WO1999011779A1 - Sequences d'adn ameliorant l'activite des promoteurs - Google Patents

Sequences d'adn ameliorant l'activite des promoteurs Download PDF

Info

Publication number
WO1999011779A1
WO1999011779A1 PCT/JP1998/003848 JP9803848W WO9911779A1 WO 1999011779 A1 WO1999011779 A1 WO 1999011779A1 JP 9803848 W JP9803848 W JP 9803848W WO 9911779 A1 WO9911779 A1 WO 9911779A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
seq
activity
plasmid
gene
Prior art date
Application number
PCT/JP1998/003848
Other languages
English (en)
French (fr)
Inventor
Toshihiro Komeda
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to US09/297,053 priority Critical patent/US6274340B1/en
Priority to DE69837751T priority patent/DE69837751T2/de
Priority to EP98940610A priority patent/EP0967275B1/en
Publication of WO1999011779A1 publication Critical patent/WO1999011779A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/15Vector systems having a special element relevant for transcription chimeric enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/70Vector systems having a special element relevant for transcription from fungi
    • C12N2830/702Vector systems having a special element relevant for transcription from fungi yeast

Definitions

  • the present invention provides a promoter having a high transcription activity useful for expressing a large amount of a heterologous gene, an expression vector carrying the promoter, a transformant into which the expression vector has been introduced, and
  • the present invention relates to a method for producing a heterologous protein, which comprises culturing the transformant.
  • Methanol-assimilating yeast is a yeast that can grow using methanol as its sole carbon source.
  • alcoholoxidase produces formaldehyde and hydrogen peroxide from methanol and oxygen as the first reaction.
  • the produced hydrogen peroxide is decomposed into water and oxygen by the cod.
  • Formaldehyde is oxidized to carbon dioxide by the action of formaldehyde dehydrogenase, S-formylglutathione hydrolase, and formate dehydrogenase, and the resulting NADH is a source of energy for cells.
  • methanol-assimilating yeast can be cultured in large amounts with inexpensive methanol, and it also has a strong promoter of transcriptional activity that is not found in other yeasts. It is considered that the yeast is suitable as a heterologous gene expression system in that it has the same.
  • Candida. Boijini is a kind of methanol-assimilating yeast. And, using the yeast, alcohol oxidase gene, formate dehydrogenase A method for expressing a heterologous gene using the regulatory region of a gene has been studied (see
  • the present invention provides a promoter having a strong transcription activity useful for expressing a heterologous gene, an expression vector carrying the promoter, a transformant into which the expression vector has been introduced, and the transformant.
  • An object of the present invention is to provide a method for producing a heterologous gene expression product used.
  • the present inventors have conducted intensive studies on the purpose of developing a promoter having high transcriptional activity based on the above problem, and as a result, have found that a promoter DNA fragment that functions in the methanol-assimilating yeast Candida boidini (Canidi da boidini i) can be obtained.
  • the present inventors have found that by using a DNA fragment obtained by adding a nucleotide consisting of a specific nucleotide sequence as a promoter, a heterologous gene located in the downstream region thereof can be efficiently expressed, and completed the present invention. .
  • the present invention relates to a DNA comprising the nucleotide sequence represented by SEQ ID NO: 1 or a DNA comprising one or more nucleotides deleted, substituted, added or inserted in the nucleotide sequence, and having an increased promoter activity. It is.
  • the present invention is a mutant promoter in which one or more fragments of the DNA are arranged in at least one place before, after and inside an arbitrary promoter in a forward or reverse direction.
  • the present invention is a recombinant expression vector comprising the mutant promoter and a heterologous gene.
  • the heterologous gene means any gene to be expressed, and is not particularly limited.
  • acid phosph Examples include a ratase gene, a monoamylase gene, various interferon genes, an erythropoietin gene, and a granulocyte colony stimulating factor gene.
  • the heterologous gene may be obtained by any technique.
  • the present invention is a transformant transformed by the vector. Further, the present invention provides a promoter characterized in that one or more fragments of the DN ⁇ are arranged in a forward or reverse direction in at least one of a region before, after and inside an arbitrary promoter. It is a method to increase one activity.
  • the present invention provides the method for producing an expression product, which comprises culturing the transformant in a medium and collecting an expression product of a heterologous gene from the obtained culture.
  • the medium include a medium containing methanol as a carbon source, a medium in which glycerol is added to methanol, or a medium in which formic acid is added to an arbitrary carbon or nitrogen source.
  • the formate dehydrogenase gene promoter of the methanol-assimilating yeast Candida boidini is a region essential for transcriptional activity (hereinafter, referred to as FDH promoter).
  • UAS sequence the DNA of the present invention is one of the formate dehydrogenase gene promoters of Canidi da boidini i having the nucleotide sequence represented by SEQ ID NO: 2 and having a sequence of nucleotide numbers 841 to 880, which is called a UAS sequence. .
  • any promoter is a DNA fragment having a transcription activity in a host cell, and its type is not limited. Accordingly, any promoter (promoter-DNA fragment) referred to in the present invention is not limited in its origin as long as it has transcriptional activity. In addition, as long as it has transcriptional activity, one of the base sequences derived from a wild-type promoter can be used. Mutations such as substitution, deletion, addition, and insertion may occur in the part. In addition, it is not limited to the location and the number of substitutions, deletions, additions and insertions.
