WO1999001598A1 - Galette - Google Patents

Galette Download PDF

Info

Publication number
WO1999001598A1
WO1999001598A1 PCT/CH1998/000225 CH9800225W WO9901598A1 WO 1999001598 A1 WO1999001598 A1 WO 1999001598A1 CH 9800225 W CH9800225 W CH 9800225W WO 9901598 A1 WO9901598 A1 WO 9901598A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating roller
sensor
heating
temperature
hollow cylinder
Prior art date
Application number
PCT/CH1998/000225
Other languages
English (en)
French (fr)
Inventor
Heinz Von Arx
Urs Meyer
Christian Aeschbacher
Original Assignee
Retech Aktiengesellschaft H. Von Arx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Retech Aktiengesellschaft H. Von Arx filed Critical Retech Aktiengesellschaft H. Von Arx
Priority to AU73299/98A priority Critical patent/AU7329998A/en
Publication of WO1999001598A1 publication Critical patent/WO1999001598A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/14Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning
    • F26B13/18Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning heated or cooled, e.g. from inside, the material being dried on the outside surface by conduction
    • F26B13/183Arrangements for heating, cooling, condensate removal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers

Definitions

  • the invention relates to a godet with a rotatable, cylindrical or tubular heating roller designed as a hollow cylinder and with means for measuring the temperature of the heating roller according to the preamble of the independent claim
  • Galettes are used especially in spinning machines and for the filament fibers and the like.It is extremely important that the right temperature can be maintained precisely for reasons of the fiber material, since a mechanical-thermal process takes place during the transport of the fiber strand. The transport speed of the transported medium must also be taken into account , the fiber strand, etc. are precisely tuned and regulated accordingly. Since the godet consists of a roller-shaped or tubular cylinder, around which the fiber strand at least partially circulates, the transport speed is dependent on its diameter and this in turn depends on the temperature of the godet itself.
  • the temperature of the cylinder of the godet is particularly important, especially when processing filaments made of polymers.
  • the cylinder of the godet is designed as a heating roller and heated to a desired temperature. The heat is transferred to the polymer filament and influences the stretchability. However, it is very important to keep the temperature on the surface of the heating roller constant Tried problem
  • Patent specification DE 40 24 432 describes a method for determining the temperature of an inductively heated machine part.
  • the inductance of the machine part is determined by means of an additional coil next to the inductor.
  • the temperature can then be derived arithmetically from this measurement variable using a reference table.
  • the object of the invention is to provide a godet with means for measuring the temperature of the heating roller with which the temperature on the surface or in the material of the hollow cylinder of the heating roller can be measured directly.
  • Another object of the invention is then to make damage to the measuring elements during assembly and disassembly of the rollers largely avoidable.
  • a particular advantage of the invention is that the temperature of the material of the heating roller itself is measured.
  • Figure 1 shows a godet according to the invention in the basic structure
  • Figure 2a shows a heating roller in connection with the measuring elements in longitudinal section
  • Figure 2b shows a heating roller in connection with the measuring elements in cross section A-A
  • FIG. 3 shows another embodiment of the heating roller in longitudinal section
  • Figure 4 shows a possible arrangement of several magnets on a heating roller.
  • the basis of the invention is the physical principle that the field strength of a given magnet is influenced by its temperature.
  • a small magnet in particular a small permanent magnet made of a suitable material, is attached to the hollow cylinder of a heating roller in such a way that the temperature prevailing on the hollow cylinder wall is conducted conductively to this magnet, so that it always has the same temperature as the material of the heating roller itself .
  • the current field strength of the magnet which is influenced by the temperature, can thus be measured at any time using suitable means and the actual temperature of the magnet and thus of the heating roller itself can be derived from this at any time.
  • the measured values obtained can be fed back directly to a control loop for controlling the heating.
  • a very fast and precise regulation is made possible, and the desired temperature of the heating roller can be kept exactly.
  • the thermo-physical process in particular the heat treatment of polymer filaments, achieves high quality and excellent consistency.
  • a godet or heating godet has a heating roller 11, which in principle forms a hollow cylinder. It can be designed as a roller, roller or wheel and can be suitably profiled according to the application.
  • the hollow cylinder consists essentially of steel or other suitable material as known.
  • the heating roller 11 is detachably fastened by means of a seat 13 on a clamping 22 on an axis 21. The axis 21 and thus the heating roller 1 1 is driven by an electric motor 2.
  • the heating roller 1 1 abuts against the electric motor 2 on a fixed rear wall 1 2.
  • At least one permanent magnet 31 is attached to the hollow cylinder jacket of the heating roller 11. It can be embedded on the outside or inside of the wall and recessed or attached to the surfaces.
  • a sensor 32 is located on a sensor holder 321 in such a way that when the heating roller rotates, the magnet is moved past the sensor 32 at a small distance.
  • Sensor holder 321 and sensor 32 can be arranged outside the heating roller 11. However, they can also be located within the hollow cylinder, here indicated by sensor 32 '. They are advantageously mechanically connected to the fixed rear wall.
  • the heating elements 4 are also arranged inside or outside the hollow cylinder of the heating roller 11. Induction heating coils, infrared radiation bodies or resistance heating are suitable for this.
  • An inductive measuring coil, a Hall element or a magnetic field sensitive semiconductor sensor which works according to the so-called totem pole principle, is suitable as a sensor for measuring the field strength. Because these different sensors are sensitive to different temperature ranges are selected, the one that delivers the most accurate measurement signals in the desired range.
  • the magnet 31 is moved past the sensor 32 once with each revolution of the heating roller 11.
  • the current field strength of the magnet is measured in a known manner, from which the current temperature of the heating roller is derived.
  • the temperature can now be derived directly from the measured value. Another possibility arises by deriving the temperature from the changes in the field strength.
  • You can now measure the magnetic field during the rotation of the heating roller 1 1 and compensate for the influence of the speed by designing the evaluation circuit accordingly or computationally.
