WO1999016794A1 - Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren - Google Patents

Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren Download PDF

Info

Publication number
WO1999016794A1
WO1999016794A1 PCT/EP1998/006102 EP9806102W WO9916794A1 WO 1999016794 A1 WO1999016794 A1 WO 1999016794A1 EP 9806102 W EP9806102 W EP 9806102W WO 9916794 A1 WO9916794 A1 WO 9916794A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
weight
esters
protective colloids
comonomers
Prior art date
Application number
PCT/EP1998/006102
Other languages
English (en)
French (fr)
Inventor
Theo Mayer
Hans-Peter Weitzel
Reinhard Haerzschel
Thomas Bastelberger
Original Assignee
Wacker-Chemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker-Chemie Gmbh filed Critical Wacker-Chemie Gmbh
Priority to AT98947549T priority Critical patent/ATE202120T1/de
Priority to US09/424,193 priority patent/US6300403B1/en
Priority to HU0004256A priority patent/HU226045B1/hu
Priority to EP98947549A priority patent/EP1023331B1/de
Priority to JP2000513876A priority patent/JP3270450B2/ja
Priority to DK98947549T priority patent/DK1023331T3/da
Priority to BR9812386-6A priority patent/BR9812386A/pt
Priority to PL339494A priority patent/PL192460B1/pl
Priority to DE59800870T priority patent/DE59800870D1/de
Publication of WO1999016794A1 publication Critical patent/WO1999016794A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/24Treatment of polymer suspensions

Definitions

  • the invention relates to a process for the preparation of protective colloid-stabilized polymers in the form of their aqueous polymer dispersions or powders redispersible in water.
  • Polymer powders redispersible in water which are accessible by drying the corresponding polymer dispersions, are known and have been used successfully for many years, particularly in the construction sector. They improve the property profile of hydraulically setting systems such as cement mortars, for example their abrasion resistance, bending tensile strength and adhesion.
  • hydraulically setting systems such as cement mortars, for example their abrasion resistance, bending tensile strength and adhesion.
  • products are represented on the market, such products are produced on the basis of polyvinyl acetate, vinyl acetate-ethylene copolymers, vinyl acetate-vinyl ester copolymers and vinyl chloride-ethylene copolymers.
  • Redispersion powders compete with dispersions in the individual areas of application, and the binding power of these binders depends on e.g. B. in colors known to depend on the particle size.
  • binders such as cement to improve the mortar properties
  • the main area of application for redispersible powders is that the formulations must remain stable over a certain period of time and must not significantly change their processing consistency (Cement stability); because a user cannot be expected to mix a new mixture within a short period of time. Such a product would not be accepted.
  • cement stability processing consistency
  • the mechanical properties such as pressure resistance, porosity and thus the air pore content play an important role. If there are too many air pores, the compressive strength drops sharply, if there are too little or no air pores in the mortar or concrete, the building material is not sufficiently frost-resistant.
  • the hydraulically setting systems which are coated with the dispersion powder are also said to provide even better adhesion than the non-hardened systems.
  • WO-A 96/17891 relates to the production of water-redispersible polymer powders based on vinyl acetate, styrene / butadiene and styrene / acrylate copolymers, the polymers being prepared by the emulsion polymerization process in the presence of customary emulsifiers, and before the polymer dispersion dries, a mixture of saccharide, anionic alkylaryl emulsifier and polyvinylpyrrolidone is added.
  • WO-A 96/20963 discloses a process for the preparation of water-redispersible polymer powders based on styrene / butadiene, styrene / acrylate and (meth) acrylate polymers, the polymers being present in a two-stage polymerization of emulsifier to obtain core-shell polymers and dried by spray drying.
  • WO-A 96/41825 also relates to dispersion powders based on core-shell polymers, the shell being saccharide-functional Comonomers and crosslinkable comonomers, for covalent attachment of the shell to the core.
  • the application properties in particular the processability (cement stability), are also unsatisfactory due to the relatively small particle sizes.
  • EP-A 62106 (US-A 4397968) recommends that the majority of the monomers be metered in during the polymerization in order to prepare aqueous dispersions of polyvinyl alcohol-stabilized (meth) acrylate or styrene copolymers in order to improve the water resistance of the polymers.
  • the drying of the dispersions into powders is mentioned.
  • a disadvantage of the redispersible powders obtainable in this way is that, owing to their poor cement stability, they cannot be used in cement-containing compositions, the processing time is too short, the compositions change their consistency after a short time, they become increasingly thicker and can no longer be processed.
  • DE-A 1260145 recommends using modified polyvinyl alcohols for the production of finely divided polymer dispersions. It is disadvantageous that this procedure only gives dispersions which have a strong tendency to foam, which has a disadvantageous effect on the processability and the application properties.
  • WO-A 97/15603 describes that no stable polymer dispersions are obtained in the emulsion polymerization of hydrophobic monomers such as styrene or butadiene when stabilized by means of protective colloids.
  • hydrophobic monomers such as styrene or butadiene
  • protective colloids To obtain stable, protective colloid-stabilized polymer dispersions based on this monomer, it is recommended to add in the presence of mercapto-functionalized, copolymerizable silanes polymerize. It is disadvantageous that this procedure is necessarily limited to the production of silane-containing copolymers.
  • DE-A 4212768 describes the preparation of aqueous polymer dispersions based on styrene, butadiene and (meth) acrylate polymers and mentions the drying of the dispersions to give dispersion powders.
  • the polymerization takes place in the presence of a macromonomer from a polyalkylene glycol esterified with maleic acid or fumaric acid.
  • DE-C 3590744 (GB-A 2181143) describes a process for the preparation of protective colloid-stabilized polymers, in which vinyl monomers are polymerized in the presence of a protective colloid hydrophobicized with oxyalkylene units.
  • a disadvantage of the use of polyvinyl alcohols which have been rendered hydrophobic with oxyalkylene units is the softening action of oxyalkylene units, which leads to blocking of powders produced therewith and deterioration in their redispersibility. Due to the relatively polar nature of the oxyalkylene units, the water resistance is also significantly reduced.
  • the invention relates to a process for the preparation of protective colloid-stabilized polymers in the form of their aqueous polymer dispersions or water-redispersible powder by emulsion polymerization of one or more ethylenically unsaturated monomers in the presence of protective colloid and, if appropriate, drying the resultant Polymer dispersions, characterized in that one or more monomers from the group comprising vinyl aromatics, 1,3-dienes, acrylic acid esters and methacrylic acid esters of alcohols having 1 to 15 carbon atoms are polymerized in the presence of a protective colloid combination, from one or more protective colloids from the group of Hydrophobically modified, partially saponified polyvinyl esters, which as a 2% aqueous solution generate a surface tension of ⁇ _ 40 mN / m, and from one or more protective colloids, which as a 2% aqueous solution have a surface tension of> 40 mN / m produce.
  • Suitable vinyl aromatics are styrene and methylstyrene, styrene is preferably used.
  • Examples of 1.3-dienes are 1.3-butadiene and isoprene, 1.3-butadiene is preferred.
  • Preferred methacrylic acid esters or acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, t-butyl acrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl acrylate. Methyl acrylate, methyl methacrylate, n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
  • auxiliary monomers can also be copolymerized.
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, fumaric acid and maleic acid; ethylenically unsaturated carboxamides and nitriles, preferably acrylamide and acrylonitrile; Mono- and diesters of fumaric acid and maleic acid such as diethyl and diisopropyl esters as well as maleic anhydride, ethylenically unsaturated sulfonic acids or their salts, preferably vinyl sulfonic acid, 2-acrylamido-2-methyl propanesulfonic acid.
  • pre-crosslinking comonomers such as polyethylenically unsaturated comonomers, for example divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or post-crosslinking comonomers, for example acrylamidoglycolic acid (AGA), methyl acrylamide methyl methacrylate (MAGME), N-methylol (NMEMA), N-methylol thylol methacrylamide, N-methylolallyl carbamate, alkyl ethers such as the isobutoxy ether or ester of N-methylol acrylamide, N-methylol methacrylamide and N-methylolallyl carbamate.
  • AGA acrylamidoglycolic acid
  • MAGME methyl acrylamide methyl methacrylate
  • NMEMA N-methylol thylol methacrylamide
  • alkyl ethers such as the isobutoxy ether or ester
  • Epoxy-functional comonomers such as glycidyl methacrylate and glycidyl acrylate are also suitable. Further examples are silicon-functional comonomers such as acryloxypropyltri (alkoxy) and methacryloxypropyltri (alkoxy) silanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, which may contain ethoxy and ethoxypropylene glycol ether residues as alkoxy groups.
  • monomers with hydroxyl or CO groups for example methacrylic acid and acrylic acid hydroxyalkyl esters such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and compounds such as deacetone acrylamide and acetylacetoxyethyl acrylate or methacrylate.
  • the selection of monomers and the selection of the proportions by weight of the comonomers is carried out in such a way that a glass transition temperature Tg of -50 ° C. to + 100 ° C., preferably -20 ° C. to + 40 ° C., generally results.
  • the glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the Tg can also be roughly predicted using the Fox equation. According to Fox T. G., Bull. Am. Physics Soc. 1, 3, page 123 (1956) applies:
  • Tg x 1 / Tg 1 + x 2 / Tg 2 + ... + x n / Tg n , where x n stands for the mass fraction (wt% / 100) of the monomer n, and Tg n the glass transition temperature in degrees Kelvin of the homopolymer of the monomer n is. Tg values for homopolymers are in the Polymer Handbook
  • the protective colloid-stabilized polymers are produced by the emulsion polymerization process, the polymerization temperature generally being 40 ° C. to 100 ° C., preferably 60 ° C. to 90 ° C.
  • the copolymerization of gaseous comonomers such as ethylene or vinyl chloride can also be carried out under pressure, generally between 5 bar and 100 bar.
  • the polymerization is initiated using the at least partially water-soluble thermal initiators or redox initiator combinations which are customary for emulsion polymerization.
  • Suitable organic initiators which are partially soluble in both water and in the monomers, are hydroperoxides such as tert. -Butyl hydroperoxide, tert. - Butyl peroxopivalate, cumene hydroperoxide, isopropylbenzene monohydroperoxide or azo compounds such as azobisisobutyronitrile.
  • Suitable inorganic initiators are the sodium, potassium and ammonium salts of peroxodisulfuric acid. The initiators mentioned are generally used in an amount of 0.05 to 3% by weight, based on the total weight of the monomers.
  • Suitable reducing agents are the sulfites and bisulfites of the alkali metals and of ammonium, for example sodium sulfite, the derivatives of sulfoxylic acid such as zinc or alkali formaldehyde sulfoxylates, for example sodium hydroxymethanesulfinate, and ascorbic acid.
  • the amount of reducing agent is preferably 0.01 to 5.0% by weight, based on the total weight of the monomers.
  • regulating substances can be used during the polymerization. They are usually used in amounts of between 0.01 and 5.0% by weight, based on the monomers to be polymerized, and are metered in separately or premixed with reaction components. Examples of such substances are n-dodecyl mercaptan, tert. - Dodecyl mercaptan, mercaptopropionic acid, mercaptopropionic acid methyl ester, isopropanol and acetaldehyde.
  • the polymerization batch is stabilized by means of the protective colloid combination mentioned, preferably without the addition of emulsifiers.
  • Suitable protective colloids from the group of hydrophobically modified, partially saponified polyvinyl esters, which as a 2% aqueous solution produce a surface tension of ⁇ ⁇ 40 mN / m, can be obtained, for example, by hydrophobicizing polyvinyl acetate by copolymerizing vinyl acetate with hydrophobic comonomers .
  • Examples of this are isopropenyl acetate, long-chain, preferably with 7 to 15 C atoms, branched and unbranched vinyl esters such as vinyl pivalate, vinyl ethyl hexanoate, vinyl esters of saturated alpha-branched monocarboxylic acids with 5 or 9 to 11 C atoms, dialkyl maleate and dialkyl fumarate j _- C- to C 12 - alcohols, such as diisopropyl maleate and diisopropyl fumarate, vinyl chloride, vinyl alkyl ethers of alcohols having at least 4 carbon atoms such as vinyl butyl ether, C 2 - to
  • C 10 olefins such as ethene and decene.
  • the hydrophobization can also be carried out by polymerizing vinyl acetate in the presence of regulators such as alkyl mercaptans having a C 2 -C 18 -alkyl radical such as dodecyl mercaptan or tert. -Dodecyl mercaptan take place.
  • regulators such as alkyl mercaptans having a C 2 -C 18 -alkyl radical such as dodecyl mercaptan or tert.
  • -Dodecyl mercaptan take place.
  • Another possibility for hydrophobizing polyvinyl acetate is the polymer-analogous reaction, for example acetalization of Vinyl alcohol units in partially saponified polyvinyl acetate with C 1 to C 4 aldehydes such as butyraldehyde.
  • the proportion of the hydrophobic units is preferably 0.1 to 10% by weight, based on the total weight of the partially hydrolyzed polyvinyl acetate.
  • the degree of hydrolysis is from 70 to 99.9 mol%, preferably 84 to 92 mol%, the Höppler viscosity (DIN 53015, Höppler method, 4% aqueous solution) from 1 to 30 mPas, preferably 2 to 15 mPas.
  • Preferred as the hydrophobically modified, partially hydrolyzed polyvinyl ester are the partially hydrolyzed polyvinyl acetates with 84 to 92 mol% of vinyl alcohol units and 0.1 to 10% by weight of units which differ from vinyl esters of an alpha-branched carboxylic acid having 5 or 9 to 11 carbon atoms in Derive acid residue, isopropenyl acetate and ethene.
  • the partially saponified polyvinyl acetates with vinyl alcohol units and units of vinyl esters of alpha-branched carboxylic acids having 5 or 9 to 11 carbon atoms in the amounts mentioned are particularly preferred. Examples of such vinyl esters are those which are sold under the names Shell by vinyl acid ester
  • VeoVa R 5 VeoVa R 9, VeoVa R 10 and VeoVa R ll are available.
  • Suitable protective colloids which generate a surface tension of> 40 mN / m as a 2% aqueous solution, are partially saponified polyvinyl acetates, polyvinyl pyrrolidones, carboxymethyl, methyl, hydroxyethyl, hydroxypropyl cellulose, poly (meth) acrylic acid, poly (meth ) acrylamide, polyvinylsulfonic acids, melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers, dextrins such as yellow dextrin.
  • the protective colloids are generally added in a total amount of 1 to 15% by weight, based on the total weight of the monomers, during the polymerization.
  • the weight ratio of hydrophobized, partially saponified polyvinyl ester to the protective colloids which as a 2% aqueous solution produce a surface tension of> 40 mN / m, is from 10/1 to 1/10.
  • the protective colloids mentioned are accessible by methods known to those skilled in the art.
  • the emulsion polymerization can be carried out in a batch process, with all components being placed in the reactor, and in a metering process, with one or more components being fed in during the polymerization. Mixed types with feed and dosage are preferred.
  • the dosing can be carried out separately (spatially and temporally) or the components to be dosed can be dosed all or in part pre-emulsified.
  • the thermal initiator can be initially introduced as a whole, or partially introduced and partially metered, or only metered.
  • the protective colloids are preferably submitted.
  • One component from the protective colloid combination can also be introduced and the other can be metered in, or a part of the mixture can be introduced and the rest added as an aqueous solution.
  • the supply or metering of the protective colloid content are controlled in such a way that the protective colloid is always present in a sufficient amount of about 1 to 15% by weight, based on the monomer content in the polymerization mixture, because on the one hand there is too little speck formation and on the other hand at too high a quantity the viscosity of the dispersion is increased too much.
  • postpolymerization can be carried out using known methods to remove residual monomers, for example by postpolymerization initiated with a redox catalyst.
  • Volatile residual monomers can also be distilled, preferably under reduced pressure, and if necessary, with the passage or passage of inert entraining gases such as air, nitrogen or water vapor.
  • the aqueous dispersions obtainable by the process according to the invention have a solids content of 30 to 75% by weight, preferably 40 to 65% by weight.
  • the aqueous dispersions are dried, for example by means of fluidized-bed drying, freeze drying or spray drying.
  • the dispersions are preferably spray dried. Spray drying is carried out in conventional spray drying systems, and atomization can be carried out by means of one, two or multi-component nozzles or with a rotating disc.
  • the outlet temperature is generally selected in the range from 55 ° C. to 100 ° C., preferably 70 ° C. to 90 ° C., depending on the system, the Tg of the resin and the desired degree of drying.
  • the total amount of protective colloid before the drying process should preferably be at least 10% by weight, based on the polymer content. To ensure redispersibility, it is generally necessary to add further protective colloids to the dispersion as a spraying aid before drying. As a rule, the atomization aid is used in an amount of 5 to 25% by weight, based on the polymeric constituents of the dispersion.
  • Suitable atomization aids are partially saponified polyvinyl acetates; Polyvinyl pyrrolidones; Polysaccharides in water-soluble form such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl, hydroxypropyl derivatives; Proteins such as casein or caseinate, soy protein, gelatin; Lignin sulfonates; synthetic polymers such as poly (meth) acrylic acid, copolymers of (meth) acrylates with carboxyl-functional comonomer units, poly (meth) acrylamide, polyvinylsulfonic acids and their water-soluble copolymers; Melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers.
  • the powder obtained can be mixed with an antiblocking agent (anti-caking agent), preferably up to 30% by weight, based on the total weight of polymeric constituents.
  • antiblocking agents are calcium carbonate or magnesium carbonate, talc, gypsum, silica, silicates with particle sizes preferably in the range from 10 nm to 10 ⁇ m.
  • Further additives can be added during spraying.
  • Further constituents of dispersion powder compositions contained in preferred embodiments are, for example, pigments, fillers, foam stabilizers, water repellents.
  • the protective colloid-stabilized polymers can be used as a dispersion or powder in the typical fields of application.
  • the pH was adjusted to 4.0 to 4.2 with 10% by weight formic acid. It was then evacuated, flushed with nitrogen, evacuated again and a mixture of 112 g of styrene, 168 g of 1,3-butadiene and 8 g of tert. -Dodecyl mercaptan sucked in.
  • This mixture was stabilized against premature polymerization by adding 30 mg of benzoquinone. After heating to 80 ° C., the polymerization was started by simultaneously running in two catalyst solutions, the first of which consisted of 110 g of deionized water and 15.5 g of a 40% aqueous solution.
  • the dry powder obtained was mixed with 10% commercially available antiblocking agent (mixture of calcium-magnesium carbonate and magnesium hydrosilicate).
  • the dispersion was prepared analogously to Example 1, but with 900 g of a 20% strength by weight aqueous solution of a partially hydrolyzed polyvinyl acetate having a degree of hydrolysis of 88 mol% and a Höppler viscosity of the 4% strength solution of 4 mPas 2% by weight dissolved in water generated a surface tension of 44 mN / m as the sole protective colloid. All other measures corresponded to example 1.
  • the dispersion was prepared analogously to Example 1, but with the introduction of 900 g of a 20% by weight aqueous solution of a partially saponified copolymer of vinyl acetate and VeoVa 10 with a degree of hydrolysis of 88 mol% and a Höppler viscosity of the 4% solution of 4 mPas , which, when dissolved in water by 2% by weight, generated a surface tension of 37 mN / m, as the sole protective colloid. All other measures corresponded to example 1.
  • the dispersion was prepared analogously to Example 1, with 800 g of a 10% strength by weight aqueous solution of a yellow dextrin (Avedex 35, from Avebe) instead of the partially saponified polyvinyl acetate, 2% by weight dissolved in water having a surface tension of 50 mN / m generated, was used together with the hydrophobically modified protective colloid. All other measures corresponded to example 1. Testing the polymer powder:
  • each of the dispersion powder was redispersed in 50 ml of water, then diluted to a solids content of 0.5% and the amount of solid settling from 100 ml of this redispersion was filled into a graduated tube and the settling was measured after 1 hour and 24 hours.
  • a DIN mortar according to DIN 1164 of the following recipe was mixed with a water / cement factor W / Z of 0.45 and a plastic / cement factor K / Z of 0.15: Portland cement PZ-35F 900 g standard sand 2700 g
  • Silicone defoamer S-860 (from Wacker Chemie) 7.2 g of dispersion powder 135 g
  • the air content was determined using DIN 18555 Part 2.
  • a cement mixture of the following recipe was mixed: Portland cement 82.5 g
  • the workability of the cement mixture was observed over a period of 2 hours and assessed qualitatively.
  • dispersion powders are also available based on copolymers of hydrophobic comonomers such as styrene and butadiene, which are distinguished by very good redispersibility (tube seating) and very good application properties (cement stability). If polymerization is carried out in the emulsion polymerization alone in the presence of conventional, non-hydrophobically modified protective colloids (comparative example 2), the performance properties (cement stability) of the powders obtainable therewith are unsatisfactory. When stabilized alone with hydrophobically modified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren in Form deren wässrige Polymerdispersionen oder in Wasser redispergierbaren Pulver durch Emulsionspolymerisation von einem oder mehreren ethylenisch ungesättigten Monomeren in Gegenwart von Schutzkolloid und gegebenenfalls Trocknung der damit erhaltenen Polymerdispersionen, dadurch gekennzeichnet, daß ein oder mehrere Monomere aus der Gruppe umfassend Vinylaromaten, 1.3-Diene, Acrylsäureester und Methacrylsäureester von Alkoholen mit 1 bis 15 C-Atomen in Gegenwart einer Schutzkolloid-Kombination polymerisiert werden, aus einem oder mehreren Schutzkolloiden aus der Gruppe der hydrophob modifizierten, teilverseiften Polyvinylester, welche als 2 %-ige wässrige Lösung eine Oberflächenspannung von ≤40 mN/m erzeugen, und aus einem oder mehreren Schutzkolloiden, welche als 2 %-ige wässrige Lösung eine Oberflächenspannung von ⊃40 mN/m erzeugen.

Description

Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren
Die Erfindung betrifft ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren in Form deren wässrigen Polymerdispersionen oder in Wasser redispergierbaren Pulvern.
In Wasser redispergierbare Polymerpulver, welche durch Trocknung der entsprechenden Polymerdispersionen zugänglich sind, sind bekannt und werden seit vielen Jahren insbesondere im Bausektor mit Erfolg eingesetzt. Sie verbessern das Eigenschaftsbild von hydraulisch abbindenden Systemen wie Zementmörteln, beispielsweise deren Abriebsbeständigkeit, Biegezugfestigkeit und Haftung. Üblicherweise, und solche Produkte sind am Markt vertreten, werden solche Produkte auf Basis Po- lyvinylacetat , Vinylacetat-Ethylen-Copolymere, Vinylacetat- Vinylester-Copolymere und Vinylchlorid-Ethylen-Copolymere hergestellt .
Die Anforderungen, die an ein technisch brauchbares Dispersi- onspulver gestellt werden, sind sehr hoch: Es muß rieselfähig sein, es darf beim Lagern nicht zusammenblocken, das heißt, es darf seine Rieselfähigkeit nicht mit der Zeit verlieren. Verblockt das Pulver, kann es praktisch nicht mehr gehandhabt werden. Große Klumpen können nicht mehr in die pulverförmige Rezeptur eingemischt werden. Um seine volle Wirksamkeit zu entfalten, muß das Pulver in Wasser wieder sehr gut redisper- gierbar sein, so daß die Ausgangsteilchen der Dispersion erhalten werden.
Redispersionspulver konkurrieren mit Dispersionen in den einzelnen Einsatzgebieten und die Bindekraft dieser Bindemittel hängt z. B. bei Farben bekanntermaßen von der Teilchengröße ab. Beim Einsatz in Kombination mit hydraulischen Bindemitteln wie Zement zur Verbesserung der Mörteleigenschaften, ein
Haupteinsatzgebiet von Redispersionspulvern, müssen die Rezepturen über eine gewisse Zeit stabil bleiben und dürfen ihre Verarbeitungskonsistenz nicht wesentlich verändern (Zementstabilität) ; denn es ist einem Anwender nicht zuzumuten, daß er innerhalb einer kurzen Zeitspanne eine neue Mischung anrühren muß. Ein solches Produkt würde nicht akzeptiert. In der Beton- und Mörtelindustrie spielen die mechani- sehen Eigenschaften, wie die Druckfestigkeit, die Porosität und damit der Luftporengehalt eine wesentliche Rolle. Sind zu viele Luftporen vorhanden, so sinkt die Druckfestigkeit stark ab, sind zu wenig oder keine Luftporen im Mörtel oder Beton vorhanden, ist der Baustoff nicht genügend frost-taustabil . Die mit dem Dispersionspulver vergüteten hydraulisch abbindenden Systeme sollen zudem noch bessere Haftung gegenüber den unvergüteten Systemen erbringen.
Neben den genannten Dispersionspulver auf der Basis von Po- lyvinylacetat , Vinylacetat-Ethylen-Copolymeren, Vinylacetat- Vinylester-Copolymeren und Vinylchlorid-Ethylen-Copolymeren sind auch solche auf der Basis von St rol/Butadien- , Sty- rol/Acrylat- und (Meth) acrylat-Polymerisaten bekannt, welche aber bezüglich deren Herstellungsverfahren und bezüglich der anwendungstechnischen Eigenschaften nicht voll befriedigen können .
Die WO-A 96/17891 betrifft die Herstellung von in Wasser redispergierbaren Polymerpulvern auf der Basis von Vinylacetat- , Styrol/Butadien- und Styrol/Acrylat-Copolymeren, wobei die Herstellung der Polymerisate nach dem Emulsionspolymerisati- onsverfahren in Gegenwart üblicher Emulgatoren erfolgt, und vor der Trocknung der Polymerdispersion ein Gemisch aus Sac- charid, anionischem Alkylaryl-Emulgator und Polyvinylpyrroli- don zugegeben wird. Aus der WO-A 96/20963 ist ein Verfahren zur Herstellung von in Wasser redispergierbaren Polymerpulvern auf der Basis von Styrol/Butadien-, Styrol/Acrylat- und (Meth) acrylat-Polymerisaten bekannt, wobei die Polymerisate in einer Zweistufen-Polymerisation in Gegenwart von Emulgator un- ter Erhalt von Kern-Schale-Polymerisaten hergestellt werden und durch Sprühtrocknung getrocknet werden. Die WO-A 96/41825 betrifft ebenfalls Dispersionspulver auf der Basis von Kern- Schale-Polymerisaten, wobei die Schale Saccharid-funktionelle Comonomere und vernetzbare Comonomere, zur kovalenten Anbin- dung der Schale an den Kern, aufweist. Neben der relativ aufwendigen Verfahrensweise zur Herstellung der Redispersionspul- ver können aufgrund der relativ geringen Teilchengrößen auch die anwendungstechnischen Eigenschaften, speziell die Verar- beitbarkeit (Zementstabilität) , nicht zufriedenstellen.
In der EP-A 62106 (US-A 4397968) wird empfohlen, zur Herstellung von wässrigen Dispersionen von Polyvinylalkohol-stabili- sierten (Meth) acrylat- oder Styrol-Copolymerisaten zur Verbesserung der Wasserfestigkeit der Polymerisate die Hauptmenge der Monomeren während der Polymerisation zuzudosieren. Die Trocknung der Dispersionen zu Pulvern wird erwähnt . Ein Nachteil der damit erhältlichen Redispersionspulver besteht darin, daß sie aufgrund ihrer schlechten Zementstabilität nicht in zementhaltigen Massen eingesetzt werden können, die Verarbeitungszeit ist zu kurz, schon nach kurzer Zeit verändern die Massen ihre Konsistenz, sie werden zunehmend dicker und sind nicht mehr verarbeitbar.
Aus der EP-A 538571 ist bekannt, bei der Herstellung von mit teilverseiftem Polyvinylalkohol stabilisierten Polymerdispersionen zur Einstellung der Viskosität und Hydrophilie spezielle Initiatorsysteme einzusetzen. Die DE-A 1260145 empfiehlt zur Herstellung von feinteiligen '.Polymerdispersionen modifizierte Polyvinylalkohole einzusetzen. Nachteilig ist, daß mit dieser Verfahrensweise nur Dispersionen erhalten werden, die stark zum Schäumen neigen, was sich nachteilig auf die Verar- beitbarkeit und die anwendungstechnischen Eigenschaften auswirkt.
In der WO-A 97/15603 wird beschrieben, daß bei der Emulsionspolymerisation von hydrophoben Monomeren wie Styrol oder Butadien bei der Stabilisierung mittels Schutzkolloiden keine stabilen Polymerdispersionen erhalten werden. Zum Erhalt von stabilen, schutzkolloidstabilisierten Polymerdispersionen auf dieser Monomerbasis wird empfohlen, in Gegenwart von mercap- tofunktionalisierten, copolymerisierbaren Silanen zu polymerisieren. Nachteilig ist, daß man mit dieser Verfahrensweise zwangsläufig auf die Herstellung silanhaltiger Copolyme- re beschränkt ist.
In der DE-A 4212768 wird die Herstellung von wässrigen Polymerdispersionen auf der Basis von Styrol-, Butadien- und (Meth) acrylat-Polymerisaten beschrieben und die Trocknung der Dispersionen zu Dispersionspulvern erwähnt. Die Polymerisation erfolgt in Gegenwart eines Makromonomers aus einem mit Malein- säure oder Fumarsäure veresterten Polyalkylenglykol .
Die DE-C 3590744 (GB-A 2181143) beschreibt ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren, bei dem Vinylmonomere in Gegenwart eines mit Oxyalkylen-Einheiten hydrophobierten Schutzkolloids polymerisiert werden. Nachteilig beim Einsatz von mit Oxyalkylen-Einheiten hydrophobierten Polyvinylalkoholen ist die Weichmacherwirkung von Oxyalkylen-Einheiten, welche zur Verblockung damit hergestellter Pulver und zur Verschlechterung deren Redispergierbarkeit führt. Aufgrund des relativ polaren Charakters der Oxyalkylen-Einheiten ist auch die Wasserfestigkeit deutlich reduziert.
Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von schutzkolloidstabilisierten Polymerdispersionen und von schutzkolloidstabilisierten, in Wasser redispergierbaren Polymerpulvern im wesentlichen auf der Basis von Styrol/Butadien-, Styrol/Acrylat- und (Meth) acrylat-Polymerisaten bereitzustellen, welches die Nachteile des geschilderten Stand der Technik überwindet und mit dem stabile Polymerdispersionen und gut re- dispergierbare und zementstabile Kunststoffpulver erhalten werden.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren in Form deren wässrigen Polymerdispersionen oder in Wasser redispergierbaren Pulver durch Emulsionspolymerisation von einem oder mehreren ethylenisch ungesättigten Monomeren in Gegenwart von Schutzkolloid und gegebenfalls Trocknung der damit erhaltenen Polymerdispersionen, dadurch gekennzeichnet, daß ein oder mehrere Monomere aus der Gruppe umfassend Vinylaromaten, 1.3 -Diene, Acrylsäureester und Methacrylsäureester von Alkoholen mit 1 bis 15 C-Atomen in Gegenwart einer Schutzkolloid- Kombination polymerisiert werden, aus einem oder mehreren Schutzkolloiden aus der Gruppe der hydrophob modifizierten, teilverseiften Polyvinylester, welche als 2%-ige wässrige Lösung eine Oberflächenspannung von <_ 40 mN/m erzeugen, und aus einem oder mehreren Schutzkolloiden, welche als 2%-ige wässri- ge Lösung eine Oberflächenspannung von > 40 mN/m erzeugen.
Geeignete Vinylaromaten sind Styrol und Methylstyrol , vorzugsweise wird Styrol eingesetzt. Beispiele für 1.3 -Diene sind 1.3 -Butadien und Isopren, bevorzugt wird 1.3 -Butadien. Bevor- zugte Methacrylsäureester oder Acrylsäureester sind Methy- lacrylat, Methylmethacrylat , Ethylacrylat , Ethylmethacrylat , Propylacrylat , Propylmethacrylat , n-Butylacrylat , t-Bu- tylacrylat, n-Butylmethacrylat , t-Butylmethacrylat , 2-Ethyl- hexylacrylat . Besonders bevorzugt sind Methylacrylat , Methyl - methacrylat, n-Butylacrylat und 2-Ethylhexylacrylat .
Gegebenenfalls können noch bis zu 30 Gew% , bezogen auf das Gesamtgewicht der Monomerphase, weitere mit Vinylaromaten, 1.3 -Dienen und (Meth) acrylsäureestern copolymerisierbare Mono- mere wie Ethylen, Vinylchlorid oder Vinylester von unverzweigten oder verzeigten Carbonsäuren copolymerisiert werden.
Gegebenenfalls können noch 0.05 bis 10 Gew%, bezogen auf das Gesamtgewicht des Monomergemisches, Hilfsmonomere copolymeri- siert werden. Beispiele für Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbonsäuren, vorzugsweise Acrylsäure, Methacrylsäure, Fumarsäure und Maleinsäure; ethylenisch ungesättigte Carbonsäureamide und -nitrile, vorzugsweise Acrylamid und Acrylnitril; Mono- und Diester der Fumarsäure und Malein- säure wie die Diethyl-, und Diisopropylester sowie Maleinsäureanhydrid, ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorzugsweise Vinylsulfonsäure, 2-Acrylamido-2 -methyl- propansulfonsäure . Weitere Beispiele sind vorvernetzende Comonomere wie mehrfach ethylenisch ungesättigte Comonomere, beispielsweise Divinyladipat , Diallylmaleat , Allylmethacrylat oder Triallylcyanurat , oder nachvernetzende Comonomere, bei- spielsweise Acrylamidoglykolsäure (AGA) , Methylacrylamidogly- kolsäuremethylester (MAGME) , N-Methylolacrylamid (NMA) , N-Me- thylolmethacrylamid, N-Methylolallylcarbamat , Alkylether wie der Isobutoxyether oder Ester des N-Methylolacrylamids, des N- Methylolmethacrylamids und des N-Methylolallylcarbamats . Ge- eignet sind auch epoxidfunktionelle Comonomere wie Glycidyl - methacrylat und Glycidylacrylat . Weitere Beispiele sind sili- ciumfunktionelle Comonomere wie Acryloxypropyltri (alkoxy) - und Methacryloxypropyltri (alkoxy) -Silane, Vinyltrialkoxysilane und Vinylmethyldialkoxysilane, wobei als Alkoxygruppen beispiels- weise Ethoxy- und Ethoxypropylenglykolether-Reste enthalten sein können. Genannt seien auch Monomere mit Hydroxy- oder CO- Gruppen, beispielsweise Methacrylsäure- und Acrylsäure- hydroxyalkylester wie Hydroxyethyl- , Hydroxypropyl - oder Hy- droxybutylacrylat oder -methacrylat sowie Verbindungen wie Di- acetonacrylamid und Acetylacetoxyethylacrylat oder -methacrylat.
Die Monomerauswahl bzw. die Auswahl der Gewichtsanteile der Comonomere erfolgt dabei so, daß im allgemeinen eine Glasüber- gangstemperatur Tg von -50°C bisi+100°C, vorzugsweise -20°C bis +40°C resultiert. Die Glasübergangstemperatur Tg der Polymerisate kann in bekannter Weise mittels Differential Scanning Calorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausberechnet werden. Nach Fox T. G., Bull. Am. Physics Soc . 1 , 3, page 123 (1956) gilt:
1/Tg = x1/Tg1 + x2/Tg2 + ... + xn/Tgn, wobei xn für den Massebruch (Gew%/100) des Monomers n steht, und Tgn die Glasübergangstemperatur in Grad Kelvin des Homopolymers des Monomer n ist. Tg-Werte für Homopolymerisate sind in Polymer Handbook
2nd Edition, J. Wiley & Sons, New York (1975) aufgeführt. Besonders bevorzugt werden Gemische mit 20 bis 80 Gew% Vinyla- romat, insbesondere Styrol und 80 bis 20 Gew% 1.3 -Dien, insbesondere 1.3 -Butadien; Gemische mit 20 bis 80 Gew% Vinylaromat, insbesondere Styrol und 80 bis 20 Gew% Acrylsäureester, insbe- sondere Butylacrylat und 2-Ethylhexylacrylat ; sowie Gemische mit 20 bis 80 Gew% Methacrylsäureester, insbesondere Methyl- methacrylat und 80 bis 20 Gew%, Acrylsäureester, insbesondere Butylacrylat und/oder 2-Ethylhexylacrylat , wobei die Gemische gegebenenfalls die obengenannten Hilfsmonomere in den angege- benen Mengen enthalten können. Am meisten bevorzugt werden die Styrol/l .3 -Butadien-Gemische und die Styrol/Acrylsäure- ester-Gemische .
Die Herstellung der Schutzkolloid-stabilisierten Polymere er- folgt nach dem Emulsionspolymerisationsverfahren, wobei die Polymerisationstemperatur im allgemeinen 40°C bis 100°C, vorzugsweise 60°C bis 90°C beträgt. Bei der Copolymerisation von gasförmigen Comonomeren wie Ethylen oder Vinylchlorid kann auch unter Druck, im allgemeinen zwischen 5 bar und 100 bar, gearbeitet werden.
Die Initiierung der Polymerisation erfolgt mit den für die Emulsionspolymerisation gebräuchlichen zumindest teilweise wasserlöslichen, thermischen Initiatoren oder Redox-Initiator- Kombinationen. Geeignete organische Initiatoren, die jeweils sowohl in Wasser als auch in den Monomeren teilweise löslich sind, sind Hydroperoxide wie tert . -Butylhydroperoxid, tert . - Butylperoxopivalat , Cumolhydroperoxid, Isopropylbenzolmonohy- droperoxid oder Azoverbindungen wie Azobisisobutyronitril . Ge- eignete anorganische Initiatoren sind die Natrium-, Kalium- und Ammoniumsalze der Peroxodischwefelsäure . Die genannten Initiatoren werden im allgemeinen in einer Menge von 0.05 bis 3 Gew% , bezogen auf das Gesamtgewicht der Monomere, eingesetzt.
Als Redox- Initiatoren verwendet man Kombinationen aus den genannten Initiatoren in Kombination mit Reduktionsmitteln. Geeignete Reduktionsmittel sind die Sulfite und Bisulfite der Alkalimetalle und von Ammonium, beispielsweise Natriumsulfit, die Derivate der Sulfoxylsäure wie Zink- oder Alkaliformalde- hydsulfoxylate, beispielsweise Natriumhydroxymethansulfinat , und Ascorbinsäure . Die Reduktionsmittelmenge beträgt vorzugsweise 0.01 bis 5.0 Gew%, bezogen auf das Gesamtgewicht der Monomere .
Zur Steuerung des Molekulargewichts können während der Polymerisation regelnde Substanzen eingesetzt werden. Sie werden üblicherweise in Mengen zwischen 0.01 bis 5.0 Gew% , bezogen auf die zu polymerisierenden Monomeren, eingesetzt und separat oder auch vorgemischt mit Reaktionskomponenten dosiert. Beispiele solcher Substanzen sind n-Dodecylmercaptan, tert . - Dodecylmercaptan, Mercaptopropionsäure, Mercaptopropionsäure- methylester, Isopropanol und Acetaldehyd.
Die Stabilisierung des Polymerisationsansatzes erfolgt mittels der genannten Schutzkolloid-Kombination, wobei vorzugsweise ohne Zusatz von Emulgatoren gearbeitet wird. Geeignete Schutzkolloide aus der Gruppe der hydrophob modifizierten, teilver- seiften Polyvinylester, welche als 2%-ige wassrige Lösung eine Oberflächenspannung von <^ 40 mN/m erzeugen, können beispielsweise mittels Hydrophobierung von Polyvinylacetat durch Copo- lymerisation von Vinylacetat mit hydrophoben Comonomeren erhalten werden. Beispiele hierfür sind Isopropenylacetat , lang- kettige, vorzugsweise mit 7 bis 15 C-Atomen, verzweigte und unverzweigte Vinylester wie Vinylpivalat , Vinylethylhexanoat , Vinylester von gesättigten alpha-verzweigten Monocarbonsäuren mit 5 oder 9 bis 11 C-Atomen, Dialkylmaleinate und Dial- kylfumarate von C-j_- bis C12- Alkoholen wie Diisopropylmaleinat und Diisopropylfumarat , Vinylchlorid, Vinylalkylether von Alkoholen mit mindestens 4 C-Atomen wie Vinylbutylether, C2- bis
C10-Olefine wie Ethen und Decen. Die Hydrophobierung kann auch durch Polymerisation von Vinylacetat in Gegenwart von Reglern wie Alkylmercaptanen mit C2- bis C18-Alkylrest wie Dodecylmercaptan oder tert . -Dodecylmercaptan erfolgen. Eine weitere Möglichkeit zur Hydrophobierung von Polyvinylacetat ist die polymeranaloge Umsetzung, beispielsweise Acetalisierung von Vinylalkoholeinheiten in teilverseiftem Polyvinylacetat mit C1- bis C4-Aldehyden wie Butyraldehyd. Der Anteil der hydrophoben Einheiten beträgt vorzugsweise 0.1 bis 10 Gew% , bezogen auf das Gesamtgewicht des teilverseiften Polyvinylacetats . Der Hydrolysegrad beträgt von 70 bis 99.9 Mol%, vorzugsweise 84 bis 92 Mol%, die Höpplerviskosität (DIN 53015, Methode nach Höppler, 4%-ige wassrige Lösung) von 1 bis 30 mPas, vorzugsweise 2 bis 15 mPas .
Bevorzugt werden als hydrophob modifizierte, teilverseifte Po- lyvinylester die teilverseiften Polyvinylacetate mit 84 bis 92 Mol% Vinylalkohol-Einheiten und 0.1 bis 10 Gew% an Einheiten, welche sich von Vinylestern einer alpha-verzweigten Carbonsäure mit 5 oder 9 bis 11 C-Atomen im Säurerest, Isopropenylace- tat und Ethen ableiten. Besonders bevorzugt werden die teilverseiften Polyvinylacetate mit Vinylalkohol-Einheiten und Einheiten von Vinylestern von alpha-verzweigten Carbonsäuren mit 5 oder 9 bis 11 C-Atomen in den genannten Mengen. Beispiele für derartige Vinylester sind solche, welche als Versa- ticsäurevinylester von der Fa. Shell unter den Bezeichnungen
VeoVaR5, VeoVaR9 , VeoVaR10 und VeoVaRll angeboten werden.
Geeignete Schutzkolloide, welche als 2 %-ige wassrige Lösung eine Oberflächenspannung von > 40 mN/m erzeugen, sind teilverseifte Polyvinylacetate, Polyvinylpyrrolidone, Carboxymethyl - , Methyl-, Hydroxyethyl - , Hydroxypropyl-Cellulose, Poly (meth) - acrylsäure, Poly (meth) acrylamid, Polyvinylsulfonsäuren, Mela- minformaldehydsulfonate, Naphthalinformaldehydsulfonate, Sty- rolmaleinsäure- und Vinylethermaleinsäure-Copolymere, Dextrine wie Gelbdextrin.
Am meisten bevorzugt werden Kombinationen aus den genannten, hydrophob modifizierten Polyvinylestern mit teilverseiften Po- lyvinylacetaten mit einem Hydrolysegrad von 80 bis 95 Mol%, einer Höpplerviskosität von 1 bis 30 mPas, vorzugsweise 2 bis 15 mPas, welche als 2%-ige w ssrige Lösung eine Oberflächenspannung von > 40 mN/m erzeugen. Die Schutzkolloide werden im allgemeinen in einer Menge von insgesamt 1 bis 15 Gew%, bezogen auf das Gesamtgewicht der Mo- nomere, bei der Polymerisation zugesetzt. Das Gewichtsverhältnis von hydrophobiertem, teilverseiftem Polyvinylester zu den Schutzkolloiden, welche als 2%-ige wassrige Lösung eine Oberflächenspannung von > 40 mN/m erzeugen, beträgt von 10/1 bis 1/10. Die genannten Schutzkolloide sind mittels dem Fachmann bekannter Verfahren zugänglich.
Die Emulsionspolymerisation kann im Batchverfahren, wobei alle Komponenten im Reaktor vorgelegt werden, und im Dosierverfahren, wobei einzelne oder mehrere Komponenten während der Polymerisation zugeführt werden, durchgeführt werden. Mischtypen mit Vorlage und Dosierung werden bevorzugt. Die Dosierungen können separat (räumlich und zeitlich) durchgeführt werden oder die zu dosierenden Komponenten können alle oder teilweise voremulgiert dosiert werden.
Zur Initiierung der Polymerisation kann der thermische Initiator insgesamt vorgelegt werden, oder teilweise vorgelegt und teilweise dosiert werden, oder nur dosiert werden. Die Schutzkolloide werden vorzugsweise vorgelegt. Es kann auch eine Komponente aus der Schutzkolloidkombination vorgelegt und die an- dere dosiert werden, oder ein Teil des Gemisches vorgelegt und der Rest als wassrige Lösung zudosiert werden. Vorlage bzw. Dosierung des Schutzkolloidanteils werden dabei so gesteuert, daß das Schutzkolloid stets in ausreichender Menge von etwa 1 bis 15 Gewi , bezogen auf den Monomeranteil in der Polymerisa- tionsmischung, vorhanden ist, da einerseits bei zu niedriger Menge Stippenbildung erfolgt, und andererseits bei zu hoher Menge die Viskosität der Dispersion zu stark erhöht wird.
Nach Abschluß der Polymerisation kann zur Restmonomerentfer- nung in Anwendung bekannter Methoden nachpolymerisiert werden, beispielsweise durch mit Redoxkatalysator initiierter Nachpolymerisation. Flüchtige Restmonomere können auch mittels Destillation, vorzugsweise unter reduziertem Druck, und gegebenenfalls unter Durchleiten oder Überleiten von inerten Schleppgasen wie Luft, Stickstoff oder Wasserdampf entfernt werden.
Die mit dem erfindungsgemäßen Verfahren erhältlichen wässrigen Dispersionen haben einen Feststoffgehalt von 30 bis 75 Gew%, vorzugsweise von 40 bis 65 Gew% . Zur Herstellung der in Wasser redispergierbaren Polymerpulvern werden die wässrigen Dispersionen getrocknet, beispielsweise mittels Wirbelschicht- trocknung, Gefriertrocknung oder Sprühtrocknung. Vorzugsweise werden die Dispersionen sprühgetrocknet. Die Sprühtrocknung erfolgt dabei in üblichen Sprühtrocknungsanlagen, wobei die Zerstäubung mittels Ein-, Zwei- oder Mehrstoffdüsen oder mit einer rotierenden Scheibe erfolgen kann. Die Austrittstempera- tur wird im allgemeinen im Bereich von 55°C bis 100°C, bevorzugt 70°C bis 90°C, je nach Anlage, Tg des Harzes und gewünschtem Trocknungsgrad, gewählt.
Die Gesamtmenge an Schutzkolloid vor dem Trocknungsvorgang soll vorzugsweise mindestens 10 Gew% , bezogen auf den Polymeranteil betragen. Zur Gewährleistung der Redispergierbarkeit ist es in der Regel erforderlich der Dispersion vor der Trocknung weitere Schutzkolloide als Verdüsungshilfe zuzugeben. In der Regel wird die Verdüsungshilfe in einer Menge von 5 bis 25 Gew% , bezogen auf die polymeren Bestandteile der Dispersion, eingesetzt.
Geeignete Verdüsungshilfen sind teilverseifte Polyvinylacetate; Polyvinylpyrrolidone; Polysaccharide in wasserlöslicher Form wie Stärken (Amylose und Amylopectin) , Cellulosen und deren Carboxymethyl- , Methyl-, Hydroxyethyl - , Hydroxypropyl -Derivate; Proteine wie Casein oder Caseinat, Sojaprotein, Gelatine; Ligninsulfonate; synthetische Polymere wie Poly (meth) acrylsäure, Copolymerisate von (Meth) acrylaten mit carboxylfunktionellen Comonomereinheiten, Poly (meth) acrylamid, Polyvinylsulfonsäuren und deren wasserlöslichen Copolymere; Melaminformaldehydsulfonate, Naphthalinformaldehydsulfonate, Styrolmaleinsäure- und Vinylethermaleinsäure-Copolymere . Bevorzugt werden als Verdüsungshilfe teilverseifte Polyvinylacetate mit einem Hydrolysegrad von 80 bis 95 Mol%, einer Höppler-Viskosität von 1 bis 30 mPas, welche gegebenenfalls mit Isopropenylacetat- oder Vinylethereinheiten modifiziert sein können.
Bei der Verdüsung hat sich vielfach ein Gehalt von bis zu 1.5 Gew% Antischaummittel, bezogen auf das Basispolymerisat, als günstig erwiesen. Zur Erhöhung der Lagerfähigkeit durch Ver- besserung der Verblockungsstabilität, insbesonders bei Pulvern mit niedriger Glasübergangstemperatur, kann das erhaltene Pulver mit einem Antiblockmittel (Antibackmittel) , vorzugsweise bis 30 Gew% , bezogen auf das Gesamtgewicht polymerer Bestandteile, versetzt werden. Beispiele für Antiblockmittel sind Ca- bzw. Mg-Carbonat, Talk, Gips, Kieselsäure, Silicate mit Teilchengrößen vorzugsweise im Bereich von 10 nm bis 10 μm.
Zur Verbesserung der anwendungstechnischen Eigenschaften können bei der Verdüsung weitere Zusätze zugegeben werden. Weite- re, in bevorzugten Ausführungsformen enthaltene, Bestandteile von Dispersionspulverzusammensetzungen sind beispielsweise Pigmente, Füllstoffe, Schaumstabilisatoren, Hydrophobierungs- mittel .
Die schutzkolloidstabilisierten Polymere können als Dispersion oder Pulver in den dafür typischen Anwendungsbereichen eingesetzt werden.
Die nachfolgenden Beispiele dienen der weiteren Erläuterung der Erfindung:
Beispiel 1:
In einem Rührautoklaven mit ca. 5 1 Inhalt wurden 1110 ml entionisiertes Wasser, 538 g einer 20 Gew%-igen wässrigen Lösung eines teilverseiften Polyvinylacetats mit einem Hydrolysegrad von 88 Mol%, einer Höpplerviskosität der 4%-igen Lösung von 4 mPas (DIN 53015, Methode nach Höppler bei 20°C), das zu 2 Gew% gelöst in Wasser eine Oberflächenspannung von 44 mN/m erzeugte, sowie 363 g einer 20 Gew%-igen wässrigen Lösung eines teilverseiften Copolymeren aus Vinylacetat und VeoVa 10, mit einem Hydrolysegrad von 88 Mol%, einer Höpplerviskosität der 4%-igen Lösung von 4 mPas, das zu 2 Gew% gelöst in Wasser eine Oberflächenspannung von 37 mN/m erzeugte, vorgelegt. Der pH-Wert wurde mit 10 Gew%-iger Ameisensäure auf 4.0 bis 4.2 eingestellt. Anschließend wurde evakuiert, mit Stickstoff gespült, erneut evakuiert und ein Gemisch aus 112 g Styrol, 168 g 1.3 -Butadien und 8 g tert . -Dodecylmercaptan eingesaugt. Die¬
10 ses Gemisch war durch Zugabe von 30 mg Benzochinon gegen vorzeitige Polymerisation stabilisiert. Nach Aufheizen auf 80°C wurde die Polymerisation durch gleichzeitiges Einfahren von zwei Katalysatorlösungen gestartet, von denen die erste aus 110 g entionisiertem Wasser und 15.5 g einer 40%-igen wässri-
^-~> gen tert . -Butylhydroperoxidlösung und die andere aus 116 g entionisiertem Wasser und 13 g Natriumformaldehydsulfoxylat bestand, wobei die Dosierung der beiden Katalysatorlösungen mit gleicher Zulaufgeschwindigkeit (18 ml/h) erfolgte. Nach Polymerisationsbeginn wurde mit der dosierten Zugabe eines Ge- mischs von 951 g 1.3 -Butadien, 634 g Styrol und 9 g tert . - Dodecylmercaptan mit einer Rate von 5.3 g/min begonnen. Nach Ende des Monomerzulaufs wurde noch 2 h bei 80°C mit unveränderter Zulaufgeschwindigkeit der Initiatorlösung nachpolymeri- siert, anschließend wurde der Zulauf der Initiatorlösungen be-
25 endet und abgekühlt. •
Man erhielt eine stabile, grobteilige (Coulter LS 230; Dw = 950 nm) und koagulatfreie Dispersion, die bei einem Festkörpergehalt von 47% eine Viskosität (Brookfield-Viskosimeter, 20°C, 20 Upm) von 380 mPas aufwies.
30
400 Gew. -Teile der Dispersion wurden mit 200 Gew. -Teilen einer 10.3 Gew%-igen Lösung eines Polyvinylalkohols (teilverseiftes Polyvinylacetat, Hydrolysegrad 88 Mol%, Viskosität der 4%-igen Lösung 13 mPas) , 0.84 Gew. -Teilen Entschäumer und 135 Gew. -Teilen Wasser versetzt und gründlich gemischt. Die Dis¬
35 persion wurde durch eine Zweistoffdüse versprüht. Als Ver- düsungskomponente diente auf 4 bar vorgepreßte Luft, die gebildeten Tropfen wurden mit auf 125°C erhitzter Luft im Gleichstrom getrocknet.
Das erhaltene trockene Pulver wurde mit 10% handelsüblichem Antiblockmittel (Gemisch aus Calcium-Magnesium-Carbonat und Magnesiumhydrosilikat) versetzt.
Vergleichsbeispiel 2 :
Die Herstellung der Dispersion erfolgte analog Beispiel 1, aber unter Vorlage von 900 g einer 20 Gew%-igen wässrigen Lö- sung eines teilverseiften Polyvinylacetats mit einem Hydrolysegrad von 88 Mol%, einer Höpplerviskosität der 4%-igen Lösung von 4 mPas, das zu 2 Gew% gelöst in Wasser eine Oberflächenspannung von 44 mN/m erzeugte, als alleinigem Schutzkolloid. Alle anderen Maßnahmen entsprachen Beispiel 1.
Vergleichsbeispiel 3 :
Die Herstellung der Dispersion erfolgte analog Beispiel 1, aber unter Vorlage von 900 g einer 20 Gew%-igen wässrigen Lösung eines teilverseiften Copolymeren aus Vinylacetat und VeoVa 10 mit einem Hydrolysegrad von 88 Mol% und eine Höpplerviskosität der 4%-igen Lösung von 4 mPas, das zu 2 Gew.-% gelöst in Wasser eine Oberflächenspannung von 37 mN/m erzeugte, als alleinigem Schutzkolloid. Alle anderen Maßnahmen entsprachen Beispiel 1.
Beispiel 4 :
Die Herstellung der Dispersion erfolgte analog Beispiel 1, wobei anstelle des teilverseiften Polyvinylacetats 800 g einer 10 Gew%-igen wässrigen Lösung eines Gelbdextrins (Avedex 35, Fa. Avebe) , das zu 2 Gew.-% gelöst in Wasser eine Oberflächenspannung von 50 mN/m erzeugte, zusammen mit dem hydrophob modifiziertem Schutzkolloid eingesetzt wurde. Alle anderen Maßnahmen entsprachen Beispiel 1. Prüfung der Polymerpulver:
Bestimmung des Absitzverhaltens der Pulver (Röhrenabsitz) :
Zur Bestimmung des Absitzverhaltens wurden jeweils 50 g des Dispersionspulvers in 50 ml Wasser redispergiert , danach auf 0.5 % Festgehalt verdünnt und die Absitzhöhe an Feststoff von 100 ml dieser Redispersion in eine graduierte Röhre gefüllt und das Absetzen nach 1 Stunde und 24 Stunden gemessen.
Bestimmung der Blockfestigkeit:
Zur Bestimmung der Blockfestigkeit wurde das Dispersionspulver in ein Eisenrohr mit Verschraubung gefüllt und danach mit einem Metallstempel belastet. Nach Belastung wurde im Trocken- schrank 16 Stunden bei 50°C gelagert. Nach dem Abkühlen auf Raumtemperatur wurde das Pulver aus dem Rohr entfernt und die Blockstabilität qualitativ durch Zerdrücken des Pulver bestimmt. Die Blockstabilität wurde wie folgt klassifiziert: 1 = sehr gute Blockstabilität 2 = gute Blockstabilität
3 = befriedigende Blockstabilität
4 = nicht blockstabil, Pulver nach Zerdrücken nicht mehr rieselfähig .
Bestimmung des Luftgehalts im Mörtel:
Es wurde ein DIN-Mörtel nach DIN 1164 der nachfolgenden Rezeptur mit einem Wasser-Zement-Faktor W/Z von 0.45 und einem Kunststoff-Zement-Faktor K/Z von 0.15 angerührt: Portlandzement PZ-35F 900 g Normsand 2700 g
Silicon-Entschäumer S-860 (Fa. Wacker Chemie) 7.2 g Dispersionspulver 135 g
Wasser 405 g
Der Luftgehalt wurde mittels DIN 18555 Teil 2 bestimmt.
Bestimmung der Zementstabilität:
Es wurde eine Zementmischung der nachfolgenden Rezeptur angerührt : Portlandzement 82.5 g
Calcit (CaCO)3 10-40 mm 75 g
Quarzsand 200-500 mm 128 g
Dispersionspulver 15 g
Wasser 85 g
Die Verarbeitbarkeit der Zementmischung wurde über einen Zeitraum von 2 Stunden beobachtet und qualitativ beurteilt.
Die Prüfergebnisse sind in Tabelle 1 zusammengefaßt
Tabelle 1:
Figure imgf000018_0001
Mit der erfindungsgemäßen Verfahrensweise (Beispiel 1 und 4) werden auch auf der Basis von Copolymerisaten von hydrophoben Comonomeren wie Styrol und Butadien Dispersionspulver zugänglich, welche sich durch sehr gute Redispergierbarkeit (Röhrenabsitz) und sehr gute anwendungstechnische Eigenschaften (Ze- mentstabilität) auszeichnen. Wird bei der Emulsionspolymerisation allein in Gegenwart von herkömmlichen, nicht hydrophob modifizierten Schutzkolloiden polymerisiert (Vergleichsbeispiel 2), sind die anwendungstechnischen Eigenschaften (Zementstabilität) der damit erhältlichen Pulver unbefriedigend. Bei alleiniger Stabilisierung mit hydrophob modifiziertem
Schutzkolloid (Vergleichsbeispiel 3) werden Pulver mit deutlich schlechterer Redispergierbarkeit und unbefriedigender Blockstabilität erhalten.

Claims

Patentansprüche :
1. Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymeren in Form deren wässrigen Polymerdispersionen oder in Wasser redispergierbaren Pulver durch Emulsionspolymerisation von einem oder mehreren ethylenisch ungesättigten Monomeren in Gegenwart von Schutzkolloid und gegebenfalls Trocknung der damit erhaltenen Polymerdispersionen, dadurch gekennzeichnet, daß ein oder mehrere Monomere aus der Gruppe umfassend Vinylaromaten, 1.3 -Diene, Acrylsäureester und Methacrylsäureester von Alkoholen mit 1 bis 15 C-Atomen in Gegenwart einer Schutzkolloid-Kombination polymerisiert werden, aus einem oder mehreren Schutzkolloiden aus der Gruppe der hydrophob modifizierten, teilver- seiften Polyvinylester, welche als 2%-ige wassrige Lösung eine Oberflächenspannung von <_ 40 mN/m erzeugen, und aus einem oder mehreren Schutzkolloiden, welche als 2%-ige wassrige Lösung eine Oberflächenspannung von > 40 mN/m erzeugen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als hydrophob modifizierte, teilverseifte Polyvinylester solche mit einem Hydrolysegrad von 70 bis 95 Mol%, einer Höpplerviskosität von 1 bis 30 mPas eingesetzt werden, welche durch Copolymerisation von Vinylacetat mit hydrophoben Comonomeren wie Isopropenylacetat , langkettigen, verzweigten und unverzweigten Vinylester, Vinylester von gesättigten alpha-verzweigten Monocarbonsäuren mit 5 oder 9 bis 11 C-Atomen, Dialkylmaleinat , Dialkylfumarat , Vinylchlorid, Vinylalkylether von Alkoholen mit mindestens
4 C-Atomen, C2- bis C10-Olefine, oder durch Polymerisation von Vinylacetat in Gegenwart von
Reglern wie Alkylmercaptanen mit C2- bis C18-Alkylrest , oder durch Acetalisierung von Vinylalkoholeinheiten in teilverseiften Polyvinylacetaten mit C^- bis C4-Aldehyden erhalten werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als hydrophob modifizierte, teilverseifte Polyvinylacetate ein oder mehrere aus der Gruppe der teilverseiften Polyvinylester mit 84 bis 92 Mol% Vinylalkohol-Einhei- ten und 0.1 bis 10 Gew% Vinylester-Einheiten von Vinylestern einer alpha-verzweigten Carbonsäure mit 5 oder 9 bis 11 C-Atomen im Säurerest, Isopropenylacetat-Einheiten oder Ethen-Einheiten, eingesetzt werden.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als Schutzkolloide, welche als 2%-ige wassrige Lösung eine Oberflächenspannung von > 40 mN/m erzeugen, ein oder mehrere aus der Gruppe umfassend teilverseifte Polyvinylacetate, Polyvinylpyrrolidone, Carboxymethyl- , Methyl-, Hydroxyethyl- , Hydroxypropyl-Cellulose, Poly (meth) acryl- säure, Poly (meth) acrylamid, Polyvinylsulfonsäuren, Mela- minformaldehydsulfonate, Naphthalinformaldehydsulfonate, Styrolmaleinsäure- und Vinylethermaleinsäure-Copolymere, Dextrine eingesetzt werden.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß in Gegenwart von teilverseiftem Polyvinylacetat mit einem Hydrolysegrad von 80 bis 95 Mol% und einer Höpplerviskosität von 1 bis 30 mPas, polymerisiert wird.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß als ethylenisch ungesättigte Monomere Gemische mit 20 bis 80 Gew% Vinylaromat und 80 bis 20 Gew% 1.3 -Dien, oder Gemische mit 20 bis 80 Gew% Vinylaromat und 80 bis 20 Gew% Acrylsäureester, oder Gemische mit 20 bis 80 Gew%
Methacrylsäureester und 80 bis 20 Gew% Acrylsäureester polymerisiert werden.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß noch 0.05 bis 10 Gew%, bezogen auf das Gesamtgewicht des Monomergemisehes, Hilfsmonomere copolymerisiert werden aus der Gruppe umfassend ethylenisch ungesättigte Mono- und Dicarbonsäuren, ethylenisch ungesättigte Carbonsäure- amide und -nitrile, Mono- und Diester der Fumarsäure und Maleinsäure, ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorvernetzende, mehrfach ethylenisch ungesättigte Comonomere, nachvernetzende Comonomere, epoxidfunk- tionelle Comonomere, siliciumfunktionelle Comonomere, Comonomere mit Hydroxy- oder CO-Gruppen.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die Trocknung der Polymerdispersion mittels Sprüh- trocknung, gegebenenfalls nach Zugabe weiterer Schutzkolloide erfolgt.
PCT/EP1998/006102 1997-09-26 1998-09-24 Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren WO1999016794A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT98947549T ATE202120T1 (de) 1997-09-26 1998-09-24 Verfahren zur herstellung von schutzkolloid- stabilisierten polymeren
US09/424,193 US6300403B1 (en) 1997-09-26 1998-09-24 Method for producing polymers stabilized with protective colloids
HU0004256A HU226045B1 (en) 1997-09-26 1998-09-24 Method for producing polymers stabilised with protective colloids
EP98947549A EP1023331B1 (de) 1997-09-26 1998-09-24 Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren
JP2000513876A JP3270450B2 (ja) 1997-09-26 1998-09-24 保護コロイド−安定化されたポリマーの製法
DK98947549T DK1023331T3 (da) 1997-09-26 1998-09-24 Fremgangsmåde til fremstilling af beskyttelseskolloidstabiliserede polymerer
BR9812386-6A BR9812386A (pt) 1997-09-26 1998-09-24 Processo para preparação de polìmeros estabilizados por colóides de proteção
PL339494A PL192460B1 (pl) 1997-09-26 1998-09-24 Sposób wytwarzania stabilizowanych koloidami ochronnymi polimerów
DE59800870T DE59800870D1 (de) 1997-09-26 1998-09-24 Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19742679 1997-09-26
DE19742679.4 1997-09-26

Publications (1)

Publication Number Publication Date
WO1999016794A1 true WO1999016794A1 (de) 1999-04-08

Family

ID=7843810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006102 WO1999016794A1 (de) 1997-09-26 1998-09-24 Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren

Country Status (14)

Country Link
US (1) US6300403B1 (de)
EP (1) EP1023331B1 (de)
JP (1) JP3270450B2 (de)
KR (1) KR100377916B1 (de)
AT (1) ATE202120T1 (de)
BR (1) BR9812386A (de)
CZ (1) CZ292334B6 (de)
DE (1) DE59800870D1 (de)
DK (1) DK1023331T3 (de)
ES (1) ES2159965T3 (de)
HU (1) HU226045B1 (de)
PL (1) PL192460B1 (de)
PT (1) PT1023331E (de)
WO (1) WO1999016794A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030991A1 (de) * 1998-11-19 2000-06-02 Wacker-Chemie Gmbh Verwendung von schutzkolloid- stabilisierten vinylaromat -1,3-dien- mischpolymerisaten zur modifizierung von gipswerkstoffen oder von werkstoffen auf calciumcarbonat-basis
WO2000030992A1 (de) * 1998-11-19 2000-06-02 Wacker-Chemie Gmbh Verwendung von schutzkolloid-stabilisierten vinylaromat-1,3-dien-mischpolymerisaten in baukleber-rezepturen
DE19962568A1 (de) * 1999-12-23 2001-07-12 Wacker Polymer Systems Gmbh Polyvinylalkohol-stabilisierte 1,3-Dien-(Meth)acrylsäureester-Mischpolymerisate
DE10062176A1 (de) * 2000-12-14 2002-07-04 Wacker Polymer Systems Gmbh Polyvinylacetal-gepfropfte Polymerisate
US6417297B1 (en) 1999-06-24 2002-07-09 Wacker Polymer Systems Gmbh & Co. Kg Process for reducing the odor emission of aqueous vinylaromatic/1,3-diene copolymer dispersions
US6730722B1 (en) 1998-06-19 2004-05-04 Wacker-Chemie Gmbh Cross-linkable polymer powder compositions
US6756454B1 (en) 1998-11-19 2004-06-29 Wacker-Chemie Gmbh Process for reducing the odor of vinylaromatic-1,3-diene copolymer dispersions stabilized by protective colloids
US6841595B2 (en) 2001-07-05 2005-01-11 Polymerlatex Gmbh & Co. Kg Process for the preparation of protective colloid-stabilized, emulsifier-free, aqueous dispersions
KR100478969B1 (ko) * 2000-09-19 2005-03-24 가부시키가이샤 구라레 폴리비닐 에스테르 수지 에멀젼의 제조 방법
WO2008133375A1 (en) * 2007-04-27 2008-11-06 Youngwoo Chemtech Co., Ltd. Acrylic acid ester copolymer composition and redispersible powders
US7981958B1 (en) * 2002-09-17 2011-07-19 Kuraray Co., Ltd. Synthetic resin emulsion powder
EP2433984A1 (de) * 2010-09-27 2012-03-28 Dow Global Technologies LLC Redispergierbare Polymerpulver auf Styrol-Butadienbasis mit verbesserter Stabilität in Zementanwendungen
US8217109B2 (en) 2002-11-14 2012-07-10 Wacker Chemie Ag Protective-colloid-stabilized polymers in the form of their aqueous dispersions or of their water-redispersible powders
US8802767B2 (en) 2011-07-27 2014-08-12 Dow Global Technologies Llc Redispersible polymer powder from polyolefin dispersions and the use thereof in construction applications
WO2019020157A1 (de) * 2017-07-24 2019-01-31 Wacker Chemie Ag Dispersionspulver-zusammensetzung enthaltend vinylalkohol-copolymerisat
WO2019020156A1 (de) 2017-07-24 2019-01-31 Wacker Chemie Ag Hydrophobe und kaltwasserlösliche vinylalkohol-copolymere

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240105A1 (en) * 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
US20090149479A1 (en) * 1998-11-02 2009-06-11 Elan Pharma International Limited Dosing regimen
CA2348871C (en) * 1998-11-02 2009-04-14 John G. Devane Multiparticulate modified release composition
MXPA02004293A (es) 1999-10-29 2002-10-31 Euro Celtique Sa Formulaciones de hidrocodona de liberacion controlada..
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
AU2278401A (en) 1999-12-21 2001-07-03 Omnova Solutions Inc. Polyvinyl alcohol copolymer composition
DE10035589A1 (de) * 2000-07-21 2002-02-07 Wacker Polymer Systems Gmbh Verfahren zur Herstellun von Polymerdispersionen mi t hohem Feststoffgehalt
DE10049127C2 (de) * 2000-10-02 2003-02-20 Clariant Gmbh Redispergierbare Dispersionspulver-Zusammensetzung, Verfahren zu deren Herstellung sowie deren Verwendung
EP1337244A4 (de) 2000-10-30 2006-01-11 Euro Celtique Sa Hydrocodon-formulierungen mit kontrollierter freisetzung
DE10062177A1 (de) * 2000-12-14 2002-07-04 Wacker Polymer Systems Gmbh Verfahren zur Herstellung von Polymerisaten mit reduziertem Gehalt an flüchtigen Komponenten
US20080220074A1 (en) * 2002-10-04 2008-09-11 Elan Corporation Plc Gamma radiation sterilized nanoparticulate docetaxel compositions and methods of making same
DE10316079A1 (de) * 2003-04-08 2004-11-11 Wacker Polymer Systems Gmbh & Co. Kg Polyvinylalkohol-stabilisierte Redispersionspulver mit verflüssigenden Eigenschaften
DE10346973A1 (de) * 2003-10-09 2005-05-04 Wacker Polymer Systems Gmbh Modifizierte Polyvinylalkohole enthaltende Polymerzusammensetzungen
US20060121112A1 (en) * 2004-12-08 2006-06-08 Elan Corporation, Plc Topiramate pharmaceutical composition
KR20080007586A (ko) * 2005-04-12 2008-01-22 엘란 파마 인터내셔널 리미티드 세균감염증의 치료를 위한 세팔로스포린 함유 조절 방출조성물
US20100136106A1 (en) * 2005-06-08 2010-06-03 Gary Liversidge Modified Release Famciclovir Compositions
CN101168584B (zh) * 2007-09-28 2010-10-06 上海东升新材料有限公司 可再分散乳胶粉乳液和可再分散乳胶粉及其制备方法
DE102011076407A1 (de) * 2011-05-24 2012-11-29 Wacker Chemie Ag Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181143A (en) * 1985-03-06 1987-04-15 Nippon Synthetic Chem Ind Dispersion stabilizer
US4684704A (en) * 1986-06-19 1987-08-04 Hercules Incorporated Hydrophobically modified hydroxyethyl cellulose in aqueous polymerization dispersions
WO1996017891A1 (fr) * 1994-12-09 1996-06-13 Rhone-Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes prepares a partir de monomeres a insaturation ethylenique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1260145B (de) 1965-02-05 1968-02-01 Basf Ag Verfahren zur Herstellung von Polymerisatdispersionen
DE3111602A1 (de) 1981-03-24 1982-10-07 Wacker-Chemie GmbH, 8000 München Copolymerisate erhoehter wasserfestigkeit, verfahren zu ihrer herstellung und ihre verwendung
US5849840A (en) * 1986-11-07 1998-12-15 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Dispersing stabilizer
US4801643A (en) * 1987-03-30 1989-01-31 Hercules Incorporated Small particle size non-surface active protective colloid-stabilized latexes derived from monomers of high aqueous phase grafting tendencies
DE4134672A1 (de) 1991-10-19 1993-04-22 Huels Chemische Werke Ag Verfahren zur herstellung von schutzkolloidstabilisierten, emulgatorfreien, waessrigen kunststoffdispersionen
DE4212768A1 (de) 1992-04-16 1993-10-21 Huels Chemische Werke Ag Verfahren zur Herstellung von wäßrigen Polymerdispersionen
FR2729150A1 (fr) 1995-01-06 1996-07-12 Rhone Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes a structure "coeur/ecorce"
FR2735134B1 (fr) 1995-06-09 1997-07-11 Rhone Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes a structure coeur/ecorce
US5830934A (en) 1995-10-27 1998-11-03 Reichhold Chemicals, Inc. Colloidally stabilized emulsion polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181143A (en) * 1985-03-06 1987-04-15 Nippon Synthetic Chem Ind Dispersion stabilizer
US4684704A (en) * 1986-06-19 1987-08-04 Hercules Incorporated Hydrophobically modified hydroxyethyl cellulose in aqueous polymerization dispersions
WO1996017891A1 (fr) * 1994-12-09 1996-06-13 Rhone-Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes prepares a partir de monomeres a insaturation ethylenique

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730722B1 (en) 1998-06-19 2004-05-04 Wacker-Chemie Gmbh Cross-linkable polymer powder compositions
US6552120B1 (en) 1998-11-19 2003-04-22 Wacker-Chemie Gmbh Use of Vinylaromatic/1,3-diene copolymers stabilized with protective colloids in building adhesive formulations
WO2000030992A1 (de) * 1998-11-19 2000-06-02 Wacker-Chemie Gmbh Verwendung von schutzkolloid-stabilisierten vinylaromat-1,3-dien-mischpolymerisaten in baukleber-rezepturen
US6756454B1 (en) 1998-11-19 2004-06-29 Wacker-Chemie Gmbh Process for reducing the odor of vinylaromatic-1,3-diene copolymer dispersions stabilized by protective colloids
US6566434B1 (en) 1998-11-19 2003-05-20 Wacker-Chemie Gmbh Vinyl aromatic-1,3-diene copolymers stabilized with protection colloids used for modifying materials containing plaster or calcium carbonate
WO2000030991A1 (de) * 1998-11-19 2000-06-02 Wacker-Chemie Gmbh Verwendung von schutzkolloid- stabilisierten vinylaromat -1,3-dien- mischpolymerisaten zur modifizierung von gipswerkstoffen oder von werkstoffen auf calciumcarbonat-basis
US6417297B1 (en) 1999-06-24 2002-07-09 Wacker Polymer Systems Gmbh & Co. Kg Process for reducing the odor emission of aqueous vinylaromatic/1,3-diene copolymer dispersions
DE19962568C2 (de) * 1999-12-23 2002-06-20 Wacker Polymer Systems Gmbh Verfahren zur Herstellung von Polyvinylalkohol-stabilisierten 1,3-Dien-(Meth)acrylsäureester-Mischpolymerisaten
DE19962568A1 (de) * 1999-12-23 2001-07-12 Wacker Polymer Systems Gmbh Polyvinylalkohol-stabilisierte 1,3-Dien-(Meth)acrylsäureester-Mischpolymerisate
KR100478969B1 (ko) * 2000-09-19 2005-03-24 가부시키가이샤 구라레 폴리비닐 에스테르 수지 에멀젼의 제조 방법
US6734246B2 (en) 2000-12-14 2004-05-11 Wacker Polymer Systems Gmbh & Co. Kg Polyvinylacetal-grafted polymers
DE10062176A1 (de) * 2000-12-14 2002-07-04 Wacker Polymer Systems Gmbh Polyvinylacetal-gepfropfte Polymerisate
US6841595B2 (en) 2001-07-05 2005-01-11 Polymerlatex Gmbh & Co. Kg Process for the preparation of protective colloid-stabilized, emulsifier-free, aqueous dispersions
US7981958B1 (en) * 2002-09-17 2011-07-19 Kuraray Co., Ltd. Synthetic resin emulsion powder
US8217109B2 (en) 2002-11-14 2012-07-10 Wacker Chemie Ag Protective-colloid-stabilized polymers in the form of their aqueous dispersions or of their water-redispersible powders
WO2008133375A1 (en) * 2007-04-27 2008-11-06 Youngwoo Chemtech Co., Ltd. Acrylic acid ester copolymer composition and redispersible powders
EP2433984A1 (de) * 2010-09-27 2012-03-28 Dow Global Technologies LLC Redispergierbare Polymerpulver auf Styrol-Butadienbasis mit verbesserter Stabilität in Zementanwendungen
US9199881B2 (en) 2010-09-27 2015-12-01 Dow Global Technologies, Llc Styrene-butadiene based redispersible polymer powders with improved stability in cement applications
US8802767B2 (en) 2011-07-27 2014-08-12 Dow Global Technologies Llc Redispersible polymer powder from polyolefin dispersions and the use thereof in construction applications
WO2019020157A1 (de) * 2017-07-24 2019-01-31 Wacker Chemie Ag Dispersionspulver-zusammensetzung enthaltend vinylalkohol-copolymerisat
WO2019020156A1 (de) 2017-07-24 2019-01-31 Wacker Chemie Ag Hydrophobe und kaltwasserlösliche vinylalkohol-copolymere
US11339228B2 (en) 2017-07-24 2022-05-24 Wacker Chemie Ag Dispersion powder composition containing vinyl alcohol copolymerisate

Also Published As

Publication number Publication date
HUP0004256A2 (en) 2001-03-28
ATE202120T1 (de) 2001-06-15
KR20010024303A (ko) 2001-03-26
PL192460B1 (pl) 2006-10-31
US6300403B1 (en) 2001-10-09
DK1023331T3 (da) 2001-09-17
JP2001518532A (ja) 2001-10-16
ES2159965T3 (es) 2001-10-16
JP3270450B2 (ja) 2002-04-02
PL339494A1 (en) 2000-12-18
EP1023331B1 (de) 2001-06-13
EP1023331A1 (de) 2000-08-02
HU226045B1 (en) 2008-03-28
KR100377916B1 (ko) 2003-03-29
PT1023331E (pt) 2001-11-30
CZ292334B6 (cs) 2003-09-17
BR9812386A (pt) 2000-09-12
DE59800870D1 (de) 2001-07-19
CZ20001078A3 (cs) 2000-07-12
HUP0004256A3 (en) 2001-04-28

Similar Documents

Publication Publication Date Title
EP1023331B1 (de) Verfahren zur herstellung von schutzkolloid-stabilisierten polymeren
EP1262465B1 (de) Verwendung von Mischpolymerisaten von Vinylester-, (Meth)acrylsäureester- und gegebenenfalls Ethylen-Comonomeren in Baustoffen
EP1984428B2 (de) Verfahren zur herstellung von kationisch stabilisierten und in wasser redispergierbaren polymerpulverzusammensetzungen
EP1420033B1 (de) Schutzkolloidstabilisierte Polymerisate in Form deren wässrigen Dispersionen und in Wasser redispergierbaren Pulver
EP1110978B1 (de) Verfahren zur Herstellung von Vinylester-(Meth)acrylsäureester-Mischpolymerisaten
EP1352915B1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten mittels kontinuierlicher Emulsionspolymerisation
WO2004092094A1 (de) Redispersionspulver-zusammensetzung mit abbindebesschleunigender wirkung
EP1174447B1 (de) Verfahren zur Herstellung von zweiphasigen Polymerisaten in Form deren wässrigen Polymerdispersionen und in Wasser redispergierbaren Polymerpulver
EP1323752B1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten mittels kontinuierlicher Emulsionspolymerisation
EP1215219B1 (de) Polyvinylacetal-gepfropfte Polymerisate
EP1792922A1 (de) Schutzkolloidstabilisiertes Dispersionspulver
EP1110979A1 (de) Polyvinylalkohol-stabilisierte 1,3-Dien-(Meth)acrylsäureester-Mischpolymerisate
EP1065224B1 (de) Verfahren zur Herstellung von Polyvinylalkohol-stabilisierten Polymerisaten
EP1036101B1 (de) Verfahren zur herstellung von schutzkolloidstabilisierten vinylaromat-1.3-dien-copolymerisaten
EP1112238B1 (de) Verwendung von schutzkolloid-stabilisierten vinylaromat-1,3-dien-mischpolymerisaten in baukleber-rezepturen
EP1174446B1 (de) Verfahren zur Herstellung von Polymerdispersionen mit hohem Feststoffgehalt
WO2005035645A2 (de) Modifizierte polyvinylalkohole enthaltende polymerzusammensetzungen
WO2014076154A1 (de) Verfahren zur herstellung von polyvinylalkohol-stabilisierten polymerisaten mittels emulsionspolymerisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CZ HU JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09424193

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998947549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2000-1078

Country of ref document: CZ

Ref document number: 1020007003202

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2000-1078

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1998947549

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003202

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998947549

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007003202

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV2000-1078

Country of ref document: CZ