  • the promoters include the Candida boi dini formate dehydrogenase gene promoter (SEQ ID NO: 2) and the Candida boi dini i actin gene promoter (SEQ ID NO: 3). And, for example, the first to 300th nucleotides of the nucleotide sequence represented by SEQ ID NO: 2
  • SEQ ID NO: 2 the Candida boi dini formate dehydrogenase gene promoter
  • SEQ ID NO: 3 the Candida boi dini formate dehydrogenase gene promoter
  • SEQ ID NO: 3 the Candida boi dini formate dehydrogenase gene promoter
  • the mutant promoter of the present invention is one in which the above UAS sequence is arranged in the forward or reverse direction on any of the above promoter-DNA fragments.
  • the arrangement of the UAS sequence in the forward direction means that a sequence homologous to the UAS sequence, that is, the sequence: 5′-TTTACCACTATCCAATTAAAATCCATGGATCAGACGGTAG-3 ′ (SEQ ID NO: 1) is directed to the promoter MA fragment from the 5 ′ side to the 3 ′ side. Means to be placed in the same direction as (added or inserted).
  • the arrangement in the reverse direction refers to a sequence complementary to the UAS sequence, that is, the sequence: 5′-CTACCGTCTGATCCATGGATTTTAATTGGATAGTGGTAAA-3 ′ (SEQ ID NO: 4), a promoter DNA fragment, and a 5 ′ to 3 ′ It means to be arranged (added or inserted) in the same direction as the direction.
  • the promoter DNA fragment may contain the UAS sequence alone, or may contain a plurality of UAS sequences, preferably two or more. Also, regardless of the direction of the base sequence of the UAS sequence contained singly or plurally, it may be in the forward direction or the reverse direction, and the forward direction and the reverse direction may be mixed.
  • (1) production of a mutant promoter, (2) construction of an expression vector, and (3) production and culture of a transformant using the expression vector are performed, for example, as follows. Do.
  • the mutant promoter of the present invention can be prepared by adding a chemically synthesized UAS sequence to the promoter DNA fragment.
  • the promoter-DNA fragment is obtained by replacing a sequence already identified as a promoter sequence with a normal gene cloning method (for example, described in Molecular Cloning, Cold Spring Harbor Lab., (1989)). Method), can be obtained by a method using PCR, a method using chemical synthesis, or the like.
  • a DNA fragment having a promoter activity in a host cell is Using a library in which a DNA fragment reduced by a restriction enzyme or the like is cloned upstream of a plasmid containing a DNA sequence capable of autonomous replication and a marker gene without a promoter sequence. May be obtained.
  • the marker gene include antibiotic resistance genes such as G418 resistance and auxotrophic complementary genes such as URA3 and LEU2.
  • the UAS sequence can be located using a restriction enzyme site present in the DNA fragment of the promoter or a restriction enzyme site artificially added by ordinary genetic engineering techniques. For example, a method in which a specific restriction enzyme site is linked to both ends of the UAS sequence, the same sequence as the sequence recognized by the restriction enzyme is incorporated into an arbitrary promoter, and then both are linked.
  • the mutant promoter obtained above is inserted into an appropriate vector together with the structural gene of the heterologous protein, the promoter, the selectable marker gene, the homologous region, and the like.
  • the vector used include Escherichia coli plasmid vectors, such as pBR strain, pUC strain, and Bull Script strain, which are generally known as known vectors. Those skilled in the art can easily determine the terminator, selection gene, and homologous region as long as they function in the host.
  • Examples of the terminator include actin gene terminator and formate dehydrogenase gene terminator.
  • selectable marker genes include antibiotic resistance genes such as G418 and nutrients such as URA3 and LEU2. Requirement complementary gene and the like. Insertion of the components of the expression vector into the vector can be easily performed by those skilled in the art with reference to the description in the Examples below or by a conventional technique.
  • the transformant of the present invention may be obtained by transforming the recombinant expression vector obtained above into a suitable host. It is prepared by being introduced into cells.
  • the host to be used is not particularly limited, such as Escherichia coli, Bacillus subtilis, and yeast, but is preferably yeast, and more preferably methanol-assimilating yeast.
  • Candi da boi dini i is exemplified.
  • Plasmids can be introduced into a host by applying a general method used for transformation. That is, a protoplast method, a lithium method, an electoral poration method, a calcium method, or the like can be applied.
  • the expression vector of the present invention is integrated into host chromosomal DNA. It is also possible to use a vector having an autonomously replicating sequence capable of self-replication in a host cell, and to make it exist in a plasmid state.
  • the copy number of the heterologous gene existing in the host cell may be one copy or plural.
  • the target gene expression product can be obtained by culturing the thus obtained transformant and collecting the heterologous gene expression product from the obtained culture.
  • collecting the gene expression product means any of extracting the gene expression product from the cultured cells, collecting the culture supernatant itself, and purifying the expression product from the culture supernatant. Also means.
  • examples of the medium include the following.
  • methanol When induced by methanol, it contains methanol as a carbon source, one or more nitrogen sources such as yeast extract, tryptone, meat extract, peptone, casamino acid, and ammonium salt, and phosphoric acid, sodium, potassium, and magnesium. , Calcium, iron, copper, manganese, cobalt, and other inorganic salts, and, if necessary, various nutrients such as vitamins, amino acids, and nucleotides, and saccharide raw materials that do not inhibit induction are conveniently added. A medium is used.
  • carbon sources such as glucose and glycerol, one or more of yeast extract, tryptone, meat extract, peptone, casamino acid, ammonium salt, etc.
  • Nitrogen source and inorganic salts such as phosphoric acid, sodium, potassium, magnesium, calcium, iron, copper, manganese, and cobalt, and trace amounts of various vitamins, amino acids, nucleotides, etc., if necessary.
  • a medium to which nutrients and carbohydrate raw materials are conveniently added without inhibiting induction is used.
  • the pH of the medium is preferably in the range of 5-8.
  • the culture temperature is usually 15 to 45 ° C, preferably around 28 ° C.
  • the culturing time is about 24 to 1000 hours, and the culturing can be performed by stationary culture, shaking, stirring, batch culture under aeration, or continuous culture.
  • a normal protein purification method or the like can be used to collect the gene product from the culture.
  • the gene product is extracted by sonication, grinding, and pressure crushing of the cells by a conventional method. Add protease inhibitors as needed.
  • the culture solution itself can be used.
  • the solid portion is removed from the obtained solution by filtration, centrifugation, etc., to obtain a crude protein solution. If necessary, remove nucleic acids by treatment with riblotamine.
  • FIG. 1 is a diagram showing the structure of plasmid pPUFl.
  • FIG. 2 is a diagram showing acid phosphatase activity expressed under the control of an upstream deletion type FDH promoter.
  • FIG. 3 is a diagram showing a method for constructing an acidic phosphatase expression plasmid pPFIDl using an FDH promoter with an internal region deleted.
  • FIG. 4 is a diagram showing acid phosphatase activity expressed under the control of an FDH promoter in which an internal region has been deleted.
  • FIG. 5 is a diagram showing a chemically synthesized DNA fragment containing a sequence corresponding to SEQ ID NO: 1 considered to be a UAS sequence, and the manner in which it is inserted into the XhoI site.
  • FIG. 6 is a diagram showing the structure of a mutant FDH promoter to which a sequence corresponding to SEQ ID NO: 1, which is considered to be a UAS sequence, has been added, and the acid phosphatase activity expressed under the control of the mutant FDH promoter.
  • FIG. 7 is a diagram showing the structure of plasmid pAcPH.
  • FIG. 8 is a diagram showing the structure of a mutant actin promoter to which a sequence corresponding to SEQ ID NO: 1 considered to be a UAS sequence is added, and an acid phosphatase activity expressed under the control of the mutant actin promoter.
  • Candida boidinii FDH promoter lacking the upstream region was prepared, and the acid phosphatase activity derived from yeast (Saccharomyces cerevisiae) controlled by the upstream deletion type FDH promoter was measured. This is an example in which a region necessary for the function of the FDH promoter has been identified.
  • the acid phosphatase expression plasmid pPUFl with the FDH promoter / terminator having the URA3 gene as the primary gene (FIG. 1) was prepared according to the method described in W097 / 10345.
  • a Candida boidinii KST25 strain which is a mutant strain of the URA3 gene, was used.
  • PUFl can be easily obtained by following the method described in W097 / 10345.
  • the FDH promoter, Z terminator, URA3 gene, and PH05 gene are W097 / 10345, Sakai Y. et al., J. Ferment. Bioeng., 73, 255-260 (1992), Arima, K.
  • Candida boidinii KST25 strain Another known Candida boidinii strain, for example, the IFO 10035 strain, was also used in a known method (Sakai Y. et al., J. Bacteriol., 173, 7458 (1991)). ), A URA3 gene mutant can be easily obtained.
  • the FDH promoter lacking the upstream region is used for kilosequence sequencing. (Takara Shuzo) and PCR. Plasmid pPUFl was cut with Apa I-Xho I, treated with a kilosequence deletion kit, and used to express the PH05 expression plasmids pPUF15, pPUF24, pPUF44, pPUF54, pPUF56, pPUF79, pPUF308 and pPUF310 were obtained.
  • the nucleotide sequence was determined using the Dye Primer One Cycle Sequencing Kit (PerkinElmer), and the plasmids pPUF15, pPUF24, pPUF44, pPUF54, pPUF56, pPUF79, pPUF308, and pPUF310 were FDH promoters. It was confirmed that each region had 1215 bp, 1000 bp, 839 bp, 690 bp, 756 bp, 403 bp, 228 bp and 115 bp, respectively.
  • oligonucleotides were synthesized to create an FDH promoter from which the upstream region had been deleted by PCR.
  • PCR using any of oligonucleotides PF819, PF801, PF779, PF668, PF642, PF622, PF602, PF194, and PF161 and PRV3 with pPUFl as a type III ((30 sec at 94 ° C, 1 min at 55 ° C At 72 ° C for 1 min) x 20 cycles).
  • pT7 Blue T-Vector Novagen
  • PH05 expression plasmid having a promoter region of 819 bp from the primer PF819, pPUF801, a PH05 expression plasmid having a promoter region of 801 bp from the primer PF801, and a promoter obtained from the primer PF779
  • primer one PF668 has 668bp promoter a region obtained from PH05 expression plasmid the PPUF668, flop port motor was obtained from primer one PF642 - has 642bp region PH05 expression plasmid PPUF622, PH05 expression plasmid having a promoter region of 622 bp from the primer PF622, and pPUF622, PH05 expression plasmid having a promoter region of 602 bp from the primer PF602, pPUF602 and PF194.
  • the PH05 expression plasmid having a promoter region of 194 bp obtained from the above was designated as pPUF194, and the 13 ⁇ 405 expression plasmid having 161 bp of a promoter region obtained from the primer PF161 was designated as pPUF161.
  • a Candi da boi dini i FDH promoter from which an internal region was deleted was prepared, and the acid phosphatase activity derived from Saccharomyces cerevisiae controlled by an internal deletion type FDH promoter was measured. This is an example in which the region required for the function of the promoter is identified.
  • the FDH promoter from which the internal region was deleted was prepared by PCR (FIG. 3 shows the construction method of pPFIDl).
  • the following oligonucleotides were synthesized to create an FDH promoter with an internal region deleted by PCR.
  • PCR was performed using the oligonucleotides PF521 and PRV3 with pPUFl type II (30 cycles at 94 ° C, 1 minute at 55 ° C, 1 minute at 72 ° C x 20 cycles), and the amplified DNA fragment was analyzed. After cloning into pT7Blue T-Vector, it was excised with BglII-NotI. PCR using PF1478 and PC548, PC571, PC599, PC619, or PC642 with pPUFl as type III ((30 sec at 94 ° C, 1 min at 55 ° C, 1 min at 72 ° C) X 20 Cycle).
  • the PH05 expression plasmid containing the FDH promoter region with the deletion of the 957th nucleotide sequence was pPFID2, and the FDH promoter fragment with the deletion of the 957th to 957th nucleotide sequence of SEQ ID NO: 2 obtained from primer PC599 was used.
  • the PH05 expression plasmid having the region is pPFID3, and the PH05 expression plasmid having the FDH promoter region with the deletion of the base sequence from position 861 to position 957 of SEQ ID NO: 2 obtained from the primer PC619 was used.
  • pPFID4 a PH05 expression plasmid having an FDH promoter region in which the 839th to 957th base sequences of SEQ ID NO: 2 obtained from primer PC642 were deleted, was named pPFID5.
  • Example (2-1) The plasmid obtained in Example (2-1) was transformed into Candi da boi dini i in the same manner as in Example (1-3), and the acid phosphatase activity in ME medium and GF medium was changed. The properties were measured.
  • FIG. 4 shows the specific activity of the acid phosphatase exhibited by the transformant from each plasmid when the specific activity of the acid phosphatase (unit Z0D610) indicated by pPUFl was defined as 100.
  • the specific activity is a relative value when the acid phosphatase activity of a transformant of the plasmid pPUFl in which the promoter region is not deleted is defined as 100.
  • oligonucleotide PXF1000 was synthesized to isolate the FDH promoter region lOOOObp having an XhoI site at the 5 'end.
  • PCR was performed with pPUF24 as type III (30 cycles at 94 ° C, 1 minute at 55 ° C, 1 minute at 72 ° C x 20 cycles), and the amplified DNA fragment was analyzed. After cloning into pT7 Blue T-Vector, it was excised with XhoI-NotI and inserted into XPUI-NotI of pPUFl. The resulting plasmid was named pPUF24X. Oligonucleotides UA3 and UA3C containing the nucleotide sequence of SEQ ID NO: 1 considered to be necessary for one activity of the FDH promoter estimated from Examples 1 and 2 were synthesized.
  • the oligonucleotides UA3 and UA3C are phosphorylated at the 5 'end with T4 polynucleotide kinase (Takara Shuzo), and an annealing buffer (10 mM Tris -HCl, pH 8.0, 0. ImM EDTA, 100 mM NaCl). Equal amounts of the above-mentioned oligonucleotide UA3 and UA3C solutions were mixed, heated at 95 ° C for 5 minutes, and gradually cooled to anneal both strands. Both ends of the obtained double-stranded DNA fragment can be ligated with the XhoI site, and after ligation, only one of them is cut again with XhoI as shown in FIG.
  • Plasmid DNA was prepared from several transformants, selected for restriction enzyme analysis, and a plasmid containing a synthetic DNA fragment was inserted.The copy number and direction of the inserted synthetic DNA fragment were also selected. It was determined.
  • a plasmid in which the base sequence of SEQ ID NO: 1 was inserted in two copies in the forward direction was named pMFPH2
  • a plasmid in which two copies were inserted in the reverse direction was named pMFPH2R
  • a plasmid in which four copies were inserted in the forward direction was named pMFPH4.
  • Fig. 6 shows a part of the structure of the promoter region of the obtained plasmid.
  • Plasmid, pMFPH2, pMFPH2R, P MFPH4 and pPUFl obtained in the above Example (3-1) were transformed into Candida boidinii in the same manner as in Example (1-3), and acidified in ME medium and GF medium.
  • the phosphatase activity (unitno 0D610) was measured.
  • One unit of the enzyme activity was defined as the amount of enzyme that produced P-nitrophenol of Immole at 30 ° C for 1 minute.
  • Fig. 6 shows the specific activity of the acid phosphatase exhibited by the one-copy insert transformant from each plasmid (the activity is indicated by mU / 0D610). Acid phosphatase specific activity was significantly increased by the inserted DNA fragment. This effect was dependent on the number of copies, but independent of the direction of insertion.
  • the inserted base sequence of SEQ ID NO: 1 functions as an essential sequence when the FDH promoter is induced by methanol and formic acid, that is, functions as a UAS sequence of the FDH promoter, and It was revealed that the UAS sequence enhances the transcription activity of the promoter without depending on the direction of insertion.
  • Candida boidinii actin gene promoter to which a UAS sequence was added was prepared, and the acid phosphatase activity derived from Saccharomyces cerevisiae governed by the promoter was measured.
  • the promoter region of the Candida boidinii actin gene was obtained by PCR.
  • the following oligonucleotides were synthesized based on the nucleotide sequence of the promoter region of the Candida boidinii actin gene described in SEQ ID NO: 3.
  • PCR using oligonucleotides XCAC5 and NCAC3 to make pAcl-7 described in W097 / 10345 type II ((94 seconds at 30 seconds, 55 minutes at 1 minute, 72 minutes at 1 minute) X20 cycles) was conducted.
  • plasmid pAc 7 was used as the type I DNA for PCR.
  • it can also be performed using chromosomal DNA obtained from Candi da bo idi ni ATCC48180 strain. After the amplified DNA fragment was cloned into pT7Blue T-Vector, it was excised with XhoI-NotI and inserted into XPUI-NotI of pPUFl.
  • the obtained plasmid pAcPH (FIG. 7) has a marker of the URA3 gene, a plasmid of PH05 expression by the promoter of the Candi dabodinini actin gene and the FDH gene promoter.
  • a DNA fragment containing a UAS sequence was inserted into the XhoI site at the 5 'end of the pACPH actin gene promoter in the same manner as in Example (3-1), so that the UAS sequence was in a 2-copy, normal direction.
  • Plasmid pUAcPH2 and plasmid pUAcPM in which four copies of the UAS sequence were inserted in the forward direction, were prepared.
  • Plasmids pAcPH, pUAcPH2, pUAcPH4 and pPUFl obtained in the above Example (4-1) were transformed into Candi da boi dini i in the same manner as in Example U-3).
  • Hind II was used for cleavage of the plasmid DNA.
  • Acid phosphatase activity of the obtained transformant was measured in a ME medium, a GF medium, and a pH 5.5 medium (GS medium) containing 1.0% glucose and 0.67% yeast nitrogen base.
  • FIG. 8 shows the specific activity of acidic phosphatase exhibited by the 1-copy insert-type transformant from each plasmid.
  • the present invention provides a promoter having high transcription activity, an expression vector carrying the promoter, a transformant into which the expression vector is introduced, a method for increasing the promoter activity, and a method for producing a heterologous protein.
  • the mutant promoter obtained by the present invention has a higher promoter activity than the wild-type promoter. Since it is greatly enhanced, it has a very high utility value as a promoter for expressing a heterologous gene, and the expression vector of the present invention can efficiently express and produce various useful proteins.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明 細 書 プロモーター活性を増大させる D N A配列 技術分野
本発明は、 異種遺伝子を大量に発現する上で有用な高い転写活性を有するプ 口モーター、 該プロモータ一を担持する発現べクタ一、 該発現べクタ一が導入さ れた形質転換体、 及び該形質転換体を培養することを特徴とする異種蛋白質の生 産方法に関する。 背景技術
メタノール資化性酵母は、 メタノールを唯一の炭素源として生育可能な酵母で ある。 メタノール資化性酵母におけるメタノール代謝は、 最初の反応としてアル コールォキシダ一ゼによりメタノールと酸素からホルムアルデヒドと過酸化水素 を生成する。 生成した過酸化水素は力タラ一ゼにより水と酸素に分解される。 ホ ルムアルデヒドは、 ホルムアルデヒド脱水素酵素、 S-ホルミルグルタチオンヒド ロラ一ゼ、 ギ酸脱水素酵素の作用により、 二酸化炭素まで酸化され、 その際生じ る NADH は細胞のエネルギー源となる。 それと同時にホルムアルデヒドはジヒド ロキシァセトンシンタ一ゼによリキシルロース- 5-リン酸と縮合し、 グリセルァ ルデヒド -3-リン酸とジヒドロキシァセトンへと変換され、 その後ベント一スリ ン酸経路を経て菌体構成成分となる。 ここで挙げたアルコールォキシダ一ゼ、 ジ ヒドロキシアセトンシンターゼ及びギ酸脱水素酵素は、 メタノール存在化で培養 すると著量生産され、 菌体内可溶性蛋白質の約 40%に達する。
前述のごとく、 メタノ一ル資化性酵母は安価なメタノ一ルで大量培養が可能で あるうえに、 他の酵母には見られない強力な転写活性を有するメタノ一ル代謝酵 素プロモータ一を有するという点で、 異種遺伝子発現系として適した酵母である と考えられる。
カンジダ . ボイジニイ(Candi da bo i dini i )は、 メタノール資化性酵母の一種 である。 そして該酵母を利用してアルコールォキシダ一ゼ遺伝子、 ギ酸脱水素酵 素遺伝子の調節領域を用いた異種遺伝子の発現方法が研究されている (特開平
5-344895号公報、 W0 97/ 10345等) 。 一方、 これらの発現系において発現べクタ —が多コピーで染色体に揷入された形質転換体が異種遺伝子を高生産する例 (Appl . Mi crobiol . Biotechnol . , 42, 860-864 ( 1995)、 日本農芸化学会平成 8 年度大会講演要旨集 257 ページ、 平成 8年度日本生物工学会大会講演要旨集 314ページ) が少なくない。 発現ベクターの形質転換体内での安定性を考えると、 低コピー数で高い発現量を達成することがよリ望ましいと考えられるので、 更に 強力な転写活性を有するプロモーターの開発が求められている。 発明の開示
本発明は、 異種遺伝子を発現させるのに有用な強力な転写活性を有するプロモ —ター、 該プロモーターを担持する発現ベクター、 該発現べクタ一が導入された 形質転換体、 及び該形質転換体を用いた異種遺伝子発現産物の生産方法を提供す ることを目的とする。
本発明者は、 上記課題に基づいて、 転写活性の高いプロモータ一を開発する 目的で鋭意研究を重ねた結果、 メタノール資化性酵母カンジダ · ボイジニイ (Canidi da boidini i )において機能するプロモーター DNA 断片に特定塩基配列か らなるヌクレオチドを付加して得られる DNA断片をプロモータ一として利用する ことによって、 その下流領域に位置する異種遺伝子を効率よく発現させうること を見出し、 本発明を完成するに至った。
即ち、 本発明は配列番号 1で表わされる塩基配列からなる D N A、 又は該塩基 配列において 1若しくは複数の塩基が欠失、 置換、 付加若しくは挿入された塩基 配列からなり、 かつプロモーター活性を上昇させる D N Aである。
さらに、 本発明は、 任意のプロモーターの前、 後及び内部の領域の少なくと も 1箇所に、 前記 D N Aの 1個又は複数の断片が正方向又は逆方向で配置された 変異型プロモーターである。
さらに、 本発明は、 前記変異型プロモーター及び異種遺伝子を含む発現用組換 えベクターである。 ここで異種遺伝子とは、 発現の対象となる任意の遺伝子を意 味し、 特に限定されるものではない。 異種遺伝子としては、 例えば酸性フォスフ ァタ一ゼ遺伝子、 一アミラーゼ遺伝子、 各種インタ一フエロン遺伝子、 エリス ロポェチン遺伝子、 顆粒球コロニー刺激因子遺伝子等が挙げられる。 また、 異種 遺伝子は、 いかなる手法によって得られるものでもよい。
さらに、 本発明は、 前記べクタ一によって形質転換された形質転換体である。 さらに、 本発明は、 任意のプロモータ一の前、 後及び内部の領域の少なくとも 1箇所に、 前記 D N Αの 1個又は複数の断片を正方向又は逆方向で配置させるこ とを特徴とするプロモータ一活性を増大させる方法である。
さらに、 本発明は、 前記形質転換体を培地に培養し、 得られる培養物から異 種遺伝子の発現産物を採取することを特徴とする前記発現産物の生産方法である。 ここで、 培地としては、 炭素源としてメタノールを含む培地、 メタノールにグリ セロールを添加した培地、 あるいは任意の炭、 窒素源にギ酸を添加した培地等が 挙げられる。 以下、 本発明を詳細に説明する。
本発明の完成にあたり、 メタノ一ル資化性酵母カンジダ · ボイジニイ (Canidida boidini i ) のギ酸脱水素酵素遺伝子プロモーター (以下、 FDH プロ モーターと略称することがある) 転写活性に必須な領域 (以下、 UAS 配列とい う) を特定した。 すなわち、 本発明の DNAは、 配列番号 2で表わされる塩基配列 を有する Canidi da boidini iのギ酸脱水素酵素遺伝子プロモータ一のうち、 塩基 番号 841〜880の配列を有するものであリ、 UAS配列という。
本発明において 「任意のプロモータ一」 とは、 宿主細胞内において転写活性を 有する DNA断片であり、 その種類が限定されるものではない。 従って、 本発明で いう任意のプロモータ一 (プロモータ一 DNA断片) は、 転写活性を有すれば由来 の生物は限定されず、 また、 転写活性を有する限り、 野生型プロモーターに由来 する塩基配列の一部に置換、 欠失、 付加、 挿入等の変異が生じてもよい。 なお、 置換、 欠失、 付加及び挿入の場所及びその数に限定されない。 本発明では、 プロ モータ一として Candida boi dini i ギ酸脱水素酵素遺伝子プロモータ一 (配列番 号 2 ) 、 Candida boi dini i ァクチン遺伝子プロモータ一 (配列番号 3 ) が例示 される。 そして、 例えば配列番号 2で示される塩基配列の第 1番目から第 300番 目まで欠失された DNA断片でも Cand i da bo i d i ni i において転写活性を有する限 リ、 かかる欠失された DNA断片も本発明における任意のプロモータ一に含まれる。 なお、 変異の導入は、 通常の遺伝子工学的手法により行うことができ、 例えば制 限酵素処理、 化学合成した DNA の利用、 PCR 法、 部位特異的変異法、 Exonuc l ease I I I を用いた欠失体作製法などが挙げられる。
本発明の変異型プロモーターは、 上記任意のプロモータ一 DNA断片に上記 UAS 配列が正方向又は逆方向に配置したものである。
UAS 配列が正方向に配置するとは、 UAS 配列と相同な配列、 すなわち配列 : 5' -TTTACCACTATCCAATTAAAATCCATGGATCAGACGGTAG-3' (配列番号 1 ) が、 プロモー ター MA 断片に、 5'側から 3'側への方向と同じ向きで配置する (付加又は揷入 される) ことを意味する。 また、 逆方向に配置するとは、 UAS 配列と相補的な配 列、 すなわち配列: 5' - CTACCGTCTGATCCATGGATTTTAATTGGATAGTGGTAAA-3' (配列番 号 4 ) 、 プロモータ一 DNA 断片に、 5'側から 3'側への方向と同じ向きで配置 する (付加又は挿入される) ことを意味する。
本発明の変異型プロモータ一は、 プロモーター DNA 断片に UAS 配列が単独で 含有されていてもよく、 連なって複数個、 好ましくは 2個以上含有したものでも よい。 また、 単独又は複数含有される UAS配列の塩基配列の方向性も問わず、 正 方向でも逆方向でもよく、 さらに正方向のものと逆方向のものとが混在していて ちょい。
本発明の(1)変異型プロモータ一の作製、 (2)発現べクタ一の構築並びに(3)本 発現べクタ一を用いた形質転換体の作製及び培養は、 例えば、 以下のようにして 行う。
( 1 ) 変異型プロモーターの作製
本発明の変異型プロモータ一は、 プロモータ一 DNA断片に化学合成した UAS配 列を付加することによつて調製することができる。 ここでプロモータ一 DNA断片 は、 すでにプロモータ一配列として同定されている配列を、 通常の遺伝子クロ一 ニング手法 (例えば、 Mo lecul ar C l oning, Co ld Spring Harbor Lab. , ( 1989)に 記載の方法) 、 PCRによる方法、 化学合成による方法等で取得できる。
また、 宿主細胞内においてプロモータ一活性を有する DNA断片は、 宿主細胞内 で自律複製能を有する DNA配列とプロモータ一配列を持たないマーカ一遺伝子と を有するプラスミ ドのマ一力一遺伝子上流に制限酵素等によって低分子化した DNA 断片をクロ一ニングしたライブラリ一を用いて取得してもよい。 マーカー遺 伝子としては、 G418 耐性等の抗生物質耐性遺伝子、 URA3、 LEU2 等の栄養要求性 相補遺伝子が例示される。 作製したライブラリ一 DNAを宿主細胞に形質転換する と、 プロモータ一活性を有する DNA断片がマーカ一遺伝子の直前にクロ一ニング されたプラスミ ドを有する形質転換体は、 対応するマ一カーで選択されることか ら、 得られた形質転換体から全 DNAを抽出して大腸菌に形質転換することによリ、 プロモーター活性を有する DNA断片を効率よく分離することができる。
UAS配列の配置は、 プロモータ一 DNA断片に存在する制限酵素部位、 又は通常 の遺伝子工学的手法によリ人為的に付加した制限酵素部位を用いて行うことがで きる。 例えば、 UAS 配列の両端に特定の制限酵素部位を連結し、 その制限酵素で 認識される配列と同じ配列を任意のプロモーターに組み込んだ後、 両者を連結す る方法等が挙げられる。
( 2 ) 発現べクタ一の構築
上記で得られた変異型プロモータ一は、 異種タンパク質の構造遺伝子、 タ一 ミネ一タ一、 選択マーカ一遺伝子、 相同領域等と共に適当なベクタ一の中に揷入 され、 異種遺伝子発現べクタ一として使用される。 使用されるベクターとしては、 通常公知のベクタ一として知られる pBR系統、 pUC系統、 ブル一スクリプト系統 等の大腸菌プラスミ ドベクタ一が例示される。 ターミネータ一、 選択マ一力一遺 伝子、 相同領域は、 宿主内で機能するものであれば当業者が容易に決めることが できる。 タ一ミネ一ターとしては、 例えばァクチン遺伝子タ一ミネ一ター、 ギ酸 脱水素酵素遺伝子ターミネータ一等が挙げられ、 選択マーカ一遺伝子としては、 G418 等の抗生物質耐性遺伝子、 URA3、 LEU2 等の栄養要求性相補遺伝子等が挙げ られる。 発現ベクターの構成成分をベクターに挿入することは、 後記実施例の記 載を参照して、 あるいは慣用の技術により当業者が容易に実施することが可能で ある。
( 3 ) 形質転換体の作製および培養
本発明の形質転換体は、 上記で得られた組み換え発現べクタ一を適当な宿主 細胞に導入されることによって調製される。
使用される宿主としては、 大腸菌、 枯草菌、 酵母など特に限定されるものでは ないが、 好ましくは酵母、 より好ましくはメタノール資化性酵母である。 具体的 には Candi da boi dini i が例示される。 宿主へのプラスミ ドの導入は、 通常、 形 質転換に用いられる一般的な方法を応用することが可能である。 すなわち、 プロ トプラスト法、 リチウム法、 エレクト口ポレーシヨン法、 カルシウム法等を適用 することが出来る。
本発明の発現ベクターは、 宿主染色体 DNAに組み込まれる。 また、 宿主細胞内 で自己複製可能な自律性複製配列を有するベクターを用いて、 プラスミ ド状態で 存在させることも可能である。 なお、 宿主細胞内に存在する異種遺伝子のコピー 数は 1 コピーでも複数であってもよい。
このようにして得られた形質転換体を培養し、 得られる培養物から異種遺伝子 発現産物を採取することにより、 目的とする遺伝子発現産物を取得することがで きる。 ここで、 「遺伝子発現産物を採取する」 とは、 培養菌体から遺伝子発現産 物を抽出すること、 培養上清自体を回収すること、 及び培養上清から発現産物を 精製することのいずれをも意味する。
上記形質転換体は、 メタノールぉよびギ酸によリ異種遺伝子を誘導発現するの で、 培地としては以下のものが例示される。
メタノールによって誘導発現させる際には、 炭素源としてメタノールを含む他、 酵母エキス、 トリプトン、 肉エキス、 ペプトン、 カザミノ酸、 アンモニゥム塩等 の 1種以上の窒素源と、 リン酸、 ナトリウム、 カリウム、 マグネシウム、 カルシ ゥム、 鉄、 銅、 マンガン、 コバルト等の無機塩類とを添加し、 さらに必要に応.じ て各種ビタミン、 アミノ酸、 ヌクレオチド等の微量栄養素、 誘導を阻害しない糖 質原料を便宜添加した培地が用いられる。
ギ酸によって誘導発現させる際には、 ギ酸を含む他、 グルコース、 グリセ口一 ル等の 1種以上の炭素源、 酵母エキス、 トリプトン、 肉エキス、 ペプトン、 カザ ミノ酸、 アンモニゥム塩等の 1種以上の窒素源、 そしてリン酸、 ナトリウム、 力 リウム、 マグネシウム、 カルシウム、 鉄、 銅、 マンガン、 コバルト等の無機塩類 を添力 Qし、 さらに必要に応じて各種ビタミン、 アミノ酸、 ヌクレオチド等の微量 栄養素、 誘導を阻害しな 、糖質原料を便宜添加した培地が用いられる。
培地の pHは、 5〜 8の範囲が好ましい。 また培養温度は通常 15〜45°C、 好ま しくは 28°C前後である。 培養時間は 24〜1000時間程度であり、 培養は静置、 振 とう、 攪拌、 通気下の回分培養又は連続培養により実施することができる。 培養終了後、 培養物から遺伝子産物を採取するには、 通常のタンパク質精製手 段等を用いることができる。 例えば、 形質転換細胞内に生産された場合は、 常法 によリ菌体を超音波処理、 磨砕処理、 加圧破砕等により遺伝子産物を抽出する。 必要に応じてプロテアーゼ阻害剤を添加する。 培養上清中に生産された場合、 培 養液そのものを用いることができる。 得られた溶液をろ過、 遠心分離等により固 形部分の除去し、 粗タンパク質溶液を得る。 必要によリブロタミン処理等による 核酸の除去を行う。
粗タンパク質溶液から塩析法、 溶媒沈殿法、 透析法、 限外ろ過法、 ゲル電気泳 動法、 あるいはイオン交換クロマトグラフィー、 ゲルろ過クロマトグラフィー、 逆相クロマトグラフィー、 ァフィ二ティクロマトグラフィー等の精製手法を組み 合わせることにより、 目的タンパク質が分離精製される。 図面の簡単な説明
図 1は、 プラスミ ド pPUFlの構造を示す図である。
図 2は、 上流欠失型 FDHプロモーターの支配下で発現される酸性フォスファタ —ゼ活性を示す図である。
図 3は、 内部領域が欠失した FDHプロモータ一による酸性フォスファタ一ゼ発 現プラスミ ド pPFIDlの構築法を示す図である。
図 4は、 内部領域が欠失した FDHプロモーターの支配下で発現される酸性フォ スファターゼ活性を示す図である。
図 5は、 UAS 配列と考えられる配列番号 1に相当する配列を含む化学合成した DNA断片、 及びそれが Xho I部位に揷入される様式を示す図である。
図 6は、 UAS 配列と考えられる配列番号 1に相当する配列を付加した変異型 FDH プロモータ一の構造、 及びそれらの支配下で発現される酸性フォスファタ一 ゼ活性を示す図である。 図 7は、 プラスミ ド pAcPHの構造を示す図である。
図 8は、 UAS 配列と考えられる配列番号 1に相当する配列を付加した変異型ァ クチンプロモーターの構造、 及びそれらの支配下で発現される酸性フォスファタ —ゼ活性を示す図である。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに具体的に説明する。 ただし、 本発明は、 これら実施例にその技術的範囲が限定されるものではない。
実施例 1
本実施例は、 上流領域を欠失した Candida boidinii FDHプロモータ一を作製 し、 上流欠失型 FDH プロモータ一によ り支配される酵母 ( Saccharomyces cerevisiae) 由来の酸性フォスファタ一ゼ活性を測定することにより FDHプロモ 一ターの機能に必要な領域を同定した例である。
(1-1) 酸性フォスファターゼ発現プラスミ ドの作製
マ一力一遺伝子として URA3遺伝子を有する、 FDH プロモーター/ターミネ一 ターによる酸性フォスファタ一ゼ発現プラスミ ド pPUFl (図 1 ) は、 W097/10345 に記載されている方法に従って作製した。 宿主株は URA3 遺伝子の変異株である Candida boidinii KST25 株を用いた。 PUFl は W097/10345に記載されている 方法に従えば容易に得ることが可能である。 FDHプロモータ一 Zターミネータ一、 URA3 遺伝子、 PH05 遺伝子は、 それぞれ W097/ 10345、 Sakai Y. et al., J. Ferment. Bioeng. , 73, 255-260 (1992)、 Arima, K. et al. , Nucleic Acids Res., 11, 1657(1983)に記載されている配列をもとに化学合成によって取得する ことも可能である。 本実施例では Candida boidinii KST25 株を用いている力 他の Candida boidinii株、 例えば IFO 10035株を用いても、 公知の方法 (Sakai Y. et al., J. Bacteriol., 173, 7458(1991)) に従えば容易に URA3遺伝子変異 株を取得することができる。
(1-2) 上流欠失型 FDHプロモータ一によリ支配される 1¾05発現ブラスミ ドの構 築
上流領域を欠失した FDHプロモータ一は、 キロシークェンス用デレ一シヨンキ ット (宝酒造社) 及び PCRにて作成した。 プラスミ ド pPUFlを Apa I -Xho Iで切 断し、 キロシークェンス用デレ一シヨンキットを用いて処理し、 上流欠失型 FDH プロモータ一により支配される PH05発現プラスミ ド pPUF15、 pPUF24、 pPUF44、 pPUF54、 pPUF56、 pPUF79、 pPUF308及び pPUF310を取得した。 これらのプラスミ ドを錡型としてダイプライマ一サイクルシークェンシングキット (パーキンエル マ一社) を用いて塩基配列を決定し、 プラスミ ド pPUF15、 pPUF24, pPUF44、 pPUF54、 pPUF56、 pPUF79、 pPUF308、 pPUF310 は FDH プロモータ一領域をそれぞ れ 1215bp、 1000bp、 839bp、 690bp、 756bp、 403bp、 228bp、 115bp有しているこ とを確認した。
PCRにて上流領域を欠失した FDHプロモータ一を作成するために、 以下のオリ ゴヌクレオチドを合成した。
PF819 ; CCCCTCGAGGAAATAGATACATTACCCAGTGTC (配列番号 5 )
PF801; CCCCTCGAGTGTCATCGATATTATGCCCCGCC (配列番号 6 )
PF779; CCCCTCGAGGCCTTTTTCACTTGAAACAATAACTAT (配列番号 7 )
PF668; CCCCTCGAGTAATACTAGTCAGATGTTATAATTATATC (配列番号 8 )
PF642; CCCCTCGAGTATCTTTACCACTATCCAATTAAAATCC (配列番号 9 )
PF622; CCCCTCGAGTAAAATCCATGGATCAGACGGTAG (配列番号 10)
PF602; CCCCTCGAGTAGTTTTTATATCTGTAACATCTTAC (配列番号 1 1 )
PF 194; CCCCTCGAGTAAATTCAACTAAAAATTGAACTATTTAAACACTATG (配列番号 12) PF161 ; CCCCTCGAGATGATTTCCTTCAATTATATTAAAATCAATTTC (配列番号 13) PRV3; CAATGAGCCGTTGAATTGACGAGTG (配列番号 14)
オリゴヌクレオチド PF819、 PF801、 PF779、 PF668、 PF642、 PF622、 PF602、 PF194、 PF161 のいずれかと PRV3 とを用いて、 pPUFl を铸型とした PCR ( ( 94°C で 30秒、 55°Cで 1分、 72°Cで 1分) X 20サイクル) を行った。 それぞれの増幅 DNA 断片を pT7 B lue T-Vector (ノバジェン社) にクロ一ニングした後、 Xho I - Not I で切り出し、 pPUFlの Xho I -Not I に揷入した。 プライマ一 PF819から得 たプロモータ一領域を 819bp有している PH05発現プラスミ ドを pPUF819、 ブラ イマ一 PF801 から得たプロモーター領域を 801bp有している PH05発現プラスミ ドを pPUF801、 プライマー PF779から得たプロモータ一領域を 779bp有している PH05発現プラスミ ドを PPUF779、 プライマ一 PF668から得たプロモータ一領域を 668bp有している PH05発現プラスミ ドを pPUF668、 プライマ一 PF642から得たプ 口モータ—領域を 642bp有している PH05発現プラスミ ドを pPUF642、 プライマ 一 PF622から得たプロモーター領域を 622bp有している PH05発現プラスミ ドを pPUF622、 プライマ一 PF602から得たプロモータ一領域を 602bp有している PH05 発現プラスミ ドを pPUF602、 プライマ一 PF194 から得たプロモーター領域を 194bp有している PH05発現プラスミ ドを pPUF194、 プライマ一 PF161から得たプ 口モータ一領域を 161bp有している 1¾05発現プラスミ ドを pPUF161と命名した。 (1-3) 形質転換
上記実施例 ( 2) で得たプラスミ ド DNA 5/ g を Bam HI で切断し、 Candida boidinii KST25 株に形質転換した。 得られた形質転換体のコロニーを各ブラ スミ ドにっき数個拾い、 メタノール 1.5%、 Yeast Nitrogen Base 0.67%、 酵母 エキス 0.5%を含む pH5.5 の培地 (ME 培地) 、 又はグルコース 1.0%、 ギ酸ナ トリウム 0.5%、 Yeast Nitrogen Base 0.67%を含む pH5.5の培地 (GF培地) で 培養し、 酸性フォスファタ一ゼ活性を測定した。 酸性フォスファターゼ活性の測 定法は、 Toh - e らの方法 (Toh-e, に et al., J. Bacteriol. , 113, 727 (1973)) に従い、 洗浄菌体懸濁液をそのまま酵素として用いた。 1単位の酵素活 性は、 30°Cで 1分間に lmmoleの P-ニトロフエノールを生成する酵素量とした。 公知の文献 (Sakai Y. et al. , J. Bacteriol., 173, 7458(1991)) によると、 URA3 をマーカ一とした形質転換では、 形質転換細胞の約半分が、 プラスミ ドが 1 コピー組み込まれたものであることから、 各プラスミ ドからの形質転換体の酸 性フォスファターゼ活性の値の分布が最も大きい値を、 1コピー挿入形質転換体 の酸性フォスファタ一ゼ活性の値とした。 またこれら形質転換体について、 実際 にブラスミ ドが 1コピー組み込まれていることをサザン解析によって確認した。 pPUFl が示す酸性フォスファターゼ比活性 (ユニット Z0D610) を 100 としたと きの各プラスミ ドからの形質転換体が示す酸性フォスファタ一ゼ比活性を図 2 に示す。 図 2の結果から、 メタノールによって誘導する場合は、 プロモータ一領 域を 839bp以上、 ギ酸によって誘導する場合は、 プロモータ一領域を 642bp以上 有していれば、 活性が 80%以上保持されることが明らかとなつた。 なお、 比活性は、 プロモータ一領域が欠失していないプラスミ ド pPUFl の形 質転換体が示す酸性フォスファターゼ活性を 100としたときの相対値を示してい る。 また親株とは、 プラスミ ドを導入していない Candi da bo i d i ni i KST2515 株 の値である。 実施例 2
本実施例は、 内部領域を欠失した Candi da boi dini i FDH プロモータ一を作製 し、 内部欠失型 FDH プロモーターにより支配される Saccharomyces cerevi s i ae 由来の酸性フォスファタ一ゼ活性を測定することにより FDHプロモータ一の機能 に必要な領域を同定した例である。
(2-1 ) 内部欠失型 FDHプロモータ一により支配される PH05発現プラスミ ドの構 築
内部領域を欠失した FDHプロモータ一は、 PCRにて作成した(図 3に pPFIDlの 構築法を示す)。 PCR にて内部領域を欠失した FDH プロモーターを作成するため に、 以下のオリゴヌクレオチドを合成した。
PF1478; CCCCTCGAGTCAACAAATCAATCAGCCAATCTACC (配列番号 15)
PF521; CCAGATCTTGATAATAAGGTATACTACATTTTATC (配列番号 16)
PC548; CCAGATCTAGTAGTAGTGGTAGTAGTAGTGGTAGTAGTAAGATG (配列番号 17) PC571; CCAGATCTAGTAGTAAGATGTTACAGATATAAAAACTACCG (配列番号 18)
PC599; CCAGATCTCTACCGTCTGATCCATGGATTTTAATTGG (配列番号 19)
PC619; CCAGATCTTTAATTGGATAGTGGTAAAGATATAATTATAAC (配列番号 20)
PC641; CCAGATCTATAATTATAACATCTGACTAGTATTACC (配列番号 21 )
オリゴヌクレオチド PF521 と PRV3を用いて、 pPUFlを铸型とした PCR ( (94°C で 30 秒、 55°Cで 1分、 72°Cで 1分) X 20 サイクル) を行い、 増幅 DNA 断片を pT7 B lue T-Vectorにクローニングした後、 Bgl I I-Not Iで切り出した。 PF1478 と PC548、 PC571、 PC599、 PC619、 PC642のいずれかを用いて、 pPUFl を錡型とし た PCR ( (94°Cで 30秒、 55°Cで 1分、 72°Cで 1分) X 20サイクル) を行った。 それぞれの増幅 DNA 断片を pT7 Blue T- Vector にクロ一ニングした後、 Xho I - Bgl I Iで切り出し、 前述の Bgl I I-Not I DNA断片とともに、 pPUFlの Xho I -Not I に挿入した。 プライマー PC548から得た配列番号 2の 932番目から 957番目の 塩基配列が欠失した FDH プロモータ一領域を有している PH05発現プラスミ ドを pPFIDl、 プライマ一 PC571から得た配列番号 2の 909番目から 957番目の塩基配 列が欠失した FDHプロモータ一領域を有している PH05発現プラスミ ドを pPFID2、 プライマー PC599から得た配列番号 2の 881番目から 957番目の塩基配列が欠失 した FDHプロモータ一領域を有している PH05発現プラスミ ドを pPFID3、 プライ マ一 PC619 から得た配列番号 2の 861番目から 957番目の塩基配列が欠失した FDHプロモータ一領域を有している PH05発現プラスミ ドを pPFID4、 プライマー PC642 から得た配列番号 2の 839 番目から 957 番目の塩基配列が欠失した FDH プロモータ一領域を有している PH05発現プラスミ ドを pPFID5と命名した。
(2-2) 形質転換
上記実施例 (2-1 ) で得たプラスミ ドを実施例 (1-3 ) と同様の方法で、 Candi da bo i dini i に形質転換し、 ME培地、 GF培地での酸性フォスファタ一ゼ活 性を測定した。 pPUFl が示す酸性フォスファタ一ゼ比活性 (ユニット Z0D610) を 100としたときの各プラスミ ドからの形質転換体が示す酸性フォスファタ一ゼ 比活性を図 4に示す。 なお、 比活性は、 プロモーター領域が欠失していないブラ スミ ド pPUFlの形質転換株が示す酸性フォスファタ一ゼ活性を 100としたときの 相対値を示している。
配列番号 2の 881番目から 957番目の塩基配列が欠失したものでは FDHプロモ —ター活性には全く影響を与えなかったが、 861番目から 957番目の塩基配列が 欠失したものではメタノール及びギ酸による誘導が全く見られなかった。 本結果 と実施例 1の結果より、 配列番号 2の 837番目から 880番目の塩基配列が、 メタ ノール及びギ酸によって誘導するには、 FDH プロモータ一活性に必要であると考 えられた。 実施例 3
本実施例は、 UAS 配列を付加した Cand i da bo id ini i FDH プロモータ一を作製 し、 該プロモータ一によリ支配される Saccharomyces cerevi s i ae 由来の酸性フ ォスファタ一ゼ活性を測定したものである。 ( 3-1 ) PH05発現プラスミ ドの構築
5'末端に Xho I 部位を有する FDHプロモーター領域 lOOObp を単離するために 以下のオリゴヌクレオチド PXF1000を合成した。
PXF1000; CCCTCGAGGCTGGGTTTTTACTGAATTCAGTC (配列番号 22)
オリゴヌクレオチド PXF1000 と PRV3 を用いて、 pPUF24 を錡型とした PCR ( (94°Cで 30秒、 55°Cで 1分、 72°Cで 1分) X 20サイクル) を行い、 増幅 DNA 断片を pT7 B lue T-Vector にクローニングした後、 Xho l -Not I で切り出し、 pPUFlの Xho I - Not I に揷入した。 得られたプラスミ ドを pPUF24X と命名した。 実施例 1、 2よリ推定される FDHプロモータ一活性に必要であると考えられる配 列番号 1の塩基配列を含むオリゴヌクレオチド UA3、 UA3Cを合成した。
AAAATCCATGGATCAGACGGTAG (配列番号 23)
UA3C ; TCGACTACCGTCTGATCCATGGATTTTAATTGGATAGTGGTAAAGCTACCGTCTGATCCATG GATTTTAATTGGATAGTGGTAAAC (配列番号 24)
合成後、 ォリゴヌクレオチド UA3、 UA3Cを T4ポリヌクレオチド ·キナーゼ(宝 酒造社)により 5'末端をリン酸化し、 それぞれ 100pmo l / / l になるように、 ァニ —リングバッファ一 (10mM Tri s-HC l , pH8. 0, 0. ImM EDTA, lOOmM NaC l ) に溶解 した。 前述オリゴヌクレオチド UA3、 UA3C溶液を等量混合し、 95°Cで 5分間加熱 し、 徐冷して両鎖をアニーリングした。 得られた 2本鎖 DNA 断片は、 両末端が Xho I 部位とライゲ一シヨン可能であり、 ライゲ一シヨン後、 図 5に示すように 片方のみが再び Xho Iで切断される。
PPUF24Xを Xho Iで切断した後、 先のァニ一リングした DNA断片とライゲーシ ヨンし、 大腸菌 DH5に形質転換した。 数個の形質転換体よりプラスミ ド DNAを調 整し、 制限酵素分析にょリ、 合成 DNA断片が揷入されているプラスミ ドを選択し、 さらに挿入されている合成 DNA断片のコピー数及び、 方向を決定した。 配列番号 1の塩基配列が 2コピー正方向に挿入されたプラスミ ドを pMFPH2、 2コピー逆 方向に揷入されたプラスミ ドを pMFPH2R、 4コピー正方向に挿入されたプラスミ ドを pMFPH4 と名付けた。 得られたプラスミ ドのプロモータ一領域の構造の一部 を図 6に示す。 (3-2) 形質転換
上記実施例 (3-1) で得たプラスミ ド, pMFPH2, pMFPH2R, PMFPH4 及び pPUFl を実施例 (1-3) と同様の方法で Candida boidinii に形質転換し、 ME 培地、 GF 培地での酸性フォスファタ一ゼ活性 (ユニットノ 0D610) を測定した。 なお、 1 単位の酵素活性は、 30°Cで 1分間に Immoleの P-ニトロフエノールを生成する酵 素量とした。 各プラスミ ドからの 1コピー挿入型形質転換体が示す酸性フォスフ ァタ一ゼ比活性を図 6に示す (活性は mU/0D610 で表示) 。 酸性フォスファタ一 ゼ比活性は挿入した DNA断片により、 大幅に上昇した。 また、 この効果はそのコ ピ一数に依存するものの、 揷入方向とは無関係であった。
以上の結果よリ、 揷入した配列番号 1の塩基配列は FDHプロモータ一がメタノ —ル及びギ酸により誘導される際に、 必須な配列、 すなわち FDHプロモーターの UAS配列として機能していること、 及び UAS配列はプロモータ一の転写活性を揷 入方向に依存せずに増強させることが明らかとなった。 実施例 4
本実施例は、 UAS 配列を付加した Candida boidinii ァクチン遺伝子プロモ一 タ一を作製し、 該ブロモータ一により支配される Saccharomyces cerevisiae 由 来の酸性フォスファタ一ゼ活性を測定したものである。
(4-1) PH05発現プラスミ ドの構築
ァクチンプロモータ一による PH05 発現プラスミ ドを構築するため、 Candida boidinii ァクチン遺伝子のプロモーター領域を PCR にて取得した。 配列番号 3 に記載されている Candida boidinii ァクチン遺伝子のプロモーター領域の塩基 配列をもとに、 以下のオリゴヌクレオチドを合成した。
XCAC5; TTCTCGAGTCAATAAGAGTGTGATTATATACAATCAGC (配列番号 25)
NCAC3; TTGCGGCCGCTTTTGTAATATATATTAAATTAAATTTATAAAATCTATC (配列番号
26)
オリゴヌクレオチド XCAC5と NCAC3を用いて、 W097/10345に記載の pAcl-7を 錡型とした PCR ( (94°Cで 30秒、 55°Cで 1分、 72°Cで 1分) X20サイクル) を 行った。 なお、 本実施例では PCRの錡型 DNA としてプラスミ ド pAc卜 7 を用いて いるが、 Candi da bo i d i ni i ATCC48180 株より取得した染色体 DNA を用いて行う ことも可能である。 増幅 DNA断片を pT7 B lue T-Vectorにクロ一ニングした後、 Xho I - Not I で切り出し、 pPUFl の Xho I -Not I に挿入した。 得られたプラスミ ド pAcPH (図 7)はマーカ一が URA3遺伝子で、 Candi da bo i dini i ァクチン遺伝子 プロモータ一、 FDH遺伝子タ一ミネ一ターによる PH05発現ブラスミ ドである。 pACPHのァクチン遺伝子プロモーターの 5'末端側に存在する Xho I部位に、 実 施例(3-1)と同様の方法で UAS配列を含む DNA断片を揷入し、 UAS配列が 2コピ 一正方向に挿入されたプラスミ ド pUAcPH2、 UAS 配列が 4コピー正方向に挿入さ れたプラスミ ド pUAcPMを作製した。
(4-2) 形質転換
上記実施例 (4-1) で得たプラスミ ド pAcPH、 pUAcPH2、 pUAcPH4及び pPUFl を 実施例 U - 3) と同様の方法で、 Candi da bo i dini i に形質転換した。 ただし、 プ ラスミ ド DNAの切断には Hind I I I を用いた。 得られた形質転換体の ME培地、 GF 培地、 及びグルコース 1. 0%、 Yeast Ni trogen Base 0. 67%を含む pH5. 5の培地 (GS 培地) での酸性フォスファタ一ゼ活性を測定した。 各プラスミ ドからの 1 コピ一挿入型形質転換体が示す酸性フォスファタ一ゼ比活性を図 8に示す。
UAS配列を持たないァクチン遺伝子プロモーター(pAcPH)では、 GS培地、 GF培 地、 ME培地で酸性フォスファタ一ゼ活性には顕著な差が見られなかったものの、 UAS 配列を有するァクチン遺伝子プロモーター(pUAcPH2、 pUAcP )では、 ギ酸脱 水素酵素遺伝子プロモーターと同様に、 GF 培地、 ME 培地で著しい活性の上昇が 見られた。
以上の結果から、 実施例 3で示した UAS配列は FDHプロモーターのみならず他 のプロモーターの活性を上昇させる効果があることが判明した。 産業上の利用可能性
本発明により、 高い転写活性を有するプロモーター、 該プロモータ一を担持 する発現べクタ一、 該発現べクタ一が導入された形質転換体並びにプロモーター 活性を増大させる方法及び異種蛋白質の生産方法が提供される。 本発明により得 られる変異型プロモーターは、 野生型プロモーターと比べてプロモーター活性が 格段に増強されているため、 異種遺伝子を発現させるプロモータ一として利用価 値が極めて高く、 本発明の発現べクタ一は種々の有用なタンパク質を、 効率良く 発現、 生産することができる。

Claims

請 求 の 範 囲
1. 配列番号 1で表わされる塩基配列からなる DNA、 又は該塩基配列において 1若しくは複数の塩基が欠失、 置換、 付加若しくは挿入された塩基配列から なり、 かつプロモータ一活性を上昇させる DNA。
2. 任意のプロモーターの前、 後及び内部の領域の少なくとも 1箇所に、 請求項 1記載の DNAの 1個又は複数の断片が正方向又は逆方向で配置された変異 型プロモーター。
3. 請求項 2記載の変異型プロモータ一及び異種遺伝子を含む発現用組換えべク タ一。
4. 請求項 3記載のベクタ一によって形質転換された形質転換体。
5. 任意のプロモータ一の前、 後及び内部の領域の少なくとも 1箇所に、 請求項 1記載の DNAの 1個又は複数の断片を正方向又は逆方向で配置させること を特徴とするプロモータ一活性を増大させる方法。
6. 請求項 4記載の形質転換体を培地に培養し、 得られる培養物から異種遺伝子 の発現産物を採取することを特徴とする前記発現産物の生産方法。
PCT/JP1998/003848 1997-08-29 1998-08-28 Sequences d'adn ameliorant l'activite des promoteurs WO1999011779A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/297,053 US6274340B1 (en) 1997-08-29 1998-08-28 DNA sequences enhancing promoter activity
DE69837751T DE69837751T2 (de) 1997-08-29 1998-08-28 Dna sequenzen, welche die promotoraktivität erhöhen
EP98940610A EP0967275B1 (en) 1997-08-29 1998-08-28 Dna sequences enhancing promoter activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/234995 1997-08-29
JP23499597A JP3290108B2 (ja) 1997-08-29 1997-08-29 プロモーター活性を増大させるdna配列

Publications (1)

Publication Number Publication Date
WO1999011779A1 true WO1999011779A1 (fr) 1999-03-11

Family

ID=16979507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003848 WO1999011779A1 (fr) 1997-08-29 1998-08-28 Sequences d'adn ameliorant l'activite des promoteurs

Country Status (6)

Country Link
US (1) US6274340B1 (ja)
EP (1) EP0967275B1 (ja)
JP (1) JP3290108B2 (ja)
AT (1) ATE361976T1 (ja)
DE (1) DE69837751T2 (ja)
WO (1) WO1999011779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332563A2 (en) 2004-10-13 2011-06-15 The Washington University Use of BAFF to treat sepsis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501955B1 (de) * 2005-02-23 2007-08-15 Univ Graz Tech Mutierte aox1-promotoren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010345A1 (fr) * 1995-09-12 1997-03-20 Kirin Beer Kabushiki Kaisha Promoteur/terminateur de gene de candida boidinii faisant office de formate deshydrogenase
JPH09135694A (ja) * 1995-09-12 1997-05-27 Kirin Brewery Co Ltd カンジダ・ボイジニイのアクチン遺伝子のプロモーター/ターミネーター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010345A1 (fr) * 1995-09-12 1997-03-20 Kirin Beer Kabushiki Kaisha Promoteur/terminateur de gene de candida boidinii faisant office de formate deshydrogenase
JPH09135694A (ja) * 1995-09-12 1997-05-27 Kirin Brewery Co Ltd カンジダ・ボイジニイのアクチン遺伝子のプロモーター/ターミネーター

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLEN S. J., HOLBROOK J. J.: "ISOLATION, SEQUENCE AND OVEREXPRESSION OF THE GENE ENCODING NAD- DEPENDENT FORMATE DEHYDROGENASE FROM THE METHYLOTROPHIC YEAST CANDIDA METHYLICA.", GENE., ELSEVIER, AMSTERDAM., NL, vol. 162., 1 January 1995 (1995-01-01), NL, pages 99 - 104., XP002915041, ISSN: 0378-1119, DOI: 10.1016/0378-1119(95)00347-9 *
SAKAI Y., ET AL.: "REGULATION OF THE FORMATE DEHYDROGENASE GENE, FDH1, IN THE METHYLOTROPHIC YEAST CANDIDA BOIDINII AND GROWTH CHARACTERISTICS OF AN FDH1-DISRUPTED STRAIN ON METHANOL, METHYLAMINE, AND CHOLINE.", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 179., no. 14., 1 July 1997 (1997-07-01), US, pages 4480 - 4485., XP002915040, ISSN: 0021-9193 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332563A2 (en) 2004-10-13 2011-06-15 The Washington University Use of BAFF to treat sepsis

Also Published As

Publication number Publication date
EP0967275B1 (en) 2007-05-09
DE69837751T2 (de) 2008-01-31
EP0967275A1 (en) 1999-12-29
EP0967275A4 (en) 2002-09-18
JP3290108B2 (ja) 2002-06-10
ATE361976T1 (de) 2007-06-15
DE69837751D1 (de) 2007-06-21
US6274340B1 (en) 2001-08-14
JPH1175843A (ja) 1999-03-23

Similar Documents

Publication Publication Date Title
KR102400332B1 (ko) 정제 화학약품의 개선된 생산을 위한 재조합 미생물
JP7460179B2 (ja) バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法
US10544411B2 (en) Methods for generating a glucose permease library and uses thereof
JP2019519242A (ja) 細菌ヘモグロビンライブラリーを生成するための方法およびその使用
KR20180011324A (ko) 알라닌의 개선된 제조를 위한 재조합 미생물
KR20160098324A (ko) 정밀 화학물질의 개선된 생산을 위한 재조합 미생물
US20240158820A1 (en) Fermentative production of n-butylacrylate using alcohol acyl transferase enzymes
JP3396224B2 (ja) カンジダ・ボイジニイのギ酸脱水素酵素遺伝子のプロモーター/ターミネーター
JP5297656B2 (ja) 新規枯草菌変異株及びタンパク質の製造方法
WO1999011779A1 (fr) Sequences d'adn ameliorant l'activite des promoteurs
JP2005514001A (ja) 酵母中での異種遺伝子発現のためのアルコールオキシダーゼ1調節ヌクレオチド配列
JP2022078003A (ja) 耐酸性酵母遺伝子ベースの合成プロモーター
AU2002307504A1 (en) Alcohol oxidase 1 regulatory nucleotide sequences for heterologous gene expression in yeast
KR20050025180A (ko) 메틸트로픽 효모로부터 유도된 변화된 전사 효율을 갖는프로모터
Suckow et al. The expression platform based on H. polymorpha strain RB11 and its derivatives–history, status and perspectives
US20080299616A1 (en) Malate Synthase Regulatory Sequences for Heterologous Gene Expression in Pichia
EP1231266A1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
JP4671394B2 (ja) キャンディダ・ユティリス由来のプロモーターdna
NL2023169B1 (en) Biotin prototrophy
WO2023219575A1 (en) EXPRESSION PLASMID FOR TARGET PROTEIN PRODUCTION USING SUCROSE CONTAINING MEDIA, RECOMBINANT THERMOTOLERANT YEAST Ogataea FOR TARGET PROTEIN PRODUCTION
EP1055726B1 (en) Candida boidinii dihydroxyacetone synthase promoter
JP3496640B2 (ja) 酸化還元酵素、同酵素をコードする遺伝子、同酵素遺伝子含有形質転換体および同酵素の製造方法
CN113774057A (zh) 用于重组基因表达的截短的启动子
Koolkoksong et al. Construction of a vector containing a formaldehyde hyperresistance gene as a selective marker
JPH04148683A (ja) 新規遺伝子、ベクター、それを用いた形質転換体およびその利用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09297053

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998940610

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998940610

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998940610

Country of ref document: EP