  • the evaluation circuit for the signals generated by the sensor (32) can thus include speed compensation by flux measurement.
  • FIG. 2a A preferred embodiment of a heating roller 11 is shown in FIG. 2a in longitudinal section and in FIG. 2b in cross section AA from FIG. 2a.
  • Elements 4 for heating the heating roller 11 are attached to the fixed rear wall 12 in such a way that they protrude from the rear wall 12 into the free space into the hollow cylinder.
  • the heater is designed as an induction heater of basically known type.
  • the elements 4 for heating which are firmly connected to the rear wall 1 2, comprise a central cylindrical inductor core 42, in which induction windings 43 are arranged on the outside thereof at least partially
  • the inner wall of the hollow cylinder of the heating roller is covered with a so-called, of course also hollow cylindrical, short-circuit ring 45.
  • the short-circuit ring 45 is intimately connected to the material of the heating roller 11 and rotates together with it on the drive shaft 21. It is advantageously made of copper. As a result, it also has a temperature coefficient which is very similar to that of the permanent magnet 31. Da There is an air gap 46 between the fixed elements 4 of the induction heater, i.e. the inductor core 42 with the induction winding 43, and the short-circuit ring 45.
  • the short-circuit ring 45 is heated by the induction and transfer the heat to the hollow cylinder of the heating roller 1 1
  • a stationary sensor carrier 44 that is to say connected to the rear wall 12, which carries the sensor 32 '.
  • the induction winding 43 itself is used as the sensor carrier 43.
  • the sensor 32 'and the sensor carrier are arranged at one point on the circumference of the elements 4 for heating, in the illustration above. Only one sensor 32 'is required. Nevertheless, an embodiment with a plurality of sensors 32 ′ distributed over the circumference can of course also be possible.
  • Suitable as sensor 32 ' is a measuring coil, a Hall element or a magnetic field-sensitive semiconductor sensor, which works according to the so-called totem pole principle, as described above.
  • a small recess is made in the short-circuit ring 45.
  • a small permanent magnet 31 is embedded therein. It is firmly connected to the material of the hollow cylinder of the heating roller 11 and is in intimate, good heat-conducting contact. It can even be embedded in the inner wall of the hollow cylinder. In this way, the magnet 31 is always at least approximately the same temperature as the heating roller 1 itself. This means that the temperature of the permanent magnet 31 corresponds to the temperature of the material of the hollow cylinder, that is, the heating roller 11.
  • the narrow air gap 46 still exists between the permanent magnet and the sensor 32 '.
  • the permanent magnet 31 and sensor 32' are arranged in such a way that each time the heating roller 11 rotates, the permanent magnet 31 sweeps over the surface of the sensor 32 'at a small distance.
  • the sensor 31 ' thus generates a measurement signal.
  • the sensor is a measuring coil
  • induction is brought about and an induction voltage is generated each time.
  • This induction voltage can now be measured and thus represents an exact image or measure for the current temperature of the permanent magnet 31 itself when it is swept over and thus of the material of the hollow cylinder of the heating roller 11.
  • a permanent magnet 31 with a pronounced temperature coefficient, for example, is particularly suitable for this Ferrite.
  • the temperature coefficient then corresponds approximately to that of the short-circuit ring made of copper, as is advantageously used for induction heating.
  • the physical principle and the mode of operation of the temperature measurement remain unchanged when using a Hall element or a magnetic field-sensitive semiconductor sensor.
  • the choice of the type of sensor depends on the required ambient temperature.
  • the temperature of the heating roller 11 is thus measured by measuring the voltage induced in the sensor 32 'and can be carried out using a conventional voltage measuring device. It is thus possible to use this induced voltage as a signal for the control and regulation of the induction heating for the heating roller 1 1. This creates a closed loop which makes it possible to keep the temperature of the heating roller 1 1 or the temperature of the hollow cylinder and thus its surface constant or to heat it up to an exact value and to maintain the desired temperature exactly.
  • the magnetic field is now measured inductively with a measuring coil as sensor 32 and the heating elements 4 with heating coils 41 are selected for induction heating of the heating roller 11, it is possible that the measuring coil as sensor 32 is also switched as heating coil 4 at the same time .
  • the permanent magnet 31 must be arranged differently so that the magnetic field generated by it in the area of the induction heating coil is aligned as approximately as possible at right angles to the heating winding.
  • it is advantageously attached in the front or rear edge region of the hollow cylinder. This can be seen from FIG. 3.
  • the senor function as a measuring coil for inductive measurement of the magnetic field and the function as a heating coil for inductive heating of the heating roller 1 1 must be electrically and / or speed-dependent decoupled and synchronized.
  • this coil is controlled via a decoupling 56.
  • the decoupling 56 connects the coils to an evaluation 5 to determine the magnetic field strength and / or to supply and control the heating power.
  • an infrared radiation heating or a resistance heating can also be used together with the same sensors 32 ′ in a corresponding arrangement.
  • the means for heating are arranged in a fixed manner analogous to the induction heating described.
  • the magnet, or possibly a plurality of permanent magnets, is attached to the rotating heating roller and rotates with it.
  • the type of temperature measurement and the basic type and arrangement of the sensors 32 'always remain the same.
  • a plurality of permanent magnets 31 can be arranged distributed on or in the hollow cylinder of the heating roller 11, as can be seen from FIG. 4. They can be distributed, for example, in the longitudinal direction of the hollow cylinder.
  • a sensor 32, 32', 32" suitably arranged on the sensor carrier 44 is required if the permanent magnets 31 are also at different angles of rotation to the axis of rotation of the heating roller, be used, for example, offset by 120 °, a single sensor coil is sufficient, which extends over the entire length of the hollow cylinder. Since the rotational position is known, it can always be determined by calculation from which permanent magnet 31 the signal originates and whose temperature is measured.
  • the godet from filament 5 is looped 52, 52 ', 52 "several times from filament inlet 51 to filament outlet 53.
  • a permanent magnet 31" in the area of filament outlet 53.
  • the filament can be continuously heated from the inlet to the godet to the outlet, whereby all of the heating areas can be precisely measured and controlled with regard to their temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Induction Heating (AREA)

Abstract

Eine Galette zum Fördern und Bearbeiten von Filamenten mit einer als Hohlzylinder ausgestalteten drehbaren, walzen- oder rollenförmigen Heizrolle (11) ist mit Mitteln zum Messen der Temperatur der Heizrolle (11) versehen. Dazu ist am Hohlzylinder der Heizrolle (11) ein Magnet (31) angebracht. Ein Sensor (32, 32') zum Messen des Magnetfeldes des Magneten (31) ist ausserhalb oder innerhalb der Heizrolle (11) untergebracht. Das durch die Temperatur der Heizrolle (11) beeinflusste Feld des Magneten (31) wird gemessen und als Referenzgrösse für die aktuelle Temperatur der Heizrolle (11) ausgewertet.

Description

Galette
Die Erfindung betrifft ein Galette mit einer als Hohlzylinder ausgestalteten drehbaren, walzen- oder roUenförmigen Heizrolle und mit Mitteln zum Messen der Temperatur der Heizrolle gemass dem Oberbegriff des unabhängigen Patentanspruches
Galetten werden insbesondere bei Spinnereimaschinen und zum Fordern von Filamentfasern und ähnlichem verwendet Dabei ist es ausserordentlich wichtig, dass die passende Temperatur aus Gründen des Faserstoffes genau eingehalten werden kann, da beim Transport des Faserstranges ein mechanisch-thermischer Prozess ablauft Ebenfalls muss die Transportgeschwindigkeit des transportierten Mediums, des Faserstranges usw genau stimmen und entsprechend genau geregelt werden. Da die Galette aus einem walzenförmigen oder roUenförmigen Zylinder besteht, welchen der Faserstrang mindestens teilweise umlauft, ist die Transportgeschwindigkeit von dessen Durchmesser und dieser wiederum von der Temperatur der Galette selbst abhangig. Beim Fuhren eines Faserstranges über eine Bahn von zwei oder mehr Galetten werden die Zugkräfte auf den Faserstrang und in diesem selbst stark beeinflusst, falls eine unerwünschte Geschwindigkeitsdifferenz vorhanden ist Eine Kontrolle der Geschwindigkeit am Umfang einer Galette ist daher sehr wichtig Um den Antrieb genau genug zu regeln, muss man daher die Temperatur der Heizrolle der Galette kennen
Ganz Desonders wichtig ist die Temperatur des Zylinders der Galette speziell bei der Verarbeitung von Filamenten aus Polymeren. Dazu wird der Zylinder der Galette als Heizrolle ausgestaltet und auf eine gewünschte Temperatur aufgeheizt Die Warme wird auf das Polymerfilament übertragen und beeinflusst die Verstreckbarkeit Dazu ist aber eine genaue Konstanthaltung der Temperatur an der Oberflache der Heizrolle sehr wichtig Es wurden auch bereits verschiedene Möglichkeiten zur Losung des Problemes versucht
Aus US 3 581 060 beispielsweise ist bekannt wie die Temperatur einer Heizrolle mit einem Messelement bestimmt wird Das Temperaturmesselement wird in eine Nut an der feststehenden Rückwand der Heizrolle eingelegt. Allerdings wird dadurch nicht die Temperatur am Zylinder der Rolle selbst gemessen
Einen anderen Ansatz zeigt DE 30 33 482 C2. Es betrifft eine Walze mit elektromagnetischer Heizung. Für die Bestimmung der Temperatur der Walze wird ein Sensor in Betracht gezogen, der den, unter den Einfluss der Temperatur geänderten Walzendurchmesser misst und daraus rechnerisch dessen Temperatur zu ermitteln ermöglicht.
Die Patentschrift DE 40 24 432 beschreibt ein Verfahren zur Ermittlung der Temperatur eines induktiv beheizten Maschinenteils. Dabei wird die Induktivität des Maschinenteiles mittels einer zusätzlichen Spule neben dem Induktor bestimmt. Aus dieser Messgrösse lässt sich dan rechnerisch anhand einer Refereztabelle die Temperatur herleiten.
Aufgabe der Erfindung ist es, eine Galette mit Mitteln zum Messen der Temperatur der Heizrolle zu versehen mit welcher die Temperatur an der Oberfläche respektive im Material des Hohlzylmders der Heizrolle direkt gemessen werden kann.
Eine weitere Aufgabe der Erfindung besteht dann, Beschädigungen der Messelemente bei Montage und Demontage der Rollen weitgehend vermeidbar zu machen.
Die Aufgabe der Erfindung wird durch die im unabhängigen Patentanspruch angegebenen Merkmale gelöst.
Ein besonderer Vorteil der Erfindung besteht darin, dass die Temperatur des Materiales der Heizrolle selbst gemessen wird.
Die Erfindung wird nachstehend im Zusammenhang mit den Figuren beschrieben.
Figur 1 zeigt eine erfindungsgemässe Galette im grundsätzlichen Aufbau;
Figur 2a eine Heizrolle im Zusammenhang mit den Messelementen im Längsschnitt;
Figur 2b eine Heizrolle im Zusammenhang mit den Messelementen im Querschnitt A-A
Figur 3 eine weitere Ausfύhrungsform der Heizrolle im Längsschnitt und
Figur 4 eine mögliche Anordnung von mehreren Magneten auf einer Heizrolle. Die Basis der Erfindung besteht im physikalischen Prinzip, dass die Feldstärke eines gegebenen Magneten von seiner Temperatur beeinflusst wird. Dazu wird ein kleiner Magnet, im besonderen ein kleiner Permanentmagnet aus geeignetem Material, so am Hohlzylinder einer Heizrolle angebracht, dass die an der Hohlzylinderwand herrschende Temperatur konduktiv an diesen Magneten geleitet wird, so dass er jederzeit die gleiche Temperatur wie das Material der Heizrolle selbst aufweist. Somit kann jederzeit die durch die Temperatur beeinflusste aktuelle Feldstärke des Magneten mit geeigneten Mitteln gemessen und daraus die tatsächliche Temperatur des Magneten und damit der Heizrolle selbst zu jedem Zeitpunkt abgeleitet werden. Die erhaltenen Messwerte können direkt einem Regelkreis zur Regelung der Heizung wieder zugeführt werden. Eine sehr schnelle und genaue Regelung wird ermöglicht, und die gewünschte Temperatur der Heizrolle kann exakt eingehalten werden. Der thermo-physikalische Prozess, insbesondere die Wärmebehandlung von Polymerfilamenten wird eine hohe Qualität und ausgezeichnete Konstanz erreicht.
In Figur 1 sind zwei grundsätzlich Möglichkeiten einer geeigneten Anordnung für eine erfindungsgemässe Galette so dargestellt, das die Funktionsweise einfach zu yerstehen ist.
Eine Galette respektive Heizgalette weist eine Heizrolle 1 1 auf, welche im Prinzip einen Hohlzylinder bildet. Sie kann als Walze, Rolle oder Rad ausgestaltet sein und entsprechend dem Einsatz geeignet profiliert sein. Der Hohlzylinder besteht im wesentlichen aus Stahl oder aus anderem geeigneten Material wie bekannt. Die Heizrolle 1 1 ist mittels einem Sitz 13 auf einer Aufspannung 22 auf einer Achse 21 lösbar befestigt. Die Achse 21 und damit die Heizrolle 1 1 wird von einem Elektromotor 2 angetrieben. Die Heizrolle 1 1 grenzt gegen den Elektromotor 2 an eine feststehende Rückwand 1 2 an. Mindestens ein Permanentmagnet 31 ist am Hohlzylindermantel der Heizrolle 1 1 angebracht. Er kann aussenseitig oder innenseitig in die Wandung eingelassen und versenkt oder auf den Oberflächen befestigt sein. An einem Sensorhalter 321 befindet sich ein Sensor 32 und zwar so, dass beim Drehen der Heizrolle der Magnet jeweils in kleinem Abstand vom Sensor 32 vorbeibewegt wird. Sensorhalter 321 und Sensor 32 können ausserhalb der Heizrolle 1 1 angeordnet sein. Sie können sich aber auch innerhalb dem Hohlzylinder, hier mit Sensor 32' angedeutet, befinden. Vorteilhafterweise sind sie mit der feststehenden Rückwand mechanisch verbunden. Ebenfalls innerhalb oder ausserhalb des Hohlzylinders der Heizrolle 1 1 sind die Heizelemente 4 angeordnet. Es eignen sich dazu sowohl Induktions-Heizspulen, Infrarot-Strahlungskörper oder eine Widerstandsheizung. Als Sensor zum Messen der Feldstärke eignet sich eine induktive Messspule, ein Hallelement oder ein magnetfeldempfindlicher Halbleitersensor, welcher nach dem sogenannte Totem-Pole-Prinzip arbeitet. Da diese verschiedenen Sensoren für verschiedene Temperaturbereiche empfindlich sind, wird jeweils derjenige gewählt, welcher im gewünschten Bereich die genauesten Messsignale liefert.
Aus dieser Figur 1 ist gut ersichtlich, dass bei jeder Umdrehung der Heizrolle 1 1 der Magnet 31 einmal am Sensor 32 vorbeibewegt wird In diesem Moment wird nach bekannter Art die aktuelle Feldstarke des Magneten gemessen, woraus die aktuelle Temperatur der Heizrolle abgeleitet wird. Die Temperatur kann nun direkt aus dem gemessenen Wert abgeleitet werden. Eine andere Möglichkeit ergibt sich, indem die Temperatur aus den Aenderungen der Feldstärke abgeleitet wird. Man kann nun das Magnetfeld wahrend der Rotation der Heizrolle 1 1 messen und den Einfluss der Drehzahl durch entsprechende Gestaltung der Auswerteschaltung oder rechnerisch kompensieren Die Auswerteschaltung für die vom Sensor (32) erzeugten Signale kann somit eine Drehzahlkompensation durch Flussmessung umfassen Eine andere Möglichkeit, besonders geeignet bei der Verwendung eines Hallelementes, besteht darin, die Messung mit der Drehzahl so zu korrellieren, dass bei jeder Umdrehung immer jeweils bei der gleichen Drehposition eine Messung quasi-statisch durchgeführt wird Es wird dabei also immer bei einem geometrisch bestimmten Punkt beim Vorbeibewegen des Magneten am Sensor eine Messung des Magnetfeldes durchgeführt.
In der Figur 2a ist eine bevorzugte Ausfuhrungsform einer Heizrolle 1 1 im Längsschnitt und in der Figur 2b im Querschnitt A - A von Figur 2a dargestellt. An der feststehenden Rückwand 12 sind Elemente 4 zum Heizen der Heizrolle 1 1 angebracht und zwar so, dass sie von der Ruckwand 12 her in den freien Raum in den Hohlzylinder hinein ragen. In dieser bevorzugten Ausfuhrungsform ist die Heizung als Induktionsheizung grundsatzlich bekannter Art ausgebildet Daher umfassen die mit der Ruckwand 1 2 fest verbundenen Elemente 4 zum Heizen einen zentralen zylindrischen Induktorkern 42, in welchen aussenseitig diesen mindestens teilweise umfangend Induktionswicklungen 43 angeordnet sind
Damit diese Induktionsheizung auch einen guten Wirkungsgrad bekommt, ist die Innenwand des Hohlzylmders der Heizrolle mit einem sogenannten, naturlich ebenfalls hohlzylindnschen, Kurzschlussring 45 belegt. Der Kurzschlussring 45 ist mit dem Material der Heizrolle 1 1 innig verbunden und dreht mit ihr zusammen auf der Antriebswelle 21 . Er ist vorteilhafterweise aus Kupfer hergestellt. Dadurch weist er auch einen Temperaturkoeffizienten auf, welcher sehr ähnlich demjenigen des Permanentmagneten 31 ist Da Zwischen den feststehenden Elementen 4 der Induktionsheizung, also dem Induktorkern 42 mit der Induktionswicklung 43, und dem Kurzschlussring 45 besteht ein Luftspalt 46 Durch die Induktion wird der Kurzschlussring 45 erwärmt und die Warme auf den Hohlzylinder der Heizrolle 1 1 übertragen Mit kleinem Abstand über der Induktionswicklung 43 ist ein ebenfalls feststehender, das heisst mit der Rückwand 12 verbundener Sensorträger 44 angeordnet, welcher den Sensor 32' trägt. Es ist offensichtlich, dass die Induktionswicklung 43 selbst als Sensorträger 43 benützt wird. Aus der Figur 2b geht klar hervor, dass der Sensor 32' und der Sensorträger an einem Punkt auf dem Umfang der Elemente 4 zum Heizen, in der Darstellung oben, angeordnet sind. Es wird ja nur ein Sensor 32' benötigt. Trotzdem kann natürlich auch eine Ausführung mit mehreren über den Umfang verteilten Sensoren 32' möglich sein. Als Sensor 32' eignet sich eine Messspule, ein Hallelement oder eine magnetfeldempfindlicher Halbleitersensor, welcher nach dem sogenannte Totem-Pole-Prinzip arbeitet, wie weiter oben beschrieben.
An der Innenwand des Hohlzylinders der Heizrolle 1 1 ist eine kleine Ausnehmung in den Kurzschlussring 45 eingelassen. Darin eingebettet ist ein kleiner Permanentmagnet 31. Er ist mit dem Material des Hohlzylinders der Heizrolle 1 1 fest verbunden und in innigem, gut wärmeleitenden Kontakt. Er kann sogar in die innere Wandung des Hohlzylinders eingelassen sein. Auf diese Weise hat der Magnet 31 immer eine mindestens annähernd gleiche Temperatur wie die Heizrolle 1 selbst. Das bedeutet, dass die Temperatur des Permanentmagneten 31 der Temperatur des Materials des Hohlzylinders also der Heizrolle 1 1 entspricht.
Zwischen dem Permanentmagneten und dem Sensor 32' besteht immer noch der schmale Luftspalt 46. Permanentmagnet 31 und Sensor 32' sind so angeordnet, das bei jeder Drehung der Heizrolle 1 1 der Permanentmagnet 31 in kleinem Abstand die Oberfläche des Sensors 32' überstreicht. Dadurch erzeugt der Senor 31 ' ein Messsignal. Im Falle, dass der Sensor eine Messspule ist, wird darin jedesmal eine Induktion bewirkt und eine Induktionsspannung erzeugt. Diese Induktionsspannung kann nun gemessen werden und stellt somit ein genaues Abbild oder Mass für die beim jeweiligen Ueberstreichen aktuelle Temperatur des Permanentmagneten 31 selbst und damit des Materials des Hohlzylinders der Heizrolle 1 1 dar. Dafür eignet sich besonders ein Permanentmagnet 31 mit ausgeprägtem Temperaturkoeffizienten, beispielsweise ein Ferrit. Der Temperaturkeoffizient entspricht dann etwa demjenigen des Kurzschlussringes aus Kupfer, wie er für die Induktionsheizung vorteilhafterweise verwendet wird. Das physikalische Prinzip und die Funktionsweise der Temperaturmessung bleiben bei Verwendung eines Hallelementes oder eines magnetfeldempfindlichen Halbleitersensors unverändert. Die Wahl der Art des Sensors richtet sich nach der geforderten Umgebungstemperatur.
Das Messen der Temperatur der Heizrolle 1 1 geschieht somit durch Messung der im Sensor 32' induzierten Spannung und kann mit einem üblichen Spannungsmessgerät erfolgen. Somit ist es möglich, diese induzierte Spannung als Signal für die Steuerung und Regelung der Induktionsheizung für die Heizrolle 1 1 zu benützen. Dies ergibt einen geschlossenen Regelkreis, welcher es ermöglicht, die Temperatur der Heizrolle 1 1 respektive die Temperatur des Hohlzylinders und damit dessen Oberfläche konstant zu halten oder auf einen genauen Wert aufzuheizen und die gewünschte Temperatur genau einzuhalten.
Dies wiederum ermöglicht, nun die Trägheit in bezug auf Wärmetransport und Temperaturverhalten zu optimieren, indem die Masse des Kurzschlussringes der Induktionsheizung minimiert werden kann. Das Regelungs- und Betriebsverhalten der Heizrolle 1 1 wird verbessert.
Wenn nun die Messung des Magnetfeldes mit einer Messspule als Sensor 32 induktiv erfolgt, und die Heizelemente 4 mit Heizspulen 41 für eine Induktionsbeheizung der Heizrolle 1 1 gewählt werden, so ist es möglich, dass die Messspule als Sensor 32 gleichzeitig auch als Heizspule 4 geschaltet wird. Dazu muss allerdings der Permanentmagnet 31 anders angeordnet werden, damit das von ihm erzeugte Magnetfeld im Bereich der Induktionsheizspule möglichst annähernd im rechten Winkel zur Heizwicklung ausgerichtet ist. Vorteilhafterweise wird er dazu im vorderen oder hinteren Randbereich des Hohlzylinders angebracht. Dies ist aus der Figur 3 ersichtlich. Dazu muss die Sensorfunktion als Messspule zur induktiven Messung des Magnetfeldes und die Funktion als Heizspule, zur induktiven Beheizung der Heizrolle 1 1 , elektrisch und/oder drehzalhabhangig-zeitlich entkoppelt und synchronisiert werden. Dazu wird diese Spule über eine Entkoppelung 56 gesteuert. Die Entkoppelung 56 verbindet die Spulen jeweils mit einer Auswertung 5 zur Ermittlung der Magnetfeldstarke und/oder mit der Speisung und Steuerung der Heizleistung. Bei dieser Methode werden weniger mechanische Elemente benötigt und die Konstruktion wird einfacher, dafür wird der Aufwand für die elektrische/elektronische Steuerung grösser.
Es ist offensichtlich, dass statt der Induktionsheizung auch eine Infrarot-Strahlungsheizung oder eine Widerstandsheizung zusammen mit den gleichen Sensoren 32' in entsprechender Anordnung verwendet werden kann. Dabei sind die Mittel zum Heizen analog zur beschriebenen Induktionsheizung feststehend angeordnet. Der Magnet oder allenfalls auch eine Mehrzahl von Permanentmagneten, ist auf der rotierenden Heizrolle befestigt und dreht mit dieser zusammen. Die Art und Weise der Temperaturmessung und die prinzipielle Art und Anordnung der Sensoren 32' bleibt immer die gleiche.
Zur noch genaueren Temperaturmessung und Steuerung können mehrere Permanentmagnete 31 am oder im Hohlzylinder der Heizrolle 1 1 verteilt angeordnet werden, wie dies aus der Figur 4 ersichtlich ist Sie können beispielsweise in der Längsrichtung des Hohlzylinders verteilt sein. In diesem Falle benotigt man zu jedem Permanentmagneten 31 , 31 ' , 31 " je einen auf dem Sensortrager 44 geeignet angeordneten Sensor 32, 32', 32" Wenn die Permanentmagnete 31 zusätzlich auch noch in verschiedenem Drehwinkel zur Rotationsachse der Heizrolle, besipielsweise um 120° versetzt verwendet werden, genügt eine einzige Sensorspule, welche sich über die ganze Länge des Hohlzylinders erstreckt. Da die Drehposition bekannt ist, kann rechnerisch immer bestimmt werden, von welchem Permanentmagneten 31 das Signal stammt und dessen Temperatur gemessen wird. Dies ist besonders interessant, wenn die Galette vom Filament 5 vom Filamenteinlauf 51 zum Filamentauslauf 53 mehrfach umschlungen 52, 52', 52" wird. Es empfiehlt sich, in diesem Falle einen Permanentmagneten 31 " im Bereich des Filamentauslaufes 53 anzuordnen. In Kombination mit einer ebenfalls in verschiedenen Bereichen ansteuerbaren Heizung kann das Filament vom Einlauf auf die Galette bis zum Auslauf kontinuierlich aufgeheizt werden, wobei alle Heizbereiche in bezug auf ihre Temperatur genau gemessen und gesteuert werden können.

Claims

Patentansprüche
1 . Galette mit einer als Hohlzylinder ausgestalteten drehbaren, walzen- oder roUenförmigen Heizrolle ( 1 1 ) mit Mitteln zum Heizen (4) und Mitteln zum Messen der Temperatur der Heizrolle (1 1 ), dadurch gekennzeichnet, dass die Mittel zum Messen der Temperatur der Heizrolle (1 1 ) mindestens einen am Hohlzylinder der Heizrolle (1 1 ) angebrachten Permanentmagneten (31 ) und mindestens einen zum Messen des Magnetfeldes des Magneten (31 ) geeigneten Sensor (32) und Mittel zum Auswerten der vom Sensor (32) erzeugten Signale umfassen.
2. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Sensor (32) ausserhalb der Heizrolle ( 1 1 ) fest angeordnet ist.
3. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Sensor (32) innerhalb dem Hohlzylinder der Heizrolle (1 1 ) fest angeordnet ist
4. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Sensor (32) ein Hallelement ist.
5. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine Sensor (32) ein magnetfeldempfindhcher Totem-Pole-Sensor ist.
6. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass der Sensor (32) eine Messspule
7 Galette nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Magnet
(31 ) wahrend der Rotation der Heizrolle ( 1 1 ) am Sensor (32, 32') vorbeibewegbar ist
8. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass die Heizung der Heizrolle (1 1 ) eine Induktionsheizung mit einem feststehenden Induktorkern (42) mit mindestens einer Induktionswicklung (43) und einem auf der Innenflache des Hohlzylinders der Heizrolle (1 1 ) angeordneten Kurzschlussring (45) ist
9 Galette nach Anspruch 1 , dadurch gekennzeichnet, dass die Heizung der Heizrolle ( 1 1 ) eine Infrarot-Heizung ist
10. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass die Heizung der Heizrolle ( 1 1 ) eine Widerstandsheizung ist
1 1 . Galette nach Anspruch 8, dadurch gekennzeichnet, dass der Permanentmagnet (31 ) einen Temperaturkoeffizienten aufweist, welcher annähernd gleich ist, wie der Temperaturkeffizient des Kurzschlussringes (45).
12. Galette nach Anspruch 6 und 8, dadurch gekennzeichnet, dass die Messspule als Sensor (32') für die Induktionsheizung als Induktionsspule (43) schaltbar ist.
13. Galette nach Anspruch 7, dadurch gekennzeichnet, dass die Mittel zum Auswerten der vom Sensor (32) erzeugten Signale eine Auswerteschaltung mit einer Drehzahlkompensation durch Flussmessung umfassen.
14. Galette nach Anspruch 1 , dadurch gekennzeichnet, dass ein Permanentmagnet (31 ") im Bereich eines Filamentauslaufes (53) am Hohlzylinder der Heizrolle angeordnet ist.
PCT/CH1998/000225 1997-07-03 1998-05-28 Galette WO1999001598A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU73299/98A AU7329998A (en) 1997-07-03 1998-05-28 Godet roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH161797 1997-07-03
CH1617/97 1997-07-03

Publications (1)

Publication Number Publication Date
WO1999001598A1 true WO1999001598A1 (de) 1999-01-14

Family

ID=4214628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000225 WO1999001598A1 (de) 1997-07-03 1998-05-28 Galette

Country Status (2)

Country Link
AU (1) AU7329998A (de)
WO (1) WO1999001598A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030804A1 (de) 2007-07-21 2009-01-29 Oerlikon Textile Gmbh & Co. Kg Galette
WO2015053727A1 (en) * 2013-10-11 2015-04-16 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi A yarn drawing roller
CN111926402A (zh) * 2020-09-01 2020-11-13 汤浅丝道工业株式会社 一种导丝器组件及纺织系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020101374B4 (de) * 2020-01-21 2021-12-02 Hanza Gmbh Verfahren zur Bestimmung der Temperatur eines Galettenmantels einer Galette einer Textilmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581060A (en) * 1965-12-03 1971-05-25 Barmag Barmer Maschf Temperature control device in a heated galette
EP0011862A1 (de) * 1978-12-04 1980-06-11 General Electric Company Heizfixiervorrichtung mit kontaktlosem Temperaturfühler
JPS6313086A (ja) * 1986-07-04 1988-01-20 Hitachi Metals Ltd 直接加熱式定着装置
JPH03256086A (ja) * 1990-03-06 1991-11-14 Hitachi Metals Ltd 加熱定着装置
DE4024432A1 (de) * 1990-08-01 1992-02-06 Ima Inst Fuer Mikrorechner Anw Verfahren und vorrichtung zur ermittlung der temperatur eines induktiv bzw. transformatorisch beheizten maschinenteils
DE19540905A1 (de) * 1994-11-10 1996-05-15 Barmag Barmer Maschf Galetteneinheit zum Heizen und Fördern von Fäden
JPH09279433A (ja) * 1996-04-12 1997-10-28 Teijin Seiki Co Ltd 加熱ローラ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581060A (en) * 1965-12-03 1971-05-25 Barmag Barmer Maschf Temperature control device in a heated galette
EP0011862A1 (de) * 1978-12-04 1980-06-11 General Electric Company Heizfixiervorrichtung mit kontaktlosem Temperaturfühler
JPS6313086A (ja) * 1986-07-04 1988-01-20 Hitachi Metals Ltd 直接加熱式定着装置
JPH03256086A (ja) * 1990-03-06 1991-11-14 Hitachi Metals Ltd 加熱定着装置
DE4024432A1 (de) * 1990-08-01 1992-02-06 Ima Inst Fuer Mikrorechner Anw Verfahren und vorrichtung zur ermittlung der temperatur eines induktiv bzw. transformatorisch beheizten maschinenteils
DE19540905A1 (de) * 1994-11-10 1996-05-15 Barmag Barmer Maschf Galetteneinheit zum Heizen und Fördern von Fäden
JPH09279433A (ja) * 1996-04-12 1997-10-28 Teijin Seiki Co Ltd 加熱ローラ装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 216 (P - 719) 21 June 1988 (1988-06-21) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 058 (P - 1311) 13 February 1992 (1992-02-13) *
PATENT ABSTRACTS OF JAPAN vol. 98, no. 2 30 January 1998 (1998-01-30) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030804A1 (de) 2007-07-21 2009-01-29 Oerlikon Textile Gmbh & Co. Kg Galette
WO2015053727A1 (en) * 2013-10-11 2015-04-16 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi A yarn drawing roller
CN111926402A (zh) * 2020-09-01 2020-11-13 汤浅丝道工业株式会社 一种导丝器组件及纺织系统

Also Published As

Publication number Publication date
AU7329998A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
DE4239828C2 (de) Lageranordnung mit Drehzahlsensor
DE60016164T2 (de) Kapazitive Drehmoment-Messung mit einer dehnungsabhängigen dielektrischen Schicht
DE102015101246A1 (de) Magnet-basiertes Drehwinkelmesssystem
DE3718047C2 (de)
DE4120243C2 (de) Magnetpulverkupplung
WO1998059212A1 (de) Drehwinkelsensor mit einem asymmetrisch angeordneten permanentmagneten
DE1917380C3 (de) Walze für die Wärmebehandlung langgestreckter Gebilde
DE3307105C2 (de)
WO1999001598A1 (de) Galette
DE2730141B2 (de)
EP0894880B1 (de) Rotations-Kantendreher mit direkt elektromagnetischem Antrieb für Webmaschinen
DE1660235A1 (de) Induktiv beheizbare Galette
DE4038674A1 (de) Vorrichtung zum bestimmen der absoluten ist-position eines entlang einer vorbestimmten wegstrecke bewegbaren bauteils
DE3836508A1 (de) Vorrichtung zum erfassen der geschwindigkeit eines sich bewegenden koerpers
EP2163823B1 (de) Garprozessfühler für ein Gargerät
DE3439341C2 (de)
WO2002095103A1 (de) Galette
DE60009608T2 (de) Elektrische Antriebsspindel
CH500546A (de) Vorrichtung zur kontaktlosen Temperaturmessung an drehbaren Maschinenteilen
WO2002095104A1 (de) Galette
DE19604657C1 (de) Lenkwinkelsensor
EP3622255A1 (de) Messanordnung zur messung einer drehlage und/oder einer drehzahl einer kurbelwelle
DE102017221750A1 (de) Resolverstator
DE102008030804A1 (de) Galette
DE3511490A1 (de) Messeinrichtung fuer drehwinkel und/oder drehmomente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1999506034

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA