and flesh of a seated user, the back shell being shown with a forwardly-convex shape in solid lines and being shown in different flexed shapes in dashed and dotted lines;
  • Fig. 12A is an enlarged perspective view of the back frame shown in Fig. 4A, the back frame being shown as if the molded polymeric outer shell is transparent so that the reinforcement can be easily seen;
  • Figs. 12B and 12C are cross sections taken along lines XXIIB-XXIIB and XX ⁇ C- XX ⁇ C in Fig. 12A;
  • Figs. 12D-12I are views showing additional embodiments of flexible back shell constructions adapted to move sympathetically with a seated user's back;
  • Fig. 12J is an exploded perspective view of the torsionally-adjustable lumbar support spring mechanism shown in Fig. 4A
  • Fig. 12JJ is an exploded view of the hub and spring connection of Fig. 12J taken from an opposite side of the hub
  • Fig. 12K is an exploded perspective view of a modified torsionally-adjustable lumbar support spring mechanism
  • Figs. 12L and 12LL are side views of the mechanism shown in Fig. 12K adjusted to a low torque position
  • Figs. 12M and 12MM are side views of the mechanism adjusted to a high torque position
  • Figs. 12L and 12M highlighting the spring driver
  • Figs. 12LL and 12MM highlighting the lever
  • Fig. 12N is a fragmentary cross-sectional side view of the back construction shown in Fig. 12;
  • Fig. 13 is a cross-sectional side view taken along lines XIII-XIII showing the pivots that interconnect the base frame to the back frame and that interconnect the back frame to the seat frame;
  • Fig. 13A is a cross-sectional side view of modified pivots similar to Fig. 13. but showing an alternative construction;
  • Figs. 14A and 14B are perspective and front views of the top connector connecting the back shell to the back frame;
  • Fig. 15 is a rear view of the back shell shown in Fig. 4A;
  • Fig. 16 is a perspective view of the back including the vertically-adjustable lumbar support mechanism shown in Fig. 4A;
  • Figs. 17 and 18 are front and top views of the vertically-adjustable lumbar support mechanism shown in Fig. 16;
  • Fig. 19 is a front view of the slide frame of the vertically-adjustable lumbar .support mechanism shown in Fig. 18;
  • Fig* 20 is a top view, partially in cross section, of the laterally-extending handle of the vertically-adjustable lumbar support mechanism shown in Fig. 17 and its attachment to the slide member of the lumbar support mechanism;
  • Fig. 21 is a perspective view of the depth-adjustable seat shown in Fig. 4B including the seat carrier and the seat undercarriage/support frame slidably mounted on the seat carrier, the seat undercarriage/support frame being partially broken away to show the bearings on the seat carrier, the seat cushion being removed to reveal the parts therebelow;
  • Fig. 22 is a top view of the seat carrier shown in Fig. 21, the seat undercarriage/rear frame being removed but the seat frame slide bearings being shown and the seat carrier depth- adjuster stop device being shown;
  • Fig. 23 is a top perspective view of the seat undercarriage/rear frame and the seat carrier shown in Fig. 21 including a depth-adjuster control handle, a linkage, and a latch for holding a selected depth position of the seat;
  • Figs. 24 and 25 are side views of the depth-adjustable seat shown in Fig. 21, Fig. 24 showing the seat adjusted to maximize seat depth, and Fig. 25 showing the seat adjusted to minimize seat depth; Figs. 24 and 25 also showing a manually-adjustable "active" thigh support system including a gas spring for adjusting a front portion of the seat shell to provide optimal thigh support;
  • Fig. 26 is a top view of the seat support structure shown in Figs. 24 and 25 including the seat carrier (shown mostly in dashed lines), the seat undercarriage/rear frame, the active thigh support system with gas spring and reinforcement plate for adjustably supporting the front portion of the seat, and portions of the depth-adjustment mechanism including a stop for limiting the maximum forward and rearward depth adjustment of the seat and the depth-setting latch;
  • Fig. 26A is a cross section taken along line .XXVIA-XXVIA in Fig. 26 showing the stop for the depth-adjuster mechanism;
  • Figs. 27 and 28 are top and bottom perspective views of the seat support structure shown in Fig. 26;
  • Figs. 29 and 30 are top and bottom perspective views of a seat similar to that shown in Fig. 26, but where the manually-adjustable thigh support system is replaced with a passive thigh support system including a leaf spring for supporting a front portion of the seat; and Fig. 31 is a bottom perspective view of the brackets and guide for supporting ends of the leaf spring as shown in Fig. 30, but with the thigh-supporting front portion of the seat flexed downwardly causing the leaf spring to flex toward a flat compressed condition.
  • a chair construction 20 (Figs. 1 and 2) embodying the present invention includes a castored base assembly 21 and a reclineable back assembly 22 pivoted to the base 21 for movement about a stationary back-tilt axis 23 between upright and reclined positions.
  • a seat assembly 24 (Fig. 6) is pivoted at its rear to the back 22 for movement about a seat-tilt axis 25.
  • Seat-tilt axis 25 is offset rearwardly and downwardly from the back-tilt axis 23, and the seat 24 is slidably supported at its front on the base 21 by linear bearings, such that the seat 24 slides forwardly and its rear rotates downwardly and forwardly with a synchrotilt movement as the back 22 is reclined (see Fig. 6).
  • the synchronous motion initially moves the back to seat at an angular synchronous ratio of about 2.5:1, and when near the fully reclined position moves the back to seat at an angular synchronous ratio of about 5: 1.
  • the seat 24 and back 22 movement during recline provides an exceptionally comfortable ride that makes the seated user feel very stable and secure. This is due in part to the fact that the movement keeps the seated user's center of gravity relatively constant and keeps the seated user in a relatively balanced position over the chair base.
  • the forward slide/synchronous motion keeps the seated user near his/her work during recline more than in previous synchrotilt chair constructions, such that the problem of constantly scooting forward after reclining and then scooting rearward when moving toward an upright position is greatly reduced, if not eliminated.
  • the chair construction 20 can be used close to a wall behind the chair or in a small office, with less problems resulting from interference from office furnisliings during recline. Still further, we have found that the spring 28 for biasing the back 22 toward an upright position can be potentially reduced in size because of the reduced rearward shifting of a seated user's weight in the present chair.
  • the base includes a control housing 26.
  • a primary energy mechanism 27 (Fig. 8) is operably positioned in control housing 26 for biasing the seat 24 rearwardly. Due to the interconnection of the back 22 and the seat 24, the rearward bias of the seat 24 in turn biases the back 22 toward an upright position.
  • Primary energy mechanism 27 (Fig. 8) includes a main spiing 28 positioned transversely in the control housing 26 that operably engages a torque member or lever 54.
  • the tension and torque provided by the main spring 28 is adjustable via an adjustable moment arm shift (MAS) system 29 also positioned substantially in the control housing 26.
  • a visual cover 26 ' (Fig. 1) covers the area between the control housing 26 and the underside of the seat 24.
  • the back assembly 22 includes a back support or back frame 30 (Fig.
  • a flexible/compliant back shell construction 31 is pivoted to back frame 30 at top connections 32 and bottom connections 33 in a manner providing an exceptionally comfortable and sympathetic back support.
  • a torsionally- adjustable lumbar support spring mechanism 34 is provided to bias the back shell 31 forwardly into a forwardly-convex curvilinear shape optimally suited for providing good lumbar pressure.
  • a vertically-adjustable lumbar support 35 (Fig. 16) is operatively mounted on back shell 31 for vertical movement to provide an optimal shape and pressure location to the front support surface on back 22.
  • the seat 24 is provided with various options to provide enhanced chair functions, such as a back-stop mechanism 36 (Fig.
  • the seat 24 can include active and passive thigh support options (see Figs. 24 and 30, respectively), seat depth adjustment (see Figs. 28 and 25). and other seat options, as described below.
  • the base assembly 21 (Fig. 1) includes a floor-engaging support 39 having a center hub 40 and radially-extending castored legs 41 attached to the center hub 40 in a spider-like configuration.
  • a telescopingly-extendable center post 42 is positioned in center hub 40 and includes a gas spiing that is operable to telescopingly extend the post 42 to raise the height of the chair.
  • the control housing 26 of base assembly 21 is pan shaped (Fig. 11) and includes bottom panels and flanged sidewalls foiming an upwardly-open structural member.
  • a notch 43 is formed in one sidewall of the housing 26 for receiving a portion of the adjustable control for the MAS system 29.
  • a front of the housing 26 is formed into an upwardly-facing U-shaped transverse flange 44 for receiving a transverse structural tube 45 (Fig. 8A), and a hole 46 (Fig. 11) is formed generally adjacent flange 44.
  • the transverse tube 45 is welded to the flange 44 and extends substantially horizontally.
  • a reinforcement channel 47 is welded in housing 26 immediately in front of transverse structural tube 45.
  • a frustoconical tube section 48 is welded vertically to reinforcement 47 above hole 46, which tube section 48 is shaped to mateably and securely engage the upper end of extendable center post 42.
  • a pair of stiff upwardly-extending side arms 49 (sometimes also called “struts” or “pods”) are welded to the opposing ends of transverse tube 45.
  • the side aims 49 each include a stiff plate 50 on their inside surface.
  • the plates 50 include weld nuts 51 that align to define the back-tilt axis 23.
  • the housing 26, transverse tube 45, and side arms 49 form a base frame that is rigid and sturdy.
  • the sidewalls of the housing 26 include a lip or flange that extends along their upper edge to reinforce the sidewalls.
  • a cap 52 is attached to the lips to form a stationary part of a linear bearing for slidably supporting a front of the seat.
  • the primary energy mechanism 27 (Fig. 8) is positioned in housing 26.
  • the primary energy mechanism 27 includes the spring 28, which is operably connected to the seat 24 by an L-shaped torque member or bell crank 54, a link 55, and a seat-attached bracket 56.
  • the spring 28 is a coil spiing transversely positioned in housing 26, with one end supported against a side of housing 26 by a disc-shaped anchor 57.
  • the anchor 57 includes a washer to support the end of the spring 28 to prevent noise, and further includes a protrusion that extends into a center of the end of the spiing 28 to securely grip the spring 28, but that allows .the spring 28 to be compressed and to tilt/flex toward a side wlunter the torque member or bell crank 54 is being pivoted.
  • the L-shaped torque member or bell crank 54 includes a short leg or lever 58 and a long leg 59.
  • the short leg 58 has a free end that engages an end of the spring 28 generally proximate a left side of housing 26 with a washer and protrusion similar to anchor 57.
  • Short leg 58 is arcuately shaped and includes an outer surface facing the adjacent sidewall of housing 26 that defines a series of teeth 60.
  • Steel strips 61 are attached to the top and bottom sides of the short leg 58 and have an outer arcuate surface that provides a smooth rolling bearing surface on the leg 58, as described below.
  • the arcuate surface of the strips 61 is generally located at about the apex or the pitch diameter of the gear teeth 60.
  • the short leg 58 extends generally perpendicular to a longitudinal direction of spring 28 and the long leg 59 extends generally parallel the length of spring 28, but is spaced from the spring 28.
  • Link 55 (Fig. 8) is pivoted to an end of long leg 59 and is also pivoted to the seat-attached bracket 56.
  • a crescent-shaped pivot member 63 (Fig. 11) includes an arcuate roller bearing surface that rollingly engages the curved surface of steel strips 61 on short leg 58 to define a moving fulcrum point.
  • Pivot member 63 also includes a rack of teeth 64 configured to mateably engage the teeth 60 on short leg 58 to prevent any slippage between the interfacing roller bearing surfaces of leg 58 and pivot member 63.
  • Pivot member 63 is attached to a side of the housing 26 at the notch 43.
  • the long leg 59 is located generally parallel and close to the spring 28 and the short leg 58 is pivoted so that the spiing 28 has a relatively low amount of compression.
  • the compression of spring 28 is sufficient to adequately bias the seat 24 rearwardly and in turn bias the back frame 30 to an upright position for optimal yet comfortable support to a seated user.
  • the seat 24 is moved forwardly (Fig. 9A).
  • the "walking" of the short leg 58 on the pivot member 63 affects the length of the moment arm to the actual pivot point (i.e., . the location where the teeth 60 and 64 actually engage at any specific point in time). Also, the "walking” can cause the spring 28 to be longitudinally compressed as the "walking" occurs. However, in a preferred form, we have designed the system so that the spring 28 is not substantially compressed during adjustment of the pivot member 63, for the reason that we want the adjustment to be easily accomplished. If adjustment caused the spring 28 to be compressed, the adjustment would require extra effort to perform the adjustment, which we do not prefer in this chair design. As discussed below, the pivot member 63 is adjustable to change the torque arm over which the spiing 28 operates. Fig.
  • FIG. 9B shows the primary energy mechanism 27 adjusted to a high torque position with the seat 24 being in a rearward position (and the back frame 30 being in an upright position).
  • Fig. 9C shows the primary energy mechanism 27 still adjusted to the high torque condition, but in the compressed condition with the seat 24 in a forward position (and the back frame 30 being in an upright position).
  • the pivot member 63 has been adjusted to provide a longer torque arm on lever 58 over which the spring 28 acts.
  • Fig. 9D is a graph illustrating the back torque generated by spring 28 as a function of the angle of recline.
  • the initial force of support can be varied by adjustment (as described below).
  • the rate of change of torsional force i.e., the slope
  • the desired slope of the high and low torque force/displacement curves can be designed into the chair by varying the shape of the short leg 58 and the pivot member 63.
  • the crescent-shaped pivot member 63 (Fig. 11) is pivotally supported on housing 26 by a bracket 65.
  • the bracket 65 includes a tube section 66 and a configured end 67 with a juncture therebetween configured to mateably engage the notch 43 in the side of housing 26.
  • the configured end 67 includes a pair of flanges 68 with apertures defining an axis of rotation 69 for the pivot member 63.
  • the pivot member 63 is pivoted to the flanges 68 by a pivot pin and is rotatable around the axis 69.
  • the engagement of teeth 60 and 64 and the related interfacing surfaces change in a manner causing the actual pivot point along short leg 58 of L-shaped torque member or bell crank 54 to change. (Compare Figs. 9 and 9B.)
  • the distance from the end of spring 28 to the actual pivot point changes.
  • Pivoting of the pivot member 63 is accomplished through use of a pair of aper t ured flanges 70 (Fig. 11) on the pivot member 63 that are spaced from a 2 xis 69.
  • An adjustmen t rod 71 ex t ends through tube section 66 into configured end 67 and is pivoted to the aper t ured flanges 70.
  • Rod 71 includes a threaded opposite end 72.
  • An elongated nut 73 is threaded onto rod end 72.
  • Nut 73 includes a washer 73 ' that rotatably engages an end of the tube section 66, and further includes a configured end 74 having longitudinally-extending ribs or slots shaped to mateably telescopingly engage mating ribs 75 on a driving ring 76.
  • a handle 77 is rotatably mounted on tube section 66 and is operably connected to the driving ring 76 by an overtorque clutch ring 78.
  • Clutch ring 78 includes resilient fingers 79 that operably engage a ring of friction teeth 80 on the driving ring 76. Fingers 79 are shaped to frictionally slip over teeth 80 at a predetermined torsional load to prevent damage to components of t he chair 20 .
  • a re t ainer 81 includes resilient legs 81 ' that snappingly engage the end 74 of the nut 73 t o retain the driving ring 76 and the clutch ring 78 together with a predetermined amount of force .
  • a spacer/washer 82 rides on the end of the nut 73 to provide a bearing surface to better support the clutch ring 78 for rotation.
  • An end cap 83 visually covers an end of the assembly.
  • the end cap 83 includes a center protrusion 84 that snaps into the retainer 81 to forcibly keep the resilient legs of the retainer 81 engaged in the end of the nut 73.
  • the back-stop mechanism 36 (Fig. 8) includes a cam 86 pivoted to the housing 26 at location 87.
  • the cam 86 includes stop surfaces or steps 88, detent depressions 89 that correspond to surfaces 88, and teeth 90.
  • the steps 88 are shaped to mateably engage the seat- attached bracket 56 to limit the rearward rotation of the back frame 30 by limiting the rearward movement of the seat 24. This allows a seated user to limit the amount of recline to a desired maximum point.
  • a leaf spring 91 (Fig. 10) is attached to the housing 26 by use of a U-shaped finger 92 that slips through a first hole and hooks into a second hole in the housing 26.
  • the opposite end of the leaf spring includes a U-shaped bend 93 shaped to mateably slidably engage the detent depressions 89.
  • the depressions 89 correspond to the steps 88 so that, when a particular step 88 is selected, a corresponding depression 89 is engaged by spring 91 to hold the cam 86 in the selected angular position.
  • the steps 88 (and the depressions 89) are located angularly close together in the area corresponding to chair positions close to the upright position of the back frame 30, and are located angularly farther apart in the area corresponding to more fully reclined chair positions. This is done so that seated users can select from a greater number of back-stopping positions when near an upright position.
  • the cam 86 is rotated through use of a control that includes a pivoting lever 94, a link
  • Handle 96 includes a body 101 that is rotatably mounted on tube section 66 of MAS pivot bracket 65, and further includes a flipper 99 that provides easy grasping to a seated user.
  • a protrusion 100 extends from the body and is pivotally attached to link 95. To adjust the back-stop mechanism 36, the handle 96 is rotated, which rotates cam 86 through operation of link 95 and lever 94.
  • the cam 86 is rotated to a desired angular position so that the selected step 87 engages the seat-attached bracket 56 to prevent any further recline beyond the defined back-stop point. Since the seat 24 is attached to the back frame 30, this limits recline of the back 22.
  • a modified control for operating the back-stop cam 86 is shown in Fig. 11 A.
  • the modified control includes a pivoting lever 94A and rotatable handle 96A connected to the handle 96A by a rotary pivot slide joint 380.
  • the lever 94A includes teeth 381 that engage cam 86 and is pivoted to housing 26 at pivot 97, both of which are like lever 94.
  • link 95 is eliminated and replaced with the single joint 380.
  • Joint 380 includes a ball 381 (Fig. 11B) that extends from the lever 94A.
  • a snap-on "car” or bearing 382 includes a socket 383 for pivotally engaging ball 381 to define a ball-and-socket joint.
  • the bearing 382 includes outer surfaces 384 that slidably engage a slot 385 in a radially-extending arm 386 on handle 96A (Fig. 11C).
  • the joint 380 operably connects the handle 96A to the lever 94A, despite the complex movement resulting from rotation of the handle 96A about a first axis, and from rotation of the lever 94 A about a second axis that is skewed relative to the first axis.
  • the modified control provides an operable interconnection with few parts, and with parts that are partially inside of the control housing 26, such that the parts are substantially hidden from view to a person standing beside the chair.
  • the back frame 30 and back shell 31 form a compliant back support for a seated user that is particularly comfortable and sympathetic to back movements of the seated user, particularly in the lumbar area of the back 22. Adjustment features on the assembly provide further comfort and allow a seated user to customize the chair to meet his/her particular needs and preferences in the upright through reclined positions.
  • the back frame 30 (Fig. 12A) is curvilinearly shaped and forms an arch across the back area of the chair 20.
  • the back frame 30 could be entirely metal, plastic, or a combination thereof.
  • the rigid internal reinforcement 102 described below could be tubular, angle iron, or a stamping.
  • the illustrated back frame 30 includes a looping or arch-shaped internal metal reinforcement 102 and an outer molded-on polymeric skin or covering 103. (For illustrative purposes, the covering 103 is shown as if it is transparent (Fig. 12A), so that the reinforcement 102 is easily seen.)
  • the metal reinforcement 102 includes a looping intermediate rod sec t ion 104 (only half of which is shown in Fig. 12A) having a circular cross section. Reinforcement
  • Each connector 107 includes a stem 108 welded to intermediate section 104 and includes a transverse rod sec t ion
  • the rod section 109 extended through stem 108.
  • the rod section 109 is located outboard of the skin or shell
  • each back frame of the present chair defines spaced-apart lower connections or aper t ures 113 that define pivot points and a top connection(s) 107 forming a triangular tripod-like arrangement.
  • This arrangement combines with the semi-rigid resiliently-flexible back shell 31 to posturally flexibly support and permit torsional flexing of a seated user's torso when in the chair.
  • the lower connections 113 could occur on the seat instead of the back of the chair.
  • the configured ends 105 include an inner surface 105 ' (Fig. 13) that may or may not be covered by the outer shell 103.
  • the reinforcement 102 is substantially covered by the shell 103, but a pocket is formed on an inside surface at configured ends 105 at apertures 111-113.
  • the configured ends 105 include extruded flanges forming apertures 111-113 which in turn define the back-tilt axis 23, the seat- tilt axis 25, and a bottom pivotal connection for the back shell 31, respectively.
  • the apertures 111 and 112 (Fig.
  • bearing 13 include frustoconically-shaped flanges 116 defining pockets for receivmg multi-piece bearings 114 and 115, respectively.
  • Bearing 114 includes an outer rubber bushing 117 engaging the flanges 116 and an inner lubricous bearing element 118.
  • a pivot stud 119 includes a second lubricous bearing element 120 that matingly slidingly engages the first bearing element 118.
  • the stud 119 is extended through bearing 114 in an outward direction and threadably into welded nut 51 on side arms 49 of the base frames 26, 45, and 49.
  • the bearing element 118 bottoms out on the nut 51 to prevent over-tightening of the stud 119.
  • the head of the stud 119 is shaped to slide through the aperture 111 to facilitate assembly by allowing the stud to be threaded into nut 51 from the inboard side of the side arm 49. It is noted that the head of stud 119 can be enlarged to positively capture the configured end 105 to the side aim 49 if desired.
  • the present arrangement including the rubber bushings 117 allows the pivot 23 to flex and compensate for rotation that is not perfectly aligned with the a)tis 23, thus reducing the stress on the bearings and reducing the stress on components of the chair such as on the back frame 30 and the side arms 49 where the stud 119 is misaligned with its axis.
  • the lower seat-to-back frame bearing 115 is similar to bearing 114 in that bearing 115 includes a rubber bushing 121 and a lubricous bearing element 122, although it is noted that the frustoconical surface faces inwardly.
  • a welded stud 123 extends from seat carrier 124 and includes a lubricous bearing element 125 for rotatably and slidably engaging the bearing element 122. It is noted that in the illustrated arrangement, the configured end 105 is trapped between the side arms 49 of base frames 26, 45, and 49 and the seat carrier 124, such that the beaiings 114 and 115 do not need to be positively retained to the configured ends 105. Nonetheless, a positive bearing arrangement could be readily constructed on the pivot 112 by enlarging the head of the stud 119 and by using a similar headed stud in place of the welded stud 123.
  • FIG. 13A A second configuration of the configured end of back frame 30 is shown in Fig. 13A. Similar components are identified by identical numbers, and modified components are identified with the same numbers and with the addition of the letter "A. "
  • Pivot 112A (including a welded-in stud 123A that pivotally supports the seat carrier 124 on the back frame 30) includes a threaded axial hole in its outer end.
  • a retainer screw 300 is extended into the threaded hole to positively retain the pivot assembly together. Specifically, a washer 301 on screw 300 engages and positively retains the bearing sleeve 125 that mounts the inner bearing element 122 on the pivot stud
  • the upper pivot 111A that pivotally supports the back frame 30 on the side arms 50 of the base frame is generally identical to the lower pivot 112, except that the pivot 111 A faces in an opposite inboard direction.
  • a stud 119A is welded onto side arm 50.
  • the bearing is operably mounted on the stud 119A in the bearing pocket defined in the base frame 30 and held in place with another washered screw 300.
  • the back frame 30 is flexed apart to engage bearing 115, and the configured ends 105A .are twisted and resiliently flexed, and thereafter are released such that they spiing back to an at-rest position.
  • This arrangement provides a quick assembly procedure that is fastenerless, secure, and readily accomplished.
  • the present back shell system shown in Figs. 12, 15, and 16 (and the back systems of F i gs. 12D-12I) is compliant and designed to work very sympathetically with the human back.
  • the word "compliant" as used herein is intended to refer to the flexibility of the present back in the lumbar area (see Figs. 12 and 12F-12I) or a back structure that provides the equivalent of flexibUity (see Figs.
  • the back sheU 31 has three specific regions, as does the human back, those being the thoracic region, the lumbar region, and the pelvic region.
  • a relatively stiff upper shell portion (Fig. 12) is provided that supports the relatively stiff thoracic (rib cage) region 252 of a seated user. It carries the weight of a user's torso.
  • the upper pivot axis is strategically located directly behind the average user's upper body center of gravity, balancing his/her back weight for good pressure distribution.
  • the lumbar region 251 of a human's back is more flexible.
  • the shell lumbar region of back shell 31 includes two curved, vertical-living hinges 126 at its side edges (Fig. 15) connected by a number of horizontal "cross straps" 125 " .
  • These straps 125 " are separated by widthwise slots 125 ' allowing the straps to move independently.
  • the slots 125 ' may have radiused ends or teardrop-shaped ends to reduce concentration of stress.
  • This shell area is configured to comfortably and posturally support the human lumbar region.
  • Both side straps 125 " are flexible and able to substantially change radius of curvature from side to side.
  • This shell region automatically changes curvature as a user changes posture, ye t main t ains a relatively consistent level of support. This allows a user to consciously (or subconsciously) flex his/her back during work, temporarily moving stress off of tiring muscles or spinal disc portions onto different ones. This frequent motion also "pumps" nutrients through the spine, keeping it nourished and more healthy.
  • a specific user leans against the shell 31 he she exerts unique relative pressures on the various lumbar "cross straps.” This causes the living hinges to flex in a unique way, urging the shell to conform with a user's unique back shape.
  • the cross straps can also flex to better match a user's side- to-side shape.
  • the neutral axis of the human spine is located well inside the back.
  • the "side straps” are located forward of the central portion of the lumbar region (closer to the spine neutral axis), helping the shell flexure mimic human back flexure.
  • the P elvic re g ion 25 0 is rather inflexible on human beings. Accordingly, the lowest portion of the shell 31 is also rather inflexible so that it posturally/mateably supports the inflexible human pelvis.
  • the lower shell/back frame pivot point is strategically located near but a bit rearward of the human hip joint. Its nearness allows the shell pelvic region to rotate sympathetically with a user's pelvis.
  • the lumbar region of the shell stretches (the slots widen) somewhat less than the user's back skin, enough for good sympathetic flexure, but not so much as to stretch or bunch up clothing.
  • the present back shell construction 31 (Fig. 4 A) comprises a resUiently- flexible molded sheet made from polymeric material such as polypropylene, with top and bottom cushions positioned thereon (see Fig. 4A).
  • the back shell 31 (Fig. 16) includes a plurality of horizontal slots 125 ' in its lower half that are located generally in the lumbar area of the chair 20.
  • the slots 125 ' extend substantially across the back shell 31, but terminate at locations spaced from the sides so that resUient vertical bands of material 126 are formed along each edge.
  • the bands of material or side straps 126 are designed to form a naturally forwardly-convex shape, but are flexible so that they provide an optimal lumbar support and shape to a seated user.
  • the bands 126 allow the back shell to change shape to conform to a user's back shape in a sympathetic manner, side to side and vertically.
  • a ridge 127 extends along the perimeter of the shell 31.
  • a pair of spaced-apart recesses 128 are formed generally in an upper thoracic area of the back shell 31 on its rearward surface. The recesses 128 (Figs.
  • the recesses 128 each extend upwardly into the back shell 31 such that opposing flanges 131 formed adjacent the narrow portion 129 pivotally capture the rod section 109 of the T-top connector 107 as the stem 108 slides into the narrow portion 129. Ridges 132 in the recesses 128 frictionally positively retain the top connectors 107 and secure the back shell 31 to the back frame 30, yet allow the back shell 31 to pivot about a horizontal a ⁇ tis. This allows for the back shell 31 to flex for optimal lumbar support without undesired restriction.
  • a belt bracket 132 (Fig. 16) includes an elongated center strip or strap 133 that matches the shape of the bottom edge of the back shell 31 and that is molded into a bottom edge of the back shell 31.
  • the strip 133 can also be an integral part of the back shell or can be attached to back shell 31 with screws, fasteners, adhesive, frictional tabs, insert-molding techniques, or in other ways of attaching known in the art.
  • the strip 133 includes side arms/flanges 134 that extend forwardly from the ends of strip 133 and that include apertures 135.
  • the torsional adjustment lumbar mechanism 34 engages the flanges 134 and pivotally attaches the back shell
  • the torsional adjustment lumbar spiing mechanism 34 is adjustable and biases the back shell 31 to a forwardly-convex shape to provide optimal lumbar support for a seated user.
  • the torsion ⁇ adjustment lumbar spiing mechanism 34 cooperates with the resUient flexibUity of the back shell 31 and with the shape-changing abUity of the vertically-adjustable lumbar support 35 to provide a highly-adjustable and comfortable back support for a seated user.
  • the pivot location 113 is optimally chosen to be at a rear of the hip bone and somewhat above the seat 24. (See Fig. 12.)
  • the fore/aft distance from pivot locations 113 to strip 133 is apprOaXimately equal to the distance from a seated user's hip joint/a.xis to their lower spine/taU bone region so that the lower back 250 moves very simUarly and sympathetically to the way a seated user's lower back moves during flexure about the seated user's hip joint.
  • the location 113 in combination with a length of the forwardly-extending side flanges 133 causes back shell 31 to flex in the following sympathetic manner.
  • the pelvic supporting area 250 of the back shell construction 31 moves sympathetically rearwardly and downwardly along a path selected to match a person's spine and body movement as a seated user flexes their back and presses their lower back against the back shell construction 31.
  • the lumbar support area 251 simultaneously flexes from a forwardly-concave shape toward a more planar shape.
  • the thoracic support area 252 rotates about top connector 107 but does not flex a s .ubstantial amount.
  • the total angular rotation of the pelvic and thoracic supporting areas 250 and 252 are much greater than in prior art synchrotUt chairs, which provides substantially increased support.
  • the back shell construction 31 also flexes in a horizontal plane to provide good postural support for a seated user who twists his/her torso to reach an object.
  • the back frame 30 is oriented at about a 5° rearward angle from vertical when in the upright position, and rotates to about a 30° rearward angle from vertical when in the fully reclined position.
  • the seat-tilt axis 25 is rearward and at an angle of about 60° below horizontal from the back-tilt axis 23 when the back frame 30 is in the upright position, and pivots to almost vertically below the back-tilt axis 23 when the back frame 30 is in the fully reclined position.
  • Back constructions 31A-31F are additional constructions adapted to provide a sympathetic back support simUar in many aspects to the back shell construction 31.
  • the present invention is contemplated to include attaching back constructions 31A-31F to the seat or the base frame at bottom connections.
  • the Ulustrated constructions 31A-31F are used in combination with back frame 30 to provide a specific support taUored to thoracic, lumbar, and pelvic regions of a seated user.
  • Each of the back constructions 31A-31F are pivoted at top and bottom pivot connections 107 and 113, and each include side arms 134 for flexing about a particularly located lever pivot axis 113.
  • the back constructions 31A-31F achieve their sympathetic back support in slightly different ways.
  • Back construction 31A (Fig. 12D) includes a cushioned top back support 255 pivoted at top pivot connection 107, and further includes a cushioned bottom back support 256 pivoted at bottom location 113 by the belt bracket 132 including side flanges 134.
  • Top and bottom back supports 255 and 256 are joined by a pivot/slide connection 257.
  • Pivot/slide connection 257 comprises a bottom pocket formed by a pair of flanges 258, and top flange 259 that both slides and pivots in the pocket.
  • a torsional lumbar support spring mechanism 34 is attached at bottom pivot location 113 and, if desired, also at connection 107 to bias top and bottom back supports 255 and 256 forwardly.
  • Back construction 3 IB (Fig. 12E) includes a top back support 261 pivoted at top connection 107, a bottom back support 262 pivoted at lower connection 113 on belt bracket side flange 134, and an intermediate back support 262 operably positioned therebetween.
  • Intermediate back support 262 is pivoted to bottom back support 262 at pivot 263, and is slidably pivoted to top back .support 261 at pivot slide joint 264.
  • Pivot/slide joint 264 is fo ⁇ ned by top flanges 265 defining a pocket, and another flange 266 with an end that pivots and slides in the pocket. Spiings are positioned at one or more joints 107, 113, and 264 to bias the back construction 260 to a forwardly-concave shape.
  • Back construction 31C (Fig. 12F) is simUar to back shell construction 31 in that it includes a sheet-like flexible shell with transverse lumbar slits.
  • the shell is pivoted at top and bottom connections 107 and 113 to back frame 30.
  • the sheU of back construction 31C is biased toward a forwardly-convex shape by a torsion spring mechanism 34 at bottom pivot 113 and at top pivot 107, by a curvUinear leaf spring 271 in the lumbar area of the shell, by a spiing 272 that presses the shell forwardly off of an intermediate section of back frame 30, and/or by a vertical spiing 273 that extends from top connection 107 to a rear pivot on belt bracket side flange 134.
  • Back construction 3 ID (Fig. 12G) includes a transverse leaf spring 276 that spans between the opposing sides of back frame 30, and that biases the lumbar area of its back shell 277 forwardly, much like spiing 272 in the back construction 270.
  • Back construction 3 IE (Fig. 12H) includes vertical leaf springs 279 embedded in its back shell 280 that bias the lumbar area of back shell 280 forwardly, much like springs 271 in back construction 270.
  • back construction 278 includes only a single top pivot connection 107.
  • Back construction 3 IF (Fig. 121) includes a vertical spring 282 connected to a top of the back frame 30, and to belt bracket 132 at a bottom of its back shell 283.
  • the torsional lumbar support spring mechanism 34 (Fig. 121) can be designed in many different constructions, but includes at least a spring operably connected between the back frame 30 and the back shell 31.
  • the arrangement includes a tension adjustment device having a handle and a friction latch to provide for tension adjustment.
  • the spring biases the belt bracket 132 rotationally forward so that the back shell 31 defines a forwardly-convex shape optimally suited for lumbar support to a seated user.
  • the tension of the spring is adjusted to provide an optimal forward lumbar force.
  • the back shell 31 flexes "sympathetically" with a movement that ⁇ rrors a user's spine and body flesh.
  • the force of the bands of material 126 in the shell 31 provide a relatively constant force toward their natural curvUinear shape, but when combined with the torsional lumbar support spiing mechanism 34, they provide a highly-adjustable bias force for lumbar .support as the user leans against the lumbar area.
  • a fixed non-adjustable spring biasing the back belt or the back shell flex zone directly could be used, or that an adjustable spiing only adjustable during installation could be used.
  • the present adjustable device allows the greatest adjustment to meet varying needs of seated users. Thus, a user can assume a variety of well-supported back postures.
  • belt bracket 132 is pivoted to back frame 30 by a stud 290 that extends inboard from back frame 30 through a hole 291 in belt bracket side flange 134.
  • a bushing 292 engages the stud 290 to provide for smooth rotation, and a retainer 293 holds the stud 290 in hole 291.
  • a base 294 is screwed by screws 294 ' or welded to back frame 30, and includes a protrusion 295 having a sun gear 296 and a protruding tip 297 on one end.
  • a hub 298 includes a plate 299 with a sleeve-like boss 300 for receiving the protrusion 295.
  • the boss 300 has a slot 301 for receiving an inner end 302 of a spiral spring 303.
  • the body of spring 303 wraps around protrusion 295. and terminates in a hooked outer end 304.
  • Hub 298 has a pair of axle studs 305 that extend from plate 299 in a direction opposite boss 300.
  • a pair of pie-shaped planet gears 306 are pivoted to axle studs 305 at pivot holes 307.
  • a plurality of teeth 308 are located in an arch about pivot holes 307 on the planet gears 306, and a driver pin 309 is located at one end of the arc.
  • a cup- shaped handle 310 is shaped to cover gears 306, hub 298, spring 303, and base 294.
  • the handle 310 includes a flat end panel 311 having a centered hole 312 for rotatably engaging the protruding tip 297 of base 294.
  • a pair of opposing spirally-shaped recesses or channels 313 are formed in the end panel 311.
  • the recesses 313 include an inner end 314, an outer end 315 , and an elongated portion having a plurality of detents or scallops 316 formed between the ends 314 and 315.
  • the recesses 313 mateably receive the driver pins 309.
  • spiral spring 303 Due to the connection of spiral spring 303 to hub 298, spiral spring 303 is wound tighter (or unwound). Thus, the tension of spring 303 on belt bracket 132 is adjustably changed .
  • the detents 316 engage the driver pins 309 with enough frictional resistance to hold the spiing 303 in a desired tensioned condition. Due to the arrangement, the angular winding of spiral spring 303 is greater than the angular rotation of handle 310.
  • a base bracket 244A is attached to configured end 105A of back frame 30.
  • a lever 306A and driver 298A are operably mounted on base bracket 244A to wind a spiral spring 303A as a handle 310A is rotated.
  • the base bracket 244A includes a pivot pin 290 that pivotally engages hole 291 in belt bracket 132.
  • a second pin 317 extends through arcuate slot 318 in configured end 105A, which slot 318 extends around pivot pin 290 at a constant radius .
  • Two pins 360 and 361 extend from base bracket 244A opposite pivot pin 290.
  • the driver 298A includes an apertured end 362 with a hole 363 for rotatably engaging center pin 360.
  • the end 362 includes an outer surface 364 with a slot therein for engaging an inner end 365 of spiral spring 303A.
  • the outer end 365 is hook-shaped to securely engage pin 317 on the belt bracket
  • a finger-like stud 366 extends laterally from the outer end 367 of driver 298 A.
  • Lever 306A includes a body with a hole 368 for pivotally engaging pin 361, and a slot 369 extending arcuately around hole 368.
  • a pin 370 extends from l ever 306A for engaging a spiral cam slot 313A on an inside surface of cup-shaped handle 310A.
  • a tooth 371 on lever 306A is positioned to engage stud 366 on driver 298A.
  • Hole 372 on handle 310A rotatably engage the pivot pin 360 on base bracket 244A.
  • Handle 310A is rotatable between a low tension position (Figs. 12L and 12LL) and a high tension position (Figs. 12M and 12MM). Specifically, as handle 310A is rotated, pin 370 rides along slot 313A causing lever 306A to rotate about hole 368 and pivot pin 361. As lever 306A rotates , tooth 371 engages pin 366 to rotate driver 298A about pin 360. Rota t ion of driver 298A causes the inside end 365 of spring 303A to rotate, thus winding (or unwinding) sp i ing 303A.
  • driver 298A, lever 360A, and handle 310A provide a mechanical advantage of about 4:1, so that the spiral spiing 303 A is adjustably wound with a desired amount of adjustment force on the handle 310A.
  • a rotation of about 330° of the handle 310A produces a spring tension adjustment winding of about 80°.
  • a vertical adjustable lumbar system 35 (Fig. 16) that includes a slide frame 150 (Fig. 19) that is generally flat and that includes several hooked tabs 151 on its front surface.
  • a concave lumbar support sheet 152 (Fig. 16) of flexible material such as spring steel includes a plurality of vertical slots that form resUient leaf- spring-like fingers 153 along the top and bottom edges of the sheet 152.
  • the (optional) height adjustable back support sheet 152 is basically a radiused sheet spring that can, with normal back support pressures, deflect untU it matches the shape of the back shell beneath it. In doing so, it provides a band of higher force across the back.
  • This provides a user with height-adjustable localized back support, regardless of the flexural shape of the user's back.
  • it provides the benefits of a traditional lumbar height adjustment without forcing a user into a particular rigid back posture.
  • the fabric or upholstery on the back is always held taunt, such that wrinkles are eliminated.
  • Stretch fabric can also be used to eliminate wrinkles.
  • a user may also use this device for a second reason, that reason being to more completely adapt the back shell shape to his/her own unique back shape.
  • a second reason being to more completely adapt the back shell shape to his/her own unique back shape.
  • humans vary dramatically in back shape.
  • User's with more extreme shapes wUl benefit by sliding the device into regions where their back does not solidly contact the shell.
  • the device will effectively change its shape to exactly "fill in the gap" and provide good support in this area. No other known lumbar height adjustor does this in the manner described below.
  • the slide frame 150 is vertically adjustable on the back shell 31 (Fig. 16) and is positioned on the back shell 31 between the back shell 31 and the back cushion. Alternatively, it is contemplated that the slide frame 150 could be located between the back cushion and under the upholstery covering the back 22, or even on a front face of the back 22 outside the upholstery sheet covering the back 22.
  • a laterally-extending guide 157 (Fig. 19) is formed at each of the ends of the slide frame 150.
  • the guides 157 include opposing flanges 158 foiming inwardly-facing grooves.
  • Molded handles 159 (Fig. 20) each include a leg 160 shaped to mateably telescopingly engage the guides 157 (Figs. 17 and 18).
  • the handles 159 further include a C-shaped lip 160 shaped to snappingly engage and slide along the edge ridge 127 along the edge of back shell 31.
  • an enlarged flat end portion 161 of handle 159 extends laterally outwardly from molded handle 159.
  • the end portion 161 is relatively thin at a location 161 ' immediately outboard of the lip 160, so that the handle 159 can be extended through a relatively thin slot along the side edge of the back 22 when a cushion and upholstery sheet are attached to the back shell 31.
  • the illustrated back 22 of Fig. 12 includes a novel construction incorporating stretch fabric 400 sewn at location 401 to a lower edge of the upholstery sheet 402 for covering a front of the back 22.
  • the stretch fabric 400 is further sewn into a notch 406 in an extrusion 403 of structural plastic, such as polypropylene or polyethylene.
  • the extrusion 403 is attached to a lower portion 404 of the back shell 31 by secure means, such as snap-in attachment, hook-in attachment, rivets, screws, other mechanical fasteners, or other means for secure attachment.
  • the foam cushion 405 of the back 22 and the vertically-adjustable lumbar support device 35 are positioned between the sheet 402 and back shell 31.
  • the stretch fabric wUl have a stretch rate of at least about 100%, with a recovery of at least 90% upon release.
  • the stretch fabric 400 and sheet 402 are sewn onto the back 22 in a tensioned condition, so that the sheet 402 does not wrinkle or pucker despite the large flexure of the lumbar region 251 toward a planar condition.
  • the stretch fabric 400 is in a low visibility position, but can be colored to the color of the chair if desired. It is noted that covering 402 can be extended to cover the rear of back 22 as well as its front.
  • the .seat 24 (Fig. 4B) is supported by an undercarriage that includes a seat front slide 162 and the seat carrier 124.
  • a manually depth- adjustable seat frame 163 is slidably positioned on the seat carrier 124 (as is shown in Figs. 4B and 21-30).
  • the features of the seat frame 163 and seat rear carrier 124 can be incorporated into a single component, such as is Ulustrated in Fig. 29 by frame member 163 ' .
  • a seat shell 164 (Fig. 4B) includes a buttock-supporting rear section 165 that is positioned on the seat carrier 124.
  • the buttock-supporting rear section 165 carries most of the weight of the seated user, and acts somewhat like a perch in this regard.
  • the seat shell 164 further includes a thigh-supporting front section 166 that extends forwardly of the seat frame 163. Front section 166 is connected to rear section 165 by a resUient section
  • the resUient section 167 strategicaUy located generally under and slightly forward of a seated user's hip joint.
  • the resUient section 167 has a plurality of transverse slots 168 therein.
  • the slots 168 are relatively short and are staggered across the seat shell 164, but are spaced from the edges of the seat shell 164, such that the band of material 169 at the edges of the seat shell 164 remains intact and uninterrupted.
  • the bands 169 securely connect the front and rear sections 166 and 165 together and bias them generally toward a planar condition.
  • a seat cushion 170 is positioned on seat frame 163 and is held in place by upholstery sheet and/or adhesive or the like.
  • Slide 162 (Fig. 4B) includes a top panel 171 with C-shaped side flanges 172 that extend downwardly and inwardly.
  • a linear lubricous cap 173 is attached atop each sidewall of housing 26 and a mating bearing 174 is attached inside of C-shaped side flanges 172 for slidably engaging the lubricous cap 173.
  • the seat-attached bracket 56 is attached under the top panel 171 and is located to operate with the back-stop mechanism 36.
  • An axle 174 ' is attached atop the top panel 171 and includes ends 175 that extend laterally from the slide 162.
  • Seat carrier 124 (Fig. 4B)
  • Seat carrier 124 is stamped from sheet metal into a "T" shape, and includes a relatively wide rear section 176 and a narrower front section 177. Embossments such as elongated embossments 178, 179, and 180 are formed in sections 176 and 177 along with side-down flanges 181 and side-up flanges 182 to stiffen the component. Two spaced-apart stop tabs 183 and a series of latch apertures 184 are formed in the front section 177 for reasons discussed below.
  • the welded studs 123 are attached to side- up flanges 182 and extend laterally. As discussed above, the studs 123 define the seat-tUt axis 25 at this location.
  • Seat frame 163 (Fig. 4B) is T-shaped, much like the seat carrier 124, but seat frame 163 is shaped more like a pan and is generally larger than the seat carrier 124 so that it is better adapted to support the seat shell 164 and seat cushion 170.
  • Seat frame 163 includes a front portion 185 and a rear portion 186.
  • the front portion 185 includes a top panel 187 with down flanges 188 at its sides. Holes 189 at the front of down flanges 188 form a pivot axis for the active thigh flex device 190 described below.
  • Other holes 191 spaced rearwardly of the holes 189 support an axle that extends laterally and supports a multi-functional control 192 for controlling the seat depth adjustment and for controlling the active thigh flex device 190.
  • the center of front portion 185 is raised and defines a sidewall 193 (Fig. 23) having three apertures 194-196 that cooperate to pivotally and operably support a depth latch 197.
  • a depression 198 is formed in the center of front portion 185 and a slot 200 is cutout in the center of the depression 198.
  • a T-shaped stop limiter 199 (Fig. 26) is positioned in the depression 198 and screw-attached therein, with the stem 201 of the limiter 199 extending downwardly through the slot 200 (Figs. 26 and 26A).
  • the U-bracket 203 (Fig. 28) includes apertures for pivotally supporting one end of a gas spring 204 used in the active thigh flex support device 190 described below.
  • the rear section 176 (Fig. 23) includes a U-shaped channel section 205 that extends around its perimeter and an outermost perimeter flange 206, both of which serve to stiffen the rear section 176.
  • Flat areas 205 ' are formed on opposing sides of the rear section 176 for slidably engaging the top of rear beaiings 209.
  • a pair of parallel elongated brackets 207 (Fig. 4B) are attached under the forwardly- extending outer sides of the U-shaped channel section 205 for slidingly supporting the seat frame 163 on the seat carrier 124.
  • the elongated Z-brackets 207 form inwardly-facing C- shaped guides or tracks (Fig. 21) that extend fore-to-aft under the seat frame 163.
  • a bearing member is attached inside the guides of bracket 207 to provide for smooth operation if desired.
  • Two spaced-apart front beaiings 208 (Fig. 4B) and two spaced-apart rear beaiings 209 are attached atop the seat carrier 124, front bearings 208 being attached to front section 177.
  • the rear beaiings 209 are configured to slidably engage the guides in brackets 207, and further include a tongue 210 that extends inwardly into the C-shaped portion of the C-shaped guides.
  • the tongue 210 captures the seat frame 163 so that the seat frame 163 cannot be pulled upwardly away from the seat carrier 124.
  • the front bearings 208 slidably engage the underside of the front section 187 at spaced-apart locations.
  • the front bearings 208 can also be made to capture the front portion of the seat frame 163; however, this is not deemed necessary due to the thigh flex device which provides this function.
  • the depth adjustment of seat 24 is provided by manually sliding seat frame 163 on bea i ings 208 and 209 on seat carrier 124 between a rearward position for minimum seat depth (see Fig. 24) and a forward position for maximum seat depth (see Fig. 25).
  • the stem 201 (Fig. 26A) of limiter 199 engages the stop tabs 183 in seat carrier 124 to prevent the seat 24 from being adjusted too far forwardly or too far rearwardly.
  • the depth latch 197 (Fig. 23) is T- shaped and includes pivot tabs 212 and 212 ' on one of its arms that pivotally engages apertures 194 and 195 in seat frame 163.
  • the depth latch 197 further includes a downwardly-extending latching tooth 213 on its other arm that extends through aperture 195 in seat frame 163 in t o a selected one of the series of slots 214 (Fig. 26) in the seat carrier 124.
  • a "stem" of the depth latch 197 (Fig. 23) extends laterally outboard and includes an actuation tab 215.
  • Multi-func t ion control 192 includes an inner axle 217 that supports the main components of the multi-func t ion control. One of these components is an inner sleeve 218 rotatably mounted on axle 217.
  • the handle 219 is connected to an outer end of the inner sleeve 218 and a protrusion 220 is connected to an inner end of the inner sleeve 218.
  • the protrusion 220 is connected to the actua t ion tab 215, such that rotation of the handle 219 moves the protrusion 220 and pivots the latch 197 about latch pivots 194 and 195 in an up and down disconnection.
  • the result is that the latching tooth 213 is released from the series of slots 214, so that the seat 24 can be adjusted to a new desired depth.
  • a spring on inner sleeve 218 biases the latch 197 to a normally engaged position. It is contemplated that a variety of different spring arrangements can be used, such as by including an internal spring operably connected to inner sleeve 218 or to la t ch
  • a front reinforcement plate 222 (Fig. 28) is attached to the underside of the t high- supporting front section 166 of seat shell 164.
  • a Z-shaped bracket 221 is attached to plate 222 and a bushing 223 is secured between the bracket 221 and t he plate 222.
  • a bent rod axle 224 is rotatably supported in bushing 223 and includes end sections 225 and 226 that extend through and are pivotally supported in apertures 190 of down flanges 189 of seat frame 163.
  • the end section 226 includes a flat side, and a U-shaped bracket 227 is non-rotatably attached to the end section 226 for supporting an end of gas spring 204.
  • the U-shaped bracket 227 is oriented at an angle to a portion of the bent rod axle 224 that extends toward bushing 223, such that the U- shaped bracket 227 acts as a crank to raise and lower the thigh-supporting front portion 166 of seat shell 164 when the gas spring 204 is extended or retracted.
  • the gas spring 204 is operably mounted between brackets 227 and 203, so that when extended, the front thigh- suppoi ing section 166 of seat shell 164 is moved upwardly to provide additional thigh support.
  • the thigh-supporting section 166 provides some flex even when the gas spring 204 is locked in a fixed extension, so that a person's thighs are comfortably supported at all times. Nonetheless, the infinite adjustabUity of this active thigh support system provides an improved adjustabUity that is very useful, particularly to people with shorter legs.
  • the gas spring 204 (Fig. 28) is self-locking and mcludes a release button 233 at its rear end that is attached to the bracket 203 for releasing the gas spring 204 so that its extendable rod is extendable or retractable.
  • Such gas springs 204 are well-l nown in the art.
  • the multi- functional control 192 (Fig. 3) includes an actuator for operating the release button 233.
  • the multi-functional control 192 includes a rotatably outer sleeve 229 (Fig. 23) operably positioned on the inner sleeve 218 and a handle 230 for rotating the outer sleeve 229.
  • a connector 231 extends radially from an inboard end of outer sleeve 229.
  • a cable 232 extends from the connector 231 on outer sleeve 229 to the release button 233 (Fig. 28).
  • the cable 232 has a length chosen so that when outer sleeve 229 is rotated, the cable 232 pulls on the release button 233 causing the internal lock of the gas spring 204 to release.
  • the release button 233 is spring biased to a normally locked position.
  • a seated user adjusts the active thigh flex support system by operating the handle 230 to release the gas spring 204.
  • the seated user then presses on (or raises their legs away from) the thigh-supporting front portion 166 of the seat shell 164 causing the gas spiing 230 to operate the bent rod axle 217 to re-adjust the thigh- supporting front portion 166.
  • the active thigh support system 190 provides for infinite adjustment within a given range of adjustment.
  • a second rotatable handle 234 operably connected to a pneumatic vertical height adjustment mechanism for adjusting chair height by a Bowden cable 235, sleeve 235 ' , and side bracket 235 ' ' .
  • the detaUs of chair height adjustment mechanisms are well known, such that they do not need to be discussed herein.
  • the seat shell 164 and its supporting structure (Fig. 4B) is configured to flexibly support a seated user's thighs.
  • the seat cushion 170 includes an indentation 170A located slightly forwardly of the seated user's hip joint (Fig. 12).
  • the upholstery covering the seat cushion 170B includes a tuck or fold at the indentation 170A to allow the material to expand or stretch during downward flexing of the thigh support region since this results in a stretching or expanding at the indentation due to the fact that the top surface of the upholstery is spaced above the hinge axis of flexure of the seat shell 164.
  • a stretch fabric or separated front and rear upholstered cushions can be used.
  • a passive thigh flex device 237 (Fig. 30) includes a reinforcing plate 238 attached to the underside of the thigh-supporting front portion 166 of seat shell 164 (Fig. 4B).
  • a pair of L- shaped stop tabs 239 (Fig. 29) are bent downwardly from the body of the plate 238.
  • the L- shaped tabs 239 include horizontal fingers 240 that extend rearwardly to a position where the fingers 240 overlap a front edge 241 of the seat frame 163.
  • Bushings 242 are positioned inside the L-shaped tabs 239 and include a notch 243 engaging the front edge 241.
  • a curvilinearly- shaped leaf spring 244 is positioned transversely under the reinforcing plate 238 with the ends
  • the leaf spring 244 has a curvUinear shape so that it is in compression when in the present passive thigh flex device 237 .
  • the leaf spring 244 bends in the middle causing the reinforcing plate 238 to move toward t he front edge 241 of the seat frame 163.
  • the fingers 240 each move away from their respective bushings 242 (Fig. 31).
  • this passive thigh flex device 237 allows the user to flex the lateral sides of the thigh-supporting front portion 166 of the seat shell 164 independently or simultaneously.
  • the degree of flexure of the passive thigh flex device 237 is limited by the distance that bushings 242 can be moved in L-shaped tabs 239.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chairs Characterized By Structure (AREA)
  • Chairs For Special Purposes, Such As Reclining Chairs (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Special Chairs (AREA)

Abstract

A chair (20) is provided having a base assembly (21) including a base frame, a back frame (30) pivoted to the base frame for movement between upright and reclined positions, and a seat (24) slidably supported on the base frame and pivoted to the back frame so that the seat moves forwardly and its rear moves forwardly and downwardly with the back frame upon recline. A flexible back is connected to the back frame at top and bottom locations and is provided with lumbar adjustment for improved lumbar force/support and shape. A seat is provided with seat depth adjustment and with active and passive thigh flex support. A novel energy mechanism (27) is provided that includes a transverse spring (28), a lever (54), and a moment arm shift adjuster (29) for adjusting the spring tension on the back frame. The moment arm shift adjuster is readily adjustable and includes an overtorque device to prevent damage to components of the energy mechanism.

Description

SYNCHROTILT CHAIR WITH AD.JUSTABLE SEAT. BACK AND ENERGY MECHANISM
BACKGROUND The present invention concerns chairs having a reclineable back, a forwardly movable/tiltable seat that moves with a synchronous movement as the back is reclined, and an adjustable energy mechanism for supporting the back during recline.
A synchrotilt chair is described in U.S. Patent Nos. 5,050,931; 5,567,012; 4,744.603; and 4,776,633 (to Knoblock et al.) having a base assembly with a control, a reclineable back pivoted to the control, and a seat operably mounted to the back and control for synchronous motion as the back is reclined. This prior art chair incorporates a semi-rigid flexible shell that, in combination with the chair support structure, provides a highly-controlled postural support during the body movements associated with tasks/ work (e.g., when the back is in an upright position) and during the body movements associated with recline/relaxation (e.g., when the chair is in a reclined position). This prior art chair moves a seated user's upper body away from the user's work surface as the user reclines, thus providing the user with more area to stretch. However, we have discovered that often users want to remain close to their work surface and want to continue to work at the work surface, even while reclining and relaxing their body and wliile having continued postural support. In order to do this in the synchrotilt chair of U.S. Patent No. 5,050,931, users must scoot their chair forwardly after they recline so that they can still easily reach their work surface. They must also push away when they move back to an upright position to avoid being pushed against their work surface. "Scooting" back and forth once or twice is perhaps not a serious problem, but often users, such as office workers using computers, are constantly moving between upright and reclined positions, such that the process of repeatedly scooting back and forth becomes annoying and disconcerting. In fact, moving around and not staying in a single static position is important to good back health in workers whose jobs require a lot of sitting.
Another disadvantage of moving a seated user's upper body significantly rearwardly upon recline is that the user's overall center of gravity moves rearward. By providing a more constant center of gravity, it is possible to design a reclineable chair having greater recline or height adjustment without sacrificing the overall stability of the chair. Also, reclineable chairs that move a seated user's upper body significantly rearwardly have a relatively large footprint, such that these chairs may bump into furniture or a wall when used in small offices or in a compact work area. Still another disadvantage is that large springs are required in these existing reclineable chairs for back support, which springs are difficult to adjust due to the forces generated by the springs. However, the tension of these springs preferably should be adjustable so that heavier and lighter weight users can adjust the chair to provide a proper amount of support.
Concurrently, seated users want to be able to easily adjust the spiing tension for providing support to the back during recline. Not only do heavier/larger people need greater/firmer back support than lighter/smaller people, but the amount of support required changes at a greater rate during recline. Specifically, lighter/smaller people need a lesser initial level of support as they begin to recline and need a moderately increased level of support as they continue to recline; while heavier/larger people need a significantly higher minimum initial level of support as they begin to recline and need a significantly increased level of support as they continue to recline. Restated, it is desirable to provide a chair that is easily adjustable in its initial level of support to the back during initial recline and that automatically also adjusts the rate of increase in support during recline. Further, it is desirable to provide a mechanism to allow such an easy adjustment (1) while seated; (2) by a relatively weaker person; (3) using easily manipulatable adjustment controls; and (4) while doing so with a control that is not easily damaged by a relatively strong person who may "overtorque" the control. Further, a compact spiing arrangement is desired to provide optimal appearance and to m imize material cost and part size.
Manufacturers are becoming increasingly aware that adequate lumbar support is very important to prevent lower back discomfort and distress in workers who are seated for long periods. A problem is that the spiiral shape and body shape of workers vary tremendously, such that it is not possible to satisfy all workers with the same shape. Further, the desired level of firmness or force of support in the lumbar area is different for each person and may vary as a seated user performs different tasks and/or reclines in the chair and/or becomes fatigued. In fact, a static lumbar support is undesirable. Instead, it is desirable to provide different lumbar shapes and levels of support over a work day. Accordingly, an adjustable lumbar system is desired that is constructed to vary the shape and force of lumbar support. At the same time, the adjustable lumbar system must be simple and easy to operate, easily reached while seated, mechanically non-complex and low cost, and aesthetically/visually pleasing. Preferably, adjustment of the shape and/or force in the lumbar area should not result in wrinkles in the fabric of the chair, nor unacceptable loose/saggy patches in the fabric.
Modern customers and chair purchasers demand a wide variety of chair options and features, and a number of options and features are often designed into chair seats. However, improvement in seats is desired so that a seated user's weight is adequately supported on the chair seat, but simultaneously so that the thigh area of a seated user is comfortably, adjustably supported in a manner that adequately allows for major differences in the shape and size of a seated user's buttocks and thighs. Additionally, it is important that such options and features be incorporated into the chair construction in a way that minimizes the number of parts and maximizes the use of common parts among different options, maximizes efficiencies of manufacturing and assembling, maximizes ease of adjustment and the logicalness of adjustment control positioning, and yet that results in a visually pleasing design.
More specifically, in regard to synchrotilt chairs where the seat and the back pivot with synchronized angular movements, many synchrotilt chairs have been designed to pivot seats rearwardly as a user reclines. However, often these known seat constructions pivot about a seat pivot axis located rearward of a front edge of the seat. The result is that the knees of a seated user are lifted, resulting in undesired pressure on the seated user's thighs upon recline. Designing a flexible front lip into the seat does not fully resolve the undesired thigh pressure since the tliighs are not supported only at a front lip of the seat, but instead are supported along at least about half of the seat. Locating a flexible zone substantially rearwardly in a seat, such as rearward of the hip joint of a seated user, also does not resolve the situation since the weight of a seated user's upper torso tends to cause a seated user to slip/slide downwardly and forwardly off of a chair back when the chair back is reclined. This in turn causes the seated user to slide forward and off of the seat unless the seat includes a rear zone shaped and oriented to support the seated user against such forward slip/slide movement. The problem is compounded by the fact that the hip joint of different seated user's are not always located in the same relative location on the chair seat, such that one seat design may work well for one seated user, but not for another seated user.
Reclineable chairs have gained wide and enthusiastic support in the chair industry. Reclineable chairs often include a back frame pivoted by back pivots to opposite sides of a base or control housing to define a back-tilt axis. A problem is that the back pivots do not always align perfectly with the back-tilt axis. This misalignment can be a result of the back pivots being skewed at an angle to the back-tilt axis, or from the back pivots being parallel to the back-tilt axis but non-aligned with it, or from the back pivots changing orientation as a person sits in the chair or reclines in the chair. A net result is that, during recline of the back, at least one chair component must flex and mechanically give to prevent binding. Typically, either the control housing or back frame structure deforms, and/or the bearing is sloppy enough to compensate for the misalignment. If the deforaiation is large enough or if the chair components are not designed for such flexing, one of the chair components may break, fail, or fracture over time due to cyclical fatigue failure. Mother problem is that bearings of the back pivots will rapidly wear from the high forces generated by the misalignment. This results in looseness in the back, which can be objectionable in some situations. Similar problems can occur in synchrotilt chairs where a seat has spaced apart seat pivots that do not accurately align with a seat-tilt axis. It is noted that seat pivots must also support a large portion of the weight of a seated user, thus adding to their stress level.
Another problem with .known back pivots for chairs is that they can be cumbersome to assemble and/or manually intensive to assemble, as well as expensive, since holes must be aligned to receive pivot pins/axles, and the pivot pins/axles must be adequately but not overly tightened and secured. Specifically, during securement, the pivot pins/axles cannot be overtorqued or the assembly will bind, and also cannot be undertorqued or the assembly will be unacceptably loose and prone to come apart. Along with the above requirements, any back pivots and seat pivots must be integrated into the chair construction to provide an acceptable appearance, since they are often located in a highly visible area of a chair.
Accordingly, a chair constniction solving the aforementioned problems is desired.
SUMMARY OF INVENTION In one aspect of the present invention, a chair includes a base assembly with a control housing having opposing side flanges and a side pivot, a back pivoted to the base assembly for movement between upright and reclined positions, and a seat operably supported on the base assembly and connected to the back for coordinated synchronous movement with the back. An energy mechanism is provided for biasing the back toward the upright position. The energy mechanism includes an extendable/compressible spring positioned transversely in the control housing with one end supported on one of the side flanges, and further includes a lever pivoted to the side pivot and having a spring-engaging portion engaging a free end of the spring and also having a seat-biasing portion operably connected to the seat. The side pivot, the spring- engaging portion, and the seat-biasing portion are spaced from each other and airanged so lhat the spring biases the lever about a fulcrum located generally at the side pivot to bias the back toward the upright position. In another aspect of the present invention, a chair has a control housing including a pivot member, a reclineable back operably connected to the control housing for movement between upright and reclined positions, and an energy source in the control housing. The chair also includes an improved adjustable back tension controller for the chair wherein the pivot member is adjustable, and a lever engages the energy source and the pivot member and is operably connected to the back for biasing the back to the upright position. The lever and the pivot member have non-slip interfacing surfaces, at least one of which is curvilinear, so that the interfacing surfaces engage to define a fulcrum as the lever is rotated during recline of the back, and further so that the fulcrum changes location as the pivot member is adjusted to change a moment arm over which the energy source operates. In Yet another aspect of the present invention, a chair includes a base assembly, a component comprising one of a reclineable back and a movable seat pivoted to the base assembly for movement between first and second positions, and a spring with one end supported on the base assembly and another end operably connected to the component. The spring has a length and, when the component is moved from the first position to the second position, is simultaneously longitudinally compressed along the length and also laterally bent in a direction transverse to the length.
In yet another aspect of the present invention, a chair includes a base assembly including a control housing, a seat slidingly supported on the control housing, a back frame pivoted to the base assembly for movement between upright and reclined positions and operably attached to the seat, so that pivotal movement of the back frame and sliding movement of the seat are synchronized, and an energy mechanism including a spring having a length and an L- shaped torque member with a first leg engaging an end of the coil spring, and a second leg extending generally parallel the length of the spring. The first leg pivotally engages the control housing at a location spaced from the end of the spring. The second leg is operably connected to one of the seat and the back frame so that the spring biases the torque member in a manner biasing the back frame toward the upright position. In yet another aspect of the present invention, a chair includes a base assembly including a control housing, a seat slidingly supported on the control housing, a back assembly pivoted to the base frame for movement between upright and reclined positions and operably attached to the seat, so that pivotal movement of the back frame and sliding movement of the seat are synchronized. The control housing defines a relatively-thin horizontally-extending compartment under the seat. An adjustable energy mechanism is operably positioned in the compaitment. The adjustable energy mechanism includes an extensible energy source, a lever operably connected between the energy source and the seat, and an adjustment member adjustably pivotally supporting the lever for adjustably controlling force transmitted from the energy source through the lever to the seat. The energy source, the lever, and the adjustment member are movable in horizontal directions only so as to operate within the relatively-thin horizontally-extending compartment.
In yet another aspect of the present invention, a chair control includes a control housing, a component operably attached to the control housing for movement between a plurality of positions, an actuator on the control housing operably connected to the component for controlling movement of the component, a manually-operable handle for operating the actuator, and an overtorque device connecting the handle to the actuator. The overtorque device is constructed to limit force transmitted from the handle to the actuator to a maximum amount to prevent damage to the chair control. In one aspect, the present invention includes a chair having a base assembly including opposing side aims, a back frame having configured end sections pivoted to the side aims at back pivots for rotation about a back-tilt axis, and a seat pivoted to the configured end sections at seat pivots for rotation about a seat-tilt axis. At least one of the back pivots and the seat pivots include a rotatable bearing element and a support element flexibly supporting the bearing element for rotational movement misaligned with the tilt axis associated with the at least one axis so that the bearing element rotates about the stud without binding even when the stud is misaligned with an associated one of the back-tilt axis and the seat-tilt axis. In a narrower aspect, the support element is made from a resilient rubber.
In another aspect of the present invention, a chair has a base assembly including side aims, and a back frame having configured end sections pivoted to the side arms at back pivots for rotation about a back-tilt axis. The back frame is flexible enough to permit the configured ends to be flexed apart during assembly. The configured end sections and the side arms have adjacent faces, one of which has a recess therein. A bearing arrangement is located at each back pivot for pivotally connecting the side arms to the respective configured end sections. The bearing arrangement includes a stud that extends into the recess, and a bearing rotatably engaging the stud, the bearing being removable from the recess but held therein in part by the proximity of the adjacent faces.
In another aspect, the present invention includes a method of assembling a chair comprising steps of providing a chair component with laterally-extending oppositely-facing protrusions, and providing a back frame with configured end sections having recesses. The method further includes flexing apart the configured end sections of the back frame and simultaneously positioning the recesses of the configured end sections on the protrusions, and releasing the back frame so that the back frame resiliently returns to an original shape which holds the back frame in place and pivotally connects the back frame to the chair component.
In yet another aspect of the present invention, a control includes a control housing, a single stored energy source positioned in the control housing providing a compressive force, and a lever operably interconnected with said single energy source for movement between upright and reclined positions. The single stored energy source both exerts pretension to bias the lever toward the upright position and provides resistance to tilting of the lever when reclining. The control further includes a controller for regulating the pretension of the stored energy source and tilt rate of the lever, with the controller being configured for adjustment without an operator having to overcome a compressive force of the said single stored energy source.
In yet another aspect of the present invention, a chair includes a base assembly including a control housing, a single stored energy source positioned in the control housing providing a compressive force, and a back support operably interconnected with said single energy source for movement between upright and reclined positions. The single stored energy source both exerts pretension to bias the back support toward the upright position and provides resistance to tilting of the back support when reclining. The control further includes a controller for regulating the pretension of the stored energy source and tilt rate of the back support, the controller including a lever defining an adjustable fulcrum point that can be adjusted without overcoming the compressive force of the said single stored energy source.
In yet another aspect of the present invention, a control includes a control housing, a stored energy source positioned in the control housing, and a back-supporting first lever operably interconnected with said energy source for movement between upright and reclined positions. The stored energy source both exerts pretension to bias the first lever toward -the upright position and provides resistance to tilting of the first lever when reclining. The control further includes a controller for regulating the pretension of the stored energy source of the first lever. The controller includes a crank lever within the control housing. The crank lever has one end engaging the stored energy source and the other end operably interconnected with the first lever. The crank lever has portions between the two ends foiming a fulcrum, so that the energy source biases the crank lever about the fulcrum to bias the first lever toward the upright position.
In yet another aspect of the present invention, a control includes a control housing, a stored energy source positioned in the control housing, and a first lever operably interconnected with said energy source for movement between upright and reclined positions. The stored energy source both exerts pretension to bias the first lever toward the upright position and provides resistance to tilting of the first lever when reclining. The control further includes an adjustable controller for adjustably regulatingl the pretension of the stored energy source. The controller includes a manually-operable handle for regulating the pretension of the stored energy source, and an overtorque device configured to limit the physical force transmitted from the handle to the controller.
These and other features and advantages of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
DETAILED DESCRIPTION OF FIGURES Figs. 1-3 are front, rear, and side perspective views of a reclineable chair embodying the present invention; Fi§s* 4A and B are exploded perspective views of upper and lower portions of the chair shown in Fig. 1;
Figs. 5 and 6 are side views of the chair shown in Fig. 1, Fig. 5 showing the flexibility and adjustability of the chair when in the upright position and Fig. 6 showing the movements of the back and seat during recline;
Fig. 7 is a front view of the chair shown in Fig. 1 with an underseat aesthetic cover removed; Fig. 8 is a top view of the control including the piimary energy mechanism, the moment arm shift adjustment mechanism, and the back-stop mechanism, the primary energy mechanism being adjusted to a relatively low torque position and being oriented as it would be when the back is in the upright position so that the seat is in its rearward at-rest position, the back-stop mechanism being in an intermediate position for limiting the back to allow a majcimum recline;
Fig. 8 A is a perspective view of the base frame and the chair control shown in Fig. 8, some of the seat and back support structure being shown in phantom lines and some of the controls on the control being shown in solid lines to show relative locations thereof; Fig. 9 is a perspective view of the control and primary energy mechanism shown in
Fig. 8, the primaiy energy mechanism being adjusted to a low torque position and shown as if the back is in an upright position such that the seat is moved rearwardly;
Fig. 9 A is a perspective view of the control and primary energy mechanism shown in Fig. 9, the primary energy mechanism being adjusted to the low torque position but shown as if the back is in a reclined position such that the seat is moved forwardly and the spring is compressed;
Fig. 9B is a perspective view of the control and primary energy mechanism shown in Fig. 9, the primary energy mechanism being adjusted to a high torque position and shown as if the back is in an upright position such that the seat is moved rearwardly; Fig. 9C is a perspective view of the control and primary energy mechanism shown in
Fig. 9, the primary energy mechanism being adjusted to the high torque position but shown as if the back is in a reclined position such that the seat is moved forwardly and the spring is compressed;
Fig. 9D is a graph showing torsion^ force versus angular deflection curves for the primaiy energy mechanism of Figs. 9-9C, the curves including a top curve showing the forces resulting from the high torque (long moment aim engagement of the main spring) and a bottom curve showing the forces resulting from the low torque (short moment arm engagement of the main spring);
Fig. 10 is an enlarged top view of the control and primary energy mechanism shown in Fig. 8, including controls for operating the back-stop mechanism, the back-stop mechanism being shown in an off position; Fig. 11 is an exploded view of the mechanism for adjusting the primary energy mechanism, including the overtorque release mechanism for same;
Fig. 11A is a plan view of a modified back-stop control and related linkages; Fig. 11B is an enlarged fragmentary view, partially in cross section, of the circled area in Fig. 11 A; and Fig. 11C is a cross-sectional view taken along the line XIC-XIC in Fig. 1 IA;
Fig. 12 is a side view of the back assembly shown in Fig. 1 including the back frame and the flexible back shell and including the skeleton and flesh of a seated user, the back shell being shown with a forwardly-convex shape in solid lines and being shown in different flexed shapes in dashed and dotted lines; Fig. 12A is an enlarged perspective view of the back frame shown in Fig. 4A, the back frame being shown as if the molded polymeric outer shell is transparent so that the reinforcement can be easily seen;
Figs. 12B and 12C are cross sections taken along lines XXIIB-XXIIB and XXπC- XXπC in Fig. 12A; Figs. 12D-12I are views showing additional embodiments of flexible back shell constructions adapted to move sympathetically with a seated user's back;
Fig. 12J is an exploded perspective view of the torsionally-adjustable lumbar support spring mechanism shown in Fig. 4A, and Fig. 12JJ is an exploded view of the hub and spring connection of Fig. 12J taken from an opposite side of the hub; Fig. 12K is an exploded perspective view of a modified torsionally-adjustable lumbar support spring mechanism;
Figs. 12L and 12LL are side views of the mechanism shown in Fig. 12K adjusted to a low torque position, and Figs. 12M and 12MM are side views of the mechanism adjusted to a high torque position, Figs. 12L and 12M highlighting the spring driver, and Figs. 12LL and 12MM highlighting the lever;
Fig. 12N is a fragmentary cross-sectional side view of the back construction shown in Fig. 12;
Fig. 13 is a cross-sectional side view taken along lines XIII-XIII showing the pivots that interconnect the base frame to the back frame and that interconnect the back frame to the seat frame;
Fig. 13A is a cross-sectional side view of modified pivots similar to Fig. 13. but showing an alternative construction; Figs. 14A and 14B are perspective and front views of the top connector connecting the back shell to the back frame;
Fig. 15 is a rear view of the back shell shown in Fig. 4A;
Fig. 16 is a perspective view of the back including the vertically-adjustable lumbar support mechanism shown in Fig. 4A;
Figs. 17 and 18 are front and top views of the vertically-adjustable lumbar support mechanism shown in Fig. 16;
Fig. 19 is a front view of the slide frame of the vertically-adjustable lumbar .support mechanism shown in Fig. 18; Fig* 20 is a top view, partially in cross section, of the laterally-extending handle of the vertically-adjustable lumbar support mechanism shown in Fig. 17 and its attachment to the slide member of the lumbar support mechanism;
Fig. 21 is a perspective view of the depth-adjustable seat shown in Fig. 4B including the seat carrier and the seat undercarriage/support frame slidably mounted on the seat carrier, the seat undercarriage/support frame being partially broken away to show the bearings on the seat carrier, the seat cushion being removed to reveal the parts therebelow;
Fig. 22 is a top view of the seat carrier shown in Fig. 21, the seat undercarriage/rear frame being removed but the seat frame slide bearings being shown and the seat carrier depth- adjuster stop device being shown; Fig. 23 is a top perspective view of the seat undercarriage/rear frame and the seat carrier shown in Fig. 21 including a depth-adjuster control handle, a linkage, and a latch for holding a selected depth position of the seat;
Figs. 24 and 25 are side views of the depth-adjustable seat shown in Fig. 21, Fig. 24 showing the seat adjusted to maximize seat depth, and Fig. 25 showing the seat adjusted to minimize seat depth; Figs. 24 and 25 also showing a manually-adjustable "active" thigh support system including a gas spring for adjusting a front portion of the seat shell to provide optimal thigh support;
Fig. 26 is a top view of the seat support structure shown in Figs. 24 and 25 including the seat carrier (shown mostly in dashed lines), the seat undercarriage/rear frame, the active thigh support system with gas spring and reinforcement plate for adjustably supporting the front portion of the seat, and portions of the depth-adjustment mechanism including a stop for limiting the maximum forward and rearward depth adjustment of the seat and the depth-setting latch;
Fig. 26A is a cross section taken along line .XXVIA-XXVIA in Fig. 26 showing the stop for the depth-adjuster mechanism; Figs. 27 and 28 are top and bottom perspective views of the seat support structure shown in Fig. 26;
Figs. 29 and 30 are top and bottom perspective views of a seat similar to that shown in Fig. 26, but where the manually-adjustable thigh support system is replaced with a passive thigh support system including a leaf spring for supporting a front portion of the seat; and Fig. 31 is a bottom perspective view of the brackets and guide for supporting ends of the leaf spring as shown in Fig. 30, but with the thigh-supporting front portion of the seat flexed downwardly causing the leaf spring to flex toward a flat compressed condition. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS For purposes of description herein, the terms "upper," "lower," "right," "left," "rear, " "front," "vertical," "horizontal," and derivatives thereof shall relate to the invention as oriented in Fig. 1 with a person seated in the chair. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as unnecessarily limiting, unless the claims expressly state otherwise.
A chair construction 20 (Figs. 1 and 2) embodying the present invention includes a castored base assembly 21 and a reclineable back assembly 22 pivoted to the base 21 for movement about a stationary back-tilt axis 23 between upright and reclined positions. A seat assembly 24 (Fig. 6) is pivoted at its rear to the back 22 for movement about a seat-tilt axis 25. Seat-tilt axis 25 is offset rearwardly and downwardly from the back-tilt axis 23, and the seat 24 is slidably supported at its front on the base 21 by linear bearings, such that the seat 24 slides forwardly and its rear rotates downwardly and forwardly with a synchrotilt movement as the back 22 is reclined (see Fig. 6). The synchronous motion initially moves the back to seat at an angular synchronous ratio of about 2.5:1, and when near the fully reclined position moves the back to seat at an angular synchronous ratio of about 5: 1. The seat 24 and back 22 movement during recline provides an exceptionally comfortable ride that makes the seated user feel very stable and secure. This is due in part to the fact that the movement keeps the seated user's center of gravity relatively constant and keeps the seated user in a relatively balanced position over the chair base. Also, the forward slide/synchronous motion keeps the seated user near his/her work during recline more than in previous synchrotilt chair constructions, such that the problem of constantly scooting forward after reclining and then scooting rearward when moving toward an upright position is greatly reduced, if not eliminated. Another advantage is that the chair construction 20 can be used close to a wall behind the chair or in a small office, with less problems resulting from interference from office furnisliings during recline. Still further, we have found that the spring 28 for biasing the back 22 toward an upright position can be potentially reduced in size because of the reduced rearward shifting of a seated user's weight in the present chair.
The base includes a control housing 26. A primary energy mechanism 27 (Fig. 8) is operably positioned in control housing 26 for biasing the seat 24 rearwardly. Due to the interconnection of the back 22 and the seat 24, the rearward bias of the seat 24 in turn biases the back 22 toward an upright position. Primary energy mechanism 27 (Fig. 8) includes a main spiing 28 positioned transversely in the control housing 26 that operably engages a torque member or lever 54. The tension and torque provided by the main spring 28 is adjustable via an adjustable moment arm shift (MAS) system 29 also positioned substantially in the control housing 26. A visual cover 26' (Fig. 1) covers the area between the control housing 26 and the underside of the seat 24. The back assembly 22 includes a back support or back frame 30 (Fig. 4A) with structure that defines pivots/axes 23 and 25. A flexible/compliant back shell construction 31 is pivoted to back frame 30 at top connections 32 and bottom connections 33 in a manner providing an exceptionally comfortable and sympathetic back support. A torsionally- adjustable lumbar support spring mechanism 34 is provided to bias the back shell 31 forwardly into a forwardly-convex curvilinear shape optimally suited for providing good lumbar pressure. A vertically-adjustable lumbar support 35 (Fig. 16) is operatively mounted on back shell 31 for vertical movement to provide an optimal shape and pressure location to the front support surface on back 22. The seat 24 is provided with various options to provide enhanced chair functions, such as a back-stop mechanism 36 (Fig. 8) which adjustably engages the seat 24 to limit recline of the back 22. Also, the seat 24 can include active and passive thigh support options (see Figs. 24 and 30, respectively), seat depth adjustment (see Figs. 28 and 25). and other seat options, as described below. Base Assembly
The base assembly 21 (Fig. 1) includes a floor-engaging support 39 having a center hub 40 and radially-extending castored legs 41 attached to the center hub 40 in a spider-like configuration. A telescopingly-extendable center post 42 is positioned in center hub 40 and includes a gas spiing that is operable to telescopingly extend the post 42 to raise the height of the chair. The control housing 26 of base assembly 21 is pan shaped (Fig. 11) and includes bottom panels and flanged sidewalls foiming an upwardly-open structural member. A notch 43 is formed in one sidewall of the housing 26 for receiving a portion of the adjustable control for the MAS system 29. A front of the housing 26 is formed into an upwardly-facing U-shaped transverse flange 44 for receiving a transverse structural tube 45 (Fig. 8A), and a hole 46 (Fig. 11) is formed generally adjacent flange 44. The transverse tube 45 is welded to the flange 44 and extends substantially horizontally. A reinforcement channel 47 is welded in housing 26 immediately in front of transverse structural tube 45. A frustoconical tube section 48 is welded vertically to reinforcement 47 above hole 46, which tube section 48 is shaped to mateably and securely engage the upper end of extendable center post 42. A pair of stiff upwardly-extending side arms 49 (sometimes also called "struts" or "pods") are welded to the opposing ends of transverse tube 45. The side aims 49 each include a stiff plate 50 on their inside surface. The plates 50 include weld nuts 51 that align to define the back-tilt axis 23. The housing 26, transverse tube 45, and side arms 49 form a base frame that is rigid and sturdy. The sidewalls of the housing 26 include a lip or flange that extends along their upper edge to reinforce the sidewalls. A cap 52 is attached to the lips to form a stationary part of a linear bearing for slidably supporting a front of the seat. Primary Energy Mechanism and Operation
It is noted that the housing 26 shown in Figs. 9-9C and 10 is slightly longer and with different proportions than the housing of Figs. 8, 8A, and 11, but the principles of operation are the same. The primary energy mechanism 27 (Fig. 8) is positioned in housing 26. The primary energy mechanism 27 includes the spring 28, which is operably connected to the seat 24 by an L-shaped torque member or bell crank 54, a link 55, and a seat-attached bracket 56.
The spring 28 is a coil spiing transversely positioned in housing 26, with one end supported against a side of housing 26 by a disc-shaped anchor 57. The anchor 57 includes a washer to support the end of the spring 28 to prevent noise, and further includes a protrusion that extends into a center of the end of the spiing 28 to securely grip the spring 28, but that allows .the spring 28 to be compressed and to tilt/flex toward a side wliile the torque member or bell crank 54 is being pivoted. The L-shaped torque member or bell crank 54 includes a short leg or lever 58 and a long leg 59. The short leg 58 has a free end that engages an end of the spring 28 generally proximate a left side of housing 26 with a washer and protrusion similar to anchor 57. Short leg 58 is arcuately shaped and includes an outer surface facing the adjacent sidewall of housing 26 that defines a series of teeth 60. Steel strips 61 are attached to the top and bottom sides of the short leg 58 and have an outer arcuate surface that provides a smooth rolling bearing surface on the leg 58, as described below. The arcuate surface of the strips 61 is generally located at about the apex or the pitch diameter of the gear teeth 60. The short leg 58 extends generally perpendicular to a longitudinal direction of spring 28 and the long leg 59 extends generally parallel the length of spring 28, but is spaced from the spring 28. Link 55 (Fig. 8) is pivoted to an end of long leg 59 and is also pivoted to the seat-attached bracket 56. A crescent-shaped pivot member 63 (Fig. 11) includes an arcuate roller bearing surface that rollingly engages the curved surface of steel strips 61 on short leg 58 to define a moving fulcrum point. Pivot member 63 also includes a rack of teeth 64 configured to mateably engage the teeth 60 on short leg 58 to prevent any slippage between the interfacing roller bearing surfaces of leg 58 and pivot member 63. Pivot member 63 is attached to a side of the housing 26 at the notch 43. When the seat 24 is in a rearward position (i.e., the back is in an upright position) (Fig. 9), the long leg 59 is located generally parallel and close to the spring 28 and the short leg 58 is pivoted so that the spiing 28 has a relatively low amount of compression. In this position, the compression of spring 28 is sufficient to adequately bias the seat 24 rearwardly and in turn bias the back frame 30 to an upright position for optimal yet comfortable support to a seated user. As a seated user reclines, the seat 24 is moved forwardly (Fig. 9A). This causes the L-shaped torque member or bell crank 54 to roll on pivot member 63 at the fulcrum point in a manner compressing spring 28. As a result, spring 28 provides increasing force resisting the recline, which increasing force is needed to adequately support a person as they recline. Notably, the short leg 58 "walks" along the crescent-shaped pivot member 63 a short distance during recline, such that the actual pivot location changes slightly during recline. The generous curvilinear shapes of the short leg 58 and the pivot member 63 prevent any abrupt change in the support to the back during recline, but it is noted that the curvilinear shapes of these two components affect the spiing compression in two ways. The "walking" of the short leg 58 on the pivot member 63 affects the length of the moment arm to the actual pivot point (i.e., .the location where the teeth 60 and 64 actually engage at any specific point in time). Also, the "walking" can cause the spring 28 to be longitudinally compressed as the "walking" occurs. However, in a preferred form, we have designed the system so that the spring 28 is not substantially compressed during adjustment of the pivot member 63, for the reason that we want the adjustment to be easily accomplished. If adjustment caused the spring 28 to be compressed, the adjustment would require extra effort to perform the adjustment, which we do not prefer in this chair design. As discussed below, the pivot member 63 is adjustable to change the torque arm over which the spiing 28 operates. Fig. 9B shows the primary energy mechanism 27 adjusted to a high torque position with the seat 24 being in a rearward position (and the back frame 30 being in an upright position). Fig. 9C shows the primary energy mechanism 27 still adjusted to the high torque condition, but in the compressed condition with the seat 24 in a forward position (and the back frame 30 being in an upright position). Notably, in Figs. 9B and 9C, the pivot member 63 has been adjusted to provide a longer torque arm on lever 58 over which the spring 28 acts.
Fig. 9D is a graph illustrating the back torque generated by spring 28 as a function of the angle of recline. As apparent from the graph, the initial force of support can be varied by adjustment (as described below). Further, the rate of change of torsional force (i.e., the slope) varies automatically as the initial torsional force is adjusted to a higher force, such that a lower initial spring force results in a flatter slope, while a higher initial spring force results in a steeper slope. This is advantageous since lighter/smaller people not only require less support in the upright position of the chair, but also require less support during recline. Contrastingly, heavier/larger people require greater support when in upright and reclined positions. Notably, the desired slope of the high and low torque force/displacement curves can be designed into the chair by varying the shape of the short leg 58 and the pivot member 63.
The crescent-shaped pivot member 63 (Fig. 11) is pivotally supported on housing 26 by a bracket 65. The bracket 65 includes a tube section 66 and a configured end 67 with a juncture therebetween configured to mateably engage the notch 43 in the side of housing 26.
The configured end 67 includes a pair of flanges 68 with apertures defining an axis of rotation 69 for the pivot member 63. The pivot member 63 is pivoted to the flanges 68 by a pivot pin and is rotatable around the axis 69. By rotating the pivot member 63, the engagement of teeth 60 and 64 and the related interfacing surfaces change in a manner causing the actual pivot point along short leg 58 of L-shaped torque member or bell crank 54 to change. (Compare Figs. 9 and 9B.) As a result, the distance from the end of spring 28 to the actual pivot point changes. This results in a shortening (or lengthening) in the torque aim over which the spiing 28 operates, which in turn results in a substantial change in the force/displacement curve (compare the top and bottom curves in Fig. 9D). The change in moment arm is relatively easily accomplished because the spring 28 is not compressed substantially during adjustment, since the interfacing surface on pivot member 63 defines a constant radius around its a2xis of rotation. Thus, adjustment is not adversely affected by the strength of spring 28. Nonetheless, the adjustment greatly affects the spring curve because of the resulting change in the length of the moment arm over which the spiing 28 operates.
Pivoting of the pivot member 63 is accomplished through use of a pair of apertured flanges 70 (Fig. 11) on the pivot member 63 that are spaced from a2xis 69. An adjustment rod 71 extends through tube section 66 into configured end 67 and is pivoted to the apertured flanges 70. Rod 71 includes a threaded opposite end 72. An elongated nut 73 is threaded onto rod end 72. Nut 73 includes a washer 73 ' that rotatably engages an end of the tube section 66, and further includes a configured end 74 having longitudinally-extending ribs or slots shaped to mateably telescopingly engage mating ribs 75 on a driving ring 76. A handle 77 is rotatably mounted on tube section 66 and is operably connected to the driving ring 76 by an overtorque clutch ring 78. Clutch ring 78 includes resilient fingers 79 that operably engage a ring of friction teeth 80 on the driving ring 76. Fingers 79 are shaped to frictionally slip over teeth 80 at a predetermined torsional load to prevent damage to components of the chair 20. A retainer 81 includes resilient legs 81 ' that snappingly engage the end 74 of the nut 73 to retain the driving ring 76 and the clutch ring 78 together with a predetermined amount of force. A spacer/washer 82 rides on the end of the nut 73 to provide a bearing surface to better support the clutch ring 78 for rotation. An end cap 83 visually covers an end of the assembly. The end cap 83 includes a center protrusion 84 that snaps into the retainer 81 to forcibly keep the resilient legs of the retainer 81 engaged in the end of the nut 73. In use> adjustment is accomplished by rotating the handle 77 on tube section 66, which causes nut 73 to rotate by means of clutch ring 78 and driving ring 76 (unless the force required for rotation of the nut 73 is so great that the clutch ring 78 slips on driving ring 76 to prevent damage to the components). As the nut 73 rotates, the rod 71 is drawn outwardly (or pressed inwardly) from the housing 26, causing the pivot member 63 to rotate. Pivoting the piyot member 63 changes the point of engagement (i.e. fulcrum point) of the pivot member 63 and the short leg 58 of the L-shaped torque member or bell crank 54, thus changing the moment aim over which the spiing 28 acts.
Back-Stop Mechanism
The back-stop mechanism 36 (Fig. 8) includes a cam 86 pivoted to the housing 26 at location 87. The cam 86 includes stop surfaces or steps 88, detent depressions 89 that correspond to surfaces 88, and teeth 90. The steps 88 are shaped to mateably engage the seat- attached bracket 56 to limit the rearward rotation of the back frame 30 by limiting the rearward movement of the seat 24. This allows a seated user to limit the amount of recline to a desired maximum point. A leaf spring 91 (Fig. 10) is attached to the housing 26 by use of a U-shaped finger 92 that slips through a first hole and hooks into a second hole in the housing 26. The opposite end of the leaf spring includes a U-shaped bend 93 shaped to mateably slidably engage the detent depressions 89. The depressions 89 correspond to the steps 88 so that, when a particular step 88 is selected, a corresponding depression 89 is engaged by spring 91 to hold the cam 86 in the selected angular position. Notably, the steps 88 (and the depressions 89) are located angularly close together in the area corresponding to chair positions close to the upright position of the back frame 30, and are located angularly farther apart in the area corresponding to more fully reclined chair positions. This is done so that seated users can select from a greater number of back-stopping positions when near an upright position. It is noted that seated users are likely to want multiple back-stopping positions that are close together when near an upright position, and are less likely to select a back-stopping position that is near the fully reclined chair position. The cam 86 is rotated through use of a control that includes a pivoting lever 94, a link
95, and a rotatable handle 96. The pivoting lever 94 is pivoted generally at its middle to the housing 26 at location 97. One end of the pivoting lever 94 includes teeth 98 that engage teeth 90 of cam 86. The other end of lever 94 is pivoted to rigid link 95 at location 97 ' . Handle 96 includes a body 101 that is rotatably mounted on tube section 66 of MAS pivot bracket 65, and further includes a flipper 99 that provides easy grasping to a seated user. A protrusion 100 extends from the body and is pivotally attached to link 95. To adjust the back-stop mechanism 36, the handle 96 is rotated, which rotates cam 86 through operation of link 95 and lever 94. The cam 86 is rotated to a desired angular position so that the selected step 87 engages the seat-attached bracket 56 to prevent any further recline beyond the defined back-stop point. Since the seat 24 is attached to the back frame 30, this limits recline of the back 22.
A modified control for operating the back-stop cam 86 is shown in Fig. 11 A. The modified control includes a pivoting lever 94A and rotatable handle 96A connected to the handle 96A by a rotary pivot slide joint 380. The lever 94A includes teeth 381 that engage cam 86 and is pivoted to housing 26 at pivot 97, both of which are like lever 94. However, in the modified control, link 95 is eliminated and replaced with the single joint 380. Joint 380 includes a ball 381 (Fig. 11B) that extends from the lever 94A. A snap-on "car" or bearing 382 includes a socket 383 for pivotally engaging ball 381 to define a ball-and-socket joint. The bearing 382 includes outer surfaces 384 that slidably engage a slot 385 in a radially-extending arm 386 on handle 96A (Fig. 11C). The joint 380 operably connects the handle 96A to the lever 94A, despite the complex movement resulting from rotation of the handle 96A about a first axis, and from rotation of the lever 94 A about a second axis that is skewed relative to the first axis. Advantageously, the modified control provides an operable interconnection with few parts, and with parts that are partially inside of the control housing 26, such that the parts are substantially hidden from view to a person standing beside the chair. Back Construction
The back frame 30 and back shell 31 (Fig. 12) form a compliant back support for a seated user that is particularly comfortable and sympathetic to back movements of the seated user, particularly in the lumbar area of the back 22. Adjustment features on the assembly provide further comfort and allow a seated user to customize the chair to meet his/her particular needs and preferences in the upright through reclined positions.
The back frame 30 (Fig. 12A) is curvilinearly shaped and forms an arch across the back area of the chair 20. A variety of constructions are contemplated for back frame 30, and accordingly, the present invention should not be improperly limited to only a particular one. For example, the back frame 30 could be entirely metal, plastic, or a combination thereof. Also, the rigid internal reinforcement 102 described below could be tubular, angle iron, or a stamping. The illustrated back frame 30 includes a looping or arch-shaped internal metal reinforcement 102 and an outer molded-on polymeric skin or covering 103. (For illustrative purposes, the covering 103 is shown as if it is transparent (Fig. 12A), so that the reinforcement 102 is easily seen.) The metal reinforcement 102 includes a looping intermediate rod section 104 (only half of which is shown in Fig. 12A) having a circular cross section. Reinforcement
102 further includes configured ends/brackets 105 welded onto the ends of the intermediate section 104. One or two of T-shaped top pivot connectors 107 are attached to intermediate section 104 near a top portion thereof. Notably, a single top connector 107, when used, allows greater side-to-side flexibUity than with two top connectors, which may be desired in a chair where the user is expected to often twist their torso and lean to a side in the chair. A pair of spaced-apart top connectors 107 provide a stiffer arrangement. Each connector 107 (Fig. 12B) includes a stem 108 welded to intermediate section 104 and includes a transverse rod section
109 extended through stem 108. The rod section 109 is located outboard of the skin or shell
103 and is adapted to snap-in frictionally and pivotally engage a mating recess in the back shell 31 for rotation about a horizontal axis, as described below. The present invention is contemplated to include different back frame shapes. For example, the inverted U-shaped intermediate section 104 of back frame 30 can be replaced with an inverted T-shaped intermediate section having a lower transverse member that is generally proximate and parallel the belt bracket 132, and a vertical member that extends upwardly therefrom. In a preferred form, each back frame of the present chair defines spaced-apart lower connections or apertures 113 that define pivot points and a top connection(s) 107 forming a triangular tripod-like arrangement. This arrangement combines with the semi-rigid resiliently-flexible back shell 31 to posturally flexibly support and permit torsional flexing of a seated user's torso when in the chair. In an alternative form, the lower connections 113 could occur on the seat instead of the back of the chair.
The configured ends 105 include an inner surface 105 ' (Fig. 13) that may or may not be covered by the outer shell 103. In the illustrated back frame 30 of Figs. 12A and 4A. the reinforcement 102 is substantially covered by the shell 103, but a pocket is formed on an inside surface at configured ends 105 at apertures 111-113. The configured ends 105 include extruded flanges forming apertures 111-113 which in turn define the back-tilt axis 23, the seat- tilt axis 25, and a bottom pivotal connection for the back shell 31, respectively. The apertures 111 and 112 (Fig. 13) include frustoconically-shaped flanges 116 defining pockets for receivmg multi-piece bearings 114 and 115, respectively. Bearing 114 includes an outer rubber bushing 117 engaging the flanges 116 and an inner lubricous bearing element 118. A pivot stud 119 includes a second lubricous bearing element 120 that matingly slidingly engages the first bearing element 118. The stud 119 is extended through bearing 114 in an outward direction and threadably into welded nut 51 on side arms 49 of the base frames 26, 45, and 49. The bearing element 118 bottoms out on the nut 51 to prevent over-tightening of the stud 119. The head of the stud 119 is shaped to slide through the aperture 111 to facilitate assembly by allowing the stud to be threaded into nut 51 from the inboard side of the side arm 49. It is noted that the head of stud 119 can be enlarged to positively capture the configured end 105 to the side aim 49 if desired. The present arrangement including the rubber bushings 117 allows the pivot 23 to flex and compensate for rotation that is not perfectly aligned with the a)tis 23, thus reducing the stress on the bearings and reducing the stress on components of the chair such as on the back frame 30 and the side arms 49 where the stud 119 is misaligned with its axis.
The lower seat-to-back frame bearing 115 is similar to bearing 114 in that bearing 115 includes a rubber bushing 121 and a lubricous bearing element 122, although it is noted that the frustoconical surface faces inwardly. A welded stud 123 extends from seat carrier 124 and includes a lubricous bearing element 125 for rotatably and slidably engaging the bearing element 122. It is noted that in the illustrated arrangement, the configured end 105 is trapped between the side arms 49 of base frames 26, 45, and 49 and the seat carrier 124, such that the beaiings 114 and 115 do not need to be positively retained to the configured ends 105. Nonetheless, a positive bearing arrangement could be readily constructed on the pivot 112 by enlarging the head of the stud 119 and by using a similar headed stud in place of the welded stud 123.
A second configuration of the configured end of back frame 30 is shown in Fig. 13A. Similar components are identified by identical numbers, and modified components are identified with the same numbers and with the addition of the letter "A. " In the modified configured end 105A, the frustoconical surfaces of pivots 111A and 112A face in opposite directions from pivots 111 and 112. Pivot 112A (including a welded-in stud 123A that pivotally supports the seat carrier 124 on the back frame 30) includes a threaded axial hole in its outer end. A retainer screw 300 is extended into the threaded hole to positively retain the pivot assembly together. Specifically, a washer 301 on screw 300 engages and positively retains the bearing sleeve 125 that mounts the inner bearing element 122 on the pivot stud
123A. The taper in the pocket and on the bearing outer sleeve 121 positively holds the bearing 115A together. The upper pivot 111A that pivotally supports the back frame 30 on the side arms 50 of the base frame is generally identical to the lower pivot 112, except that the pivot 111 A faces in an opposite inboard direction. Specifically, in upper pivot 111 A, a stud 119A is welded onto side arm 50. The bearing is operably mounted on the stud 119A in the bearing pocket defined in the base frame 30 and held in place with another washered screw 300. For assembly, the back frame 30 is flexed apart to engage bearing 115, and the configured ends 105A .are twisted and resiliently flexed, and thereafter are released such that they spiing back to an at-rest position. This arrangement provides a quick assembly procedure that is fastenerless, secure, and readily accomplished.
The present back shell system shown in Figs. 12, 15, and 16 (and the back systems of Figs. 12D-12I) is compliant and designed to work very sympathetically with the human back. The word "compliant" as used herein is intended to refer to the flexibility of the present back in the lumbar area (see Figs. 12 and 12F-12I) or a back structure that provides the equivalent of flexibUity (see Figs. 12D and 12E), and the word "sympathetically" is intended to mean that the back moves in close haimony with a seated user's back and posturally supports the seated user's back as the chair back 22 is reclined and when a seated user flexes his/her lower back.
The back sheU 31 has three specific regions, as does the human back, those being the thoracic region, the lumbar region, and the pelvic region.
The thoracic "rib cage" region of a human's back is relatively stiff. For this reason, a relatively stiff upper shell portion (Fig. 12) is provided that supports the relatively stiff thoracic (rib cage) region 252 of a seated user. It carries the weight of a user's torso. The upper pivot axis is strategically located directly behind the average user's upper body center of gravity, balancing his/her back weight for good pressure distribution.
The lumbar region 251 of a human's back is more flexible. For this reason, the shell lumbar region of back shell 31 includes two curved, vertical-living hinges 126 at its side edges (Fig. 15) connected by a number of horizontal "cross straps" 125 " . These straps 125 " are separated by widthwise slots 125 ' allowing the straps to move independently. The slots 125 ' may have radiused ends or teardrop-shaped ends to reduce concentration of stress. This shell area is configured to comfortably and posturally support the human lumbar region. Both side straps 125 " are flexible and able to substantially change radius of curvature from side to side. This shell region automatically changes curvature as a user changes posture, yet maintains a relatively consistent level of support. This allows a user to consciously (or subconsciously) flex his/her back during work, temporarily moving stress off of tiring muscles or spinal disc portions onto different ones. This frequent motion also "pumps" nutrients through the spine, keeping it nourished and more healthy. When a specific user leans against the shell 31, he she exerts unique relative pressures on the various lumbar "cross straps." This causes the living hinges to flex in a unique way, urging the shell to conform with a user's unique back shape. This provides more uniform support over a larger area of the back improving comfort and diminishing "high pressure points." The cross straps can also flex to better match a user's side- to-side shape. The neutral axis of the human spine is located well inside the back. Correspondingly, the "side straps" are located forward of the central portion of the lumbar region (closer to the spine neutral axis), helping the shell flexure mimic human back flexure. The Pelvic region 250 is rather inflexible on human beings. Accordingly, the lowest portion of the shell 31 is also rather inflexible so that it posturally/mateably supports the inflexible human pelvis. When a user flexes his/her spine rearward, the user's pelvis automatically pivots about his/her hip joint and the skin on his/her back stretches. The lower shell/back frame pivot point is strategically located near but a bit rearward of the human hip joint. Its nearness allows the shell pelvic region to rotate sympathetically with a user's pelvis.
By being a bit rearward, however, the lumbar region of the shell stretches (the slots widen) somewhat less than the user's back skin, enough for good sympathetic flexure, but not so much as to stretch or bunch up clothing.
Specifically, the present back shell construction 31 (Fig. 4 A) comprises a resUiently- flexible molded sheet made from polymeric material such as polypropylene, with top and bottom cushions positioned thereon (see Fig. 4A). The back shell 31 (Fig. 16) includes a plurality of horizontal slots 125 ' in its lower half that are located generally in the lumbar area of the chair 20. The slots 125 ' extend substantially across the back shell 31, but terminate at locations spaced from the sides so that resUient vertical bands of material 126 are formed along each edge. The bands of material or side straps 126 are designed to form a naturally forwardly-convex shape, but are flexible so that they provide an optimal lumbar support and shape to a seated user. The bands 126 allow the back shell to change shape to conform to a user's back shape in a sympathetic manner, side to side and vertically. A ridge 127 extends along the perimeter of the shell 31. A pair of spaced-apart recesses 128 are formed generally in an upper thoracic area of the back shell 31 on its rearward surface. The recesses 128 (Figs.
14A and 14B) each include a T-shaped entrance with the narrow portion 129 of the recesses 128 having a width for receiving the stem 108 of the top connector 32 on the back frame 30 and with the wider portion 130 of the recesses 128 having a width shaped to receive the transverse rod section 109 of the top connector 32. The recesses 128 each extend upwardly into the back shell 31 such that opposing flanges 131 formed adjacent the narrow portion 129 pivotally capture the rod section 109 of the T-top connector 107 as the stem 108 slides into the narrow portion 129. Ridges 132 in the recesses 128 frictionally positively retain the top connectors 107 and secure the back shell 31 to the back frame 30, yet allow the back shell 31 to pivot about a horizontal a^tis. This allows for the back shell 31 to flex for optimal lumbar support without undesired restriction.
A belt bracket 132 (Fig. 16) includes an elongated center strip or strap 133 that matches the shape of the bottom edge of the back shell 31 and that is molded into a bottom edge of the back shell 31. The strip 133 can also be an integral part of the back shell or can be attached to back shell 31 with screws, fasteners, adhesive, frictional tabs, insert-molding techniques, or in other ways of attaching known in the art. The strip 133 includes side arms/flanges 134 that extend forwardly from the ends of strip 133 and that include apertures 135. The torsional adjustment lumbar mechanism 34 engages the flanges 134 and pivotally attaches the back shell
31 to the back frame at location 113 (Fig. 4A). The torsional adjustment lumbar spiing mechanism 34 is adjustable and biases the back shell 31 to a forwardly-convex shape to provide optimal lumbar support for a seated user. The torsion^ adjustment lumbar spiing mechanism 34 cooperates with the resUient flexibUity of the back shell 31 and with the shape-changing abUity of the vertically-adjustable lumbar support 35 to provide a highly-adjustable and comfortable back support for a seated user.
The pivot location 113 is optimally chosen to be at a rear of the hip bone and somewhat above the seat 24. (See Fig. 12.) Optimally, the fore/aft distance from pivot locations 113 to strip 133 is apprOaXimately equal to the distance from a seated user's hip joint/a.xis to their lower spine/taU bone region so that the lower back 250 moves very simUarly and sympathetically to the way a seated user's lower back moves during flexure about the seated user's hip joint. The location 113 in combination with a length of the forwardly-extending side flanges 133 causes back shell 31 to flex in the following sympathetic manner. The pelvic supporting area 250 of the back shell construction 31 moves sympathetically rearwardly and downwardly along a path selected to match a person's spine and body movement as a seated user flexes their back and presses their lower back against the back shell construction 31. The lumbar support area 251 simultaneously flexes from a forwardly-concave shape toward a more planar shape. The thoracic support area 252 rotates about top connector 107 but does not flex a s .ubstantial amount. The total angular rotation of the pelvic and thoracic supporting areas 250 and 252 are much greater than in prior art synchrotUt chairs, which provides substantially increased support. Notably, the back shell construction 31 also flexes in a horizontal plane to provide good postural support for a seated user who twists his/her torso to reach an object. Notably, the back frame 30 is oriented at about a 5° rearward angle from vertical when in the upright position, and rotates to about a 30° rearward angle from vertical when in the fully reclined position. Concurrently, the seat-tilt axis 25 is rearward and at an angle of about 60° below horizontal from the back-tilt axis 23 when the back frame 30 is in the upright position, and pivots to almost vertically below the back-tilt axis 23 when the back frame 30 is in the fully reclined position.
Back constructions 31A-31F (Figs. 12D-12I, respectively) are additional constructions adapted to provide a sympathetic back support simUar in many aspects to the back shell construction 31. Like back construction 31, the present invention is contemplated to include attaching back constructions 31A-31F to the seat or the base frame at bottom connections.
Specifically, the Ulustrated constructions 31A-31F are used in combination with back frame 30 to provide a specific support taUored to thoracic, lumbar, and pelvic regions of a seated user. Each of the back constructions 31A-31F are pivoted at top and bottom pivot connections 107 and 113, and each include side arms 134 for flexing about a particularly located lever pivot axis 113. However, the back constructions 31A-31F achieve their sympathetic back support in slightly different ways.
Back construction 31A (Fig. 12D) includes a cushioned top back support 255 pivoted at top pivot connection 107, and further includes a cushioned bottom back support 256 pivoted at bottom location 113 by the belt bracket 132 including side flanges 134. Top and bottom back supports 255 and 256 are joined by a pivot/slide connection 257. Pivot/slide connection 257 comprises a bottom pocket formed by a pair of flanges 258, and top flange 259 that both slides and pivots in the pocket. A torsional lumbar support spring mechanism 34 is attached at bottom pivot location 113 and, if desired, also at connection 107 to bias top and bottom back supports 255 and 256 forwardly. The combination provides a sympathetic back support that moves with a selected user's back to match virtually any user's back shape, simUar to the back shell construction 31 described above. Back construction 3 IB (Fig. 12E) includes a top back support 261 pivoted at top connection 107, a bottom back support 262 pivoted at lower connection 113 on belt bracket side flange 134, and an intermediate back support 262 operably positioned therebetween. .Intermediate back support 262 is pivoted to bottom back support 262 at pivot 263, and is slidably pivoted to top back .support 261 at pivot slide joint 264. Pivot/slide joint 264 is foπned by top flanges 265 defining a pocket, and another flange 266 with an end that pivots and slides in the pocket. Spiings are positioned at one or more joints 107, 113, and 264 to bias the back construction 260 to a forwardly-concave shape.
Back construction 31C (Fig. 12F) is simUar to back shell construction 31 in that it includes a sheet-like flexible shell with transverse lumbar slits. The shell is pivoted at top and bottom connections 107 and 113 to back frame 30. The sheU of back construction 31C is biased toward a forwardly-convex shape by a torsion spring mechanism 34 at bottom pivot 113 and at top pivot 107, by a curvUinear leaf spring 271 in the lumbar area of the shell, by a spiing 272 that presses the shell forwardly off of an intermediate section of back frame 30, and/or by a vertical spiing 273 that extends from top connection 107 to a rear pivot on belt bracket side flange 134.
Back construction 3 ID (Fig. 12G) includes a transverse leaf spring 276 that spans between the opposing sides of back frame 30, and that biases the lumbar area of its back shell 277 forwardly, much like spiing 272 in the back construction 270. Back construction 3 IE (Fig. 12H) includes vertical leaf springs 279 embedded in its back shell 280 that bias the lumbar area of back shell 280 forwardly, much like springs 271 in back construction 270. Notably, back construction 278 includes only a single top pivot connection 107. Back construction 3 IF (Fig. 121) includes a vertical spring 282 connected to a top of the back frame 30, and to belt bracket 132 at a bottom of its back shell 283. Since the back shell 283 is forwardly convex, the spiing 282 biases the shell 283 toward an even more convex shape, thus providing additional lumbar support. (Compare to spring 273 on back construction 31C, Fig. 12F.)
It is contemplated that the torsional lumbar support spring mechanism 34 (Fig. 121) can be designed in many different constructions, but includes at least a spring operably connected between the back frame 30 and the back shell 31. Optionally, the arrangement includes a tension adjustment device having a handle and a friction latch to provide for tension adjustment. The spring biases the belt bracket 132 rotationally forward so that the back shell 31 defines a forwardly-convex shape optimally suited for lumbar support to a seated user. By rotating the handle to different latched positions, the tension of the spring is adjusted to provide an optimal forward lumbar force. As a seated user presses against the lumbar area of back shell 31, the back shell 31 flexes "sympathetically" with a movement that πύrrors a user's spine and body flesh. The force of the bands of material 126 in the shell 31 provide a relatively constant force toward their natural curvUinear shape, but when combined with the torsional lumbar support spiing mechanism 34, they provide a highly-adjustable bias force for lumbar .support as the user leans against the lumbar area. It is noted that a fixed non-adjustable spring biasing the back belt or the back shell flex zone directly could be used, or that an adjustable spiing only adjustable during installation could be used. However, the present adjustable device allows the greatest adjustment to meet varying needs of seated users. Thus, a user can assume a variety of well-supported back postures.
In the present torsional lumbar support spring mechanism 34 (Fig. 121), belt bracket 132 is pivoted to back frame 30 by a stud 290 that extends inboard from back frame 30 through a hole 291 in belt bracket side flange 134. A bushing 292 engages the stud 290 to provide for smooth rotation, and a retainer 293 holds the stud 290 in hole 291. A base 294 is screwed by screws 294 ' or welded to back frame 30, and includes a protrusion 295 having a sun gear 296 and a protruding tip 297 on one end. A hub 298 includes a plate 299 with a sleeve-like boss 300 for receiving the protrusion 295. The boss 300 has a slot 301 for receiving an inner end 302 of a spiral spring 303. The body of spring 303 wraps around protrusion 295. and terminates in a hooked outer end 304. Hub 298 has a pair of axle studs 305 that extend from plate 299 in a direction opposite boss 300. A pair of pie-shaped planet gears 306 are pivoted to axle studs 305 at pivot holes 307. A plurality of teeth 308 are located in an arch about pivot holes 307 on the planet gears 306, and a driver pin 309 is located at one end of the arc. A cup- shaped handle 310 is shaped to cover gears 306, hub 298, spring 303, and base 294. The handle 310 includes a flat end panel 311 having a centered hole 312 for rotatably engaging the protruding tip 297 of base 294. A pair of opposing spirally-shaped recesses or channels 313 are formed in the end panel 311. The recesses 313 include an inner end 314, an outer end 315 , and an elongated portion having a plurality of detents or scallops 316 formed between the ends 314 and 315. The recesses 313 mateably receive the driver pins 309. The hooked outer end
304 engages fingers 317 on belt bracket 132, which fingers 317 extend through an arcuate slot 318 in the configured end 105 of back frame 30. Handle 310 is rotated to operate torsional lumbar support spring mechanism 34. This causes recesses 313 to engage driver pins 309 on planet gears 306. The planet gears 306.are geared to sun gear 296, such that planet gears 306 rotate about sun gear 296 as the driver pins 309 are forced inwardly (or outwardly) and the planet gears 306 are forced to rotate on their respective pivots/axles 305. In turn, as planet gears 306 rotate, they force hub 298 to rotate.
Due to the connection of spiral spring 303 to hub 298, spiral spring 303 is wound tighter (or unwound). Thus, the tension of spring 303 on belt bracket 132 is adjustably changed. The detents 316 engage the driver pins 309 with enough frictional resistance to hold the spiing 303 in a desired tensioned condition. Due to the arrangement, the angular winding of spiral spring 303 is greater than the angular rotation of handle 310.
In a modified torsional lumbar support spring mechanism 34A (Fig. 12K), a base bracket 244A is attached to configured end 105A of back frame 30. A lever 306A and driver 298A are operably mounted on base bracket 244A to wind a spiral spring 303A as a handle 310A is rotated. Specifically, the base bracket 244A includes a pivot pin 290 that pivotally engages hole 291 in belt bracket 132. A second pin 317 extends through arcuate slot 318 in configured end 105A, which slot 318 extends around pivot pin 290 at a constant radius. Two pins 360 and 361 extend from base bracket 244A opposite pivot pin 290. The driver 298A includes an apertured end 362 with a hole 363 for rotatably engaging center pin 360. The end 362 includes an outer surface 364 with a slot therein for engaging an inner end 365 of spiral spring 303A. The outer end 365 is hook-shaped to securely engage pin 317 on the belt bracket
132. A finger-like stud 366 extends laterally from the outer end 367 of driver 298 A.
Lever 306A includes a body with a hole 368 for pivotally engaging pin 361, and a slot 369 extending arcuately around hole 368. A pin 370 extends from lever 306A for engaging a spiral cam slot 313A on an inside surface of cup-shaped handle 310A. A tooth 371 on lever 306A is positioned to engage stud 366 on driver 298A. Hole 372 on handle 310A rotatably engage the pivot pin 360 on base bracket 244A.
Handle 310A is rotatable between a low tension position (Figs. 12L and 12LL) and a high tension position (Figs. 12M and 12MM). Specifically, as handle 310A is rotated, pin 370 rides along slot 313A causing lever 306A to rotate about hole 368 and pivot pin 361. As lever 306A rotates, tooth 371 engages pin 366 to rotate driver 298A about pin 360. Rotation of driver 298A causes the inside end 365 of spring 303A to rotate, thus winding (or unwinding) spiing 303A. The arrangement of driver 298A, lever 360A, and handle 310A provide a mechanical advantage of about 4:1, so that the spiral spiing 303 A is adjustably wound with a desired amount of adjustment force on the handle 310A. In the Ulustration, a rotation of about 330° of the handle 310A produces a spring tension adjustment winding of about 80°.
Optionally, for maximum adjustabUity, a vertical adjustable lumbar system 35 (Fig. 16) is provided that includes a slide frame 150 (Fig. 19) that is generally flat and that includes several hooked tabs 151 on its front surface. A concave lumbar support sheet 152 (Fig. 16) of flexible material such as spring steel includes a plurality of vertical slots that form resUient leaf- spring-like fingers 153 along the top and bottom edges of the sheet 152. The (optional) height adjustable back support sheet 152 is basically a radiused sheet spring that can, with normal back support pressures, deflect untU it matches the shape of the back shell beneath it. In doing so, it provides a band of higher force across the back. This provides a user with height-adjustable localized back support, regardless of the flexural shape of the user's back. Thus, it provides the benefits of a traditional lumbar height adjustment without forcing a user into a particular rigid back posture. Further, the fabric or upholstery on the back is always held taunt, such that wrinkles are eliminated. Stretch fabric can also be used to eliminate wrinkles.
A user may also use this device for a second reason, that reason being to more completely adapt the back shell shape to his/her own unique back shape. Especially in the lower lumbar /pel vie region, humans vary dramatically in back shape. User's with more extreme shapes wUl benefit by sliding the device into regions where their back does not solidly contact the shell. The device will effectively change its shape to exactly "fill in the gap" and provide good support in this area. No other known lumbar height adjustor does this in the manner described below.
Four tips 154 on fingers 153 form retention tabs that are particularly adapted to securely engage the hooked tabs 151 to retain the sheet 152 to the slide frame 150. The remaining tips 155 of the fingers 153 slidably engage the slide frame 150 and hold the central portion 156 of the concave sheet forwardly and away from the slide frame 150. The slide frame 150 is vertically adjustable on the back shell 31 (Fig. 16) and is positioned on the back shell 31 between the back shell 31 and the back cushion. Alternatively, it is contemplated that the slide frame 150 could be located between the back cushion and under the upholstery covering the back 22, or even on a front face of the back 22 outside the upholstery sheet covering the back 22. By adjusting the slide vertically, this arrangement allows a seated user to adjust the shape of the lumbar area on the back shell 31, thus providing a high degree of comfort. A laterally-extending guide 157 (Fig. 19) is formed at each of the ends of the slide frame 150. The guides 157 include opposing flanges 158 foiming inwardly-facing grooves. Molded handles 159 (Fig. 20) each include a leg 160 shaped to mateably telescopingly engage the guides 157 (Figs. 17 and 18). The handles 159 further include a C-shaped lip 160 shaped to snappingly engage and slide along the edge ridge 127 along the edge of back shell 31. It is contemplated that other means can be provided for guiding the vertical movement of the slide frame 150 on back shell 31, such as a cord, a track molded along but inward of the edge of the back shell, and the like. An enlarged flat end portion 161 of handle 159 extends laterally outwardly from molded handle 159. Notably, the end portion 161 is relatively thin at a location 161 ' immediately outboard of the lip 160, so that the handle 159 can be extended through a relatively thin slot along the side edge of the back 22 when a cushion and upholstery sheet are attached to the back shell 31.
The illustrated back 22 of Fig. 12 includes a novel construction incorporating stretch fabric 400 sewn at location 401 to a lower edge of the upholstery sheet 402 for covering a front of the back 22. The stretch fabric 400 is further sewn into a notch 406 in an extrusion 403 of structural plastic, such as polypropylene or polyethylene. The extrusion 403 is attached to a lower portion 404 of the back shell 31 by secure means, such as snap-in attachment, hook-in attachment, rivets, screws, other mechanical fasteners, or other means for secure attachment. The foam cushion 405 of the back 22 and the vertically-adjustable lumbar support device 35 are positioned between the sheet 402 and back shell 31. It is contemplated that the stretch fabric wUl have a stretch rate of at least about 100%, with a recovery of at least 90% upon release. The stretch fabric 400 and sheet 402 are sewn onto the back 22 in a tensioned condition, so that the sheet 402 does not wrinkle or pucker despite the large flexure of the lumbar region 251 toward a planar condition. The stretch fabric 400 is in a low visibility position, but can be colored to the color of the chair if desired. It is noted that covering 402 can be extended to cover the rear of back 22 as well as its front.
Primary Seat Movement. Seat Undercarriage/Support Frame and Bearing Arrangement The .seat 24 (Fig. 4B) is supported by an undercarriage that includes a seat front slide 162 and the seat carrier 124. Where seat depth adjustment is desired, a manually depth- adjustable seat frame 163 is slidably positioned on the seat carrier 124 (as is shown in Figs. 4B and 21-30). Where seat depth adjustment is not desired, the features of the seat frame 163 and seat rear carrier 124 can be incorporated into a single component, such as is Ulustrated in Fig. 29 by frame member 163 ' . A seat shell 164 (Fig. 4B) includes a buttock-supporting rear section 165 that is positioned on the seat carrier 124. The buttock-supporting rear section 165 carries most of the weight of the seated user, and acts somewhat like a perch in this regard. The seat shell 164 further includes a thigh-supporting front section 166 that extends forwardly of the seat frame 163. Front section 166 is connected to rear section 165 by a resUient section
167 strategicaUy located generally under and slightly forward of a seated user's hip joint. The resUient section 167 has a plurality of transverse slots 168 therein. The slots 168 are relatively short and are staggered across the seat shell 164, but are spaced from the edges of the seat shell 164, such that the band of material 169 at the edges of the seat shell 164 remains intact and uninterrupted. The bands 169 securely connect the front and rear sections 166 and 165 together and bias them generally toward a planar condition. A seat cushion 170 is positioned on seat frame 163 and is held in place by upholstery sheet and/or adhesive or the like.
Slide 162 (Fig. 4B) includes a top panel 171 with C-shaped side flanges 172 that extend downwardly and inwardly. A linear lubricous cap 173 is attached atop each sidewall of housing 26 and a mating bearing 174 is attached inside of C-shaped side flanges 172 for slidably engaging the lubricous cap 173. In this way, the slide 162 is captured on the housing 26 for fore-to-aft sliding movement. The seat-attached bracket 56 is attached under the top panel 171 and is located to operate with the back-stop mechanism 36. An axle 174 ' is attached atop the top panel 171 and includes ends 175 that extend laterally from the slide 162. Seat carrier 124 (Fig. 4B) is T-shaped in plan view. Seat carrier 124 is stamped from sheet metal into a "T" shape, and includes a relatively wide rear section 176 and a narrower front section 177. Embossments such as elongated embossments 178, 179, and 180 are formed in sections 176 and 177 along with side-down flanges 181 and side-up flanges 182 to stiffen the component. Two spaced-apart stop tabs 183 and a series of latch apertures 184 are formed in the front section 177 for reasons discussed below. The welded studs 123 are attached to side- up flanges 182 and extend laterally. As discussed above, the studs 123 define the seat-tUt axis 25 at this location.
Seat frame 163 (Fig. 4B) is T-shaped, much like the seat carrier 124, but seat frame 163 is shaped more like a pan and is generally larger than the seat carrier 124 so that it is better adapted to support the seat shell 164 and seat cushion 170. Seat frame 163 includes a front portion 185 and a rear portion 186. The front portion 185 includes a top panel 187 with down flanges 188 at its sides. Holes 189 at the front of down flanges 188 form a pivot axis for the active thigh flex device 190 described below. Other holes 191 spaced rearwardly of the holes 189 support an axle that extends laterally and supports a multi-functional control 192 for controlling the seat depth adjustment and for controlling the active thigh flex device 190. The center of front portion 185 is raised and defines a sidewall 193 (Fig. 23) having three apertures 194-196 that cooperate to pivotally and operably support a depth latch 197. A depression 198 is formed in the center of front portion 185 and a slot 200 is cutout in the center of the depression 198. A T-shaped stop limiter 199 (Fig. 26) is positioned in the depression 198 and screw-attached therein, with the stem 201 of the limiter 199 extending downwardly through the slot 200 (Figs. 26 and 26A). An inverted U-shaped bracket 203 is attached to the wide rear section 176. The U-bracket 203 (Fig. 28) includes apertures for pivotally supporting one end of a gas spring 204 used in the active thigh flex support device 190 described below. The rear section 176 (Fig. 23) includes a U-shaped channel section 205 that extends around its perimeter and an outermost perimeter flange 206, both of which serve to stiffen the rear section 176. Flat areas 205 ' are formed on opposing sides of the rear section 176 for slidably engaging the top of rear beaiings 209.
Seat Depth Adjustment
A pair of parallel elongated brackets 207 (Fig. 4B) are attached under the forwardly- extending outer sides of the U-shaped channel section 205 for slidingly supporting the seat frame 163 on the seat carrier 124. The elongated Z-brackets 207 form inwardly-facing C- shaped guides or tracks (Fig. 21) that extend fore-to-aft under the seat frame 163. A bearing member is attached inside the guides of bracket 207 to provide for smooth operation if desired. Two spaced-apart front beaiings 208 (Fig. 4B) and two spaced-apart rear beaiings 209 are attached atop the seat carrier 124, front bearings 208 being attached to front section 177. and rear bearings 209 being attached to rear section 176. The rear beaiings 209 are configured to slidably engage the guides in brackets 207, and further include a tongue 210 that extends inwardly into the C-shaped portion of the C-shaped guides. The tongue 210 captures the seat frame 163 so that the seat frame 163 cannot be pulled upwardly away from the seat carrier 124. The front bearings 208 slidably engage the underside of the front section 187 at spaced-apart locations. The front bearings 208 can also be made to capture the front portion of the seat frame 163; however, this is not deemed necessary due to the thigh flex device which provides this function. The depth adjustment of seat 24 is provided by manually sliding seat frame 163 on beaiings 208 and 209 on seat carrier 124 between a rearward position for minimum seat depth (see Fig. 24) and a forward position for maximum seat depth (see Fig. 25). The stem 201 (Fig. 26A) of limiter 199 engages the stop tabs 183 in seat carrier 124 to prevent the seat 24 from being adjusted too far forwardly or too far rearwardly. The depth latch 197 (Fig. 23) is T- shaped and includes pivot tabs 212 and 212' on one of its arms that pivotally engages apertures 194 and 195 in seat frame 163. The depth latch 197 further includes a downwardly-extending latching tooth 213 on its other arm that extends through aperture 195 in seat frame 163 into a selected one of the series of slots 214 (Fig. 26) in the seat carrier 124. A "stem" of the depth latch 197 (Fig. 23) extends laterally outboard and includes an actuation tab 215. Multi-function control 192 includes an inner axle 217 that supports the main components of the multi-function control. One of these components is an inner sleeve 218 rotatably mounted on axle 217. The handle 219 is connected to an outer end of the inner sleeve 218 and a protrusion 220 is connected to an inner end of the inner sleeve 218. The protrusion 220 is connected to the actuation tab 215, such that rotation of the handle 219 moves the protrusion 220 and pivots the latch 197 about latch pivots 194 and 195 in an up and down disconnection. The result is that the latching tooth 213 is released from the series of slots 214, so that the seat 24 can be adjusted to a new desired depth. A spring on inner sleeve 218 biases the latch 197 to a normally engaged position. It is contemplated that a variety of different spring arrangements can be used, such as by including an internal spring operably connected to inner sleeve 218 or to latch
197.
Seat Active Thigh Angle Adjustment (with Infinitely Adjustable Gas Spring) A front reinforcement plate 222 (Fig. 28) is attached to the underside of the thigh- supporting front section 166 of seat shell 164. A Z-shaped bracket 221 is attached to plate 222 and a bushing 223 is secured between the bracket 221 and the plate 222. A bent rod axle 224 is rotatably supported in bushing 223 and includes end sections 225 and 226 that extend through and are pivotally supported in apertures 190 of down flanges 189 of seat frame 163. The end section 226 includes a flat side, and a U-shaped bracket 227 is non-rotatably attached to the end section 226 for supporting an end of gas spring 204. The U-shaped bracket 227 is oriented at an angle to a portion of the bent rod axle 224 that extends toward bushing 223, such that the U- shaped bracket 227 acts as a crank to raise and lower the thigh-supporting front portion 166 of seat shell 164 when the gas spring 204 is extended or retracted. Specifically, the gas spring 204 is operably mounted between brackets 227 and 203, so that when extended, the front thigh- suppoi ing section 166 of seat shell 164 is moved upwardly to provide additional thigh support. Notably, the thigh-supporting section 166 provides some flex even when the gas spring 204 is locked in a fixed extension, so that a person's thighs are comfortably supported at all times. Nonetheless, the infinite adjustabUity of this active thigh support system provides an improved adjustabUity that is very useful, particularly to people with shorter legs.
The gas spring 204 (Fig. 28) is self-locking and mcludes a release button 233 at its rear end that is attached to the bracket 203 for releasing the gas spring 204 so that its extendable rod is extendable or retractable. Such gas springs 204 are well-l nown in the art. The multi- functional control 192 (Fig. 3) includes an actuator for operating the release button 233.
Specifically, the multi-functional control 192 includes a rotatably outer sleeve 229 (Fig. 23) operably positioned on the inner sleeve 218 and a handle 230 for rotating the outer sleeve 229. A connector 231 extends radially from an inboard end of outer sleeve 229. A cable 232 extends from the connector 231 on outer sleeve 229 to the release button 233 (Fig. 28). The cable 232 has a length chosen so that when outer sleeve 229 is rotated, the cable 232 pulls on the release button 233 causing the internal lock of the gas spring 204 to release. The release button 233 is spring biased to a normally locked position. A seated user adjusts the active thigh flex support system by operating the handle 230 to release the gas spring 204. The seated user then presses on (or raises their legs away from) the thigh-supporting front portion 166 of the seat shell 164 causing the gas spiing 230 to operate the bent rod axle 217 to re-adjust the thigh- supporting front portion 166. Notably, the active thigh support system 190 provides for infinite adjustment within a given range of adjustment.
Also shown on the control 192 (Fig. 10) is a second rotatable handle 234 operably connected to a pneumatic vertical height adjustment mechanism for adjusting chair height by a Bowden cable 235, sleeve 235 ' , and side bracket 235 ' ' . The detaUs of chair height adjustment mechanisms are well known, such that they do not need to be discussed herein.
The seat shell 164 and its supporting structure (Fig. 4B) is configured to flexibly support a seated user's thighs. For this reason, the seat cushion 170 includes an indentation 170A located slightly forwardly of the seated user's hip joint (Fig. 12). The upholstery covering the seat cushion 170B includes a tuck or fold at the indentation 170A to allow the material to expand or stretch during downward flexing of the thigh support region since this results in a stretching or expanding at the indentation due to the fact that the top surface of the upholstery is spaced above the hinge axis of flexure of the seat shell 164. Alternatively, a stretch fabric or separated front and rear upholstered cushions can be used. Seat Passive/Flexible Thigh Support (without Gas Spring)
A passive thigh flex device 237 (Fig. 30) includes a reinforcing plate 238 attached to the underside of the thigh-supporting front portion 166 of seat shell 164 (Fig. 4B). A pair of L- shaped stop tabs 239 (Fig. 29) are bent downwardly from the body of the plate 238. The L- shaped tabs 239 include horizontal fingers 240 that extend rearwardly to a position where the fingers 240 overlap a front edge 241 of the seat frame 163. Bushings 242 are positioned inside the L-shaped tabs 239 and include a notch 243 engaging the front edge 241. A curvilinearly- shaped leaf spring 244 is positioned transversely under the reinforcing plate 238 with the ends
245 of the leaf spring 244 engaging recesses in the top of the bushings 242. The leaf spring 244 has a curvUinear shape so that it is in compression when in the present passive thigh flex device 237. When a seated user presses downwardly on the thigh-supporting front portion 166 with their thighs, the leaf spring 244 bends in the middle causing the reinforcing plate 238 to move toward the front edge 241 of the seat frame 163. When this occurs, the fingers 240 each move away from their respective bushings 242 (Fig. 31). When the seated user releases the downward pressure on the thigh-supporting front portion 166, the spring 244 flexes toward its natural bent shape causing the bushings 242 to move back into engagement with the fingers 240 (Fig. 30). Notably, this passive thigh flex device 237 allows the user to flex the lateral sides of the thigh-supporting front portion 166 of the seat shell 164 independently or simultaneously. The degree of flexure of the passive thigh flex device 237 is limited by the distance that bushings 242 can be moved in L-shaped tabs 239.
In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed herein. Such modifications are to be considered as included in the following claims, unless these claims by their language expressly state otherwise.

Claims

The invention claimed is:
1. A chair comprising: a base assembly including a control housing having opposing side flanges and a side pivot located proximate one of the side flanges; a back pivoted to the base assembly for movement between upright and reclined positions; a seat operably supported on the base assembly and connected to the back for coordinated synchronous movement with the back; an ener§y mechanism for biasing the back toward the upright position, the energy mechanism including an extendable/compressible spring positioned transversely in the control housing with one end supported on one of the side flanges, and further including a lever pivoted to the side pivot, the lever having a spring-engaging portion engaging a free end of the spring and also having a seat-biasing portion operably connected to the seat; and the side Pivot> me spring-engaging portion, and the seat-biasing portion being spaced from each other and arranged so that the spring biases the lever about a fulcrum located generally at the side pivot to bias the back toward the upright position.
2. The chair defined in claim 1 wherein the side pivot includes an adjustable pivot member constructed to change a location of the fulcrum on the lever when the pivot member is adjusted.
3. The chair defined in claim 2 wherein the pivot member and the lever include interfacing surfaces, at least one of the interfacing surfaces being curvilinear.
4. The chair defined in claimed 3 wherein the interfacing surfaces include intermeshing teeth.
5. The chair defined in claim 4 wherein the lever comprises an L-shaped bell crank. and the fulcrum is located generally along an intermediate portion of one leg of the L-shaped bell crank.
6. The chair defined in claim 2 wherein the lever and the pivot member are pivoted about vertical axes and are movable in a common horizontal plane that provides compact positioning within the control housing.
7. The chair defined in claim 1 wherein the spring is supported by the control housing and engaged by the lever in a configuration that causes the free end of the spring to simultaneously move toward the one supported end and also move along a fore/aft direction during recline of the back.
8. The chair defined in claim 7 wherein the lever both longitudinally compresses the spring and causes the spring to bend laterally in a non-linear manner during recline of the back.
9. In a chair having a control housing including a pivot member, a reclineable back operably connected to the control housing for movement between upright and reclined positions, and an energy source in the control housing for biasing the back toward the upright position, the improvement of an adjustable back tension control comprising: the pivot member being adjustable; and a lever engaging the energy source and the pivot member, the lever being operably connected to the back for biasing the back toward the upright position, the lever and the pivot member having non-slip interfacing surfaces, at least one of which is curvilinear, so that the interfacing surfaces engage to define a shifting fulcrum as the lever is rotated during recline of the back, and further so that the fulcrum changes location as the pivot member is adjusted to change a moment arm over which the energy source operates.
10. The chair defined in claim 9 wherein the lever comprises a bell crank having a leg that is pivotally engaged at an intermediate location by the pivot member to define the fulcrum.
11. The chair defined in claim 10 wherein the lever pivots in a horizontal plane about a generally vertical axis to provide for compact positioning in the control housing.
12. The chair defined in claim 11 including a link and a seat-engaging bracket operably connected to the lever by the link so that the lever biases the seat-engaging bracket and d e seat in a rearward direction.
13. The chair defined in claim 10 wherein the pivot member is pivoted to the control housing at a pivot location spaced from the interfacing surface of the pivot member, the interfacing surface of the pivot member being arcuately shaped and defining a constant radius from the pivot location.
14. The chair defined in claim 13 wherein the interfacing surfaces have teeth that engage in a rack-and-pinion like manner.
15. The chair defined in claim 14 wherein the interfacing surface of the lever also has a curvUinear shape.
16. The chair defined in claim 9 including an adjustment mechanism for angularly adjusting the pivot member to change a length of the moment arm.
17. The chair defined in claim 16 wherein the adjustment mechanism includes an overtorque device to prevent overtorquing by a user when adjusting the pivot member.
18. The chair defined in claim 9 wherein the chair includes a seat operably positioned on the control housing and interconnected between the lever and the back.
19. The chair defined in claim 9 wherein the interfacing surfaces have teeth that engage in a rack-and-pinion like manner.
20. A chair comprising: a base assembly; a component comprising one of a reclineable back and a movable seat pivoted to the base assembly for movement between first and second positions; and a spring with one end supported on the base assembly and another end operably connected to die component, the spring having a length and, when die component is moved from the first position to the second position, being simultaneously longitudinally compressed along the lengtii and also laterally bent in a direction transverse to the length.
21. The chair defined in claim 20 including a lever having a first end contacting the another end of the spring and a second end linked to the component.
22. The chair defined in claim 21 wherein the lever is pivoted to the base assembly.
23. The chair defined in claim 22 wherein the component includes a seat.
24. The chair defined in claim 23 including a back frame operably connected to the seat for simultaneous movement therewith.
25. A chair comprising: a base assembly including a control housing; a seat slidingly supported on the control housing; a back frame pivoted to the base asssembly for movement between upright and reclined positions and operably attached to the seat so that pivotal movement of the back frame and sliding movement of d e seat are synchronized; and an energy mechanism including a spring having a length and an L-shaped torque member with a first leg engaging an end of the coil spring and a second leg extending generally parallel the lengtii of die spring, the first leg pivotally engaging the control housing at a location spaced from die end of the spring, and the second leg being operably connected to one of the seat and die back frame so that the spring biases the torque member in a manner biasing the back frame toward the upright position.
26. The chair defined in claim 25 wherein the first leg includes a curvilinear surface that both rollingly and pivotally engages structure on the control housing as the back frame moves between upright and reclined positions.
27. The chair defined in claim 26 wherein the structure on die control housing including a pivot member with an interface surface that engages the curvilinear surface on the first leg, the surfaces being configured to positively engage to prevent undesired slippage.
28. A chair comprising: a base assembly including a control housing; a seat slidingly supported on the control housing; a back frame pivoted to the base assembly for movement between upright and reclined positions and operably attached to the seat so tiiat pivotal movement of the back frame and sliding movement of die seat are synchronized; the control housing defining a relatively thin, horizontally-extending compartment under die seat; and an adjustable energy mechanism operably positioned in die compartment, the adjustable energy mechanism including an extensible energy source, a lever operably connected between the energy source and the seat, and an adjustment member adjustably pivotally supporting the lever for adjustably controlling force transmitted from the energy source through the lever to the seat, the energy source, the lever, and the adjustment member being movable in horizontal directions only so as to operate witi in me relatively- thin horizontally-extending compartment.
29. The chair defined in claim 28 wherein the adjustment member includes a pivot member operably attached to the control housing for shifting the lever to adjust a fulcrum of the lever.
30. A chair control comprising: a control housing; a component operably attached to the control housing for movement between a plurality of positions; an actuator on the control housing operably connected to die component for controlling movement of the component; a manually-operable handle for operating the actuator; and an overtorque device connecting the handle to the actuator, the overtorque device being constnicted to limit force transmitted from the handle to the actuator to a maximum amount to prevent damage to die chair control.
31. The chair control defined in claim 30 wherein the overtorque device includes a release mechanism configured to release the handle, thus preventing a person from applying an excessive force to the handle.
32. The chair control defined in claim 31 wherein the release mechanism includes a clutch.
33. The chair control defined in claim 32 wherein the clutch includes a clutch ring and a friction ring that operably engages the clutch ring.
34. The chair control defined in claim 33 wherein the clutch ring, the friction ring, and the handle are mounted to the central housing for rotation about a common axis.
35. The chair defined in claim 1 wherein the base assembly includes a base frame that incorporates the housing.
36. The chair defined in claim 20 wherein die base assembly includes a base frame that incorporates the housing.
37. The chair defined in claim 25 wherein the base assembly includes a base frame that incorporates the housing.
38. The chair defined in claim 28 wherein the base assembly includes a base frame that incorporates the housing.
39. A control comprising: a control housing; a single stored energy source positioned in the control housing providing a compressive force; a lever operably interconnected with said single energy source for movement between upright and reclined positions, said single stored energy source both exerting pretension to bias the lever toward the upright position and providing resistance to tilting of the lever when reclining; and a controller for regulating the pretension of the stored energy source and tilt rate of the lever, the controller being configured for adjustment without an operator having to overcome a compressive force of the said single stored energy source.
40. The control defined in claim 39 wherein the housing includes an adjuster device, and die lever and the adjuster device define a variable and adjustable fulcrum point.
41. A chair comprising: a base assembly including a control housing; a single stored energy source positioned in the control housing providing a compressive force; a back support operably interconnected with said single energy source for movement between upright and reclined positions, said single stored energy source both exerting pretension to bias the back support toward die upright position and providing resistance to tilting of the back support when reclining; and a controller for regulating the pretension of the stored energy source and tilt rate of die back support, the controller including a lever defining an adjustable fulcrum point that can be adjusted witiiout overcoming the compressive force of the said single stored energy source.
42. The chair defined in claim 41 including a seat engaging and interconnecting the back support to the energy source.
43. A control comprising: a control housing; a stored energy source positioned in the control housing; a back-supporting first lever operably interconnected with said energy source for movement between upright and reclined positions, said stored energy source both exerting pretension to bias the first lever toward die upright position and providing resistance to tilting of the first lever when reclining; and a controller for regulating the pretension of the stored energy source of the first lever, the controller including a crank lever within the control housing, said crank lever having one end engaging the stored energy source and the other end operably interconnected with die first lever, and said crank lever having a portion between said one end and said other end forming a fulcrum, so that the energy source biases the crank lever about die fulcrum to bias the first lever toward the upright position.
44. The control defined in claim 43 including an adjustable pivot member defining a movable fulcrum point with the crank lever, at least one of the pivot member and die portion of the crank lever having a curvilinear surface along which the movable fulcrum point is located.
45. A control comprising: a control housing; a stored energy source positioned in d e control housing; a first lever operably interconnected witii said energy source for movement between upright and reclined positions, said stored energy source both exerting pretension to bias the first lever toward the upright position and providing resistance to tilting of the first lever when reclining; an adjustable controller for adjustably regulating d e pretension of the stored energy source, the controller including a manually-operable handle for regulating the pretension of the stored energy source; and an overtorque device configured to limit the physical force transmitted from the handle to the controller.
46. A chair comprising: a base assembly; a seat supported on the base assembly; a back frame pivoted to the base assembly for movement between upright and reclined working positions; a compliant back connected to die back frame in at least one top connection and to the chair at bottom connections vertically spaced from the at least one top connection, d e bottom connections being generally aligned with a seated user's hip bone and lower spine such mat the compliant back undergoes controlled flexure between the top and bottom connections; and d e seat having a front portion slidably supported on d e base assembly and a rear portion pivotably connected to the back frame so that the seat moves forwardly in a synchronized motion with the back frame during recline of the back frame.
47. The chair defined in claim 46 wherein the compliant back includes upper and lower sections operably connected together for counter-rotational movement, die upper section being pivoted to the back frame at the top connection and die lower section including forwardly-extending flanges pivoted to the back frame at the bottom connections, a rearward distance from the bottom connections to a lower front surface of the lower section being about equal to a distance from a seated user's hip joint to the seated user's rear/lower spine bones so that flexure of die seated user's lower back causes the compliant back to flex sympathetically with flexure of the seated user's lower spine.
48. The chair defined in claim 46 wherem the compliant back includes a back shell having upper and lower stiff sections connected by a flexible zone located generally in a lumbar area of a seated user.
49. The chair defined in claim 48 wherein the flexible zone includes a plurality of horizontal slits extending generally across the compliant back but terminating to leave an uninterrupted band of material at opposite side edges of d e lumbar area.
50. The chair defined in claim 49 including a torsional lumbar support mechanism operably attached to the back shell, the torsional lumbar support mechanism biasing the shell toward a forwardly-protruding convex shape for optimal lumbar support.
51. The chair defined in claim 50 including a vertically-adjustable lumbar support attached to the compliant back for vertical adjustment to change a shape of a front surface of the compliant back in d e lumbar area of the seated user.
52. The chair defined in claim 51 wherein the vertically-adjustable lumbar support includes laterally extending handles constructed to engage and track with a perimeter edge of die compliant back and constructed to slidably engage the vertically-adjustable lumbar support to permit the handles to adjust in and out to follow the perimeter edge.
53. The chair defined in claim 46 including a torsional lumbar support mechanism attached to one of d e bottom connections for biasing the compliant back toward a forwardly-protruding convex shape.
54. The chair defined in claim 46 including a vertically-adjustable lumbar support operably attached to a front surface of die compliant back, die vertically-adjustable lumbar support being configured to change a force of support at die front surface of the compliant back in a lumbar area of a seated user.
55. The chair defined in claim 54 including at least one handle tiiat slidably engages the vertically-adjustable lumbar support in a generally horizontal direction, the handle being configured to follow along a perimeter edge of the compliant back for vertically adjusting the vertically-adjustable lumbar support.
56. The chair defined in claim 46 wherein the top connection includes a top pivot connection.
57. The chair defined in claim 56 wherein the top pivot connection includes a protruding T-shaped connector on the back frame and a mating recess in the compliant back, the recess being configured to receive and frictionally engage the T-shaped protruding connector to attach the compliant back to the back frame.
58. Th chair defined in claim 46 wherein the compliant back includes a belt bracket attached along a bottom edge of die compliant back, the belt bracket including flanges defining a part of d e bottom connectors.
59. The chair defined in claim 58 including an adjustable torsional lumbar support mechanism attached to one of the bottom connectors.
60. The chair defined in claim 46 wherein the back frame defines an inverted curvilinear arch.
61. The chair defined in claim 46 wherein the back frame includes an internal metal reinforcement and an exterior polymeric covering that covers all sides of an intermediate section of the internal metal reinforcement.
62. The chair defined in claim 46 wherein the back frame includes configured ends positioned on opposing sides of the rear portion of die seat, the configured ends defining first pivots for pivotal connection to the back frame and second pivots for pivotal connection to the seat.
63. A chair comprising: a base assembly; a back frame pivoted to the base assembly for movement between upright and reclined working positions; and a compliant back operably attached to the back frame at a top connection and operably attached to die chair at bottom connections, the compliant back including a forwardly-extending flange generally located along its lower edge forming an axis of rotation at the bottom connection mat is located at or rearward of a rear of a seated user's pelvic bone so tiiat when a seated user flexes their lower back rearwardly, a pelvic portion of the compliant back moves pivotally downwardly and rearwardly about d e axis, a lumbar portion of the compliant back flexibly moves generally rearwardly to form a more planar arrangement with d e pelvic portion, and a tiioracic portion of die back pivots about the top connection, tiius providing support for a seated user's back that is highly sympathetic to the seated user flexing and moving the seated user's torso and spine.
64. The chair defined in claim 63 including an adjustable torsional lumbar support spring mechanism for torsionally biasing the compliant back to a forwardly-protruding convex shape for optimal lumbar support for the seated user.
65. The chair defined in claim 64 wherein the compliant back includes a molded shell having a resilient lumbar section.
66. The chair defined in claim 65 including a belt bracket attached to a bottom edge of die molded shell.
67. The chair defined in claim 66 including a vertically-adjustable lumbar support operably attached to a front of the compliant back.
68. The chair defined in claim 63 wherein the top connection includes a protrusion on the base frame and a mating recess on the compliant back, the recess being configured to receive and frictionally engage the protrusion.
69. The chair defined in claim 63 including a vertically-adjustable lumbar support attached to the compliant back in a lumbar area of the seated user, for changing a shape of a front surface of the compliant back in d e lumbar area.
70. The chair defined in claim 69 including handles operably engaging the vertically- adjustable lumbar support and configured to follow a perimeter edge of the compliant back during vertical adjustment of the vertically-adjustable lumbar support.
71. The chair defined in claim 63 wherein the back frame has configured ends positioned on opposite sides of the compliant back, the configured ends defining a back-tilt axis, a seat- tilt axis, and a back-shell bottom-tilt axis mat is located rearwardly of the back-tUt axis and the seat-tilt axis, the back-shell bottom-tilt axis being located generally at the adjustable torsional lumbar support spring mechanism.
72. The chair defined in claim 63 wherein the compliant back includes a covering sheet, at least a stretchable portion of which is stretchable material for maintaining the covering sheet in tension on the compliant back during flexure of die compliant back.
73. The chair defined in claim 72 wherein the stretchable portion includes a strip of stretch fabric sewn to a lower edge of the covering sheet.
74. The chair defined in claim 73 wherein the compliant back includes a back shell, and includes an extrusion attached to die strip of stretch fabric, the extrusion being secured to a lower edge of die back shell.
75. The chair defined in claim 74 wherein the extrusion includes a notch for receiving an edge of the strip of stretch fabric and is sewn to the strip of stretch fabric along the notch.
76. In a chair having a base, a seat, a back frame rotatably attached to d e base, and a first energy mechanism for biasing the back frame toward an upright position, the improvement comprising: a compliant back that is flexibly bendable to define different curvilinear shapes for sympathetically supporting a seated user's back, and a belt bracket with forwardly-extending flanges pivotally connecting the compliant back to the back frame at a first connection, said compliant back including a second connection pivotally connecting die compliant back to die back frame at a second location spaced vertically from the first connection, such tiiat die compliant back is constrained to move over a range limited by die first and second connections; and a second energy mechanism including a force generating mechanism located generally at one of the first and second connections and constructed to bias die bracket and so as to bias a lumbar portion of the compliant back forward with respect to the chair.
77. The chair defined in claim 76 wherein the belt bracket includes side flanges positioning the first connection generally at a rear of a pelvic bone of a seated user so that, when die seated user flexes his/her lower back rearwardly, a pelvic portion of die back moves downwardly and rearwardly, a lumbar portion of die back moves generally flexibly rearwardly to form a more planar arrangement witii the pelvic portion, and a thoracic portion of the back pivots about the second connection, the pelvic portion, the lumbar portion, and the thoracic portion flexing in a manner highly sympathetic to movements of die seated user's back.
78. A chair construction comprising: a base assembly; a seat; a back frame pivoted to the base frame for movement between upright and reclined positions; and a compliant back pivoted to the back frame at a fixed top connection and including forwardly-extending flanges pivoted to one of the back frame, the seat, and the base assembly at bottom connections, a rearward distance from the bottom connections to a lower front central surface of the compliant back being about equal to a rearward distance from a seated user's hip joint to the seated user's rear/lower spine bone so that flexure of the seated user's spine and lower back causes the compliant back to flex sympathetically and minor flexure of die seated user's back and spine.
79. The chair construction defined in claim 78 wherein the bottom connections connect the flanges of the compliant back to the back frame.
80. The chair construction defined in claim 79 wherein the compliant back comprises relatively stiff upper and lower sections interconnected by a flexible section.
81. A chair back construction comprising: a back frame including a top portion and a bottom portion; and a compliant back pivoted at top and bottom connections to d e top and bottom portions, respectively, the compliant back having a relatively stiff pelvic support section that pivots about the bottom connections at a pivot axis located forward of the pelvic support section and at or rearward of a seated user's hip joint, the compliant back further having -a relatively stiff thoracic support section that pivots about the top connection at a pivot axis located rearward of the thoracic support section, the pelvic and thoracic support sections being connected for flexure in a lumbar area of a seated user's back, the compliant back being constrained to flex consistent with the top and bottom pivots in a manner sympathetic to the seated user's spine during flexure of the seated user's back.
82. The chair back construction defined in claim 81 wherein the compliant back includes a flexible lumbar support section interconnecting the lumbar and thoracic support sections.
83. A chair comprising: a base assembly; an inverted U-shaped back frame having an intermediate top section and a pair of configured end sections pivoted to the base assembly, a T-shaped top connector protruding from the top section and a pair of bottom connectors in the configured end sections; a compliant back including a top recess configured to receive and frictionally engage d e top connector, and further including a belt bracket along a lower edge with opposing flanges that extend forwardly a distance for connection to the bottom connectors; and a connecting mechanism pivotally connecting the opposing flanges to the bottom connectors at a location proximate but somewhat rearwardly of a seated user's hip joint.
84. The chair defined in claim 83 wherein the compliant back includes a flexible lumbar section, and wherein the distance that the flanges extend forwardly is a few inches and is about equal to a distance from a hip joint of a seated user to a lower spine bone of the seated user, such that the compliant back, when flexed, flexes in a sympathetic manner mirroring a seated user's spine.
85. A back construction for a chair comprising: a back frame; a highly compliant back having a forwardly-protruding lumbar support section that is movable rearwardly in a manner that mirrors flexure of a seated user's back; top and bottom connections pivotally connecting die compliant back to die back frame; and an adjustable torsional force-generating mechanism operably attached to one or both of the compliant back and the back frame to bias the lumbar section forwardly for optimal lumbar support for the seated user's back.
86. The back construction defined in claim 85 wherein die torsional force-generating mechanism is operably mounted at the bottom connection to die back frame and the compliant back.
87. The back construction defined in claim 86 wherein the compliant back includes a relatively stiff thoracic support section and a relatively stiff pelvic support section, which are interconnected by die lumbar support section.
88. The back construction defined in claim 87 wherein the lumbar support section comprises a flexible sheet of material.
89. The back construction defined in claim 86 wherein torsional force- generating mechanism includes a spring and a handle, d e handle being rotatable to wind and unwind to adjust a tension of die spring, d e spring being operably connected between the compliant back and die back frame to bias the lumbar support section of the compliant back toward a forwardly convex shape.
90. The back construction defined in claim 89 wherein the torsional force-generating mechanism includes a lever to provide mechanical advantage when adjusting the tension of the spring.
91. A chair comprising: a base assembly including a control housing having an energy source therein; a back support operably interconnected to d e energy source for movement between an upright position and a reclined position, said back support including a back frame and a back shell, said back shell comprising a resϋiently flexible polymeric sheet shaped to support a back area of a seated adult user thereon, with a semi-rigid lower area disposed generally behind at least a portion of the pelvic area of a seated adult user, a flexible central area disposed above said lower area and generally behind at least a portion of the lumbar area of the seated adult user, and a semi-rigid upper area disposed above said central area and generally behind at least a portion of the thoracic area of the seated adult user; and said back frame having a first attachment coupling said upper area of said back shell to the back frame, and a plurality of pivotal second attachments for pivotally coupling said lower area of the said back shell to the back frame, the second attachments constraining movement of the lower area to force flexure to occur in a controlled sympathetic manner in the lumbar area in order to assure continuous and comfortable support of the seated adult user's spine in the lumbar area during flexure of the seated adult user's spine while seated.
92. The chair defined in claim 91 wherein the back frame includes a first pivot wherein the back frame is pivotally attached to die base assembly for movement of the back support between the upright and reclined positions, with the first pivot axis approximately coinciding with an axis defined by a hip joint of the seated adult user.
93. The chair defined in claim 91 wherein the said central area comprises a plurality of laterally spaced apart slots in said sheet extending generally horizontally across a portion of the central area of said back support, said slots terminating prior to the perimeter edge of said sheet, whereby the said slots define a plurality of elongated horizontal resilient straps in said central area, each of said straps being adapted and dimensioned so as to provide resilient support for the seated adult user when sitting on the chair.
94* Tne cnair defined in claim 93 wherein the lower area of the back shell includes a reinforcement having forward extending flanges pivotally coupled to the second attachments of the back frame, said reinforcement and pivotal attachment providing movable firm support for at least a portion of the pelvic area of the seated user.
95. The chair defined in claim 91 wherein the pivotal second attachments for pivotally coupling said lower area of the said back shell to the back frame include a biasing device for biasing the central area of the back shell in a forward direction.
96. The chair defined in claim 95 wherein the said lower area of the said back shell includes forward extending flanges pivotally coupled to the second attachments of the back frame and said biasing device includes a torsion spring operably interconnected to said forward extending flanges.
97. The chair defined in claim 96 wherein the said biasing device includes means for adjusting die pretension on the torsion spring.
98. The chair defined in claim 91 wherein the lower area of the back shell include forward extending flanges forming an axis of rotation at the pivotal second attachments of the back frame, said axis of rotation being located at or rearward of a rear of the seated adult user's pelvic bone so that when the seated adult user flexes their lower back rearwardly, the lower portion of the back shell moves downwardly and rearwardly, and the central portion of the back shell flexes generally rearwardly to form a more planar arrangement with the lower portion.
99. The chair defined in claim 91 wherein the said back frame defines a curvilinear arch.
100. The chair defined in claim 91 wherein the said back frame comprises an internal metal reinforcement encased in a resUient polymeric covering.
101. The chair defined in claim 91 including a seat operably mounted on die base assembly, die seat forming a link interconnecting die back support to the energy source.
102. A chair comprising: a base assembly including a control housing having an energy source therein; and a back assembly movably supported on the back assembly and including a back support operably interconnected to die energy source, said back support including a back frame and a back shell, said back shell comprising a resilientiy flexible polypropylene sheet shaped to support a back area of a seated adult user thereon, with a lower area disposed generally behind at least a portion of the pelvic area of a seated adult user, a central area disposed above said lower area and generally behind at least a portion of the lumbar area of the seated adult user, and an upper area disposed above said central area and generally behind at least a portion of the thoracic area of the seated adult user; a cushion on a forward face of die back shell; and a vertically adjustable lumbar support located in front of the back shell, the lumbar support being movably supported on die back support and configured for vertical adjustment to change a shape of a front surface of die back in the lumbar area of the seated user, said support including laterally extending handles constructed to engage and track with a configured perimeter edge of the back shell and constructed to slidably engage the vertically adjustable lumbar support to permit die handles to adjust in and out to follow die perimeter edge.
103. A chair comprising: a base assembly including a control housing having opposing flanges with upper edges and lubricous caps attached to the upper edges of the control housing, the lubricous caps including upper surfaces defining tracks for slidably engaging a slide member; a back frame pivoted to the base assembly at a back pivot for movement between upright and reclined positions; and seat support structure operably supported on the base assembly and die back frame including a slide member slidably engaging the control housing for generally horizontal sliding movement and including a seat carrier pivoted to die slide member at a front seat pivot and also pivoted to the back frame at a rear seat pivot.
104. The chair defined in claim 103 including a seat shell attached to the seat support structure, the seat shell including a rear section configured to comfortably support thighs of a typical seated adult user, a front section configured to support buttocks of the seated adult user and to comfortably support a majority of the weight of die seated adult user, and a flexible zone connecting die rear section and die front section.
105. The chair defined in claim 104 including a gas spring extending between die seat support structure and the front section, the gas spring being a releasable self-locking type device.
106. The chair defined in claim 105 including a bent rod axle pivoted to die seat support structure and die front section and operably connected to d e gas spring.
107. The chair defined in claim 104 including a leaf spring operably supporting the front section on die seat support structure.
108. The chair defined in claim 103 including a spring mechanism positioned in die control housing, the spring mechanism being operably connected to die slide member.
109. The chair defined in claim 108 wherein die spring mechanism includes a spring positioned transversely in die control housing, and further includes a lever operably pivoted to the control housing, die lever having one end operably engaging the spring and anodier end operably engaging die seat support structure.
110. A chair comprising: a base assembly including a control housing; a back frame pivoted to me base assembly at a back pivot for movement between upright and reclined positions; seat support structure operably supported on die base assembly and the back frame including a slide member slidably engaging d e control housing for generally horizontal sliding movement and including a seat carrier pivoted to d e slide member at a front seat pivot and also pivoted to the back frame at a rear seat pivot; a spiing mechanism position in the control housing, die spring mechanism being operably connected to die slide member and including a spring positioned transversely in die control housing, and fui her including a lever operably pivoted to the control housmg, die lever having one end operably engaging the spring and anodier end operably engaging the seat support structure; and a pivot member, die pivot member and die lever having interfacing surfaces, at least one of which is curvilinear so that the arrangement operates like a rack-and-pinion, die pivot member being adjustable to vary a fulcrum point on the lever to adjust a lengtii of a moment arm over which the spring acts to.
111. The chair defined in claim 103 including a back stop positioned in die control housing, die back stop being configured to engage the seat support structure to limit recline of the back frame.
112. The chair defined in claim 111 wherein the back stop includes a cam pivoted to die control housing for rotation about a vertical axis, the cam including a plurality of steps that can be selectively positioned to engage die seat support structure.
113. A chair comprising: a base assembly including a control housing; a back frame pivoted to die base assembly at a back pivot for movement between upright and reclined positions; seat support structure operably supported on d e base assembly and me back frame including a slide member slidably engaging the control housmg for generally horizontal sliding movement and including a seat canier pivoted to die slide member at a front seat pivot and also pivoted to die back frame at a rear seat pivot; and a seat shell slidably supported on the seat support structure for selective deptii adjustment, whereby a deptii of the seat shell can be selectively adjusted relative to the back frame.
114. A chair comprising : a base assembly including a control housing with sidewalls defining a track; a seat having a front portion with bearings slidably engaging die track and having a rear portion, the seat including a seat shell having a flexibly supported front portion; a back pivoted to die base assembly and separately pivoted to die seat for movement between an upright position and a reclined position, the rear portion of the seat being pivoted to die back so that die seat moves forwardly and the seat rear portion moves forwardly and downwardly witii a synchronous motion as the back is reclined; a spring mechanism positioned in die central housing and operably connected to die seat for biasing die seat rearwardly, the spring mechanism including an extendable/compressible spring positioned in me control housing and a lever pivoted to die control housing and defining a moment aim with die spring for transmitting energy from die spring to the seat to bias die back to die upright position; and a gas spring operably connected between die front portion of the shell and a remaining portion of die seat adapted to carry die weight of a typical seated adult user, the gas spring being operable to adjust a position of the front portion relative to the remaining portion of the seat.
115. The chair defined in claim 114 wherein the gas spring is self-locking and releasable.
116. The chair defined in claim 115 including a control connected to die seat and including a link operably connected to die gas spring for releasing the gas spring for adjustment.
117. A chair comprising: a base assembly including a control housing with sidewalls defining a track; a seat having a front portion with bearings slidably engaging die track and having a rear portion, tiie seat including a seat shell having a flexibly supported front portion; a back pivoted to die base assembly and separately pivoted to the seat for movement between an upright position and a reclined position, the rear portion of the seat being pivoted to the back so that d e seat moves forwardly and the seat rear portion moves forwardly and downwardly with a synchronous motion as the back is reclined; a spring mechanism positioned in the central housing and operably connected to the seat for biasing the seat rearwardly, me spring mechanism including an extendable/compressible spring positioned in me control housing and a lever pivoted to the control housing and defining a moment arm with the spring for transmitting energy from die spring to the seat to bias the back to die upright position; and a leaf spring positioned between and resiliently-supporting the front section and a remaining portion of the seat.
118. A chair comprising : a base assembly including a control housing with sidewalls defining a track; a seat having a front portion witii bearings slidably engaging die track and having a rear portion, the seat including a seat shell and a depth-adjustment structure for adjusting a depth of the seat shell relative to the back; a back pivoted to the base assembly and separately pivoted to the seat for movement between an upright position and a reclined position, die rear portion of die seat being pivoted to die back so tiiat the seat moves forwardly and die seat rear portion moves forwardly and downwardly witii a synchronous motion as the back is reclined; and a spring mechanism positioned in the central housing and operably connected to the seat for biasing the seat rearwardly, die spring mechanism including an extendable/compressible spring positioned in the control housing and a lever pivoted to die control housing and defining a moment arm with die spring for transmitting energy from the spring to the seat to bias die back to die upright position.
119. The chair defined in claim 118 wherein the seat includes a seat carrier for supporting the seat shell and linear bearings for slidably engaging die shell on the seat carrier.
120. The chair defined in claim 119 mcluding a latch operably extending between the seat carrier and the shell for holding d e shell in a selected deptii position.
121. The chair defined in claim 120 including a control connected to the seat for operating die latch.
122. A chair comprising: a base assembly including a control housing; a reclineable back frame pivoted to die base assembly for movement between upright and fully reclined positions; a seat slidably supported on the control housing and pivotally supported on die back frame; and a variable back-stop mechanism operably supported on die base assembly for engaging the seat to stop the seat and concunently stop recline of die back at selected positions prior to reaching the fully reclined position, the variable back-stop mechanism including a seat-engaging member and an actuator lever for adjustably moving die seat-engaging member, die seat- engaging member and die lever including intermeshing teeth for providing slip-free engagement.
123. The chair defined in claim 122 wherein the seat-engaging member includes a movable cam witii steps shaped to selectively engage die seat.
124. The chair defined in claim 123 wherein the variable back-stop mechanism includes a spring detent for holding die cam in a selected stopping position where a particular one of the steps is positioned to engage d e seat.
125. The chair defined in claim 124 including an actuator connected to die cam for rotating the cam to select the particular one step.
126. A chair comprising: a base assembly including a control housing; a reclineable back frame pivoted to d e base assembly for movement between upright and fully reclined positions; a seat slidably supported on the control housing and pivotally supported on the back frame; a variable back-stop mechanism operably supported on the base assembly for engaging the seat to stop the seat and concurrently stop recline of the back at selected positions prior to reachmg die fully reclined position; die variable back-stop mechanism including a movable cam with steps shaped to selectively engage die seat, and further including a spring detent for holding die cam in a selected stopping position where a particular one of the steps is positioned to engage die seat; and an actuator connected to die cam for rotating the cam to select the particular one step, the actuator including a lever pivoted to die control housing, the lever and die cam including intermeshing teetii.
127. The chair defined in claim 126 wherein the actuator includes a rotatable handle operably connected to d e lever.
128. The chair defined in claim 127 wherein the actuator includes a rod connecting the handle to the lever.
129. The chair defined in claim 127 wherein the handle includes a radially-extending protrusion, and is connected to the lever by a pivot/slide joint that permits the handle to rotate about a first axis and permits the lever to rotate about a second axis that is skewed and non-parallel the first axis, with the handle driving rotation of the lever without binding.
130. A chair comprising: a base assembly including a control housing; a reclineable back frame pivoted to die base assembly for movement between upright and fully reclined positions; a seat slidably supported on the control housing and pivotally supported on the back frame; and a variable back-stop mechanism operably supported on the base assembly for engaging the seat to stop die seat and concurrentiy stop recline of die back at selected positions prior to reaching the fully reclined position, die variable back-stop mechanism including a movable cam with steps shaped to selectively engage the seat; the cam further including an undulated surface adapted to engage a detent for selectively holding die steps in position to engage the seat, and still further including teeth adapted to engage mating teeth on an actuator for operating the cam.
131. A seat construction for a chair comprising: a restiiently-flexible seat shell including a front section configured to comfortably support thighs of a typical seated adult user, a rear section configured to comfortably support buttocks of a seated adult user and to comfortably support a majority of the weight of die seated adult user, and a flerible intermediate section connecting die front and rear sections, the front section being located about midway or forward dierefrom on the seat shell and generally forward of the expected location of a seated adult user's hip joint so that the seated adult user's weight is substantially carried by die rear section for most adult users; a seat cushion supported on the seat shell; a pan-shaped seat carrier supporting the rear section of the shell, d e seat carrier including a forwardly-extending section extending under the flexible intermediate section and that is characteristically spaced below and not connected to die flexible intermediate section; and an adjustable thigh-flex support mechanism operably supporting the front section of the seat shell on the forwardly-extending section of die seat carrier, so that the front section is adjustable relative to the rear section to provide optimal tiiigh pressure and support to the seated adult user, the adjustable tiiigh-flex support mechanism including a pretensioned, transverse leaf spring.
132. A seat construction for a chair comprising: a resUientiy-flexible seat shell including a front section configured to comfortably support thighs of a typical seated adult user, a rear section configured to comfortably support buttocks of a seated adult user and to comfortably support a majority of the weight of the seated adult user, and a flexible intermediate section connecting the front and rear sections, die front section being located about midway or forward tiierefrom on me seat shell and generally forward of die expected location of a seated adult user's hip joint so that the seated adult user's weight is substantially carried by the rear section for most adult users; a seat cushion supported on die seat shell; a pan-shaped seat carrier supporting the rear section of the shell, die seat carrier including a forwardly-extending section extending under the flexible intermediate section and tiiat is characteristically spaced below and not connected to die flexible intermediate section; and an adjustable tiiigh-flex support mechanism operably supporting the front section of the seat shell on die forwardly-extending section of the seat carrier, so that the front section is adjustable relative to the rear section to provide optimal thigh pressure and support to the seated adult user, the adjustable thigh-flex support mechanism including a bent rod axle and a releasable, lockable gas spring for rotating the bent rod axle and tiiereafter holding die bent rod axle in a selected orientation.
133. A seat construction comprising: a flexible seat shell including a front section configured to support thighs of a typical seated adult user, a rear section configured to comfortably support thighs of the seated adult user and to comfortably support a majority of die weight of die seated adult user, and a flexible intermediate section; a T-shaped seat support pan having a bottom panel defining a full-width rear section and a partial-width front section that has a width less than the full-width rear section and that extends forwardly from a center of the rear section, the full-width rear section being configured to support the rear section of the shell with the partial-widtii front section extending under and spaced below die front section; and an adjustable tiiigh-support mechanism adjustably connecting and supporting the front section on the partial-widtii front section.
134. The seat construction defined in claim 133 wherein the adjustable thigh-support mechanism includes a pretensioned transverse leaf spring.
135. The seat construction defined in claim 134 wherein the adjustable thigh-support mechanism mcludes a bent rod axle and a releasable lockable gas spring for rotating the bent rod axle and thereafter holding die bent rod axle in a selected orientation.
136. In a chair having a reclineable back and a movable seat operably supported for synchronous movement witii die back, an improvement comprising: a seat carrier having a T-shaped body including front and rear sections and including a linear bearing positioned on each side of the front section and each side of die rear section; the seat carrier including pivots adapted to pivotally mount the seat carrier to a support for movably supporting the movable seat relative to the reclineable back; a pan-shaped seat frame constructed to support a seat cushion and a seated user, the seat frame including a bottom panel witii flat surfaces slidably engaging associated ones of die linear bearings, whereby the seat frame is depdi-adjustable on the seat carrier.
137. The chair defined in claim 136 wherein one of the seat carrier and the seat frame including a series of notches extending in a fore/aft direction, and die otiier one of the seat carrier and die seat frame include a latch for selectively engaging the notches.
138. The chair defined in claim 137 wherein seat carrier includes upwardly formed stop tabs, and including a top-mounted stop limiter attached to die seat frame, the stop limiter having a protrusion that extends downwardly dirough the seat frame and tiiat is shaped to engage the stop tabs to define a maximum deptii position and a minimum deptii position of the seat frame on the seat carrier.
139. The chair defined in claim 136 wherein die seat frame includes flanges capturing at least two of the bearings to prevent the seat frame from being lifted vertically off of the seat carrier.
140. A chair comprising: a base assembly including a control housing having at least one up flange and a lubricous bearing supported atop each up flange; a back frame pivoted to die base assembly at a back pivot for movement between upright and reclined positions; and seat support structure operably supported on the base assembly and the back frame including a slide member slidably engaging d e lubricous bearing of each up flange for generally horizontal sliding movement and including a seat carrier pivoted to die slide member at a front seat pivot and also pivoted to die back frame at a rear seat pivot.
141. The chair defined in claim 140 wherein the at least one up flange includes two parallel side flanges on the control housing.
142. The chair defined in claim 141 wherein the lubricious bearings each comprises polymeric members attached to a top edge of die side flanges.
143. The chair defined in claim 140 wherein me base assembly includes a base frame at includes die housmg, and further includes side arms that support the back frame at the back pivot.
144. The chair defined in claim 103 where in the base assembly includes a base frame that includes d e housing, and further includes side arms that support the back frame at the back pivot.
145. The chair defined in claim 110 wherein the base assembly includes a base frame tiiat includes d e housing, and further includes side arms mat support the back frame at the back pivot.
146. The chair defined in claim 113 wherein the base assembly includes a base frame that includes die housing, and further includes side arms that support the back frame at the back pivot.
147. A chair comprising: a base assembly including opposing side arms; a back frame having configured end sections pivoted to die side arms at back pivots for rotation about a back-tilt axis; a seat pivoted to die configured end sections at seat pivots for rotation about a seat- tilt axis; and at least one of die back pivots and die seat pivots including a rotatable bearing element and a support element flexibly supporting die bearing element for rotational movement misaligned witii the tilt axis associated with die at least one pivot so that the bearing element rotates about the stud without binding even when die stud is misaligned witii the associated tilt axis.
148. The chair defined in claim 147 wherein the support element includes resilient material.
149. The chair defined in claim 148 wherein the support element includes rubber.
150. The chair defined in claim 147 wherein the back pivots include first studs fixed to the opposing side arms that extend inwardly.
151. The chair defined in claim 150 wherein the seat pivots include second studs fixed to the opposing sides of d e seat tiiat extend outwardly.
152. The chair defined in claim 151 wherein the first studs are welded in place, and wherein the configured end sections define pockets for receiving the first studs at die back pivots and second studs at die seat pivots.
153. The chair defined in claim 152 wherein die second studs are welded in place, and wherein the back frame is resilientiy flexible for flexing to permit the configured end sections to be positioned on on die first and second studs.
154. he chair defined in claim 153 wherein the pockets are frustoconically shaped.
155. The chair defined in claim 154 wherein die back pivots and seat pivots each include one of die rotatable bearing elements and one of die rubber elements.
156. The chair defined in claim 147 wherein the configured end sections each include a first flange forming a pocket for mateably receiving the rubber element.
157. The chair defined in claim 156 wherein the first flanges are extruded along the back- tilt axis.
158. The chair defined in claim 157 wherein the pocket is frustoconically shaped and the rubber element is shaped to mateably engage die pocket.
159. The chair defined in claim 147 wherein the configured end sections on each side of die seat are positioned between and closely adjacent associated ones of die side arms and die sides of die seat.
160. A chair comprising: a base assembly mcluding side arms; a back frame having configured end sections pivoted to die side arms at back pivots for rotation about a back-tilt axis, the back frame being flexible enough to permit the configured ends to be flexed apart during assembly, die configured end sections and die side arms having adjacent faces, one of which has a recess therein; and a bearing arrangement at each back pivot pivotally connecting the side arms to the respective configured end sections, d e bearing arrangement including a stud tiiat extends into die recess, and a bearing rotatably engaging the stud, the bearing being removable from the recess but held therein in part by the proximity of the adjacent faces.
161. The chair defined in claim 160 wherein the bearing includes a bearing element rotatably engaging the stud and a resilient element flexibly supporting the bearing element so that the bearing element is self-adjusting to align witii d e stud to prevent binding during rotation of the back frame about the back-tilt axis.
162. The chair defined in claim 161 wherein the recess defines a frustoconically-shaped pocket, and wherein the bearing is configured to mateably engage die pocket.
163. A metiiod of assembling a chair comprising steps of: providing a chair component with laterally-extending oppositely-facing protrusions; providing a back frame with configured end sections having recesses tiierein; flexing the configured end sections of the back frame and simultaneously positioning die recesses of the configured end sections on d e protrusions; and releasing die back frame so that die back frame resilientiy returns to an original shape which holds die back frame in place and pivotally connects the back frame to die chair component.
164. The method defined in claim 163 wherein the chair component comprises a seat, and including providing a base assembly witii side arms, and further including flexing die configured end sections to position die configured end sections between side portions of the seat and die side arms of the base assembly.
165. The method defined in claim 164 wherein the side arms include oppositely facing second protrusions, and wherein the configured end sections include second recesses, and including positioning the second recesses on the second protrusions.
166. The method defined in claim 165 wherein the first mentioned protrusions and die second protrusions on each respective side of die chair face in opposite directions.
167. The chair defined in claim 147 wherein the base assembly includes a base frame comprising a housing, with the opposing side arms extending laterally and upwardly from the housing.
168. The chair defined in claim 160 wherein the base assembly includes a base frame comprising a housing, with the opposing side arms extending laterally and upwardly from the housing.
169. The method defined in claim 164 wherein the base assembly includes a base frame - comprising a housing, with the opposing side arms extending laterally and upwardly from die housing, and including positioning die configured end sections inside an upper end of the side arms but generally outside and above the housing.
170. A chair comprising: a base assembly for supporting the chair on a floor surface while a seated user is performing tasks; a back frame pivoted to the base assembly at a back pivot for movement between a plurality of working positions including upright and reclined working positions; and a seat pivoted to die back frame at a seat pivot spaced rearwardly and below die back pivot, die seat being slidably supported at a front portion of the base assembly for horizontal movement, the back pivot and die seat pivot being interconnected and arranged to move the seat generally forwardly and also move a rear portion of die seat downwardly witii a synchronous pivoting motion as the back frame is reclmed, whereby a seated user is comfortably supported in the upright and reclined working positions, and whereby the seated user is able to continue working while moving between the upright and reclined working positions without constantly having to move and adjust the base assembly back and forth relative to a stationary worksurface.
171. The chair defined in claim 170 wherein the base assembly includes a control housing witii an energy mechanism positioned therein that operably engages one of the back frame and die seat for biasing the back frame to the upright position.
172. The chair defined in claim 171 wherein the base assembly includes side arms that extend upwardly generally adjacent the seat for supporting the back frame and a portion of die seat.
173. The chair defined in claim 172 wherein the back frame is pivoted to die side arms.
174. The chair defined in claim 173 wherein the seat is pivoted to die back frame in a location generally proximate the side arms.
175. The chair defined in claim 174 wherein the energy mechanism includes a spring positioned transversely in the control housing, and includes a lever operably connecting the spring to the one of the seat and die back frame.
176. The chair defined in claim 175 including an adjustment mechanism for adjusting die lever to vary a biasing force transmitted from the spring to the seat, the adjustment mechanism including the lever and defining an adjustable moment arm on the lever for adjustably biasing the back frame toward die upright position.
177. The chair defined in claim 171 including a spring positioned transversely within the control housing, and further including a lever operably connecting the spring to one of die seat and die back frame.
178. The chair defined in claim 177 wherein the lever is pivotable about a vertical axis with a first end engaging the spring and a second end operably connected to the seat for biasing the seat rearwardly and in turn biasing the back frame to the upright position.
179. The chair defined in claim 171 wherein the control housing includes opposing side flanges, and die seat includes bearings slidably engaging the side flanges.
180. The chair defined in claim 171 wherein the seat includes a seat slide member that slidably engages die control housing, and further includes a seat support carrier pivotally engaging the seat slide at first pivots and pivotally engaging the back frame at second pivots.
181. The chair defined in claim 180 wherein die seat includes a flexible seat shell having a rear section adapted to support buttocks of a seated adult user, and further includes a front section adapted to support tiiighs of the seated adult user and that is flexibly connected to the rear section, the rear section being carried and supported by the seat support carrier.
182. The chair defined in claim 170 wherein the seat includes a seat support canier slidably connected to the base assembly and pivotally connected to d e back frame, and further includes a seat shell slidably supported on the seat support carrier for manually- adjustable deptii adjustment.
183. The chair defined in claim 171 including a back-stop mechanism attached to die control housing and configured to selectively engage d e seat to limit forward movement of die seat and accordingly selectively limit recline of the back frame.
184. The chair defined in claim 170 including a compliant back assembly attached to die back frame in at least two vertically-spaced locations, the compliant back assembly being constructed to flex between die at least two vertically-spaced locations to provide optimal lumbar support.
185. The chair defined in claim 184 wherein the compliant back assembly includes a resilientiy flexible, one piece shell.
186. The chair defined in claim 184 wherein the compliant back assembly includes a multi-piece assembly of components, each having a surface for supporting a portion of a human's back.
187. A chair comprising: a mobile base assembly; a back pivoted to die base assembly for movement between upright and reclined positions; a seat operably supported on the base assembly and connected to die back for movement between a substantially rearward working position and a forward working position; the seat including a front portion that is slidably connected to die base assembly to move horizontally forwardly upon recline of die back so tiiat a seated user's legs are not undesirably lifted from a floor surface during recline; and die seat further including a rear portion flexibly connected to the front portion and that is operably connected to die back to move downwardly and forwardly upon recline so that the seated user is comfortably and posturally supported during recline with an angular synchronous movement of the seat and die back, and so that a maximum forward movement of the seat and maximum angular movement of the back are limited to strokes that keep the hands of a seated user relatively constant during recline, whereby the seated user can easily and comfortably continue to work in all seated positions.
188. The chair defined in claim 187 wherein the base assembly includes a control housing having an energy mechanism therein for biasing the back toward die upright position.
189. The chair defined in claim 188 wherein the base assembly includes side arms mat pivotally support the back at a location generally aligned with the seated user.
190. The chair defined in claim 187 including a spring mechanism positioned transversely in the control housing, and further including a lever pivotally engaging die spring mechanism and operably connected to die seat for biasing the seat toward die rearward working position and simultaneously biasing the back toward die upright position.
191. The chair defined in claim 190 including a spring resilientiy supporting the front section for flexural movement to provide increased comfort for die seated user.
192. The chair defined in claim 191 wherein die seat furtiier includes a releasable lockable gas spring operably adjustably supporting the front section for adjustable movement to provide adjustable comfort to the seated user.
193. The chair defined in claim 190 wherein the control housing includes side arms, and wherein die seat includes bearings tiiat slidably engage die side arms.
194. The chair defined in claim 189 wherein the rear portion is configured to support the buttocks of an adult seated user and a majority of the adult seated user's weight, and die front portion is configured to flexibly and comfortably support the thighs of die adult seated user without lifting the legs of the adult seated user during recline of the back.
195. The chair defined in claim 189 wherein the seat includes a seat support carrier slidably supported on the base assembly and pivotally engaging the back, and further includes a seat shell that is manually deptii adjustable on die seat support carrier.
196. A chair comprising: a base assembly including side aims; a back frame pivoted to the base assembly at back pivots for movement between - plurality of working positions including upright and reclined worl ing positions; and a seat pivoted to the back frame at seat pivots and slidably supported at a front portion of die base frame, the back frame including right and left configured end sections positioned on opposite sides of the seat and between die sides of d e seat and associated ones of die side arms, the configured end sections supportmg first pivot bearings at the seat pivots and second pivot bearings at the back pivots, whereby the seated user is able to continue working while moving between the upright and reclined working positions.
197. A chair comprising: a mobile spider-legged base assembly including a control housing and upwardly- extending side arms; an inverted U-shaped back frame having configured end sections positioned adjacent associated ones of die side arms and pivoted thereto at back pivots, the back pivots each comprising a first stud and a rotatable first bearing engaging the first stud; a seat slidably supported on the control housing, the seat including a seat carrier pivoted to the configured end sections at seat pivots, die seat pivots each comprising a second stud and a rotatable second bearing engaging the second stud, die seat pivots and back pivots being spaced apart; and an adjustable energy mechanism including a transverse spring, a lever operably engaging the spring and the seat for biasing the seat toward a rearward position and in turn biasing the back frame toward an upright position, and an adjustment pivot member adjustably engaging the lever to define a fulcrum that moves during recline and that is manually adjustably changeable to relocate the fulcrum for adjustably controllmg a force of the spring on the seat.
198. A base assembly comprising: a control housing including a bottom, opposing side flanges, and a front flange defining a compartment for receiving an energy mechamsm, a rear flange of the housing defining a transverse channel; a rigid upright structure including a transverse tubular section mateably engaging the transverse channel and welded thereto; and including upright rigid arms extending from ends of die transverse tubular section tiiat define seat pivots on an inboard side and back pivots on an outboard side, die seat pivots and back pivots being adapted to pivotally support a seat and a back, respectively; and a reinforcement extending transversely and welded to the transverse tubular section and the bottom for reinforcing the tubular section, the reinforcement and the bottom including vertically aligned holes adapted to receive a vertically adjustable center post on a chair base.
199. The base assembly defined in claim 198 wherein the side flanges of the control housing include linear bearings adapted to slidably support the seat.
200. The chair defined in claim 181 wherein the seat further includes a spring resilientiy supporting right and left sides of die front section for independent flexural movement to provide increased comfort for the seated user.
201. The chair defined in claim 181 wherein the seat further includes a releasable lockable gas spring operably adjustably supporting the front section for adjustable movement to provide adjustable comfort to the seated user.
202. A chair comprising: a base assembly including a control housing; an energy source located witiiin the control housing; a seat operably supported on die base assembly for generally horizontal movement between forward and rearward positions, witii die seat operably interconnected to said energy source; a back support including a back shell and a back frame supporting the back shell, wherein the back frame includes a first pivot wherein the back frame is pivotally coupled to die base assembly for movement of the back support between upright and reclined positions, and a second pivot wherein the back frame is pivotally coupled to the seat; and wherein the stored energy source biases the back support into an upright position by urging the seat rearward, said rearward movement of the seat inducing the back support to rotate to a generally upright position at the first pivot.
203. The chair defined in claim 202 wherein the first pivot axis approximately coincides witii an axis dirough a hip joint of a seated adult user.
204. The chair defined in claim 202 wherein the seat comprises a seat front slide adapted to slide forward and rearward on die control housing, a seat carrier pivotally interconnected to said control housing and said front slide, a seat frame in sliding engagement with said seat carrier, and a seat shell adapted to support buttocks and tiiighs of a seated adult user.
205. The chair defined in claim 204 wherein the seat shell includes a rear section configured to support the buttocks of the seated adult user and to support a majority of the seated adult user's weight, and further includes a front section adapted to support the tiiighs of a seated adult user, and still further includes a flexible zone connecting the rear section and the front section, and including an adjustment device connected to d e front section and configured to angularly adjust the front section of die seat shell relative to the rear section, wherein the adjustment device is attached to an underside of the front section of the seat shell.
206. The chair defined in claim 202 including a variable back-stop mechanism supported on the base assembly and operably engaging the seat, die variable backstop mechanism being configured to concurrently stop the seat and stop recline of the back support at a plurality of selectable positions between die upright and reclined position.
207. A chair comprising: a base assembly including a control housing; an energy source located within the control housing; a seat operably supported on the base assembly for generally horizontal movement between forward and rearward positions, with the seat being operably interconnected to said energy source, the seat including a seat shell having a rear section adapted to support buttocks of a seated adult user and a front section adapted to support thighs of die seated adult user; and a back support including a back shell and a back frame supporting the back shell, the back frame including a first pivot wherein the back frame is pivotally coupled to die base assembly, and a second pivot point wherein the back frame is pivotally coupled to the seat.
PCT/US1998/022047 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism WO1999021456A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
ES98953703T ES2246540T3 (en) 1997-10-24 1998-10-19 INCLINED CHAIR SYNCHRONIZED WITH ADJUSTABLE SEAT, BACKUP AND ENERGY MECHANISM.
IL13552998A IL135529A (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism
ES03078406T ES2290401T3 (en) 1997-10-24 1998-10-19 INCLINATION CHAIR SYNCHRONIZED WITH SEAT, BACKUP AND ADJUSTABLE ENERGY MECHANISM.
EP98953703A EP1033927B1 (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism
JP2000517628A JP4104286B2 (en) 1997-10-24 1998-10-19 Synchronous tilting chair with adjustable seat, backrest and energy mechanism
AT98953703T ATE297672T1 (en) 1997-10-24 1998-10-19 SYNCHRONOUS CHAIR WITH ADJUSTABLE SEAT AND BACKREST
BR9813119-2A BR9813119A (en) 1997-10-24 1998-10-19 Chair, chair control, control, chair construction, construction of a chair back, construction of seat for a chair, process of assembling a chair, and, base set
AU11013/99A AU750107B2 (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism
ES03078405T ES2277026T3 (en) 1997-10-24 1998-10-19 SYNCHROBASCULATING CHAIR WITH SEAT, BACKUP AND ADJUSTABLE ENERGY MECHANISM.
KR1020007004400A KR100543155B1 (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism
DE69830610T DE69830610T2 (en) 1997-10-24 1998-10-19 SYNCHRO chair with adjustable seat and backrest
CA002304816A CA2304816C (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism
HK01101072A HK1031810A1 (en) 1997-10-24 2001-02-14 Synchrotilt chair with adjustable seat, back and energy mechanism

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US08/957,561 US5871258A (en) 1997-10-24 1997-10-24 Chair with novel seat construction
US08/957,548 US5909923A (en) 1997-10-24 1997-10-24 Chair with novel pivot mounts and method of assembly
US08/957,506 1997-10-24
US08/957,473 1997-10-24
US08/957,548 1997-10-24
US08/957,604 US5979984A (en) 1997-10-24 1997-10-24 Synchrotilt chair with forwardly movable seat
US08/957,473 US5975634A (en) 1997-10-24 1997-10-24 Chair including novel back construction
US08/957,561 1997-10-24
US08/957,604 1997-10-24
US08/957,506 US6086153A (en) 1997-10-24 1997-10-24 Chair with reclineable back and adjustable energy mechanism
US09/386,668 US6116695A (en) 1997-10-24 1999-08-31 Chair control having an adjustable energy mechanism
US09/491,975 US6367877B1 (en) 1997-10-24 2000-01-27 Back for seating unit
US09/694,041 US6349992B1 (en) 1997-10-24 2000-10-20 Seating unit including novel back construction
US09/921,059 US6460928B2 (en) 1997-10-24 2001-08-02 Seating unit including novel back construction
US10/214,543 US6749261B2 (en) 1997-10-24 2002-08-08 Seating unit including novel back construction
US10/376,535 US6905171B2 (en) 1997-10-24 2003-02-28 Seating unit including novel back construction
US10/439,409 US6817668B2 (en) 1997-10-24 2003-05-16 Seating unit with variable back stop and seat bias

Publications (1)

Publication Number Publication Date
WO1999021456A1 true WO1999021456A1 (en) 1999-05-06

Family

ID=42289776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/022047 WO1999021456A1 (en) 1997-10-24 1998-10-19 Synchrotilt chair with adjustable seat, back and energy mechanism

Country Status (14)

Country Link
US (24) US5975634A (en)
EP (5) EP1384424B1 (en)
JP (2) JP4104286B2 (en)
CN (2) CN1231166C (en)
AT (3) ATE371393T1 (en)
AU (3) AU750107B2 (en)
BR (1) BR9813119A (en)
CA (2) CA2304816C (en)
DE (3) DE69738088T2 (en)
ES (3) ES2277026T3 (en)
HK (2) HK1031810A1 (en)
IL (1) IL135529A (en)
TW (1) TW483741B (en)
WO (1) WO1999021456A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057917A (en) * 1999-08-20 2001-03-06 Uchida Yoko Co Ltd Seal sliding structure for office chairs
JP2002142899A (en) * 2000-11-06 2002-05-21 Okamura Corp Operation lever structure for chair
EP1350446A2 (en) * 2002-04-03 2003-10-08 COMPAS S.r.l. Chair with advanceable seat
WO2010068122A1 (en) * 2008-12-12 2010-06-17 Formway Furniture Limited A chair, a support, and components
DE102012109710A1 (en) * 2012-10-11 2014-06-12 Grammer Ag Vehicle seat with changeable backrest shape
USD721529S1 (en) 2013-06-07 2015-01-27 Steelcase Inc. Handle apparatus
KR20170062045A (en) * 2015-11-27 2017-06-07 큐렉소 주식회사 Body Weight Support part of rotation type

Families Citing this family (527)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765914A (en) 1995-06-07 1998-06-16 Herman Miller, Inc. Chair with a tilt control mechanism
US5909924A (en) * 1997-04-30 1999-06-08 Haworth, Inc. Tilt control for chair
DE29714809U1 (en) * 1997-08-19 1997-11-06 SIFA Sitzfabrik GmbH, 92237 Sulzbach-Rosenberg Seat supports for swivel chairs
US5975634A (en) * 1997-10-24 1999-11-02 Steelcase Development Inc. Chair including novel back construction
ITTO980034A1 (en) * 1998-01-16 1999-07-16 Miotto Int Comp MECHANICAL DEVICE FOR THE CONTROL OF THE SYNCHRONOUS MOVEMENT OF THE SEAT AND BACKREST OF A SEAT.
US6250715B1 (en) * 1998-01-21 2001-06-26 Herman Miller, Inc. Chair
SE512805C2 (en) 1998-09-10 2000-05-15 Bertil Jonsson Chair
ITVI980182A1 (en) * 1998-09-25 2000-03-25 Enrico Cioncada VARIABLE TRIM CHAIR.
US6644748B2 (en) 1999-02-25 2003-11-11 Health Postures, Inc. Synergistic body positioning and dynamic support system
US6059362A (en) * 1999-04-14 2000-05-09 Lin; Chung Ming Adjustable waist support device for chairs
US6425637B1 (en) * 1999-04-19 2002-07-30 Steelcase Development Corporation Cushion construction for furniture
US6179384B1 (en) 1999-04-21 2001-01-30 Steelcase Development Inc. Force adjusting device
US6174031B1 (en) * 1999-06-07 2001-01-16 Haworth, Inc. Actuator handle for an office chair
WO2000078185A2 (en) * 1999-06-17 2000-12-28 Steelcase Inc. Chair construction
GB9917307D0 (en) * 1999-07-23 1999-09-22 Sec Dep Of The Home Department Improvements in and relating to analysis of DNA
US6343839B1 (en) 1999-12-17 2002-02-05 Steelcase Development Corporation Flexible armrest construction
NL1014412C2 (en) * 2000-02-17 2001-08-20 Staarink Henricus Antonius M Provision for supporting a seated person and method for designing and / or manufacturing such a facility.
US6499801B1 (en) 2000-03-03 2002-12-31 Steelcase Development Corporation Chair having removable cover and cushion
AU2001245735A1 (en) 2000-03-17 2001-10-03 Herman Miller, Inc. Tilt assembly for a chair
ITPD20000076A1 (en) * 2000-03-31 2001-10-01 Cazzaro Spa CHAIR STRUCTURE
US6382719B1 (en) * 2000-05-04 2002-05-07 Steelcase Development Corporation Back construction
NZ515698A (en) * 2000-05-22 2003-03-28 Miller Herman Inc Office chair characterised by pivotal and slidable members for restricting forward and rearward movements
US7036881B1 (en) * 2000-07-07 2006-05-02 Leggett & Platt Ltd. Chair seat tilt mechanism
US6432752B1 (en) * 2000-08-17 2002-08-13 Micron Technology, Inc. Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
USD445580S1 (en) 2000-09-28 2001-07-31 Formway Furniture Limited Chair
AU783829B2 (en) * 2000-09-28 2005-12-08 Formway Furniture Limited A reclinable chair
USD463144S1 (en) 2000-09-28 2002-09-24 Formway Furniture Limited Chair
AUPR054400A0 (en) 2000-09-29 2000-10-26 Formway Furniture Limited A castor
US6390553B1 (en) 2000-10-11 2002-05-21 Leblanc Andrew J. Back-support device
US6945605B2 (en) * 2000-10-16 2005-09-20 Kokuyo Co., Ltd. Chair having a slide mechanism for the seat
IT1315528B1 (en) * 2000-10-18 2003-02-18 Enrico Cioncada VARIABLE TRIM ARMCHAIR
CA2368923C (en) * 2001-01-25 2006-03-14 Jsj Seating Company Texas, L.P. Office chair
US6842959B2 (en) * 2001-01-25 2005-01-18 Dahti, Inc. Load bearing fabric attachment and associated method
US6758522B2 (en) * 2001-03-29 2004-07-06 L&P Property Management Company Apparatus and method for varying coefficients of friction in a variable apex back support
US6598936B1 (en) 2001-04-11 2003-07-29 Michael N. Klein Multi-task mid-pivot chair control mechanism
US6722735B2 (en) 2001-04-16 2004-04-20 Ditto Sales, Inc. Chair with synchronously moving seat and seat back
ITVI20010091A1 (en) * 2001-04-27 2002-10-27 Plasticline Srl CHAIR WITH ADJUSTABLE BACK
DE10121207A1 (en) * 2001-05-01 2002-11-07 Stoll Sedus Ag Device for lordosis support
US6585320B2 (en) * 2001-06-15 2003-07-01 Virco Mgmt. Corporation Tilt control mechanism for a tilt back chair
US6572190B2 (en) * 2001-06-15 2003-06-03 Hon Technology Inc. Lumbar support for a chair
US6634711B2 (en) * 2001-06-15 2003-10-21 Hon Technology Inc. Adjustable chair seat with locking mechanism
US20040124679A1 (en) * 2001-06-20 2004-07-01 Teppo David S. Shape-changing support, such as for seating
US6616228B2 (en) 2001-06-20 2003-09-09 Steelcase Development Corporation Compliant back for seating unit
US6565153B2 (en) 2001-07-31 2003-05-20 Johnson Controls Technology Corporation Upper back support for a seat
US6890030B2 (en) * 2001-07-31 2005-05-10 Haworth, Inc. Chair having a seat with adjustable front edge
US20030055365A1 (en) * 2001-09-20 2003-03-20 Hazard Rowland G. System for providing lumbar motion and support
US7209344B2 (en) * 2001-11-08 2007-04-24 Apple Inc. Computer controlled display device
US7218510B2 (en) * 2001-11-08 2007-05-15 Apple Computer, Inc. Computer controlled display device
US7042714B2 (en) * 2001-11-08 2006-05-09 Apple Computer, Inc. Computer controlled display device
US7035092B2 (en) 2001-11-08 2006-04-25 Apple Computer, Inc. Computer controlled display device
US7145768B2 (en) * 2001-11-08 2006-12-05 Apple Computer, Inc. Computer controlled display device
US7289315B2 (en) * 2001-11-08 2007-10-30 Apple Inc. Computer controlled display device
US6811218B2 (en) 2001-12-14 2004-11-02 Kimball International, Inc. Chair with conforming seat
US20030127896A1 (en) * 2001-12-14 2003-07-10 Deimen Michael L. Chair with lumbar support and conforming back
AU2003210993A1 (en) * 2002-02-12 2003-09-04 Johnson Controls Technology Company Automotive seat with active back
US7239096B2 (en) * 2002-02-12 2007-07-03 Johnson Controls Technology Company Vehicle seat having an electronic control system
DE10392285T5 (en) * 2002-02-13 2005-05-12 Herman Miller, Inc., Zeeland Recliner with flexible backrest, adjustable armrests and adjustable seat depth and method for its use
NZ518944A (en) * 2002-05-14 2004-09-24 Formway Furniture Ltd Height adjustable arm for chair with outer stem releasably lockable to inner stem by engagement of recesses
US7234775B2 (en) * 2002-06-18 2007-06-26 Hector Serber Dynamically balanced seat assembly having independently and arcuately movable seat and backrest and method
KR100767959B1 (en) * 2002-07-23 2007-10-17 오카무라 가부시키가이샤 Chair
US6779846B2 (en) 2002-08-06 2004-08-24 Mity-Lite, Inc. Chair with flexible, resilient back support
US6880886B2 (en) * 2002-09-12 2005-04-19 Steelcase Development Corporation Combined tension and back stop function for seating unit
US6869142B2 (en) 2002-09-12 2005-03-22 Steelcase Development Corporation Seating unit having motion control
ITMI20022194A1 (en) * 2002-10-16 2004-04-17 Icf Spa CHAIR WITH SEAT AND FURNITURE BACK.
US6685267B1 (en) * 2002-12-19 2004-02-03 L & P Property Management Company Chair and synchrotilt chair mechanism
CN100447014C (en) * 2003-01-03 2008-12-31 约翰逊控制技术公司 Automotive seat with control system
US20040160109A1 (en) * 2003-02-19 2004-08-19 Homecrest Industries, Inc. Chair seat with firm but resilient front edge
DE10308454A1 (en) * 2003-02-24 2004-09-09 Recaro Aircraft Seating Gmbh & Co. Kg Seat, in particular aircraft or vehicle seat
US20050006930A1 (en) * 2003-03-26 2005-01-13 Graco Children's Products Inc. High chair
US20050029855A1 (en) * 2003-03-31 2005-02-10 Hanson Wayne H. Dynamic seating system for personal mobility vehicle
US20040195888A1 (en) * 2003-04-03 2004-10-07 Johnson Controls Technology Company Configurable vehicle seat
US7887127B1 (en) 2003-04-16 2011-02-15 Albritton William J Couple's chair
US7048335B2 (en) 2003-06-05 2006-05-23 Steelcase Development Corporation Seating unit with crossbar seat support
US7097247B2 (en) * 2003-06-05 2006-08-29 Steelcase Development Corporation Seating unit with adjustable lumbar device
AT412752B (en) * 2003-06-06 2005-07-25 Herzog Mario Dr DEVICE FOR SUPPORTING A HUMP OF A PERSON
US7322653B2 (en) * 2003-06-13 2008-01-29 Vlad Dragusin Integrated videogaming and computer workstation
US7207629B2 (en) * 2003-06-23 2007-04-24 Herman Miller, Inc. Tilt chair
US20050017561A1 (en) * 2003-07-21 2005-01-27 Burmeister Richard F. Seat, seat recliner mechanism, and seat recliner system
US7341233B2 (en) * 2003-09-19 2008-03-11 L & P Property Management Company Horizontal adjustment mechanism for use on a chair seat
US6957862B2 (en) * 2003-10-09 2005-10-25 Su-Ming Chen Chair with a seat-inclination adjusting device
US7380884B2 (en) * 2003-10-29 2008-06-03 Leggett & Platt Ltd. Switching apparatus
DE602004028400D1 (en) 2003-11-11 2010-09-09 Johnson Controls Tech Co MECHANISM FOR ADJUSTING A SEAT BACKREST
JP4127193B2 (en) * 2003-11-13 2008-07-30 コクヨ株式会社 Chair back
US7188900B1 (en) 2003-11-17 2007-03-13 Hni Technologies Inc. Flexible support for a chair backrest
US6942080B2 (en) * 2003-12-04 2005-09-13 Tsann Kuen Enterprise Co., Ltd. Electrical appliance having a wire winding device
US8157325B2 (en) * 2003-12-30 2012-04-17 Hni Technologies Inc. Chair back rest with improved resilience and support
US6969116B2 (en) * 2003-12-30 2005-11-29 Hni Technologies Inc. Chair with backward and forward passive tilt capabilities
CN2691725Y (en) * 2004-02-04 2005-04-13 谢忠栗 Bamboo joint tubular shaped furniture structure
US7216933B2 (en) * 2004-02-21 2007-05-15 Armin Sander Backrest, particularly for an office chair
US20050189807A1 (en) * 2004-02-27 2005-09-01 Norman Christopher J. Chair with functional armrest
ES1057119Y (en) * 2004-03-24 2004-10-01 Metalseat Srl ADJUSTABLE OFFICE ARMCHAIR STRUCTURE WITH ARTICULATION FOR THE SYNCHRONIC MOVEMENT OF THE SEAT AND BACK.
NL1025833C2 (en) * 2004-03-26 2005-10-03 Bma Ergonomics B V Seat with automatic backrest angle adjustment.
US20050253434A1 (en) * 2004-05-13 2005-11-17 Robert Bowman Adjustable back/buttock support, and methods of constructing and utilizing same
BRPI0510989B1 (en) 2004-05-13 2017-11-21 Humanscale Corporation CHAIR, MEMBRANE CHAIR COMPONENT, MEMBRANE CHAIR SEAT, MEMBRANE COVER, METHOD OF MOLDING MEMBRANE CHAIR COMPONENT, AND OFFICE CHAIR
US7500718B2 (en) * 2004-05-14 2009-03-10 Haworth, Inc. Tilt tension mechanism for chair
US7273253B2 (en) * 2004-06-09 2007-09-25 Kimball International, Inc. Chair ride mechanism with tension assembly
US7237841B2 (en) * 2004-06-10 2007-07-03 Steelcase Development Corporation Back construction with flexible lumbar
US7458637B2 (en) * 2004-06-10 2008-12-02 Steelcase Inc. Back construction with flexible lumbar
US7325873B2 (en) * 2004-06-12 2008-02-05 Steelcase Inc. Seating unit
CA2572396C (en) 2004-07-08 2011-09-06 Knoll, Inc. Office chair
US7494185B2 (en) * 2004-08-26 2009-02-24 L & P Property Management Company J-back adjustment mechanism
US7159942B2 (en) * 2004-08-26 2007-01-09 L & P Property Management Company Seat slide adjustment mechanism
DE202004014948U1 (en) * 2004-09-24 2006-02-02 Sander, Armin Backrest for swivel chair has placing carriage longitudinally movable along guide rail on back of back support
FR2876998B1 (en) * 2004-10-22 2007-01-19 Batscap Sa PROCESS FOR PREPARING GAMMA-LIV205
US7530636B2 (en) * 2004-12-03 2009-05-12 L&P Property Management Company Comfort belt lumbar
US20060138821A1 (en) * 2004-12-27 2006-06-29 Oasyschair Co., Ltd. Chair backrest
JP4471847B2 (en) * 2005-01-04 2010-06-02 株式会社デルタツーリング Seat height adjustment device
DE202005000574U1 (en) * 2005-01-14 2006-05-24 Deon Ag armchair
FR2883521B1 (en) * 2005-02-11 2010-01-08 Hammerstein Gmbh C Rob DEPLACABLE VEHICLE SEAT IN FRONT, COMPRISING A FRONT-FOLDING SUPPORT AND BACKREST
CA2600310C (en) * 2005-03-01 2014-07-08 Haworth, Inc. Tilt control mechanism for a chair
JP4987739B2 (en) 2005-03-01 2012-07-25 ハワース、インク. Chair and lumbar support pad for chair, lumbar support pad assembly
US7478880B2 (en) * 2005-03-08 2009-01-20 L&P Property Management Company Multi-purpose adjustment chair mechanism
US7422287B2 (en) * 2005-03-08 2008-09-09 Steelcase Inc. Seating with shape-changing back support frame
DE102005017143B4 (en) * 2005-04-13 2007-06-21 Bock 1 Gmbh & Co. Kg Device for seat tilt adjustment of a chair
ITMI20050751A1 (en) * 2005-04-27 2006-10-28 Donati Spa MECHANISM OF ADJUSTMENT OF THE INCLINATION OF BACKRESTS IN OFFICE CHAIRS AND POLTEONS
USD623449S1 (en) 2005-05-13 2010-09-14 Humanscale Corporation Mesh backrest for a chair
US7780233B2 (en) * 2005-06-02 2010-08-24 Schukra Of North America, Ltd. Belt extension apparatus
US7318286B1 (en) * 2005-06-10 2008-01-15 Haworth, Inc. Apparatus and process for determining lumbar configuration in a chair
AR057387A1 (en) * 2005-06-20 2007-12-05 Humanscale Corp SEAT APPLIANCE WITH RECLINING MOVEMENT
US7455362B2 (en) * 2005-07-14 2008-11-25 Kids Up, Inc. Adjustable motion wheel chair
DE202005017321U1 (en) * 2005-07-27 2006-12-14 Sander, Armin Chair, especially office chair
US7425036B2 (en) * 2005-08-23 2008-09-16 Schukra Of North America, Ltd. Comfort belt spring pulley
JP4719905B2 (en) * 2005-10-27 2011-07-06 コクヨ株式会社 Chair
JP5002835B2 (en) * 2005-10-27 2012-08-15 コクヨ株式会社 Member connection structure
JP4721183B2 (en) * 2005-11-11 2011-07-13 コクヨ株式会社 Spring mounting structure
JP4747311B2 (en) * 2005-11-11 2011-08-17 コクヨ株式会社 Chair
JP4945781B2 (en) * 2005-11-11 2012-06-06 コクヨ株式会社 Chair
US7569002B2 (en) * 2005-11-14 2009-08-04 Avinoam Nativ Exercise wheelchair
US7393054B2 (en) * 2005-11-17 2008-07-01 Lear Corporation Self adjusting seatback system
US7490392B2 (en) * 2005-12-07 2009-02-17 Steelcase Inc. Seating unit with formed cushion, and manufacturing method
US20070222266A1 (en) * 2006-03-21 2007-09-27 Ditto Sales, Inc. Nestable and stackable chair
WO2007110737A2 (en) 2006-03-24 2007-10-04 Herman Miller Inc. Ergonomic seat
US7837265B2 (en) * 2006-03-24 2010-11-23 Hni Corporation Reclining chair with enhanced adjustability
DK2004020T3 (en) 2006-03-24 2014-12-08 Miller Herman Inc seating arrangement
US7857390B2 (en) 2006-03-24 2010-12-28 Herman Miller, Inc. Piece of furniture
US7585027B2 (en) 2006-04-07 2009-09-08 Schukra Of North America Overmolded thin-profile lumbar support
WO2007124508A1 (en) * 2006-04-24 2007-11-01 Crown Equipment Corporation Materials handling vehicles having seats with pivoting backrests
USD661135S1 (en) 2006-06-20 2012-06-05 Humanscale Corporation Pair of armrests for a chair or the like
KR20090049051A (en) 2006-06-30 2009-05-15 아테로메드, 아이엔씨. Atherectomy devices and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US8007506B2 (en) 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US8920448B2 (en) 2006-06-30 2014-12-30 Atheromed, Inc. Atherectomy devices and methods
EP1878360A1 (en) * 2006-07-11 2008-01-16 Pro-Cord S.P.A. Chair with seat and backrest with synchronized movement
US7654602B2 (en) * 2006-07-21 2010-02-02 The Raymond Corporation Reclining seat for a material handling vehicle
WO2008026264A1 (en) * 2006-08-30 2008-03-06 Itoki Corporation Chair
CA2665176C (en) 2006-10-04 2016-01-19 Formway Furniture Limited A back portion for a chair with a moveable upper section
US20100320816A1 (en) * 2006-12-08 2010-12-23 Johnson Controls Technology Company Vehicle seat with lumbar support
BRPI0823267A2 (en) 2007-01-29 2013-09-24 Miller Herman Inc seat structure and methods for using it
US7695067B2 (en) * 2007-03-02 2010-04-13 Goetz Mark W Ergonomic adjustable chair
CN101801241B (en) * 2007-03-13 2013-06-05 Hni技术公司 Dynamic chair back lumbar support system
US7784870B2 (en) * 2007-03-13 2010-08-31 Hni Technologies, Inc. Six bar mechanism and control for chair
ITMI20070719A1 (en) * 2007-04-06 2008-10-07 L & P Property Management Co TILTING DEVICE FOR A RECLINING SEAT.
ITMI20070718A1 (en) * 2007-04-06 2008-10-07 L & P Property Management Co ADJUSTMENT DEVICE FOR ADJUSTABLE AND SIMILAR CHAIRS.
US7854479B2 (en) * 2007-04-30 2010-12-21 L&P Property Management Company Overmolded lumbar support apparatus and method
US7841665B2 (en) * 2007-06-01 2010-11-30 Steelcase Inc. Height adjustable armrest
US7604298B2 (en) * 2007-06-01 2009-10-20 Steelcase Development Corporation Chair back attachment and method of assembly
US7475943B1 (en) * 2007-06-26 2009-01-13 Sheng Jia Sheng Co., Ltd. Chair that is designed ergonomically to support a user's back snugly and completely
US7857393B2 (en) * 2007-07-03 2010-12-28 E & E Manufacturing Company Inc. Adjustable armrest for a road vehicle
US8015981B2 (en) * 2007-08-19 2011-09-13 Anastasia Soare Stencils and gauging device for aesthetically pleasing eyebrow shaping
EP2937019B1 (en) 2007-09-20 2017-11-08 Herman Miller, Inc. Load support structure
EP2200479B1 (en) * 2007-09-20 2015-06-17 Herman Miller, Inc. Body support structure
USD591986S1 (en) 2007-09-21 2009-05-12 Herman Miller, Inc. Body support structure
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
DE102007059985B3 (en) * 2007-12-11 2009-04-09 Sedus Stoll Ag Device for adjusting the spring force in an office chair
WO2009089167A1 (en) * 2008-01-05 2009-07-16 Johnson Controls Technology Company Entertainment seat
US7677668B2 (en) * 2008-01-08 2010-03-16 Brunswick Corporation Vehicle seats having a back support lock assembly
JP5347142B2 (en) * 2008-01-16 2013-11-20 コクヨ株式会社 Chair
USD604535S1 (en) 2008-04-09 2009-11-24 Formway Furniture Limited Chair
USD600051S1 (en) 2008-04-09 2009-09-15 Formway Furniture Limited Chair back
US8056597B2 (en) * 2008-04-10 2011-11-15 Bps Engineering, Llc Cam follower assembly for thin walled cylinder of scroll shaping drum used in tire construction
WO2009134451A1 (en) 2008-05-02 2009-11-05 Haworth, Inc. Tension mechanism for a weight-responsive chair
AU2009258164A1 (en) 2008-05-26 2009-12-17 Steelcase Inc. Conforming back for a seating unit
WO2009149177A1 (en) * 2008-06-03 2009-12-10 Johnson Controls Technology Company Seat frame - tailored tubes
KR20110022040A (en) * 2008-06-05 2011-03-04 가부시기가이샤 우찌다요우고우 Chair with tiltable backrest
US8167373B2 (en) * 2008-06-06 2012-05-01 Knoll, Inc. Height adjustment mechanism for a chair
US8216416B2 (en) 2008-06-06 2012-07-10 Knoll, Inc. Chair and method for assembling the chair
US8172324B2 (en) * 2008-06-06 2012-05-08 Knoll, Inc. Preference control mechanism
US7654617B2 (en) 2008-06-06 2010-02-02 Mity-Lite, Inc. Flexible chair seat
IL200365A (en) * 2008-08-18 2013-05-30 Ass For Public Health Services Posture trainer
KR100903215B1 (en) * 2008-10-10 2009-06-18 주식회사 시디즈 Tilting chair
JP2010094363A (en) * 2008-10-17 2010-04-30 Okamura Corp Chair
US8087729B2 (en) * 2008-12-09 2012-01-03 Wolfgang K, Llc Aircraft seat
CA131020S (en) 2008-12-12 2010-02-03 Formway Furniture Ltd Chair
KR100940190B1 (en) * 2008-12-19 2010-02-10 주식회사 체어로 A chair
US8317269B2 (en) * 2008-12-24 2012-11-27 Mity-Lite, Inc. Mesh stacking chair
US8322787B2 (en) * 2008-12-24 2012-12-04 Mity-Lite, Inc. Clamping joint for a chair
US8454093B2 (en) 2008-12-24 2013-06-04 Mity-Lite, Inc. Mesh chair with open-end hoop
US8038221B2 (en) 2008-12-24 2011-10-18 Mity-Lite, Inc. Folding mesh chair with nesting hoops
US8002351B2 (en) * 2009-01-26 2011-08-23 Knoll, Inc. Support member
US8342604B2 (en) * 2009-02-04 2013-01-01 Cosco Management, Inc. Juvenile vehicle seat with seat-back channel cover
US8157329B2 (en) * 2009-02-25 2012-04-17 Knoll, Inc. Furniture and method of furniture component attachment
US20100244515A1 (en) * 2009-03-31 2010-09-30 Dragomir Ivicevic Reclining Chair
DE102009016968B4 (en) * 2009-04-14 2012-01-26 Votteler Designpartner Gmbh seating
DE102009020659B4 (en) * 2009-05-08 2016-06-09 Audi Ag vehicle seat
DE102010022386B4 (en) * 2009-10-13 2015-10-29 In-Tra-Tec GmbH Entlordosierungsvorrichtung
US8944507B2 (en) * 2009-10-13 2015-02-03 Herman Miller, Inc. Ergonomic adjustable chair mechanisms
JP5514509B2 (en) * 2009-10-26 2014-06-04 株式会社イトーキ Rocking chair
US8505186B2 (en) 2009-11-03 2013-08-13 Knoll, Inc. Method of fabricating a chair
USD648554S1 (en) 2009-11-04 2011-11-15 Mity-Lite, Inc. Mesh stacking chair
DE102009052111B4 (en) * 2009-11-05 2012-05-16 Johnson Controls Gmbh Seat cushion tilt adjustment
EP2325040B1 (en) * 2009-11-23 2018-01-03 Faurecia Automotive Seating, Inc. Controllable comfort shell for vehicle seat
US8714646B2 (en) 2010-02-08 2014-05-06 Sava Cvek Mobile task chair and mobile task chair control mechanism with adjustment capabilities and visual setting indicators
US8714645B2 (en) * 2010-01-28 2014-05-06 Sava Cvek Pivoting mechanism with gross and fine resistance adjustment
WO2011100547A2 (en) 2010-02-11 2011-08-18 Boston Scientific Scimed, Inc. Automatic vascular closure deployment devices and methods
WO2011106774A2 (en) * 2010-02-26 2011-09-01 Zero1, Llc Chair with collapsible seat back
US8439411B2 (en) 2010-04-09 2013-05-14 Magna International Inc. Bumper beam with integrated energy absorber
USD639091S1 (en) 2010-04-13 2011-06-07 Herman Miller, Inc. Backrest
USD653061S1 (en) 2010-04-13 2012-01-31 Herman Miller, Inc. Chair
USD637423S1 (en) 2010-04-13 2011-05-10 Herman Miller, Inc. Chair
USD657166S1 (en) 2010-04-13 2012-04-10 Herman Miller, Inc. Chair
USD652657S1 (en) 2010-04-13 2012-01-24 Herman Miller, Inc. Chair
USD650206S1 (en) 2010-04-13 2011-12-13 Herman Miller, Inc. Chair
US8449037B2 (en) 2010-04-13 2013-05-28 Herman Miller, Inc. Seating structure with a contoured flexible backrest
ES2379186A1 (en) * 2010-04-27 2012-04-23 Tircantabria, S.L.U. Ergonomic work position on a manual selection recycling tape. (Machine-translation by Google Translate, not legally binding)
KR101009490B1 (en) * 2010-04-28 2011-01-21 주식회사 토치 A chair comprised seat plate moving structure
BR112012028026A2 (en) 2010-05-05 2017-03-28 Eberhard Von Huene & Ass Inc removable and removable wall panel system
US8632130B2 (en) * 2010-05-13 2014-01-21 L & P Property Management Company Chair-specific adjustment device
US8616640B2 (en) 2010-05-20 2013-12-31 Knoll, Inc. Chair
USD659417S1 (en) 2010-06-04 2012-05-15 Herman Miller, Inc. Chair and components thereof
CA2855841C (en) 2010-06-10 2016-11-08 Office Master Chair with seat depth adjustment and back support
US9364091B2 (en) 2010-08-25 2016-06-14 L&P Property Management Company Tilt mechanism for a chair and chair
GB201014953D0 (en) 2010-09-08 2010-10-20 Birkbeck Hilary R Slide chair action
GB201015414D0 (en) 2010-09-15 2010-10-27 Birkbeck Hilary R Link chair action
US8474909B2 (en) 2010-09-21 2013-07-02 La-Z-Boy Incorporated Power lift lumbar support system
US20130207427A1 (en) * 2010-10-19 2013-08-15 Okamura Corporation Chair with armrest
CN103209859B (en) 2010-10-25 2016-01-20 布罗泽汽车部件制造科堡有限公司 There is the seat of depth of seat cushion control apparatus
DE102010042880A1 (en) * 2010-10-25 2012-05-16 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Vehicle seat has guide units with guidance device, which has cavity molded in seat tray, where guide assembly has guiding ridge connected with support element
USD660612S1 (en) 2010-11-16 2012-05-29 Mity-Lite, Inc. Mesh banquet chair
US8550559B2 (en) * 2010-11-24 2013-10-08 Everett Sollars Power disc style seat recliner
US9145072B2 (en) 2010-11-24 2015-09-29 Everett Sollars Power disc style seat recliner
JP5589798B2 (en) * 2010-11-25 2014-09-17 トヨタ紡織株式会社 Cushion length variable seat
JP2012135398A (en) * 2010-12-27 2012-07-19 Kokuyo Co Ltd Chair
US20120242130A1 (en) * 2011-03-21 2012-09-27 Yu-Ching Hung Chair with waist rest and armrests
DE102011016476A1 (en) * 2011-04-08 2012-10-11 Bock 1 Gmbh & Co. Kg Seat support for a chair
US8991922B2 (en) 2011-06-02 2015-03-31 Formway Furniture Limited Lumbar support for a chair
DE102011104972B4 (en) 2011-06-08 2015-03-05 Haworth, Inc. Seating furniture, in particular office chair
WO2012170863A2 (en) 2011-06-09 2012-12-13 Haworth, Inc. Forward sliding reclining chair
CN202160996U (en) * 2011-07-04 2012-03-14 陈育成 Multifunctional chassis with improved structure
TW201311188A (en) * 2011-07-15 2013-03-16 Itoki Corp Rocking chair and spring unit used therefor
US8567864B2 (en) 2011-08-12 2013-10-29 Hni Corporation Flexible back support member with integrated recline stop notches
US9352675B2 (en) 2011-09-21 2016-05-31 Herman Miller, Inc. Bi-level headrest, body support structure and method of supporting a user's cranium
CN104023592B (en) 2011-10-04 2017-04-05 佛姆维家具有限公司 Seat and support member
US9265681B1 (en) 2011-10-10 2016-02-23 Deborah L. Bell Apparatus and method for facilitating or enhancing a person's breathing
JP6009891B2 (en) * 2011-11-04 2016-10-19 株式会社岡村製作所 Chair
US9061766B2 (en) 2011-11-30 2015-06-23 Burkley U. Kladde Synchronous seat recline mechanism
CN102488406B (en) * 2011-12-14 2013-04-03 郑爱明 Automatic rocking chair
US9504326B1 (en) 2012-04-10 2016-11-29 Humanscale Corporation Reclining chair
US9198514B2 (en) 2012-05-23 2015-12-01 Hni Technologies Inc. Chair with pivot function and method of making
USD707995S1 (en) 2012-05-23 2014-07-01 Hni Technologies Inc. Chair
US8991921B2 (en) 2012-07-20 2015-03-31 Steelcase Inc. Seating unit with seat position and depth adjustment assembly
USD705134S1 (en) * 2012-07-26 2014-05-20 Stryker Corporation Wheelchair handlebars
DE202012102949U1 (en) * 2012-08-06 2012-09-03 Ciar S.P.A. Drive system with a linear actuator and furniture with such a drive system
US8820835B2 (en) * 2012-08-29 2014-09-02 Hni Technologies Inc. Resilient chair incorporating multiple flex zones
CN102846066A (en) * 2012-09-18 2013-01-02 李明科 Stepping regulating device for rotating seat
CN102871387B (en) * 2012-09-19 2016-11-02 杭州立宏科技有限公司 Medicated cushion and back-rest linked adjustable type seat
USD698166S1 (en) 2012-09-20 2014-01-28 Steelcase Inc. Chair
USD698164S1 (en) 2012-09-20 2014-01-28 Steelcase Inc. Chair
USD699959S1 (en) 2012-09-20 2014-02-25 Steelcase Inc. Chair
USD697729S1 (en) 2012-09-20 2014-01-21 Steelcase Inc. Chair
USD701053S1 (en) 2012-09-20 2014-03-18 Steelcase Inc. Chair
USD699061S1 (en) 2012-09-20 2014-02-11 Steelcase Inc. Arm assembly
USD942767S1 (en) 2012-09-20 2022-02-08 Steelcase Inc. Chair assembly
USD781605S1 (en) 2015-04-24 2017-03-21 Steelcase Inc. Chair
USD702981S1 (en) 2012-09-20 2014-04-22 Steelcase Inc. Chair
USD694539S1 (en) 2012-09-20 2013-12-03 Steelcase Inc. Chair
USD683151S1 (en) 2012-09-20 2013-05-28 Steelcase Inc. Chair
USD699957S1 (en) 2012-09-20 2014-02-25 Steelcase Inc. Chair
US8998339B2 (en) 2012-09-20 2015-04-07 Steelcase Inc. Chair assembly with upholstery covering
USD694537S1 (en) 2012-09-20 2013-12-03 Steelcase Inc. Chair
US9167910B2 (en) 2012-09-20 2015-10-27 Steelcase Inc. Chair assembly
USD699958S1 (en) 2012-09-20 2014-02-25 Steelcase Inc. Chair
USD694540S1 (en) 2012-09-20 2013-12-03 Steelcase Inc. Chair
USD697727S1 (en) 2012-09-20 2014-01-21 Steeelcase Inc. Chair
USD694536S1 (en) 2012-09-20 2013-12-03 Steelcase Inc. Chair
USD707976S1 (en) 2013-06-07 2014-07-01 Steelcase Inc. Chair
US11304528B2 (en) 2012-09-20 2022-04-19 Steelcase Inc. Chair assembly with upholstery covering
US11229294B2 (en) * 2012-09-20 2022-01-25 Steelcase Inc. Chair assembly with upholstery covering
US9458905B2 (en) * 2012-09-20 2016-10-04 Steelcase Inc. Spring assembly and method
USD698165S1 (en) 2012-09-20 2014-01-28 Steelcase Inc. Chair
USD697726S1 (en) 2012-09-20 2014-01-21 Steelcase Inc. Chair
USD688907S1 (en) 2012-09-20 2013-09-03 Steelcase Inc. Arm assembly
USD697730S1 (en) 2012-09-20 2014-01-21 Steelcase Inc. Chair
USD694538S1 (en) 2012-09-20 2013-12-03 Steelcase Inc. Chair
US9706845B2 (en) 2012-09-20 2017-07-18 Steelcase Inc. Chair assembly
USD697728S1 (en) 2012-09-20 2014-01-21 Steelcase Inc. Chair
USD683150S1 (en) 2012-09-20 2013-05-28 Steelcase Inc. Chair
USD703987S1 (en) 2013-06-07 2014-05-06 Steelcase Inc. Chair
USD706547S1 (en) 2013-06-07 2014-06-10 Steelcase Inc. Chair
US9661930B2 (en) 2012-09-21 2017-05-30 Steelcase Inc. Chair construction
MX353166B (en) * 2012-10-19 2017-12-20 L&P Property Man Co Tension adjust device for a chair and chair.
USD695034S1 (en) 2012-11-13 2013-12-10 Steelcase Inc. Chair
US20140151229A1 (en) * 2012-12-05 2014-06-05 Caliper Life Sciences, Inc. Manipulation of objects in microfluidic devices using external electrodes
US9480339B2 (en) 2012-12-31 2016-11-01 Sava Cvek Seat with pelvic support
US9216677B2 (en) 2013-01-24 2015-12-22 Ford Global Technologies, Llc Quick-connect trim carrier attachment
US9061616B2 (en) 2013-01-24 2015-06-23 Ford Global Technologies, Llc Articulating headrest assembly
US9016783B2 (en) 2013-01-24 2015-04-28 Ford Global Technologies, Llc Thin seat flex rest composite cushion extension
US9126504B2 (en) 2013-01-24 2015-09-08 Ford Global Technologies, Llc Integrated thin flex composite headrest assembly
US9016784B2 (en) 2013-01-24 2015-04-28 Ford Global Technologies, Llc Thin seat leg support system and suspension
US9902293B2 (en) 2013-01-24 2018-02-27 Ford Global Technologies, Llc Independent cushion extension with optimized leg-splay angle
US8727374B1 (en) 2013-01-24 2014-05-20 Ford Global Technologies, Llc Vehicle seatback with side airbag deployment
US9399418B2 (en) 2013-01-24 2016-07-26 Ford Global Technologies, Llc Independent cushion extension and thigh support
US9096157B2 (en) 2013-01-24 2015-08-04 Ford Global Technologies, Llc Seating assembly with air distribution system
US9126508B2 (en) 2013-01-24 2015-09-08 Ford Global Technologies, Llc Upper seatback pivot system
US9409504B2 (en) 2013-01-24 2016-08-09 Ford Global Technologies, Llc Flexible seatback system
US9415713B2 (en) 2013-01-24 2016-08-16 Ford Global Technologies, Llc Flexible seatback system
DE202013100574U1 (en) * 2013-02-07 2014-05-08 Bock 1 Gmbh & Co. Kg Mechanics for an office chair
CA3123791C (en) 2013-03-15 2023-05-02 Stryker Corporation Medical support apparatus
USD743712S1 (en) 2013-03-15 2015-11-24 Herman Miller, Inc. Chair
MY183045A (en) 2013-03-15 2021-02-08 Haworth Inc Office chair
US9332851B2 (en) 2013-03-15 2016-05-10 Hni Technologies Inc. Chair with activated back flex
NO335957B1 (en) * 2013-04-15 2015-03-30 Scandinavian Business Seating AS Seat Adjusters
USD705561S1 (en) 2013-05-16 2014-05-27 Steelcase Inc. Chair
USD704945S1 (en) 2013-05-16 2014-05-20 Steelcase Inc. Chair
USD708466S1 (en) 2013-05-16 2014-07-08 Steelcase Inc. Chair
US20160135603A1 (en) * 2013-06-06 2016-05-19 Itoki Corporation Chair
USD703457S1 (en) * 2013-06-07 2014-04-29 Herman Miller, Inc. Chair
USD704487S1 (en) 2013-06-07 2014-05-13 Steelcase Inc. Chair
USD703988S1 (en) 2013-06-07 2014-05-06 Steelcase Inc. Chair
US9193284B2 (en) 2013-06-11 2015-11-24 Ford Global Technologies, Llc Articulating cushion bolster for ingress/egress
DE102013106410B4 (en) * 2013-06-19 2015-02-12 Johnson Controls Components Gmbh & Co. Kg Device for seat tilt adjustment of a motor vehicle seat
USD696545S1 (en) 2013-07-30 2013-12-31 Steelcase, Inc. Rear surface of a chair back
US9527418B2 (en) 2013-09-12 2016-12-27 Ford Global Technologies, Llc Semi rigid push/pull vented envelope system
US8905431B1 (en) 2013-09-24 2014-12-09 Ford Global Technologies, Llc Side airbag assembly for a vehicle seat
KR101398686B1 (en) * 2013-10-10 2014-05-27 주식회사 시디즈 Tilting type chair
US9187019B2 (en) 2013-10-17 2015-11-17 Ford Global Technologies, Llc Thigh support for customer accommodation seat
DE102013017312A1 (en) * 2013-10-18 2015-04-23 Km-System Chair for long-term sitting
US9505322B2 (en) 2013-10-25 2016-11-29 Ford Global Technologies, Llc Manual lumbar pump assembly
US9315130B2 (en) 2013-11-11 2016-04-19 Ford Global Technologies, Llc Articulating head restraint
US9566884B2 (en) 2013-11-11 2017-02-14 Ford Global Technologies, Llc Powered head restraint electrical connector
JP6244837B2 (en) * 2013-11-12 2017-12-13 コクヨ株式会社 Chair
JP6215659B2 (en) * 2013-11-12 2017-10-18 コクヨ株式会社 Chair
JP6225650B2 (en) * 2013-11-12 2017-11-08 コクヨ株式会社 Chair
KR101527459B1 (en) * 2013-11-26 2015-06-10 이두형 chair
CA2932447C (en) 2013-12-06 2022-05-03 Force 3 Innovations Inc. Adjustable seating systems and associated structures
US9365143B2 (en) 2013-12-12 2016-06-14 Ford Global Technologies, Llc Rear seat modular cushion
CN103622346A (en) * 2013-12-19 2014-03-12 嘉兴市永泰五金塑料有限责任公司 Office chair
US9315131B2 (en) 2014-01-23 2016-04-19 Ford Global Technologies, Llc Suspension seat back and cushion system having an inner suspension panel
US9597243B1 (en) * 2014-02-15 2017-03-21 Midmark Corporation Medical procedure chair
US9380879B2 (en) 2014-02-24 2016-07-05 Knoll, Inc. Chair back swivel mechanism
US9649963B2 (en) 2014-03-04 2017-05-16 Ford Global Technologies, Pllc Trim and foam assembly for a vehicle seat
JP6338213B2 (en) * 2014-03-27 2018-06-06 株式会社オカムラ Chair
US9527419B2 (en) 2014-03-31 2016-12-27 Ford Global Technologies, Llc Vehicle seating assembly with manual cushion tilt
US9421894B2 (en) 2014-04-02 2016-08-23 Ford Global Technologies, Llc Vehicle seating assembly with manual independent thigh supports
US9302643B2 (en) 2014-04-02 2016-04-05 Ford Global Technologies, Llc Vehicle seating assembly with side airbag deployment
US9271573B2 (en) * 2014-04-10 2016-03-01 Dongguan Kentec Office Seating Co., Ltd. Multifunction control device
USD731833S1 (en) 2014-04-17 2015-06-16 Allsteel Inc. Chair
CN106455821A (en) 2014-04-17 2017-02-22 Hni技术公司 Chair and chair control assemblies, systems, and methods
WO2015160693A1 (en) 2014-04-17 2015-10-22 Hni Technologies Inc. Flex lumbar support
US9585480B2 (en) 2014-05-09 2017-03-07 Ami Industries, Inc. Systems and methods for reclining seats
US9044093B1 (en) * 2014-05-12 2015-06-02 Oasyschair Co., Ltd. Height-adjustable handrest
CN103989340B (en) * 2014-05-15 2019-04-19 杭州汇心科技有限公司 Correcting sitting posture seat
US9565949B2 (en) * 2014-05-30 2017-02-14 Steelcase Inc. Chair upholstery attachment arrangement and method
CN105266431B (en) * 2014-06-02 2018-06-22 大河精工有限公司 Chair assembly
GB201412733D0 (en) * 2014-07-17 2014-09-03 Boss Design Ltd Chair
US9694741B2 (en) 2014-08-25 2017-07-04 Ford Global Technologies, Llc Ambient functional lighting of a seat
US10471874B2 (en) 2014-09-02 2019-11-12 Ford Global Technologies, Llc Massage bladder matrix
GB2530297B (en) * 2014-09-18 2019-06-05 Perch Dynamic Solutions Ltd A chair back
US9776533B2 (en) 2014-10-03 2017-10-03 Ford Global Technologies, Llc Torsion bar upper seatback support assembly
US9333882B2 (en) 2014-10-03 2016-05-10 Ford Global Technologies, Llc Manual upper seatback support
US9789790B2 (en) 2014-10-03 2017-10-17 Ford Global Technologies, Llc Tuned flexible support member and flexible suspension features for comfort carriers
DE102014220695A1 (en) * 2014-10-13 2016-04-28 Haworth Gmbh Chair, especially office chair
US9801470B2 (en) 2014-10-15 2017-10-31 Hni Technologies Inc. Molded chair with integrated support and method of making same
USD743180S1 (en) 2014-10-15 2015-11-17 Hni Technologies Inc. Chair
US9771003B2 (en) 2014-10-29 2017-09-26 Ford Global Technologies, Llc Apparatus for customizing a vehicle seat for an occupant
US9517777B2 (en) 2014-11-06 2016-12-13 Ford Global Technologies, Llc Lane departure feedback system
US9340131B1 (en) 2014-11-06 2016-05-17 Ford Global Technologies, Llc Head restraint with a multi-cell bladder assembly
US10065570B2 (en) 2014-12-10 2018-09-04 Ford Global Technologies, Llc Electronic device holder for a vehicle seat
US9593642B2 (en) 2014-12-19 2017-03-14 Ford Global Technologies, Llc Composite cam carrier
US9663000B2 (en) 2015-01-16 2017-05-30 Ford Global Technologies, Llc Vehicle seat configured to improve access
BR112017014533A2 (en) 2015-01-16 2018-01-16 Miller Herman Inc zoned suspension seat frame
US9707877B2 (en) 2015-01-20 2017-07-18 Ford Global Technologies, Llc Independent thigh extension and support trim carrier
US9365142B1 (en) 2015-01-20 2016-06-14 Ford Global Technologies, Llc Manual independent thigh extensions
CN104605648B (en) * 2015-01-29 2017-02-22 安吉富和家具有限公司 Synchronous different-angle base plate for backrest and cushion
WO2016125923A1 (en) * 2015-02-03 2016-08-11 (주)코젤 Apparatus for fixing electric chair
US9566930B2 (en) 2015-03-02 2017-02-14 Ford Global Technologies, Llc Vehicle seat assembly with side-impact airbag deployment mechanism
US9861203B2 (en) 2015-03-05 2018-01-09 A-Dec, Inc. Seat assembly for task-oriented seating
US11259637B2 (en) 2015-04-13 2022-03-01 Steelcase Inc. Seating arrangement
AU2016247797B2 (en) 2015-04-13 2019-08-01 Steelcase Inc. Seating arrangement
US10966527B2 (en) 2017-06-09 2021-04-06 Steelcase Inc. Seating arrangement and method of construction
US10194750B2 (en) 2015-04-13 2019-02-05 Steelcase Inc. Seating arrangement
USD760526S1 (en) 2015-04-24 2016-07-05 Steelcase Inc. Headrest assembly
USD758774S1 (en) 2015-04-24 2016-06-14 Steelcase Inc. Headrest assembly
USD781604S1 (en) 2015-04-24 2017-03-21 Steelcase Inc. Chair
USD759415S1 (en) 2015-04-24 2016-06-21 Steelcase Inc. Headrest
US9802535B2 (en) 2015-04-27 2017-10-31 Ford Global Technologies, Llc Seat having ambient lighting
USD777494S1 (en) 2015-05-22 2017-01-31 Davis Furniture Industries, Inc. Chair frame
US9713381B2 (en) 2015-06-11 2017-07-25 Davis Furniture Industries, Inc. Chair
DE102015110819A1 (en) * 2015-07-03 2017-01-05 Rummel Matratzen Gmbh & Co. Kg Rest unit for one person with adjustable seating and / or lying surface
US10046682B2 (en) 2015-08-03 2018-08-14 Ford Global Technologies, Llc Back cushion module for a vehicle seating assembly
US9718387B2 (en) 2015-08-03 2017-08-01 Ford Global Technologies, Llc Seat cushion module for a vehicle seating assembly
US9648957B2 (en) * 2015-08-05 2017-05-16 Dongguan Kentec Office Seating Co., Ltd. Chair with back tilt adjustment structure
US9688174B2 (en) 2015-08-07 2017-06-27 Ford Global Technologies, Llc Multi-cell seat cushion assembly
US9573528B1 (en) 2015-08-25 2017-02-21 Ford Global Technologies, Llc Integrated seatback storage
CN106551544B (en) * 2015-09-27 2023-06-02 永艺家具股份有限公司 Swivel chair tray
JP6909336B2 (en) * 2015-11-06 2021-07-28 株式会社イトーキ Chair back
JP2017086308A (en) * 2015-11-06 2017-05-25 株式会社イトーキ Body support medium of chair
US9616776B1 (en) 2015-11-16 2017-04-11 Ford Global Technologies, Llc Integrated power thigh extender
US9809131B2 (en) 2015-12-04 2017-11-07 Ford Global Technologies, Llc Anthropomorphic pivotable upper seatback support
CN105380435A (en) * 2015-12-09 2016-03-09 中威控股集团有限公司 Seat support plate, base plate thereof, base plate forming method, and base plate installation structure
US9931999B2 (en) 2015-12-17 2018-04-03 Ford Global Technologies, Llc Back panel lower clip anchorage features for dynamic events
US10093214B2 (en) 2016-01-14 2018-10-09 Ford Global Technologies, Llc Mechanical manual leg tilt
US9914421B2 (en) 2016-01-15 2018-03-13 Ford Global Technologies, Llc Seatback flexible slip plane joint for side air bag deployment
US9756408B2 (en) 2016-01-25 2017-09-05 Ford Global Technologies, Llc Integrated sound system
US9776543B2 (en) 2016-01-25 2017-10-03 Ford Global Technologies, Llc Integrated independent thigh supports
US10052990B2 (en) 2016-01-25 2018-08-21 Ford Global Technologies, Llc Extended seatback module head restraint attachment
US10035442B2 (en) 2016-01-25 2018-07-31 Ford Global Technologies, Llc Adjustable upper seatback module
US10182657B2 (en) 2016-02-12 2019-01-22 Haworth, Inc. Back support for a chair
DE102016102556A1 (en) * 2016-02-15 2017-08-17 Interstuhl Büromöbel GmbH & Co. KG Backrest for an office chair
DE102016104638A1 (en) * 2016-03-14 2017-09-14 Burkhard Schmitz chair
US10046681B2 (en) 2016-04-12 2018-08-14 Ford Global Technologies, Llc Articulating mechanical thigh extension composite trim payout linkage system
US10286818B2 (en) 2016-03-16 2019-05-14 Ford Global Technologies, Llc Dual suspension seating assembly
US9849817B2 (en) 2016-03-16 2017-12-26 Ford Global Technologies, Llc Composite seat structure
US9994135B2 (en) 2016-03-30 2018-06-12 Ford Global Technologies, Llc Independent cushion thigh support
US10220737B2 (en) 2016-04-01 2019-03-05 Ford Global Technologies, Llc Kinematic back panel
US9889773B2 (en) 2016-04-04 2018-02-13 Ford Global Technologies, Llc Anthropomorphic upper seatback
US10081279B2 (en) 2016-04-12 2018-09-25 Ford Global Technologies, Llc Articulating thigh extension trim tensioning slider mechanism
US10625646B2 (en) 2016-04-12 2020-04-21 Ford Global Technologies, Llc Articulating mechanical thigh extension composite trim payout linkage system
US9802512B1 (en) 2016-04-12 2017-10-31 Ford Global Technologies, Llc Torsion spring bushing
US9845029B1 (en) 2016-06-06 2017-12-19 Ford Global Technologies, Llc Passive conformal seat with hybrid air/liquid cells
US9834166B1 (en) 2016-06-07 2017-12-05 Ford Global Technologies, Llc Side airbag energy management system
US9849856B1 (en) 2016-06-07 2017-12-26 Ford Global Technologies, Llc Side airbag energy management system
US10377279B2 (en) 2016-06-09 2019-08-13 Ford Global Technologies, Llc Integrated decking arm support feature
US10463153B2 (en) 2016-06-09 2019-11-05 Steelcase Inc. Seating arrangement
US10166894B2 (en) 2016-06-09 2019-01-01 Ford Global Technologies, Llc Seatback comfort carrier
US10166895B2 (en) 2016-06-09 2019-01-01 Ford Global Technologies, Llc Seatback comfort carrier
US11071386B2 (en) 2016-06-09 2021-07-27 Sava Cvek Seat pivoting mechanism and chair height locking system
CN109310209A (en) 2016-06-11 2019-02-05 休思乐公司 Seat with radial type backrest
AU2017203915B2 (en) * 2016-06-13 2022-10-06 MillerKnoll, Inc Adjustable back support for a seating surface
GB2551737B (en) * 2016-06-28 2019-06-05 Posturite Ltd Seat tilting mechanism with two springs
US10286824B2 (en) 2016-08-24 2019-05-14 Ford Global Technologies, Llc Spreader plate load distribution
US10279714B2 (en) 2016-08-26 2019-05-07 Ford Global Technologies, Llc Seating assembly with climate control features
US10239431B2 (en) 2016-09-02 2019-03-26 Ford Global Technologies, Llc Cross-tube attachment hook features for modular assembly and support
US10391910B2 (en) 2016-09-02 2019-08-27 Ford Global Technologies, Llc Modular assembly cross-tube attachment tab designs and functions
US10426267B2 (en) 2016-09-09 2019-10-01 Steelcase Inc. Office systems with shape memory materials
US10219627B2 (en) 2016-09-29 2019-03-05 Steelcase Inc. Compliant seating structure
US9914378B1 (en) 2016-12-16 2018-03-13 Ford Global Technologies, Llc Decorative and functional upper seatback closeout assembly
CN106388374A (en) * 2016-12-20 2017-02-15 苍南中学 Combined chair capable of achieving multi-angle adjustment of chair back
CN108056613B (en) * 2017-01-19 2021-04-23 安吉县盛信办公家具有限公司 Waist support seat
JP6576378B2 (en) * 2017-02-27 2019-09-18 日本発條株式会社 Vehicle seat
US10231546B2 (en) * 2017-03-02 2019-03-19 Knoll, Inc. Chair back tilt mechanism
US10694897B2 (en) * 2017-03-22 2020-06-30 Andrew J Hart Enterprises Limited Bath transfer chair
CN107125990A (en) * 2017-04-26 2017-09-05 广东顺德奥格斯格家具有限公司 A kind of office chair
US10596936B2 (en) 2017-05-04 2020-03-24 Ford Global Technologies, Llc Self-retaining elastic strap for vent blower attachment to a back carrier
USD846294S1 (en) 2017-05-25 2019-04-23 Steelcase Inc. Seating arrangement
USD852524S1 (en) 2017-05-25 2019-07-02 Steelcase Inc. Seating arrangement
USD827352S1 (en) 2017-05-25 2018-09-04 Steelcase Inc. Seating arrangement
USD851952S1 (en) 2017-05-25 2019-06-25 Steelcase Inc. Seating arrangement
USD852525S1 (en) 2017-05-25 2019-07-02 Steelcase Inc. Seating arrangement
USD851417S1 (en) 2017-05-25 2019-06-18 Steelcase Inc. Seating arrangement
USD852526S1 (en) 2017-05-25 2019-07-02 Steelcase Inc. Seating arrangement
USD851418S1 (en) 2017-05-25 2019-06-18 Steelcase Inc. Seating arrangement
US10473136B2 (en) 2017-05-25 2019-11-12 Ford Global Technologies, Llc Vehicle seating cushion with snap-fit fasteners to interconnect with snap-fit receivers on a structural support
CN107259851A (en) * 2017-06-05 2017-10-20 浙江陀曼精密机械有限公司 A kind of seat laser ranging sitting posture detecting system and its method
US10799028B2 (en) 2017-08-10 2020-10-13 NHI Corporation Chairs including flexible frames
US11013329B2 (en) 2017-08-10 2021-05-25 Huntwise, Inc. Integrated blind seat system
US10351030B2 (en) * 2017-09-14 2019-07-16 Ford Global Technologies, Llc Seat trim retention system with asymmetrical retention force
CN107581811A (en) * 2017-09-28 2018-01-16 大康控股集团有限公司 One kind back of the body crankshaft base coordinated type seat
KR101852110B1 (en) * 2017-10-18 2018-04-25 (주) 파트라 A chair with flexible backrest
US11291305B2 (en) 2017-12-05 2022-04-05 Steelcase Inc. Compliant backrest
CN117860063A (en) 2017-12-05 2024-04-12 斯蒂尔凯斯有限公司 Compliant backrest
USD869890S1 (en) 2017-12-05 2019-12-17 Steelcase Inc. Chairback
US10813463B2 (en) 2017-12-05 2020-10-27 Steelcase Inc. Compliant backrest
USD870479S1 (en) 2017-12-05 2019-12-24 Steelcase Inc. Chair
USD869889S1 (en) 2017-12-05 2019-12-17 Steelcase Inc. Chairback
USD869872S1 (en) 2017-12-05 2019-12-17 Steelcase Inc. Chair
US10729246B2 (en) 2017-12-21 2020-08-04 Stryker Corporation Person support apparatus with shear-reducing pivot assembly
US10881209B2 (en) 2018-01-12 2021-01-05 L&P Property Management Company Recliner seating mechanism with seat extension
KR102409252B1 (en) * 2018-01-31 2022-06-14 레겟 앤드 플랫 캐나다 코포레이션 Lumbar Support System
CN108525053B (en) * 2018-02-14 2020-11-24 马云霞 Infusion support with alarming function for pediatric outpatient service
US10383448B1 (en) 2018-03-28 2019-08-20 Haworth, Inc. Forward tilt assembly for chair seat
PL3556252T3 (en) 2018-04-17 2020-11-16 L&P Property Management Company Tilt mechanism for a chair and chair
US10426269B1 (en) 2018-04-30 2019-10-01 Buzz Seating, Inc. Chair with appendage accommodations
US10945763B2 (en) 2018-05-31 2021-03-16 Texas Scottish Rite Hospital For Children Orthopedic spring hinge system and methods thereof
US11083301B2 (en) 2018-06-01 2021-08-10 Steelcase Inc. Seating arrangement
USD918097S1 (en) * 2018-06-19 2021-05-04 Carla J. Janikowski Wheelchair handgrip
US10940064B2 (en) 2018-06-19 2021-03-09 Carla J. Janikowski Wheelchair handgrip apparatuses
US10588416B2 (en) * 2018-06-28 2020-03-17 Sue Vanmaastricht Adjustable chair
DE112019005350T5 (en) * 2018-10-25 2021-07-08 Illinois Tool Works Inc. SUSPENSION SUBSTANCE WITH COMPRESSION LIMITERS
US11324324B2 (en) 2018-11-05 2022-05-10 La-Z-Boy Incorporated Furniture member having lumbar adjustment mechanism
US10952535B2 (en) * 2018-11-05 2021-03-23 La-Z-Boy Incorporated Furniture member having lumbar adjustment mechanism
US11672348B2 (en) 2018-11-05 2023-06-13 La-Z-Boy Incorporated Furniture member having lumbar adjustment mechanism
WO2020107071A1 (en) * 2018-11-28 2020-06-04 Dimitrios Dielos An improved back support arrangement adapted to re-align muscles and joints in the back during body re-posturing so as to provide support for alignment of the spine's natural curvature
US11589678B2 (en) 2019-01-17 2023-02-28 Hni Technologies Inc. Chairs including flexible frames
EP3927215A4 (en) 2019-02-21 2023-03-15 Steelcase Inc. Body support assembly and methods for the use and assembly thereof
US11096496B2 (en) 2019-04-11 2021-08-24 Hugh Charles Murray Therapeutic chair with adjustable back and method of using the same
US10940949B2 (en) * 2019-04-18 2021-03-09 Ami Industries, Inc. Short multiple function rotary actuator lever
EP3741258A1 (en) * 2019-05-20 2020-11-25 BOCK 1 GmbH & Co. KG Chair with seat tilt mechanism
USD907935S1 (en) 2019-05-31 2021-01-19 Steelcase Inc. Chair
USD907383S1 (en) 2019-05-31 2021-01-12 Steelcase Inc. Chair with upholstered back
CN110464146A (en) * 2019-08-20 2019-11-19 李扬震 A kind of sectional regulation type Ergonomic side chair
JP7382178B2 (en) * 2019-08-30 2023-11-16 株式会社イトーキ Chair
JP7385405B2 (en) * 2019-08-30 2023-11-22 株式会社イトーキ Chair
TWI725540B (en) * 2019-09-09 2021-04-21 益典工業股份有限公司 chair
US11324323B2 (en) 2019-09-18 2022-05-10 Steelcase Inc. Body support member with lattice structure
US11072265B2 (en) * 2019-09-18 2021-07-27 Lear Corporation Vehicle seat assembly with front seat pan height adjustment mechanism
US11540958B2 (en) 2019-11-19 2023-01-03 Toyota Motor North America, Inc. Modular seat apparatuses for wheelchair assemblies
US11357329B2 (en) 2019-12-13 2022-06-14 Steelcase Inc. Body support assembly and methods for the use and assembly thereof
USD937024S1 (en) 2020-02-19 2021-11-30 Steelcase Inc. Backrest
USD936984S1 (en) 2020-02-19 2021-11-30 Steelcase Inc. Chair
USD961281S1 (en) 2020-02-19 2022-08-23 Steelcase Inc. Chair
USD961280S1 (en) 2020-02-19 2022-08-23 Steelcase Inc. Chair
USD935824S1 (en) 2020-02-19 2021-11-16 Steelcase Inc. Seat
USD937595S1 (en) 2020-02-19 2021-12-07 Steelcase Inc. Chair
USD961317S1 (en) 2020-02-19 2022-08-23 Steelcase Inc. Backrest
USD936985S1 (en) 2020-02-19 2021-11-30 Steelcase Inc. Chair
WO2021178206A1 (en) 2020-03-02 2021-09-10 Steelcase Inc. Body support assembly and methods for the use and assembly thereof
US11192652B1 (en) * 2020-07-16 2021-12-07 B/E Aerospace, Inc. Passenger seat dress cover with integrated adjustable lumbar support device
JP2023538235A (en) 2020-07-22 2023-09-07 フォームウェイ ファーニチャー リミティド Chair
DE102020209986A1 (en) 2020-08-06 2022-02-10 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Coburg Seat depth adjustment device
US11690455B2 (en) * 2020-09-18 2023-07-04 Dinkar Chellaram Synchronous-tilt reclining chair
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection
CN112603688B (en) * 2020-12-22 2021-09-21 阳谷县中医院 Special sick bed of recovered after-operation for internal medicine patient
USD988048S1 (en) 2021-01-20 2023-06-06 Steelcase Inc. Lumbar support
USD995179S1 (en) 2021-01-20 2023-08-15 Steelcase Inc. Chair with lumbar support
CN112932138B (en) * 2021-01-22 2023-10-03 蔡圆圆 Chair seat
US11812870B2 (en) 2021-02-10 2023-11-14 Steelcase Inc. Body support structure
USD995180S1 (en) 2021-05-12 2023-08-15 Steelcase Inc. Chair with lumbar support
USD988049S1 (en) 2021-05-12 2023-06-06 Steelcase Inc. Lumbar support
USD966002S1 (en) * 2021-06-17 2022-10-11 Youcheng Lu Chair
US11744375B2 (en) 2021-07-14 2023-09-05 Anthro Form, Llc Seat configuration
US11641944B2 (en) 2021-07-14 2023-05-09 Anthro Form, Llc Double angle back support adjustment
CN113749450B (en) * 2021-08-13 2024-04-09 佛山市精一家具有限公司 Follow-up bending seat
US11497527B1 (en) 2021-09-09 2022-11-15 Texas Scottish Rite Hospital For Children Orthopedic spring hinge systems and methods
USD1033105S1 (en) 2021-10-01 2024-07-02 Smith System Manufacturing Company Chair
CN114451714B (en) * 2022-01-07 2023-07-25 永艺家具股份有限公司 Seat with adjustable seat
CN114391720B (en) * 2022-01-19 2023-05-05 江西晶亮实业有限公司 Multifunctional foldable student tablet chair

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468985A (en) * 1943-11-26 1949-05-03 Goodrich Co B F Resilient connection and method of making same
US2471024A (en) * 1946-10-04 1949-05-24 Roy A Cramer Chair with tilting back and automatically shiftable seat
US2728593A (en) * 1946-04-15 1955-12-27 Silentbloc Flanged resilient bearings
US2894565A (en) * 1957-05-17 1959-07-14 Hubert R Crane Contouring back rest for motor vehicle seats
US3446532A (en) * 1967-03-13 1969-05-27 Harold W Cramer Chair
US4502728A (en) * 1982-10-08 1985-03-05 Nepsco, Inc. Portable seat and back rest
US4504090A (en) * 1982-10-20 1985-03-12 Goldman Paul R Swivel, tilt and recline arm chair
US4629248A (en) * 1985-06-03 1986-12-16 General Motors Corporation Thigh support for vehicle seats
US4703974A (en) * 1984-10-23 1987-11-03 Protoned B.V. Seat furniture
US4744603A (en) 1986-04-10 1988-05-17 Steelcase Inc. Chair shell with selective back stiffening
US4889385A (en) * 1988-03-09 1989-12-26 American Seating Company Chair seat-and-back support
US4984846A (en) * 1987-10-19 1991-01-15 J. E. Ekornes A/S Arrangement in an adjustable chair
US5249839A (en) * 1991-11-12 1993-10-05 Steelcase Inc. Split back chair
US5320410A (en) * 1992-01-14 1994-06-14 Steelcase Inc. Chair control
US5499861A (en) * 1992-07-16 1996-03-19 Giroflex-Entwicklungs-Ag Chair, in particular office chair
US5518294A (en) * 1993-04-05 1996-05-21 Ligon Brothers Manufacturing Company Variable apex back support
US5564783A (en) * 1993-07-22 1996-10-15 Duphin Entwicklungs-U. Beteiligungs-Gmbh Chair, in particular office chair
US5567012A (en) 1986-04-10 1996-10-22 Steelcase, Inc. Chair control
US5630647A (en) * 1995-02-17 1997-05-20 Steelcase Inc. Tension adjustment mechanism for chairs

Family Cites Families (332)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US496413A (en) * 1893-05-02 Cheese-press
US502940A (en) * 1893-08-08 Thomas weare
US489618A (en) * 1893-01-10 Machine
US507142A (en) * 1893-10-24 Mechanical movement
US349063A (en) * 1886-09-14 Frederic m
US245013A (en) * 1881-08-02 Mechanical movement
US272579A (en) * 1883-02-20 William h
US235184A (en) * 1880-12-07 Folding tilting chair
US32884A (en) * 1861-07-23 Charles mettam
US362796A (en) 1887-05-10 William c
US293833A (en) * 1884-02-19 Chair
US820964A (en) * 1902-01-13 1906-05-22 United Shoe Machinery Ab Shuttle-actuating mechanism for sewing-machines.
US820864A (en) 1905-04-01 1906-05-15 James E Hanger Chair.
US1026074A (en) * 1911-02-13 1912-05-14 Casper J Cain Chair.
US1228771A (en) 1913-12-04 1917-06-05 James E Hanger Chair.
US1590540A (en) * 1923-12-27 1926-06-29 Oddon Jean Emile Constant pressure boiler
US1590240A (en) 1925-08-17 1926-06-29 Gorton George Chair for machine operators
US1836630A (en) * 1928-07-16 1931-12-15 Thum Martin Chair
FR708283A (en) 1930-12-23 1931-07-22 Improvements to recliners
US2087254A (en) * 1935-05-16 1937-07-20 Bassick Co Tilting mechanism for chairs
US2083071A (en) * 1936-07-06 1937-06-08 Jasper Chair Company Chair hinge construction
US2139028A (en) * 1937-09-29 1938-12-06 Elizabeth M Mensendicck Seat
US2351283A (en) * 1940-12-16 1944-06-13 American Seating Co Chair
US2497024A (en) * 1945-10-05 1950-02-07 John H Billman Electrochemical preparation of alpha-amino-n-butyric acid and n-benzoyl derivative
US2497395A (en) * 1946-03-04 1950-02-14 Sr Roy A Cramer Reclining chair
US2524624A (en) * 1946-08-14 1950-10-03 Roy A Cramer Resilient chair back mounting
US2492107A (en) * 1947-01-22 1949-12-20 American Seating Co Retracting type theater chair
US2529918A (en) 1949-04-18 1950-11-14 Royal G Cramer Ring roll bearing
US2550831A (en) 1949-07-01 1951-05-01 Robert E Lingenfelter Adjustable means for changing the contour of seat back rests
US2609032A (en) * 1950-12-01 1952-09-02 Roy A Cramer Chair with automatically shiftable seat and adjustable back
US2627898A (en) 1951-02-19 1953-02-10 Jackson George Mcstay Chair having an adjustable seat and back rest
US2712346A (en) * 1952-03-31 1955-07-05 Goodyear Tire & Rubber Adjustable seat
DE936817C (en) 1953-03-02 1955-12-22 Fritz Dr-Ing Drabert Sick bed made of metal tube
DE948544C (en) 1953-03-02 1956-09-06 Fritz Drabert Dr Ing Sick bed made of metal tube
US2756809A (en) 1954-06-30 1956-07-31 Endresen Ernst Back support for chairs, car seats, and the like
DE1044354B (en) 1954-09-06 1958-11-20 Fritz Drabert Dr Ing Sick bed made of metal tube
US2818911A (en) 1954-11-05 1958-01-07 Trumbull Dev Corp Tiltable office chair
US2831533A (en) * 1955-12-14 1958-04-22 Pasquarelli Blase Back support for automobiles-back saver
GB794138A (en) 1955-12-20 1958-04-30 Res Interests Ltd Improvements in or relating to reclining chairs
US2933755A (en) * 1956-05-23 1960-04-26 George W Houlsby Jr Door control device
US2926725A (en) * 1956-10-25 1960-03-01 Prec Metal Workers Chair back structure and a mounting usable therein
US2869623A (en) * 1957-06-03 1959-01-20 Poulin Peter Chair with liftable arm rests
US2981314A (en) * 1957-09-12 1961-04-25 Akerblomstolen Ab Car seatings and cars provided with such seatings
US3057660A (en) * 1958-02-20 1962-10-09 Schneider Hans-Joachim Vehicle seat
CA644544A (en) * 1958-07-07 1962-07-10 F. Pile John Separable shock mount
DE1121944B (en) 1958-09-26 1962-01-11 Johann Schwarz Backrest, especially for motor vehicle seats
US3106423A (en) * 1960-11-21 1963-10-08 Schwarz Johann Back rest having an adjustable shaped element
US3095188A (en) 1960-11-25 1963-06-25 Ford Motor Co Seat back rest with adjustable spring rate
US3273946A (en) * 1962-12-21 1966-09-20 Theodore C Gerner Idler arm repair bushing
FR1376514A (en) * 1963-05-10 1964-10-31 Pneumatiques, Caoutchouc Manufacture Et Plastiques Kleber Colombes Elastic joint
US3241879A (en) 1963-06-10 1966-03-22 Ford Motor Co Spring seat structure
US3329453A (en) * 1964-02-13 1967-07-04 Columbus Auto Parts Joint for steering linkage arm or the like
US3215468A (en) * 1965-03-01 1965-11-02 Milsco Mfg Co Seat for material handling vehicles
US3365213A (en) * 1965-06-28 1968-01-23 Federal Mogul Corp Small joint
CA806983A (en) * 1965-07-23 1969-02-25 Dufton Ronald Chair tilting mechanism
US3337266A (en) * 1966-02-01 1967-08-22 Belvedere Products Inc Compensating back chair
GB1168927A (en) * 1967-08-23 1969-10-29 Hallam Sleigh & Cheston Ltd Improvements relating to Seats
DE1902670C3 (en) * 1968-02-01 1975-11-27 Gerdi Kerstholt Geb. Spaeth Seat with adjustable seat part and adjustable backrest
US3463544A (en) 1968-04-22 1969-08-26 Edward Froelich Orthopedic seat back
US3565482A (en) * 1968-06-24 1971-02-23 Leif Blodee Adjustable contour chair
FR1596508A (en) 1968-07-18 1970-06-22
US3741607A (en) * 1970-10-05 1973-06-26 H Cramer Chair
JPS4714408U (en) 1971-03-15 1972-10-20
US3934932A (en) * 1971-10-28 1976-01-27 J.E. Ekornes Fabrikker A/S Adjustable chair
GB1375094A (en) * 1972-02-02 1974-11-27
US3813148A (en) * 1972-04-17 1974-05-28 H Kraus Adjustable back support
DE2238675A1 (en) * 1972-08-05 1974-02-14 Porsche Ag REST FURNITURE
DE2335586A1 (en) * 1973-01-29 1975-01-30 Fritz Kerstholt SITTING AND / OR Lounging furniture with moveable back
US3926286A (en) * 1973-02-05 1975-12-16 Reell Precision Mfg Spring grip clutch
US3998506A (en) 1974-01-30 1976-12-21 Traut Earl W Toothed rolling contact devices
US3938865A (en) 1974-04-01 1976-02-17 Rouverol William S Cageless roller bearing
US3982785A (en) * 1974-07-29 1976-09-28 Center For Design Research And Development Chair
US3934930A (en) * 1974-11-07 1976-01-27 Leggett & Platt, Incorporated Back support for chair
CH590031A5 (en) * 1975-01-10 1977-07-29 Fehlbaum & Co
US3948558A (en) * 1975-03-31 1976-04-06 Deere & Company Seat backrest having an adjustable lumbar support
CA1059892A (en) * 1975-06-13 1979-08-07 Emilio Ambasz Chair
JPS5945984B2 (en) 1975-08-22 1984-11-09 京セラミタ株式会社 Photosensitive sheet feeding device in color electrophotographic copying machine
US4054318A (en) * 1975-10-15 1977-10-18 Lear Siegler, Inc. Seat cushion mounting arrangement
US4051735A (en) 1975-11-19 1977-10-04 Xerox Corporation Linear actuator
JPS5283812A (en) 1976-01-01 1977-07-13 Takeda Chem Ind Ltd Alpha-halogenocarboxylic acids
DE2626442A1 (en) * 1976-06-12 1977-12-22 Keiper Automobiltechnik Gmbh HEIGHT-ADJUSTABLE SEAT IN PARTICULAR CAR SEAT
US4099775A (en) 1976-10-07 1978-07-11 Hoover Ball And Bearing Company Chair control with tilt lock
US4137782A (en) * 1977-01-29 1979-02-06 Balde Werke Gmbh & Co. Kg Apparatus for retracting and extending of a lens holder of a camera
DE2714601C2 (en) 1977-04-01 1984-12-06 Skw Trostberg Ag, 8223 Trostberg Process for the preparation of a urea dicyandiamide fertilizer
US4157203A (en) * 1977-05-09 1979-06-05 Center For Design Research And Development N.V. Articulated double back for chairs
JPS53145778A (en) 1977-05-25 1978-12-19 Nissan Motor Seat with huckleback supporting device
US4083209A (en) * 1977-06-29 1978-04-11 Stant Manufacturing Company, Inc. Low profile threaded lock cap
DE2736550A1 (en) * 1977-08-13 1979-02-22 Grammer Willibald Fa DEVICE FOR ADJUSTING THE INCLINATION OF THE SEAT CUSHION IN A DRIVER'S SEAT, OFFICE CHAIR, SWIVEL CHAIR O.DGL.
US4143910A (en) * 1977-09-12 1979-03-13 Klaus Geffers Chair having synchronously coupled tiltable seat and back rest
US4158511A (en) * 1977-09-28 1979-06-19 Trw Inc. Pivot joint
US4126355A (en) * 1977-11-28 1978-11-21 Thierry Rosenheck Chair with multi-positionable supporting elements
US4198095A (en) * 1978-02-02 1980-04-15 Wicks David J Adjustable reclining chair
US4156544A (en) 1978-03-20 1979-05-29 Milsco Manufacturing Company Vehicle seat having lumbar support adjustment means
NO148208C (en) * 1978-05-24 1983-08-31 Standard Tel Kabelfab As CHAIR.
JPS5521906A (en) 1978-07-31 1980-02-16 Nissan Motor Seat provided with lumbar support device
CH636759A5 (en) * 1978-09-08 1983-06-30 Syntech Sa ERGONOMIC CHAIR.
CH636252A5 (en) * 1978-10-20 1983-05-31 Syntech Sa ERGONOMIC CHAIR.
US4333683A (en) * 1978-12-04 1982-06-08 Center For Design Research And Development N.V. Chair with automatically adjustable tilting back
US4239282A (en) 1978-12-18 1980-12-16 The Boeing Company Pilot seat
US4182533A (en) 1978-12-26 1980-01-08 Uop Inc. Seat backrest having an adjustable lumbar support
JPS55104957U (en) * 1979-01-19 1980-07-22
JPS5826818Y2 (en) * 1979-03-06 1983-06-10 トヨタ自動車株式会社 Walk-in mechanism with neutral memory in vehicle seats
DE7912182U1 (en) * 1979-04-07 1980-03-27 Zapf, Otto, 6240 Koenigstein SEAT FURNITURE
US4533177A (en) * 1979-06-06 1985-08-06 Knoll International, Inc. Reclining chair
US4380352A (en) * 1979-06-11 1983-04-19 Knoll International, Inc. Reclining chair
DE2929428C2 (en) * 1979-07-20 1983-10-20 Fa. Willibald Grammer, 8450 Amberg Seat, especially office chair
CH645795A5 (en) * 1979-07-23 1984-10-31 Drabert Soehne Chair, in particular visual display unit chair
US4536030A (en) 1979-08-22 1985-08-20 Nissan Motor Co., Ltd. Seat with adjustable side support device
USRE32884E (en) 1979-11-01 1989-03-07 Keiper Recaro Incorporated Superfine tooth seat back adjuster
JPS6330279Y2 (en) * 1979-11-28 1988-08-15
US4465317A (en) * 1980-01-26 1984-08-14 Johann Schwarz Mechanism for adjusting a lumbar support of a back of a seat or the like
US4373692A (en) * 1980-05-01 1983-02-15 Steelcase Inc. Chair control with height adjustment actuator
US4375301A (en) * 1980-05-01 1983-03-01 Steelcase Inc. Chair seat adjustment assembly
DK275780A (en) 1980-06-26 1981-12-27 Labofa As ADJUSTABLE CHAIR WITH POSITION INDICATOR
DE8025516U1 (en) * 1980-09-24 1981-01-15 Zapf, Otto, 6240 Koenigstein SEAT FURNITURE
DE3036993A1 (en) * 1980-10-01 1982-05-13 Wilkhahn Wilkening + Hahne GmbH + Co, 3252 Bad Münder WORK SEAT
AT367992B (en) * 1981-03-17 1982-08-25 Zuend & Co Ag K SEAT FURNITURE
US4429917A (en) * 1981-04-29 1984-02-07 Hauserman Inc. Int. Furniture & Textile Division Chair
NL8103037A (en) * 1981-06-23 1983-01-17 Gispen & Staalmeubel Bv CHAIR.
BR8109037A (en) * 1981-08-19 1983-09-06 Giroflex Entwicklungs Ag CHAIR
FR2515946B1 (en) * 1981-11-11 1985-10-11 Keiper Automobiltechnik Gmbh BACKREST FRAME FOR SEATS, ESPECIALLY FOR MOTOR VEHICLE SEATS
US4556254A (en) * 1981-12-15 1985-12-03 Bio-Support Industries Limited Backrest
DE3371324D1 (en) * 1982-02-20 1987-06-11 Alcoa Deutschland Gmbh Construction and mounting process for a cap and cap for a container neck provided with a screw-thread or a bead
US4452449A (en) * 1982-03-22 1984-06-05 Herman Miller, Inc. Office seating with activity features
US4498702A (en) * 1982-06-11 1985-02-12 Steelcase Inc. Seating unit with front flex area
DE3226101A1 (en) * 1982-07-13 1984-01-19 Keiper Recaro GmbH & Co, 7312 Kirchheim VEHICLE SEAT WITH AN ADJUSTABLE LEG SUPPORT
DE3361727D1 (en) * 1982-10-22 1986-02-13 Castelli Spa Chair having a back comprising a plurality of articulated segments
DE8300753U1 (en) * 1983-01-13 1983-07-21 Röder GmbH Sitzmöbelwerke, 6000 Frankfurt DEVICE FOR ATTACHING A LUMBAR PAD TO A CHAIR
JPS59137151U (en) 1983-03-03 1984-09-13 アイシン精機株式会社 Lumbar support
DE3316533A1 (en) * 1983-05-06 1984-11-08 Provenda Marketing AG, Herisau WORK CHAIR, ESPECIALLY OFFICE CHAIR
JPS59207112A (en) * 1983-05-10 1984-11-24 メ−コ−工業株式会社 Chair
DE3321187C2 (en) * 1983-06-11 1985-08-14 Ford-Werke AG, 5000 Köln Actuating device for Bowden cables, in particular for heating and ventilation flaps in motor vehicles
BE897046A (en) 1983-06-14 1983-10-03 Mevergnies Marcel Neve De ARMCHAIR FOR VEHICLE, PARTICULARLY AUTOMOTIVE
IT1161499B (en) * 1983-07-12 1987-03-18 Castelli Spa CHAIR WITH AUTOMATIC ADJUSTMENT DEVICE SENSITIVE TO THE WEIGHT OF THE SITTING PERSON
CH662257A5 (en) * 1983-07-20 1987-09-30 Syntech Sa WORK CHAIR.
US4541670A (en) 1983-08-15 1985-09-17 Robin Morgenstern Lumbosacral backrest with adjustable contour
US4558903A (en) * 1983-09-22 1985-12-17 Tachikawa Spring Co., Ltd. Angle adjustment device of a movable body for a vehicle seat
USD290431S (en) 1983-10-26 1987-06-23 J. E. Ekornes A/S Adjustable chair
SE449556B (en) 1983-11-09 1987-05-11 Volvo Ab CHAIR, EXV CAR, ROOF OR AIRPLANE CHAIR, INCLUDING ONE IN THE SEATING ROOM
US5240308A (en) * 1983-11-09 1993-08-31 Goldstein Glenn A Ergonomic adjustable chair and method
DE3341389A1 (en) 1983-11-15 1985-05-30 Bayerische Motoren Werke AG, 8000 München Device for adjusting the area of the backrest of the vehicle seat lying in the lumbar region
DE8401000U1 (en) * 1984-01-14 1984-04-05 Mauser Waldeck AG, 3544 Waldeck SWIVEL CHAIR
US4768829A (en) * 1984-01-27 1988-09-06 Plycraft Inc. Adjustable chair
JPH0756511B2 (en) * 1984-01-31 1995-06-14 三菱電機株式会社 Radar response device
NL8400855A (en) * 1984-03-16 1985-10-16 Wagemans Maastricht B V SPRING HINGE.
FR2562002B1 (en) 1984-03-27 1986-08-22 Peugeot Cycles DEVICE FOR LOCALLY ADJUSTING THE TENSION OF AN ELASTIC SHEET AND ELASTIC SHEET, PARTICULARLY FOR A SEAT BACKREST, PROVIDED WITH SUCH A DEVICE
JPS60207614A (en) 1984-03-29 1985-10-19 株式会社タチエス Lamber support apparatus
US4591207A (en) * 1984-04-02 1986-05-27 Keiper Recaro Inc. Continuously variable adjustable hinge
US4595237A (en) * 1984-05-11 1986-06-17 Haworth, Inc. Actuating control for seat height adjustment mechanism
DE3429186A1 (en) * 1984-08-08 1986-02-20 Uredat-Neuhoff, Angela, 4592 Lindern SEAT, IN PARTICULAR OFFICE CHAIR
US4634176A (en) 1984-10-01 1987-01-06 Scott Gregory M Back support assembly for vehicle seat
CH666171A5 (en) * 1984-10-03 1988-07-15 Giroflex Entwicklungs Ag CHAIR WITH REAR TILTABLE SEAT AND BACKREST CARRIER.
GB8425908D0 (en) * 1984-10-12 1984-11-21 Anderle E Seat with dynamic lumbar support
CA1241048A (en) 1984-11-20 1988-08-23 Richard R. Provost Improved bearing
US4634178A (en) 1984-12-10 1987-01-06 Carney Steven H Adaptable seating device
US4621864A (en) * 1984-12-13 1986-11-11 Milsco Manufacturing Company Tiltable arm rest assembly and mounting and operating means therefor
FR2575051B1 (en) * 1984-12-21 1987-02-27 Linguanotto Ets SEAT, IN PARTICULAR WORKING SEAT, IN SEVERAL POSITIONS
JPH064044B2 (en) * 1985-02-21 1994-01-19 本田技研工業株式会社 Seats for vehicles
IT8521854V0 (en) * 1985-05-17 1985-05-17 Zani Collezione Poltrone Di Za ARMCHAIR STRUCTURE, WITH VARIABLE ANATOMICAL CONFORMATION.
DE8515221U1 (en) * 1985-05-23 1986-05-22 VOKO - Franz Vogt & Co, 6301 Pohlheim Seating
DE3521488A1 (en) * 1985-06-14 1986-12-18 August Fröscher GmbH & Co KG, 7141 Steinheim WORK CHAIR
EP0231251A1 (en) 1985-07-30 1987-08-12 PARK, Hyung, Sik A chair adjustable to optimum standard height
IT208138Z2 (en) 1985-08-09 1988-04-11 S I C A M Societa Italiana Cus VEHICLE SEAT
US4722569A (en) 1985-09-13 1988-02-02 Robin L. Morgenstern Power and manually actuated lumbosacral backrest
JPS6266810A (en) 1985-09-19 1987-03-26 アイシン精機株式会社 Lamber support apparatus
USD293833S (en) * 1985-11-04 1988-01-19 The Bridgeport Metal Goods Mfg. Co. Cosmetics container
CH668541A5 (en) * 1986-01-07 1989-01-13 Provenda Marketing Ag WORK CHAIR, ESPECIALLY FOR USE AS OFFICE CHAIR.
DE3608718A1 (en) * 1986-03-15 1987-09-17 Drabert Soehne SEAT FURNITURE
US4720142A (en) * 1986-04-10 1988-01-19 Steelcase Inc. Variable back stop
US4744600A (en) * 1986-05-06 1988-05-17 Itoki Co., Ltd. Cushioning mechanism for use with seat of chair and interlocking cushioning mechanism for seat and backrest
DE3616475C1 (en) 1986-05-15 1987-06-11 Kusch Co Sitzmoebel Height-adjustable swivel chair equipped with gas pressure spring, in particular office chair or armchair
DE3617539C1 (en) * 1986-05-24 1987-07-23 Grammer Sitzsysteme Gmbh Seat with adjustable seat plate and reclining backrest
DE3617623A1 (en) * 1986-05-26 1987-12-03 Drabert Soehne CHAIR
DE3617624A1 (en) * 1986-05-26 1987-12-03 Drabert Soehne CHAIR
DE3632131C2 (en) * 1986-06-04 2001-12-13 Hartmut S Engel Functional seating
US4730871A (en) 1986-08-14 1988-03-15 Nepsco, Inc. Adjustable back rest
DE3630503A1 (en) * 1986-09-08 1988-03-10 Girsberger Holding Ag CHAIR
DE3631872C1 (en) * 1986-09-19 1987-10-01 Daimler Benz Ag Vehicle seat
NL8602506A (en) * 1986-10-06 1988-05-02 Ahrend Groep Nv CHAIR WITH MOVABLE SEAT AND BACKREST.
DE8627482U1 (en) * 1986-10-15 1989-07-06 Völkle, Rolf, 7298 Loßburg Armchair
US4709663A (en) * 1986-12-09 1987-12-01 Riley Stoker Corporation Flow control device for solid particulate material
US4709963A (en) * 1986-12-12 1987-12-01 Milsco Manufacturing Company Adjustable office chair
DE3700447A1 (en) * 1987-01-09 1988-07-21 Vogt Bueromoebel SEAT FURNITURE
US4775185A (en) * 1987-04-02 1988-10-04 Itt Corporation Automobile seat having adjustable thigh support
IE65087B1 (en) * 1987-05-13 1995-10-04 Joseph Mary Jacobsen "Measuring device"
US4834454A (en) * 1987-05-15 1989-05-30 Faultless-Doerner Manufacturing Inc. Office chair with tiltable seat and back
US4913303A (en) * 1987-06-16 1990-04-03 Stant Inc. Liquid splash control fuel cap
EP0303720B1 (en) * 1987-08-14 1991-04-10 Grammer Ag Seat, in particular a work seat such as an office chair or vehicle seat
FR2620607B1 (en) * 1987-09-22 1991-03-15 Strafor Sa ERGONOMIC SEAT
US4840426A (en) * 1987-09-30 1989-06-20 Davis Furniture Industries, Inc. Office chair
IT1211406B (en) * 1987-10-16 1989-10-18 Fiat Auto Spa ADJUSTABLE BACKREST FOR DIVE VEHICLE SEATS, PARTICULARLY CARS
US4896918A (en) * 1987-10-20 1990-01-30 Aisin Seiki Kabushiki Kaisha Lumbar support regulating apparatus
EP0339089B1 (en) * 1987-10-24 1992-08-19 Kokuyo Co., Ltd. Reclining chair
US5042876A (en) * 1987-11-10 1991-08-27 Steelcase Inc. Controller for seating and the like
US5026117A (en) * 1987-11-10 1991-06-25 Steelcase Inc. Controller for seating and the like
US4810034A (en) * 1987-11-27 1989-03-07 Beier John K Backrest with adjustable lumber support
NO163041C (en) * 1987-12-08 1990-03-28 Ring Mekanikk As CHAIR WITH ADJUSTABLE BACK.
US4877291A (en) * 1987-12-14 1989-10-31 Taylor William P Reclining chair
US4880271A (en) * 1987-12-28 1989-11-14 Wickes Manufacturing Company Adjustable lumbar support
IT1219016B (en) 1988-02-12 1990-04-24 Tis Tecnologia Innovazione Sti SPRING AND LATERAL CONTAINMENT ELEMENT FOR A SEAT AND OR BACK OF A SEAT AND SEAT IN CORPORATE SUCH ELEMENT
JPH04500613A (en) * 1988-04-25 1992-02-06 ペリー、チャールズ・オー leaning chair
US5338094A (en) 1988-04-25 1994-08-16 Perry Charles O Flexible reclining chair
IT1219314B (en) 1988-05-18 1990-05-03 Pro Cord Srl CHAIR WITH OSCILLATING SEAT
US4861108A (en) * 1988-06-07 1989-08-29 American Seating Company Auditorium seat
NO165054C (en) 1988-09-07 1990-12-19 Asbjoernsen & Jan Lade A S Sve DEVICE FOR ADJUSTABLE SEAT PUSHING ON CHAIR.
US4889384A (en) 1988-07-10 1989-12-26 Leggett & Platt, Incorporated Knee-action chair control
US4834455A (en) 1988-07-14 1989-05-30 Proctor Joy E Orthopedic vehicle seat
IT1223725B (en) * 1988-07-25 1990-09-29 Sicam Linea Srl VEHICLE SEAT
JP2592108B2 (en) * 1988-08-31 1997-03-19 コクヨ株式会社 Chair with backrest
US5039163A (en) * 1988-09-14 1991-08-13 Shelby Williams Industries, Inc. Reinforced flexible backrest assembly for a chair
US4948198A (en) 1988-10-14 1990-08-14 Leggett & Platt, Incorporated Knee-tilt chair control
JPH02147008A (en) 1988-11-29 1990-06-06 Nissan Shatai Co Ltd Lumbar support device
US4979778A (en) * 1989-01-17 1990-12-25 Brayton International, Inc. Synchrotilt chair
US5106157A (en) * 1989-03-01 1992-04-21 Herman Miller, Inc. Chair height and tilt adjustment mechanisms
US4915447A (en) * 1989-03-13 1990-04-10 Sears Manufacturing Company Vehicle seat with adjustable thigh support
US4906045A (en) * 1989-03-20 1990-03-06 The Shaw-Walker Company Chair control for a pedestal chair having a knee-tilt seat
JPH0633877Y2 (en) 1989-03-31 1994-09-07 シロキ工業株式会社 Sheet
DE3916474A1 (en) * 1989-05-20 1990-11-22 Roeder Soehne Sitzmoebelfab CHAIR, ESPECIALLY WORK OR OFFICE CHAIR
JPH0811037Y2 (en) * 1989-07-14 1996-03-29 株式会社東海理化電機製作所 Reverse rotation prevention mechanism for synchronous motors
AT394829B (en) * 1989-08-04 1992-06-25 Schuster Wilhelm BACKREST FOR A VEHICLE SEAT, WITH AN ADJUSTABLE LUMBAR REST
US4966413A (en) * 1989-08-17 1990-10-30 Palarski Timothy D Articulated relaxation chair
DE3930983C2 (en) * 1989-09-16 1993-09-30 Rolf Voelkle Seating with an adjustable seat
US4951995A (en) * 1989-10-10 1990-08-28 Steelcase Inc. Arm height adjustment mechanism for a chair
US5044693A (en) * 1989-10-31 1991-09-03 Tachi-S Co., Ltd. Seat back structure of an automotive seat
US5133587A (en) * 1989-11-20 1992-07-28 Hadden Jr James R Seat
FR2654683B1 (en) * 1989-11-22 1992-03-13 Faure Bertrand Automobile IMPROVEMENTS ON THE SEATS BEFORE MOTOR VEHICLES.
US5224758A (en) * 1989-12-27 1993-07-06 Itoki Crebio Corporation Tilting control assembly for chair
DE59006985D1 (en) * 1989-12-29 1994-10-06 Wilkhahn Wilkening & Hahne SYNCHRONOUS ADJUSTMENT FOR OFFICE CHAIRS OR THE LIKE.
US5029940A (en) 1990-01-16 1991-07-09 Westinghouse Electric Corporation Chair tilt and chair height control apparatus
IT1239943B (en) 1990-03-09 1993-11-27 Lorenza Sessini BEARING FOR ANATOMICAL SUPPORT, IN LUMBAR AND CERVICAL SPECIES, FOR SEAT BACKRESTS
US5567011A (en) 1990-03-09 1996-10-22 Sessini; Lorenza Cushion for anatomical support, especially for the lumbar and cervical regions, to fit onto seat backs
US5062676A (en) * 1990-04-16 1991-11-05 Mars Suzanne P Adjustable chair
NL9001040A (en) * 1990-05-01 1991-12-02 Linido Bv DISABLED CHAIR.
US5110003A (en) * 1990-06-28 1992-05-05 Stant Inc. Torque-override cap
US5056862A (en) * 1990-07-03 1991-10-15 Action Industries, Inc. Recessed lever actuator for recliner mechanism
DE9010340U1 (en) * 1990-07-09 1990-09-13 Zapf, Otto, 6240 Königstein Seating
US5375912A (en) * 1990-08-10 1994-12-27 Stulik; Edward L. Reclining chair
DE9011869U1 (en) 1990-08-16 1990-10-25 Hartman Groep B.V., Enschede Folding furniture with adjustable seat
US5100201A (en) * 1990-09-21 1992-03-31 J.G. Furniture Systems Inc. Passive ergonomic work chair
US5087098A (en) * 1990-09-25 1992-02-11 Tachi-S Co., Ltd. Lumbar support device
JP2533364Y2 (en) * 1990-09-28 1997-04-23 シロキ工業株式会社 Sheet
NO176384C (en) * 1990-10-12 1995-03-29 Ekornes Fabrikker As J E Device by a chair, especially a chair with adjustable back and headrest
DE4032385C2 (en) * 1990-10-12 1994-06-23 Audi Ag Safety device for a vehicle occupant
US5244252A (en) * 1990-10-29 1993-09-14 Hector Serber Seat assembly and method
EP0485868A1 (en) * 1990-11-14 1992-05-20 Giroflex-Entwicklungs AG Chair, in particular office chair
DE9100572U1 (en) * 1991-01-20 1992-06-11 Fritz Hansens Eft. A/S, Alleroed Seat shell
DE69200320T2 (en) * 1991-02-20 1994-12-01 Isao Hosoe ERGONOMICALLY IMPROVED CHAIR OR ARMCHAIR.
US5120108A (en) * 1991-02-20 1992-06-09 John Watson Convertible seat cushion/tote bag for skates
US5364162A (en) * 1991-03-01 1994-11-15 Roho, Inc. Backrest assembly for a wheelchair
FR2673520B1 (en) * 1991-03-07 1993-05-14 Lafuma Sa FURNITURE SUCH AS A CHAIR, ARMCHAIR OR TABLE, COMPRISING A BASE HAVING ARTICULATED CROSSLINKS, ON WHICH A SUPPORT IS PROVIDED.
US5217278A (en) * 1991-03-13 1993-06-08 Findlay Industries, Inc. Mechanism for providing adjustable lumbar support in a seat
US5860700A (en) 1991-03-26 1999-01-19 Henderson's Industries Pty. Ltd. Lumbar support adjustment device
IE66531B1 (en) * 1991-05-21 1996-01-24 Ashfield Eng Co Wexford Ltd A chair tilting mechanism
US5318346A (en) * 1991-05-30 1994-06-07 Steelcase Inc. Chair with zero front rise control
WO1992021269A1 (en) 1991-06-04 1992-12-10 Henderson's Industries Pty. Ltd. Improvements in or relating to adjustable lumbar supports for seats
DE4220307C2 (en) * 1991-06-26 2002-11-21 Okamura Corp chair
US5107720A (en) * 1991-07-24 1992-04-28 Plastic Industries, Inc. Device for actuating a remotely positioned latch
US5413374A (en) * 1991-08-30 1995-05-09 Nai Neway, Inc. Adjustable bushing
US5203853A (en) * 1991-09-18 1993-04-20 Herman Miller, Inc. Locking chair tilt mechanism with torsion bar
US5385988A (en) * 1991-09-24 1995-01-31 Mitsubishi Rayon Co., Ltd. Composite composition having high transparency and process for producing same
GB2275188B (en) 1991-09-24 1995-10-11 Hendersons Ind Pty Ltd Lumbar support
JP2919131B2 (en) * 1991-10-22 1999-07-12 株式会社イトーキクレビオ Chair tilt control device
DE4135948C2 (en) * 1991-10-31 1993-12-23 Rolf Voelkle Chair, in particular office swivel chair
US5314235A (en) * 1991-11-05 1994-05-24 Johnson David G Portable back support
US5190347A (en) * 1991-11-05 1993-03-02 Shiow Lan Liou Adjustable flexible back cushion with adjusting belts and attachment belt
US5222783A (en) * 1991-12-02 1993-06-29 Lai Soon L Chair with its backrest adjustable in its angle
US5314237A (en) * 1992-02-12 1994-05-24 Kimball International Marketing, Inc. Reclining chair
US5308145A (en) * 1992-02-12 1994-05-03 Kimball International Marketing, Inc. Reclining chair
US5328242A (en) 1992-03-18 1994-07-12 Steelcase Inc. Chair with back lock
US5282670A (en) * 1992-04-20 1994-02-01 Steelcase Inc. Cable actuated variable stop mechanism
GB9209229D0 (en) 1992-04-29 1992-06-17 Youndflex S A Improvements in and relating to seat arrangements providing adjustable lumbar support
CA2319870C (en) 1992-06-15 2001-12-04 Herman Miller, Inc. Woven fabric membrane for a seating surface
US5277475A (en) * 1992-07-15 1994-01-11 Engineered Components, Inc. One piece back support for a chair
DE4227329A1 (en) * 1992-08-18 1994-02-24 Dauphin Friedrich W Gmbh Chair with seat depth adjustment
DE9211244U1 (en) * 1992-08-21 1992-10-29 Friedrich W. Dauphin GmbH & Co, Entwicklungs- und Beteiligungs-KG, 8561 Offenhausen Chair
JP2701675B2 (en) 1992-09-24 1998-01-21 アイシン精機株式会社 Lumber support device
US5526665A (en) * 1992-10-09 1996-06-18 United States Surgical Corporation Apparatus for straightening coiled wire
JP3505178B2 (en) 1992-10-12 2004-03-08 ヘンダーソンズ・インダストリーズ・プロプライアタリー・リミテッド Adjustable hip support
IL103477A0 (en) * 1992-10-20 1993-03-15 Paltechnica Nitzanim Office and like chairs
CA2084794A1 (en) * 1992-12-08 1994-06-09 Gary King Neil Armrest assembly
US5788328A (en) 1993-04-30 1998-08-04 Henderson's Industries Pty. Ltd. Lumbar support adjustment
US5499863A (en) * 1993-05-17 1996-03-19 Toyota Shatai Kabushiki Kaisha Seat back frame
US5299851A (en) * 1993-05-19 1994-04-05 Lin Kuen Yuan Adjustable cushion assembly for a chair
US5582459A (en) * 1993-09-30 1996-12-10 Itoki Crebio Corporation Chair having tiltable seat back
US5433507A (en) * 1993-10-06 1995-07-18 Chang; Chung L. Seatback recliner mechanism
US5449086A (en) * 1993-10-18 1995-09-12 Stant Manufacturing Inc. Delayed actuation fuel cap
US5405188A (en) * 1993-10-21 1995-04-11 Mdt Corporation Mechanical chair
JP3492733B2 (en) * 1993-11-02 2004-02-03 デルタ工業株式会社 Car seat
US5558398A (en) * 1993-11-08 1996-09-24 Santos; James P. Self-adjusting seating system
AUPM314693A0 (en) 1993-12-24 1994-01-27 Henderson's Industries Pty Ltd Adjustable lumbar support
DE4402170C2 (en) * 1994-01-26 1997-10-02 Grammer Ag Vehicle seat
AUPM443094A0 (en) 1994-03-11 1994-04-14 Henderson's Industries Pty Ltd Adjustable lumbar support
US5630650A (en) 1994-03-30 1997-05-20 Steelcase Inc. Vertically adjustable back construction for seating
BE1008373A3 (en) * 1994-04-21 1996-04-02 Jori Zitmeubelen Nv Mechanism for a relax seat.
US5499859A (en) 1994-05-04 1996-03-19 Steelcase, Inc. Upholstery attachment device and upholstered article using same
FR2720141B1 (en) * 1994-05-20 1996-08-02 Cesa Improved element of seat frame, part making use of it and its application in particular to a vehicle seat.
US5529201A (en) * 1994-05-20 1996-06-25 Stant Manufacturing Inc. Cam-on filler neck cap
US5577807A (en) * 1994-06-09 1996-11-26 Steelcase Inc. Adjustable chair actuator
US5597203A (en) * 1994-06-14 1997-01-28 Board Of Trustees Operating Michigan State University Seat with biomechanical articulation
AUPM694194A0 (en) 1994-07-20 1994-08-11 Henderson's Industries Pty Ltd Lumbar support adjustment
US5486035A (en) * 1994-08-01 1996-01-23 Koepke; Marcus C. Occupant weight operated chair
US5536067A (en) * 1994-08-10 1996-07-16 Pinto; Shlomo Chair
US5567010A (en) * 1994-08-29 1996-10-22 Bostrom Seating, Inc. Adjustable lumbar support
US5558399A (en) * 1994-09-13 1996-09-24 Serber; Hector Seat and lumbar motion chair, assembly and method
US5505520A (en) * 1994-11-03 1996-04-09 Ford Motor Company Passenger seat with adjustable lumbar support
US5590932A (en) * 1994-11-07 1997-01-07 Fisher Dynamics Corporation Anti-chuck seat recliner
US5573302A (en) * 1994-11-08 1996-11-12 Harrison; Patrick N. Lower back support
IT1273843B (en) * 1994-12-05 1997-07-11 Ima Spa DEVICE DELIVERING A VARIABLE AND PREDETERMINABLE NUMBER OF TABLETS, OR SIMILAR PHARMACEUTICAL PRODUCTS, STORED WITHIN A PACKAGE WITHIN A BLISTER PACKAGE
GB9500022D0 (en) * 1995-01-04 1995-03-01 Unwalla Jamshed Integrated seat and back and mechanism for chairs
KR960030854A (en) * 1995-02-15 1996-09-17 김명숙 Chair with separate backrest
DE19505447A1 (en) 1995-02-17 1996-08-22 Schmidt Gmbh R Device to adjust spinal pressure distribution on vehicle seat backrest
JP3608177B2 (en) * 1995-03-31 2005-01-05 株式会社岡村製作所 Chair seat and back tilting device
US5651584A (en) * 1995-04-24 1997-07-29 L & P Property Management Company Lumbar support structure for automotive vehicle
FR2734766B1 (en) * 1995-05-30 1997-07-25 Faure Bertrand Equipements Sa AUTOMOBILE SEAT WITH ADJUSTABLE SEAT SURFACE
US5658047A (en) 1995-06-05 1997-08-19 Attwood Corporation Folding seat
US5725276A (en) * 1995-06-07 1998-03-10 Ginat; Jonathan Tilt back chair and control
WO1996041556A1 (en) 1995-06-09 1996-12-27 Herman Miller, Inc. Office chair and adjustable lumbar support therefor
JP3678799B2 (en) * 1995-07-05 2005-08-03 株式会社内田洋行 Chair
JP3318856B2 (en) * 1995-07-21 2002-08-26 株式会社岡村製作所 Backrest chair
FR2739007B1 (en) * 1995-09-21 1997-11-07 Chairtech LUMBAR SUPPORT SEAT
US5676483A (en) * 1996-01-30 1997-10-14 Corel, Inc. Laterally adjustable armrest for a chair
US5791733A (en) * 1996-02-09 1998-08-11 Knoll, Inc. Adjustable lumbar support
DK0804888T3 (en) 1996-04-22 1998-07-27 Steelcase Strafor Sa Improvements in the system for regulating and maneuvering various moving elements and / or deformable elements in e.
US5722725A (en) 1996-04-25 1998-03-03 Ontario Inc. Lumbar support
KR19980017694A (en) * 1996-08-31 1998-06-05 배순훈 How to fix the heat dissipation pipe on the cabinet thick plate of the refrigerator
US5975634A (en) 1997-10-24 1999-11-02 Steelcase Development Inc. Chair including novel back construction
US6099075A (en) * 1997-12-19 2000-08-08 Convaid Products, Inc. Seating arrangement
US5863095A (en) 1998-01-13 1999-01-26 Rivard; John Michael Lobed lumbar pillow
US6250715B1 (en) 1998-01-21 2001-06-26 Herman Miller, Inc. Chair
US5975632A (en) 1998-09-02 1999-11-02 Ginat; Jonathan Chair having a backrest with an adjustable contour
US6079785A (en) 1999-01-12 2000-06-27 Steelcase Development Inc. Chair having adjustable lumbar support
US6626792B2 (en) 2000-03-07 2003-09-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gear bearings

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468985A (en) * 1943-11-26 1949-05-03 Goodrich Co B F Resilient connection and method of making same
US2728593A (en) * 1946-04-15 1955-12-27 Silentbloc Flanged resilient bearings
US2471024A (en) * 1946-10-04 1949-05-24 Roy A Cramer Chair with tilting back and automatically shiftable seat
US2894565A (en) * 1957-05-17 1959-07-14 Hubert R Crane Contouring back rest for motor vehicle seats
US3446532A (en) * 1967-03-13 1969-05-27 Harold W Cramer Chair
US4502728A (en) * 1982-10-08 1985-03-05 Nepsco, Inc. Portable seat and back rest
US4504090A (en) * 1982-10-20 1985-03-12 Goldman Paul R Swivel, tilt and recline arm chair
US4703974A (en) * 1984-10-23 1987-11-03 Protoned B.V. Seat furniture
US4629248A (en) * 1985-06-03 1986-12-16 General Motors Corporation Thigh support for vehicle seats
US4776633A (en) 1986-04-10 1988-10-11 Steelcase Inc. Integrated chair and control
US4744603A (en) 1986-04-10 1988-05-17 Steelcase Inc. Chair shell with selective back stiffening
US5050931A (en) 1986-04-10 1991-09-24 Steelcase Inc. Controlled deflection front lip for seating
US5567012A (en) 1986-04-10 1996-10-22 Steelcase, Inc. Chair control
US4984846A (en) * 1987-10-19 1991-01-15 J. E. Ekornes A/S Arrangement in an adjustable chair
US4889385A (en) * 1988-03-09 1989-12-26 American Seating Company Chair seat-and-back support
US5249839A (en) * 1991-11-12 1993-10-05 Steelcase Inc. Split back chair
US5385388A (en) * 1991-11-12 1995-01-31 Steelcase Inc. Split back chair
US5320410A (en) * 1992-01-14 1994-06-14 Steelcase Inc. Chair control
US5499861A (en) * 1992-07-16 1996-03-19 Giroflex-Entwicklungs-Ag Chair, in particular office chair
US5518294A (en) * 1993-04-05 1996-05-21 Ligon Brothers Manufacturing Company Variable apex back support
US5564783A (en) * 1993-07-22 1996-10-15 Duphin Entwicklungs-U. Beteiligungs-Gmbh Chair, in particular office chair
US5630647A (en) * 1995-02-17 1997-05-20 Steelcase Inc. Tension adjustment mechanism for chairs

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057917A (en) * 1999-08-20 2001-03-06 Uchida Yoko Co Ltd Seal sliding structure for office chairs
JP4727805B2 (en) * 2000-11-06 2011-07-20 株式会社岡村製作所 Control lever structure in a chair
JP2002142899A (en) * 2000-11-06 2002-05-21 Okamura Corp Operation lever structure for chair
EP1350446A2 (en) * 2002-04-03 2003-10-08 COMPAS S.r.l. Chair with advanceable seat
EP1350446A3 (en) * 2002-04-03 2004-02-18 COMPAS S.r.l. Chair with advanceable seat
RU2518280C2 (en) * 2008-12-12 2014-06-10 Формвэй Фурнитуре Лимитед Armchair and support structure
WO2010068122A1 (en) * 2008-12-12 2010-06-17 Formway Furniture Limited A chair, a support, and components
US9033421B2 (en) 2008-12-12 2015-05-19 Formway Furniture Limited Chair, a support, and components
US9622579B2 (en) 2008-12-12 2017-04-18 Formway Furniture Limited Chair, a support, and components
DE102012109710A1 (en) * 2012-10-11 2014-06-12 Grammer Ag Vehicle seat with changeable backrest shape
US9079514B2 (en) 2012-10-11 2015-07-14 Grammer Ag Vehicle seat comprising an adjustable backrest shape
USD721529S1 (en) 2013-06-07 2015-01-27 Steelcase Inc. Handle apparatus
KR20170062045A (en) * 2015-11-27 2017-06-07 큐렉소 주식회사 Body Weight Support part of rotation type
KR102484973B1 (en) * 2015-11-27 2023-01-09 큐렉소 주식회사 Body Weight Support part of rotation type

Also Published As

Publication number Publication date
ES2290401T3 (en) 2008-02-16
EP1384424B1 (en) 2011-11-16
EP1384423B1 (en) 2006-12-06
EP1384424A2 (en) 2004-01-28
US5975634A (en) 1999-11-02
EP1384423A3 (en) 2004-06-02
EP1405583A3 (en) 2004-06-02
CN1277543A (en) 2000-12-20
EP1405584A2 (en) 2004-04-07
US20030193227A1 (en) 2003-10-16
EP1033927B1 (en) 2005-06-15
IL135529A (en) 2004-06-01
US7131700B2 (en) 2006-11-07
CN1494845A (en) 2004-05-12
US7712834B2 (en) 2010-05-11
US20030015902A1 (en) 2003-01-23
US20040130195A1 (en) 2004-07-08
US20050046254A1 (en) 2005-03-03
US20070024098A1 (en) 2007-02-01
EP1405584A3 (en) 2004-06-02
EP1384424A3 (en) 2004-02-04
CA2663687C (en) 2012-01-17
ES2277026T3 (en) 2007-07-01
DE69738088D1 (en) 2007-10-11
US7114777B2 (en) 2006-10-03
US6991291B2 (en) 2006-01-31
JP2008161692A (en) 2008-07-17
EP1405583B1 (en) 2007-08-29
DE69738088T2 (en) 2008-05-21
JP5080288B2 (en) 2012-11-21
AU1101399A (en) 1999-05-17
CA2304816C (en) 2009-12-15
AU4883302A (en) 2002-08-01
ES2246540T3 (en) 2006-02-16
CN1144555C (en) 2004-04-07
US6394549B1 (en) 2002-05-28
US20050179292A1 (en) 2005-08-18
US6817668B2 (en) 2004-11-16
US20020017809A1 (en) 2002-02-14
US7427105B2 (en) 2008-09-23
US5979984A (en) 1999-11-09
EP1033927A4 (en) 2003-04-09
JP4104286B2 (en) 2008-06-18
US6394548B1 (en) 2002-05-28
US6394545B2 (en) 2002-05-28
JP2001522618A (en) 2001-11-20
EP1405584B1 (en) 2012-03-14
HK1031810A1 (en) 2001-06-29
US7040711B2 (en) 2006-05-09
AU2004200744A1 (en) 2004-03-18
US6394546B1 (en) 2002-05-28
EP1033927A1 (en) 2000-09-13
US20030173807A1 (en) 2003-09-18
US20050231013A1 (en) 2005-10-20
DE69836596T2 (en) 2007-09-20
TW483741B (en) 2002-04-21
US20050127729A1 (en) 2005-06-16
US6367877B1 (en) 2002-04-09
US5909923A (en) 1999-06-08
CN1231166C (en) 2005-12-14
CA2304816A1 (en) 1999-05-06
ATE371393T1 (en) 2007-09-15
DE69830610D1 (en) 2005-07-21
US6116695A (en) 2000-09-12
EP1384423A2 (en) 2004-01-28
ATE297672T1 (en) 2005-07-15
AU750107B2 (en) 2002-07-11
US6349992B1 (en) 2002-02-26
US6749261B2 (en) 2004-06-15
US6318800B1 (en) 2001-11-20
CA2663687A1 (en) 1999-05-06
EP1405583A2 (en) 2004-04-07
IL135529A0 (en) 2001-05-20
US6460928B2 (en) 2002-10-08
US20010043003A1 (en) 2001-11-22
US6086153A (en) 2000-07-11
HK1061959A1 (en) 2004-10-15
DE69830610T2 (en) 2006-05-11
DE69836596D1 (en) 2007-01-18
US7040709B2 (en) 2006-05-09
BR9813119A (en) 2000-08-15
AU772235B2 (en) 2004-04-22
US20090001793A1 (en) 2009-01-01
ATE347292T1 (en) 2006-12-15
US5871258A (en) 1999-02-16
AU2004200744B2 (en) 2007-09-13
US6905171B2 (en) 2005-06-14

Similar Documents

Publication Publication Date Title
EP1405583B1 (en) Synchrotilt chair with adjustable seat, back and energy mechanism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 135529

Country of ref document: IL

Ref document number: 98810506.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GD GE GH HR HU ID IL IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11013/99

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2304816

Country of ref document: CA

Ref document number: 2304816

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/003882

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 517628

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007004400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998953703

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998953703

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004400

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 11013/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998953703

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007004400

Country of ref document: KR