WO1999014570A1 - Oscillateur multi-axial et procede de commande dudit oscillateur - Google Patents

Oscillateur multi-axial et procede de commande dudit oscillateur Download PDF

Info

Publication number
WO1999014570A1
WO1999014570A1 PCT/JP1997/003230 JP9703230W WO9914570A1 WO 1999014570 A1 WO1999014570 A1 WO 1999014570A1 JP 9703230 W JP9703230 W JP 9703230W WO 9914570 A1 WO9914570 A1 WO 9914570A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
command value
component
calculating
vibration
Prior art date
Application number
PCT/JP1997/003230
Other languages
English (en)
Japanese (ja)
Inventor
Yasuyuki Momoi
Toshihiko Horiuchi
Masaharu Sugano
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/003230 priority Critical patent/WO1999014570A1/fr
Priority to JP51762999A priority patent/JP3435167B2/ja
Publication of WO1999014570A1 publication Critical patent/WO1999014570A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands

Definitions

  • the present invention relates to a multi-axis vibration device having a plurality of vibration directions with respect to a specimen and a control method of the multi-axis vibration device.
  • the method of controlling the multi-axis vibration device is as described on page 400 of the Proceedings of the 74th Ordinary General Meeting of the Japan Society of Mechanical Engineers (I) (1997).
  • a method of obtaining a displacement command value of the vibrator using the position of the vibrating point and the command value of the rotation angle, and driving the vibrator based on the command value As described in JP-A-43-37, a method of obtaining a load command value for a vibrator from a command value of a load at a vibrating point and driving the vibrator based on the command value, [3]
  • US Pat. No. 1,595,699 there is known a method of controlling the load of a vertically arranged exciter and controlling the displacement of a horizontally arranged exciter.
  • the present invention has been made in view of the above-mentioned disadvantages of the related art, and has an object to control a displacement in one direction and a load in another direction.
  • An object of the present invention is to provide a shaft vibration device.
  • a first aspect of the present invention for achieving the above object is to vibrate a specimen by a plurality of vibrators, and a vibration test having three or more degrees of freedom is possible.
  • a multi-axis vibration device at least one component of position coordinates having a plurality of components describing the motion of a virtually determined vibration point and a plurality of components applied to the vibration point are determined.
  • At least one component of the load has a component, and the position of the actual excitation point and the load detection means of the excitation point for obtaining the load corresponding to the command value selected by the number of components according to the degree of freedom And calculating a vibration command value for each of the plurality of vibrators using the position and load of the vibration point obtained by the position load detecting means and the command value.
  • Means; and vibration control means for controlling the vibrator based on the vibration command value obtained by the calculation means. ;
  • the excitation command value is a load command value
  • the calculating means calculates a first control load component in a direction corresponding to the component of the command value.
  • a second calculator for calculating a load command value to each of the vibrators from the control load component.
  • the first arithmetic unit has a selection means for selecting a load and a position as a command value for at least one component of the position coordinates describing the motion of the excitation point.
  • the first calculation unit calculates the control load when at least one component of the position coordinates describing the motion of the excitation point is input as the command value.
  • the control load calculation unit of It is desirable to have a second control load calculation unit that calculates the control load when the control load is input as an instruction value.
  • the position coordinates have a translational position coordinate component and a rotational direction position coordinate component
  • the load has a translational load component and a rotational moment component
  • a second aspect of the present invention for achieving the above object is to vibrate a specimen by using a plurality of vibrators, and a vibration test having three or more degrees of freedom is possible.
  • the control method of the multi-axis vibration device at least one component of the position coordinates having a plurality of components that describe the motion of the virtual excitation point and a plurality of components added to the excitation point
  • the vibration command value is a load command value
  • the step of calculating the vibration command value is performed in a direction corresponding to the component of the command value.
  • a second calculation step for calculating a load command value to each of the vibrators from the control load component.
  • the first calculation step includes a selection step of selecting a load and a position as command values for at least one component of the position coordinates describing the motion of the excitation point. It is desirable to have.
  • the position is input as a command value or the load is used as a command value for at least one component of the position coordinates describing the motion of the excitation point. It is desirable to have a step to judge whether or not it has been entered. Furthermore, it is desirable that the position coordinates have a translational position coordinate component and a rotational position coordinate component, and that the load has a translational load component and a rotational moment component. New
  • a third aspect of the present invention for achieving the above object is to excite a specimen by a plurality of exciters, and to control a motion of a virtually determined excitation point.
  • a vibration device a means for inputting a displacement or load command signal input to the multi-axis vibration device and a position load capable of detecting data corresponding to at least one of the position and the load of the specimen.
  • the position of the excitation point and the command value of the load are obtained by using the detection means, the detection value of the position load detection means, and the command value to the vibrator. It is provided with calculation means for calculating a vibration command value for each, and switching means for switching the connection between the calculation means and a displacement or load command signal.
  • FIG. 1 is a block diagram of one embodiment of the multi-axis vibration device according to the present invention
  • FIG. 2 is a schematic diagram of one embodiment of the multi-axis vibration mechanism in FIG.
  • FIG. 3 is a diagram for explaining the operation of the multiaxial vibration device shown in FIG.
  • FIG. 4 is a diagram for explaining another embodiment of the multi-axis vibration device according to the present invention
  • FIG. 5 is a diagram for explaining the operation thereof.
  • FIG. 6 is a diagram illustrating still another embodiment of the multi-axis vibration device according to the present invention
  • FIG. 7 is a diagram illustrating the operation thereof.
  • FIG. 8 and FIG. 9 are diagrams illustrating still another embodiment of the multi-axis vibration device according to the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of a vibration exciter and a transmission mechanism according to the present invention (hereinafter, these are collectively referred to as a multi-axis vibration mechanism).
  • the exciters 20 a, 20 b, and 20 c attached to the frame 20 e are connected to the specimen 20 f via an excitation jig 20 d.
  • the vibrating jig 20d is driven in the horizontal direction, the vertical direction, and the rotational direction in the plane.
  • the specimen 20 f is translated and rotated.
  • the position attached to each of the exciters 20a, 20b, and 20c-the rotation angle sensor 21a Measure the displacement (including rotational displacement) of the shaker or shaker using, 21b and 21c.
  • the load attached to the tip of the exciter 20a, 20b, 20c Measure the load (including the moment) of the shaker or the shaker using 22a, 22b, and 22c.
  • an excitation point 20 g may be set at the intersection of the excitation jig 20 d and the neutral axis 20 h of the specimen.
  • a coordinate system (general coordinate system) that defines the position of the excitation point and the rotation angle around the excitation point
  • the origin is the position
  • x is the horizontal direction
  • z is the vertical direction
  • the rotation angle around the origin in the X-z plane is y.
  • the load corresponding to x and z is F x
  • the moment corresponding to F z and ey is My.
  • rectangular coordinates are set, but it is also possible to use coordinates other than rectangular coordinates, such as cylindrical coordinates and spherical coordinates. In the present invention, three or more degrees of freedom are used.
  • the present invention can accurately handle motions that were conventionally treated as approximately two-degree-of-freedom motions because it was difficult to perform accurate feedback of the load on the excitation point and data. It is possible to improve the test accuracy by describing it.
  • FIGS. Fig. 1 is a block diagram of the multi-axis vibration device.
  • the multi-axis vibration mechanism 20 shown in FIG. 2 is used as the multi-axis vibration mechanism 20.
  • the specimen 20 f is displaced and excited in the X direction, and a constant load is applied in the z direction. 0
  • control is performed to maintain a constant displacement.
  • an object of the present invention is to control displacement in one direction of a specimen and control load in another direction.
  • the displacement command value in the X direction is xref
  • the displacement command value in the direction is eyref
  • the load command value in the z direction is Fzref.
  • the command value is input by, for example, a function generator, and corresponds to a seismic wave or the weight of a structure.
  • the multi-axis vibration device shown in FIG. 1 includes a multi-axis vibration mechanism 20, detection means 21 for detecting the position and rotation angle of the vibration point, and a load and a moment at the vibration point.
  • Detecting means 22 for detecting the command value (xref, ⁇ yref, Fzref), the position and the rotation angle (X, z, ⁇ y) of the excitation point, the load and the moment at the excitation point (FX, Fz, My) to calculate the respective exciter command values (f 1 ref, f 2 ref, f 3 ref). a, 20b, and 20c.
  • a means for detecting the position and the rotation angle of the excitation point there is, for example, a displacement measuring device for measuring the displacement of each exciter. In this case, the displacement measurement The position and rotation angle of the excitation point are calculated from the values. Also, a visual sensor or a laser displacement meter can be used as a means for detecting the position and rotation angle of the excitation point. As a means for detecting the load and moment at the excitation point, for example, there is a load cell arranged between the excitation jig and the specimen.
  • Step 101 (1) Calculate the command values (xref, eyrref, Fzreff) (Step 101).
  • the command value generation means is omitted.
  • the command value for example, a signal generated by a function generator may be used.
  • FIG. Fig. 4 is a block diagram of the multi-axis vibration device.
  • This embodiment also uses the multi-axis vibration mechanism 20 shown in FIG. 4 and 5 is different from the embodiment shown in FIG. 1 in that the types of command signals to each of the vibrators 20a, 20b and 20c are limited. It is here. That is, the command signal is limited to the load for any of the vibrators 20a, 20b, and 20c.
  • Step 201 Calculate the command values (xref, ⁇ yref, Fzref) (Step 201).
  • the command value generation means is omitted.
  • the command value for example, a signal generated by a function generator may be used.
  • FIG. Fig. 6 is a block diagram of the multi-axis vibration device. Also in this embodiment, the specimen 20 f is displaced and excited in the X direction and a constant load is applied in the z direction by using the multi-axial excitation mechanism shown in FIG.
  • the means 1 for calculating the load command value for each vibrator consists of the displacement command value X re X in the X direction, the position of the vibration point, and the rotation angle.
  • Fxc Kxp (xref -x) + Kxd (xref-x) + Kxi (xref-x) (1)
  • Kxp x-direction proportional displacement gain
  • Kxd x-direction displacement differential gain
  • Myc KQyp (Qyref- ⁇ ⁇ ) + KQyd (Qyref-) + KQyi ⁇ (Qyref -By) (2) where K9yp: ⁇ ⁇ y direction displacement proportional gain,
  • KFzi z-direction load integration gain.
  • J (x, z, 9y) is the displacement (11,12,13) of each exciter.
  • I2 l2 (x, z, & y)
  • Step 301 (1) Calculate the command value (xref, ⁇ re e, Fzref) (Step 301).
  • the command value generation means is omitted.
  • the command value for example, a signal generated by a function generator is used.
  • Step 302 Calculate the control load F xc in the x direction from the displacement command value X ref in the X direction, the position of the excitation point and the rotation angle (xz, ⁇ y) based on equation (1) (step 1). Step 302).
  • the control load Myc in the y direction is calculated based on equation (2) (step 303).
  • the load command value Fzref in the z direction, the load and moment at the excitation point (Fx, Fz, My), the position of the excitation point, and the rotation angle (x, z, ⁇ y)) and the control load Fzc in the z direction is calculated based on equation (3) (step 304).
  • Means 1 for calculating the load command value to each vibrator includes means 1 a for calculating the control load F c in the X direction, means 1 c for calculating the control load F zc in the z direction, and ⁇
  • Each exciter load command is calculated from the means 1 b for calculating the control load Myc, the control load (FXc, Fzc, Myc), the position of the excitation point and the rotation angle (x, z, y).
  • the means 1a, 1b, 1c for calculating the control load in each direction are, for example, for the x direction, The displacement command value xref in the x direction and the position and rotation angle (X, z,
  • the y and z directions are configured in the same way as the X direction.
  • Equation (5) An example of the calculation in (1) is shown in equation (5), and an example of the calculation in the means 41 for calculating the control load Fxc2 with respect to the load command value in the X direction is shown in equation (6).
  • Fxc ⁇ Kxp ⁇ xref— x) + Kxd (xref-x) + ⁇ > (xref—x) v 5)
  • Kxp is the x-direction displacement proportional gain
  • Kxd is the X-direction displacement derivative
  • Fxc2 KFxp (Fxref-Fx) + KFxd (Fxref-Fx) + KFxi? (Fxref-Fx) (6) where KFxp is the x-direction load proportional gain,
  • KFxi X-direction load integration gain.
  • the way of giving command values in each direction in the present embodiment is the same as in the previous examples.
  • the control load switching means 51, 52, 53 provided for each direction outputs a control load corresponding to the displacement command value when a displacement command value is given for that direction. Is set to On the other hand, when a load command value is given in that direction, it is set so as to output a control load corresponding to the load command value.
  • FIG. 9 shows a modification of the multiaxial vibration device of the present invention.
  • This modification has a setting means 30 for switching the control load switching means 51, 52, 53 for each direction in the embodiment of FIG. According to this modification, the direction for controlling the displacement and the direction for controlling the load can be easily set.
  • it is possible to realize a multiaxial vibration device capable of controlling displacement in one direction and controlling a load in another direction, and a control method thereof. You.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

L'invention concerne un oscillateur multi-axial, permettant de faire osciller un échantillon dans le sens de la translation et dans le sens de rotation, et un procédé permettant de commander ledit oscillateur. Dans un oscillateur multi-axial, on fixe de manière fictive un point oscillant, puis on détermine une position correspondant à un fonctionnement libre, qui comprend au moins une des composantes de la position dudit point oscillant et au moins une des composantes de la force appliquée audit point, et une valeur de consigne d'une force. On détermine la position d'une force et la force appliquée à un point oscillant réel, correspondant à une valeur de consigne, sur la base d'un moyen permettant de détecter la position d'un point oscillant et d'un moyen permettant de détecter la force appliquée à un point oscillant, qui sont disposés dans l'oscillateur. Sur la base de la position et de la valeur de la force obtenues, ainsi que de la position et de la valeur de consigne déjà déterminées, on calcule une valeur de consigne de l'oscillation par rapport à un oscillateur. Celui-ci est commandé sur la base de cette valeur de consigne d'oscillation. On peut ainsi commander le déplacement d'un échantillon dans une direction et une force dans l'autre direction.
PCT/JP1997/003230 1997-09-12 1997-09-12 Oscillateur multi-axial et procede de commande dudit oscillateur WO1999014570A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1997/003230 WO1999014570A1 (fr) 1997-09-12 1997-09-12 Oscillateur multi-axial et procede de commande dudit oscillateur
JP51762999A JP3435167B2 (ja) 1997-09-12 1997-09-12 多軸加振装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003230 WO1999014570A1 (fr) 1997-09-12 1997-09-12 Oscillateur multi-axial et procede de commande dudit oscillateur

Publications (1)

Publication Number Publication Date
WO1999014570A1 true WO1999014570A1 (fr) 1999-03-25

Family

ID=14181112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003230 WO1999014570A1 (fr) 1997-09-12 1997-09-12 Oscillateur multi-axial et procede de commande dudit oscillateur

Country Status (2)

Country Link
JP (1) JP3435167B2 (fr)
WO (1) WO1999014570A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310846A (ja) * 2001-04-19 2002-10-23 Akashi Corp 振動発生機における転倒モーメント測定方法
JP2015165188A (ja) * 2014-02-28 2015-09-17 三菱重工業株式会社 振動試験装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110437A (ja) * 1989-09-25 1991-05-10 Hitachi Ltd 載荷試験装置
JPH08313387A (ja) * 1995-05-16 1996-11-29 Juzo Maekawa 重量体を支持している構造部材又は構造体の地震の横揺れと縦揺れに対するシュミレーション試験装置
JPH09147044A (ja) * 1995-11-21 1997-06-06 Kyowa Electron Instr Co Ltd アナログ除算回路およびそのアナログ除算回路を用いた加振機におけるクロストーク補償回路
JPH09159569A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 加振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110437A (ja) * 1989-09-25 1991-05-10 Hitachi Ltd 載荷試験装置
JPH08313387A (ja) * 1995-05-16 1996-11-29 Juzo Maekawa 重量体を支持している構造部材又は構造体の地震の横揺れと縦揺れに対するシュミレーション試験装置
JPH09147044A (ja) * 1995-11-21 1997-06-06 Kyowa Electron Instr Co Ltd アナログ除算回路およびそのアナログ除算回路を用いた加振機におけるクロストーク補償回路
JPH09159569A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 加振装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310846A (ja) * 2001-04-19 2002-10-23 Akashi Corp 振動発生機における転倒モーメント測定方法
JP4571333B2 (ja) * 2001-04-19 2010-10-27 株式会社ミツトヨ 振動発生機における転倒モーメント測定方法
JP2015165188A (ja) * 2014-02-28 2015-09-17 三菱重工業株式会社 振動試験装置

Also Published As

Publication number Publication date
JP3435167B2 (ja) 2003-08-11

Similar Documents

Publication Publication Date Title
JP4158367B2 (ja) 振動試験装置ならびに振動応答評価方法
JP3425365B2 (ja) 構造物の試験装置及び試験方法
JP3644292B2 (ja) 構造物の加振試験装置及び加振試験方法
JP2768058B2 (ja) 構造物の振動試験装置、振動試験方法及び振動応答解析装置
JP3283532B2 (ja) 加振装置およびそれを用いた構造物の振動試験装置
JP5650052B2 (ja) 振動試験装置及びその制御方法
JP3123784B2 (ja) 三次元振動台
JP2003083841A (ja) 振動試験装置
JP3644273B2 (ja) 振動試験装置及び振動試験方法
WO1999014570A1 (fr) Oscillateur multi-axial et procede de commande dudit oscillateur
RU2624829C1 (ru) Способ управления характеристикой вибрационного поля и устройство для его осуществления
JPH0943109A (ja) 車両の試験装置および試験方法
JP3396425B2 (ja) 振動台制御装置
JP3242260B2 (ja) 構造物の振動試験装置、構造物の振動試験方法、並びに構造物
CN1207545C (zh) 振动激励装置和使用该装置的结构振动测试装置
JP3495594B2 (ja) ツイン振動台制御装置
JPH05332876A (ja) 構造物の振動試験装置及び方法
JPH11166877A (ja) 重心位置の推定方法および推定装置
JP3395777B2 (ja) 構造物の振動試験装置及びそれに用いるデジタル計算機ならびに振動試験方法
JP3749416B2 (ja) スード試験方法およびスード試験装置
JPH11295183A (ja) 3次元振動台の質量特性推定装置
JP3395504B2 (ja) 構造物の振動試験装置及びそれに用いるデジタル計算機ならびに振動試験方法
JPH11311583A (ja) 加振装置
JPH09159569A (ja) 加振装置
JP2003075287A (ja) 振動試験装置及び振動試験方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR