WO1998057894A1 - Procede de traitement d'eaux residuelles contenant des ions nitrate - Google Patents

Procede de traitement d'eaux residuelles contenant des ions nitrate Download PDF

Info

Publication number
WO1998057894A1
WO1998057894A1 PCT/JP1998/002557 JP9802557W WO9857894A1 WO 1998057894 A1 WO1998057894 A1 WO 1998057894A1 JP 9802557 W JP9802557 W JP 9802557W WO 9857894 A1 WO9857894 A1 WO 9857894A1
Authority
WO
WIPO (PCT)
Prior art keywords
decomposition
gas
wastewater
reaction
nitrate
Prior art date
Application number
PCT/JP1998/002557
Other languages
English (en)
French (fr)
Inventor
Michiya Ohashi
Yoshimasa Katayama
Original Assignee
Anan Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anan Kasei Co., Ltd. filed Critical Anan Kasei Co., Ltd.
Priority to EP98924559A priority Critical patent/EP1016631A4/en
Priority to AU76732/98A priority patent/AU725895B2/en
Priority to US09/445,787 priority patent/US6294097B1/en
Priority to KR1019997011405A priority patent/KR100354556B1/ko
Publication of WO1998057894A1 publication Critical patent/WO1998057894A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous

Definitions

  • the present invention relates to a method for treating a wastewater containing nitrate ions such as ammonium nitrate and sodium nitrate generated in various industries such as a nonferrous metal refining industry and a petrochemical industry by a decomposition reaction and treating the wastewater.
  • the present invention relates to a method for treating wastewater containing nitrate ions, which can efficiently and stably detoxify the wastewater.
  • Wastewater containing nitrate ions such as ammonium nitrate or sodium nitrate is generated in various industries such as non-ferrous metal refining and petrochemical industries.
  • an activated sludge method and a thermal decomposition method are known as a method for treating nitrate ion-containing wastewater.
  • the activated sludge method has been put to practical use in sewage treatment plants, etc.
  • the concentration of nitrogen compounds in the incoming nitrate ion-containing wastewater should be 0.3% by weight or less in terms of ammonium nitrate.
  • the treatment of wastewater containing high concentrations of nitrate requires a large amount of dilution water, a large treatment area, a large amount of equipment, and a large treatment cost.
  • the concentrated ammonium nitrate solution is sprayed into a heating furnace at 180 to 210 ° C to thermally decompose, and the obtained decomposition gas is further heated to 600 to 1000 ° C.
  • a method of decomposing in the air is known (Japanese Patent Publication No. 522-22751). However, this method requires high-temperature decomposition furnace equipment that can withstand 1000 ° C, and generates 0.4% of NO X in exhaust gas.
  • the container containing the wastewater is thermally decomposed in a primary decomposition furnace heated to 250 to 310 ° C, and the generated recombination It is also known to decompose ammonium nitrate in a secondary decomposition furnace heated to 350-600 ° C. (Published in Japanese Patent Publication No. 62-52277).
  • this method has the drawback that NOx is generated as much as 1.9% because the decomposition temperature in the secondary decomposition furnace is reduced to 350 to 600 ° C in order to prevent the radioactive residue from diffusing.
  • the object of the present invention is to be able to process even at a lower temperature compared to the conventional pyrolysis method, It is an object of the present invention to provide a method for treating nitrate ion-containing wastewater, which can suppress harmful gases such as NOx generated to a sufficiently low level and render them harmless.
  • the present inventors have intensively studied a method of decomposing the HN 0 3 and N 2 0 caused by the decomposition reaction of nitric Anmoniumu shown in the reaction formula (1) and (2) at low temperature.
  • the inventors have found that the above problem can be solved even at a temperature lower than the temperature, and have completed the present invention.
  • a method for treating a nitrate ion-containing wastewater in which a harmful gas is removed by subjecting the nitrate ion-containing wastewater to a decomposition reaction and an oxidation reaction,
  • a method for treating nitrate ion-containing wastewater comprising the step (c) of detoxifying the resulting decomposed gas by reacting it with a gas containing oxygen at 250 ° C. or higher.
  • FIG. 1 is a schematic diagram for explaining a decomposition reaction apparatus used in Examples and Comparative Examples.
  • the wastewater containing nitrate ions targeted by the treatment method of the present invention is a wastewater containing a nitrate aqueous solution such as ammonium nitrate, sodium nitrate, potassium nitrate, calcium nitrate or a mixture thereof.
  • a nitrate aqueous solution such as ammonium nitrate, sodium nitrate, potassium nitrate, calcium nitrate or a mixture thereof.
  • concentration in terms of ammonium is 10 to 90% by weight.
  • the concentration of nitrate ion in ammonium conversion is increased to 10% by weight or more.
  • the concentration of nitrate ions in the wastewater containing nitrate ions is 10 to 90% by weight in terms of ammonium nitrate.
  • the amount of water is too small, nitrate precipitates and the decomposition reaction is not efficient, so preferably 20 to 80% by weight, more preferably 40% by weight. ⁇ 80% by weight.
  • the wastewater containing nitrate ions is concentrated, it can be carried out by a known method. In particular, waste heat generated by carrying out the treatment method of the present invention can be effectively used as a heat source.
  • a mixture of the wastewater and the lower alcohol is obtained by the step ( a ) of mixing a lower alcohol having 1 to 4 carbon atoms with the nitrate ion-containing wastewater.
  • Examples of the lower alcohol having 1 to 4 carbon atoms include lower alcohols selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, and mixtures thereof. Preferably, it contains methyl alcohol or methyl alcohol alone.
  • the mixing ratio of the lower alcohol can be appropriately selected according to the amount of the decomposition product gas, but is usually 10% by weight or more, preferably 10 to 5%, based on the total amount of the nitrate ion-containing wastewater and the lower alcohol. 0% by weight. In particular, when methyl alcohol is used, the content is most preferably 10 to 20% by weight.
  • a step (b) of subjecting the mixture prepared in the step (a) to a decomposition reaction at a specific temperature or higher to generate a decomposition gas is performed.
  • wastewater containing nitrate ions to be treated is described below as wastewater containing ammonium nitrate, and the lower alcohol to be added is described as methyl alcohol.
  • Step (b) is usually performed in a cracking furnace to which no external oxygen is supplied. Place The mixture introduced into the decomposition furnace maintained at a temperature equal to or higher than a constant temperature becomes ammonium nitrate mist, vaporized alcohol vapor and water vapor, etc., and decomposes ammonium nitrate during the heating process (the above-mentioned reaction formula (1) to ( 4)) and other reactions (when methyl alcohol is used, the following reaction formulas (5) to (8)) are considered to occur.
  • This decomposition reaction can be carried out, for example, by a method in which the mixture prepared in the step (a) is supplied to the decomposition furnace maintained at a predetermined temperature or higher as needed.
  • a method of spraying the mixture into a decomposition furnace maintained at a predetermined temperature or higher is desirable.
  • the reaction represented by the following formula (9) occurs preferentially, so that CH 3 NO 3 generation and N 2 O decomposition cannot be performed efficiently.
  • the atmosphere in the cracking furnace is preferably constituted by a vaporized gas of the mixture, a cracked gas, or a mixed gas thereof.
  • the heating method of setting the temperature to the predetermined temperature or more may be performed by heating Any method can be used as long as it can supply oxygen and does not introduce excessive oxygen into the furnace.
  • Any method can be used as long as it can supply oxygen and does not introduce excessive oxygen into the furnace.
  • a heating method using electricity, natural gas, propane gas, kerosene, or heavy oil can be used, and a method in which the decomposition furnace is heated from the outside is particularly preferable.
  • the temperature at which the mixture prepared in step (a) undergoes a decomposition reaction must be 250 ° C or higher. If it is less than 25 CTC, the decomposition rate cannot be sufficiently increased due to the slow reaction rate, and a large amount of undecomposed gas is generated.
  • the temperature is preferably 300 ° C or more, particularly 500 ° C or more.
  • the upper limit of the temperature used for the decomposition reaction is not particularly limited, but about 800 ° C is appropriate for the purpose of not requiring a high-temperature decomposition furnace.
  • the decomposed gas produced in the step (b) is reacted with an oxygen-containing gas at a specific temperature or higher to render the gas harmless.
  • the oxygen-containing gas used is at a predetermined temperature or higher, and the process (b) There is no particular limitation as long as it can oxidize the decomposition gas generated in the step.
  • air, an oxygen gas, a mixed gas of an inert gas and an oxygen gas and the like are preferably exemplified.
  • the temperature at which the decomposition gas generated in step (b) is reacted with the oxygen-containing gas is at least 250 ° C at which the reactions shown in Reaction Formulas (10) and (11) can be started. There is no particular limitation. It is preferably at least 300 ° C, more preferably at least 500 ° C.
  • the upper limit of this temperature is preferably lower than 1300 ° C at which thermal NO X is generated.
  • the upper limit temperature is preferably 1000 ° C, particularly preferably 800 ° C.
  • any heating method may be used as long as it can supply the heat required to start the reaction.
  • a heating method using electricity, natural gas, propane gas, kerosene, or heavy oil can be adopted, and either a method of externally heating the oxidation furnace or a method of directly heating the inside of the oxidation furnace may be used.
  • the configuration of the decomposition furnace used in the step (b) and the oxidation furnace used in the step (c) is particularly configured as long as the decomposition gas generated in the decomposition furnace is guided to the oxidation furnace.
  • the decomposition furnace and the oxidation furnace have their own heating devices, and the separation system in which each is connected by a pipe, etc., and the decomposition furnace is located in the oxidation furnace ⁇ and shares one heat source.
  • Each device may be provided with exhaust gas treatment means such as a dust collector, a gas filter, and a washing tower.
  • CO 2 in exhaust gas can be removed by using calcium hydroxide or the like as a washing liquid for the washing tower.
  • this exhaust gas treatment means is discharged from the oxidation furnace to the gas passage between the decomposition furnace and the oxidation furnace, and to the gas passage discharged from the oxidation furnace. It can be installed in the gas passage.
  • the nitrate ion-containing waste water after mixing the particular alcohol, since carrying out the decomposition reaction and oxidation reaction, can be sufficiently reduced can have you in the decomposition reaction of the NOX and NH 3 in the exhaust gas at low temperatures . Therefore, equipment costs, equipment life, and processing costs can be significantly improved compared to the past.
  • the reactor 10 includes a cracking furnace 11 having a diameter of 300 mm and a height of 650 mm and an oxidation furnace 12 having a diameter of 500 mm and a height of 800 mm.
  • the cracking furnace 11 is provided with a spray nozzle 13 for spraying a predetermined amount of wastewater at the top, and an inlet 14 for introducing a cracked gas into the oxidizing furnace 12 at the bottom.
  • an LPG burner 15 is provided from the bottom side of the oxidation furnace 12 to the bottom side of the decomposition furnace, and an air inflow path 16 is provided at the bottom of the oxidation furnace 12 in the horizontal direction. is set up.
  • the oxidation furnace 12 has a discharge port 17 at the top.
  • the inside of the decomposition furnace 11 and the oxidation furnace 12 was maintained at 700 ° C. by the LPG burner 15, and the methyl alcohol mixed wastewater was sprayed from the spray nozzle 13 at a flow rate of 20 O ml Z minutes. Performed by spraying into 1 1.
  • the oxidation reaction was performed by flowing air into the oxidation furnace 12 heated to 700 ° C. from the air inflow path 16. After spraying, no explosion was observed and decomposition and oxidation proceeded stably. NOX in the exhaust gas from the outlet 17 generated by the decomposition reaction and the oxidation reaction was 130 ppm, and NH 3 and CO were not detected.
  • Ethyl alcohol was added to 7 liters of wastewater containing 66% by weight of ammonium nitrate so that the ratio of the wastewater to ethyl alcohol was 30% by weight to prepare a mixed wastewater.
  • the mixed effluent was sprayed under the same conditions as in Example 1 to perform a decomposition reaction and an oxidation reaction. After spraying, no explosion was observed and the reaction proceeded stably. At this time, NOX in the exhaust gas from the discharge port 1 7 220 ppm, NH 3 is 60 ppm, CO was not detected.
  • Methyl alcohol is added and mixed with 10 liters of wastewater containing 55% by weight of sodium nitrate in terms of ammonium nitrate so that the ratio of the wastewater to methyl alcohol is 15% by weight. Drainage was prepared.
  • Example 2 Mixed wastewater was used under the same conditions as in Example 1 by using a reactor equipped with a washing tower for washing the gas discharged from the outlet 17 in the reactor 10 used in Example 1.
  • a decomposition reaction and an oxidation reaction were performed. After spraying, no explosion was observed and the reaction proceeded stably.
  • NO x in the exhaust gas discharged from the washing tower was 230 ppm, and NH 3 and CO were not detected.
  • the wastewater containing 40% by weight of ammonium nitrate was sprayed as it was from a spray nozzle 13 at a flow rate of 20 OnilZ into a cracking furnace 11 kept at 1000 ° C to perform a cracking reaction.
  • the decomposition reaction was performed in the same manner as in Example 1 except that no air was flowed into the oxidation furnace 12. At this time, NO X in the exhaust gas from the discharge port 1 7 120 ppm, NH 3 is 620 ppm, CO was 8000 ppm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treating Waste Gases (AREA)

Description

明 細 書
硝酸イオン含有排水の処理方法
枝術分野
本発明は、 非鉄金属精製業、 石油化学工業等の様々な業種で発生する硝酸 アンモニゥム、 硝酸ナトリゥム等の硝酸イオン含有排水を分解反応させて処 理する方法に関し、 前記分解反応時に生じる分解生成ガスを効率よく、 しか も安定して無害化できる硝酸イオン含有排水の処理方法に関する。
背景技術
硝酸アンモニゥム又は硝酸ナトリ ゥム等の硝酸イオン含有排水は、 非鉄金 属精製業、 石油化学工業等の様々な業種で発生している。 従来、 硝酸イオン 含有排水の処理方法としては、 活性汚泥法及び熱分解法が知られている。
活性汚泥法は、 下水処理場等で実用化されているが、 微生物が正しく機能 するためには、 流入する硝酸イオン含有排水の窒素化合物濃度を硝酸アンモ ニゥム換算で 0. 3重量%以下にする必要がある。 従って、 高濃度の硝酸ィ オンを含有する排水の処理には、 多量の希釈水、 広大な処理面積、 多額の設 備、 多額の処理コス トが必要である。 また多量のスラッジが発生するため、 このスラッジを処理しなければならないという問題がある。
ところで、 硝酸イオン源として、 硝酸アンモニゥムを例に採るとその熱分 解反応としては、 下記式で示される反応が知られている(化学便覧、 応用編 3版、 115頁)。
NH4NO3→NH3 + ΗΝΟ3 -41kcal/mol (180°C) (1)
NH4NO3-→N2O + 2 H2O + lOkcal/mol (250°C) (2)
2 NH4NO3→ 2 N2 + 4 H2O +O2 +28kcal/mol (300°C) (3) 4 NH4NO3→ 2 NO2 + 8 H2O + 3 N2 +27kcal/raol (4) 硝酸アンモニゥム含有排水を加熱して硝酸アンモニゥムを分解する際には、 硝酸アンモニゥムの温度に応じて式(1)及び(2)に示す反応が段階的に起こり、 NOxの原因となる HNO3及び N20が発生するが、 分解温度が低い場合に は(1)の反応が逆に起こり再結合硝酸アンモニゥムが発生する。 再結合硝酸 アンモニゥムの発生を抑制し、 これらの分解ガスを低減するには、 硝酸アン モニゥムの温度を速やかに 300°C以上にし、 (3)の反応を進める必要があ る。 このため、 従来の加熱分解法では、 排水の温度が上昇し易いように、 分 解炉の温度を 1000°C以上に保持して、 排水を噴霧により分解炉中に供給 する必要がある。 しかし、 1000°C以上の高温では、 窒素ガスと酸素が反 応してサーマル NO Xが発生する。
そこで、 低温で硝酸アンモニゥムを分解し、 その後発生した分解生成ガス を高温で更に分解する 2段階分解法も提案されている。
2段階分解法としては、 濃縮した硝酸アンモニゥム溶液を 1 80〜 210 °Cの加熱炉中に噴霧して熱分解させた後、 得られた分解ガスを更に 600〜 1000°Cに加熱した分解炉中にて分解する方法が知られている(特公昭 52- 22751号公報)。 しかし、 この方法では、 1000°Cに耐えられる高温の分解 炉設備が必要であり、 しかも排ガス中に NO Xが 0. 4%も発生する。
別の 2段階分解法として、 放射性残渣を含む硝酸アンモニゥム排水を処理 するにあたり、 該排水の入った容器を 250〜3 10°Cに加熱した 1次分解 炉にて熱分解し、 発生した再結合硝酸アンモニゥムを 350〜600°Cに加 熱した 2次分解炉で分解させる方法も知られている。 (特公昭 62- 52277号公 報)。 しかし、 この方法では、 放射性残渣を気散させないために 2次分解炉 での分解温度を 350〜600°Cと低く しているので、 NOxが 1. 9%も 発生するという欠点がある。
P月の
本発明の目的は、 従来の加熱分解法に比べて低い温度であっても処理でき、 発生する N O x等の有害ガスを充分に低いレベルに押さえて無害化できる硝 酸イオン含有排水の処理方法を提供することにある。
本発明者らは、 上記反応式(1)及び(2)に示す硝酸ァンモニゥムの分解反応 により生じる H N 03及び N 20を低温で分解する方法について鋭意検討した。 その結果、 H N O 3及び N2 Oとアルコールとの反応に着眼し、 特定の硝酸ァ ンモニゥム換算濃度の排水に特定の低級アルコールを混合して、 特定温度以 上で処理することによって、 従来の分解温度よりも低い温度であっても上記 課題を解決しうることを見出し本発明を完成するに至った。
即ち、 本発明によれば、 硝酸イオン含有排水を分解反応及び酸化反応させ て有害ガスを除去する硝酸イオン含有排水の処理方法であって、
硝酸イオンを硝酸アンモニゥム換算濃度で 1 0〜 9 0重量%含有する排水 に、 炭素数 1〜4の低級アルコールを混合する工程(a)と、
得られた混合物を 2 5 0 °C以上で分解反応させ、 分解ガスを生成する工程 (b)と、
得られた分解ガスを 2 5 0 °C以上で酸素を含むガスと反応させ、 無害化す る工程(c)とを含む硝酸イオン含有排水の処理方法が提供される。
図面の簡単な説明
図 1は、 実施例及び比較例で使用した分解反応装置を説明するための概略 図である。
発明の好ましい 施の熊様
本発明の処理方法で対象とする硝酸イオン含有排水は、 硝酸アンモニゥム、 硝酸ナトリウム、 硝酸カリウム、 硝酸カルシウム又はこれらの混合物等の硝 酸塩水溶液を含む排水であり、 排水中に含まれる硝酸イオンを硝酸アンモニ ゥム換算した濃度が 1 0〜 9 0重量%であれば特に限定されない。 例えば、 その濃度が 1 0重量%未満の排水の場合には、 予め水分を蒸発させて、 硝酸 アンモニゥム換算における硝酸イオン濃度を 1 0重量%以上に濃縮してから 適用できる。
硝酸イオン含有排水中の硝酸イオン濃度は、 上述のとおり、 硝酸アンモニ ゥム換算濃度で 1 0〜 9 0重量%である。 この際、 水分量が少ない方が分解 に有利である反面、 水分量が少なすぎると硝酸塩が析出して分解反応が効率 的でないので、 好ましくは 2 0〜 8 0重量%、 更に好ましくは 4 0〜 8 0重 量%である。 硝酸イオン含有排水を濃縮する場合は公知の方法で実施でき、 特にその熱源として、 本発明の処理方法の実施により発生する廃熱を有効に 利用することもできる。
本発明の処理方法では、 まず、 硝酸イオン含有排水に、 炭素数 1〜4の低 級アルコールを混合する工程(a)により、 排水と低級アルコールとの混合物 を得る。
前記炭素数 1〜 4の低級アルコールと しては、 メチルアルコール、 ェチル アルコール、 プロピルアルコール、 ブチルアルコール及びこれらの混合物か らなる群より選択される低級アルコールが挙げられる。 好ましくはメチルァ ルコールを含むか、 若しくはメチルアルコール単独が望ましい。
前記低級アルコールの混合割合は、 分解生成ガスの量に応じて適宜選択で きるが、 硝酸イオン含有排水と低級アルコールとの合計量に対して、 通常 1 0重量%以上、 好ましくは 1 0〜 5 0重量%である。 特に、 メチルアルコ一 ルを用いる場合、 1 0〜 2 0重量%が最も好ましい。
本発明の処理方法では、 工程 (a)で調製した混合物を、 特定温度以上で分 解反応させ、 分解ガスを生成する工程 (b)を行う。
以下、 処理する硝酸イオン含有排水を硝酸アンモニゥム含有排水、 添加す る低級アルコールをメチルアルコールと して説明する。
工程 (b)は、 通常、 外部から酸素が供給されない分解炉中で行われる。 所 定温度以上に保持された分解炉に導入された混合物は、 硝酸アンモユウムミ ス ト、 並びに気化したアルコール蒸気及び水蒸気等となり、 昇温過程におい て硝酸アンモニゥムの分解反応(前記反応式(1)〜(4))及びその他の反応(メ チルアルコールを使用した場合、 下記反応式(5)~(8))が起こると考えられ る。
HNO3 + CH3OH → CH3NO3 + H2O (5) 3 N2O + CH3OH → 3 N2 + CO2 + 2 H2O (6) 2 CH3NO3 → N2 + C02 + CO + 3 H2O (7) 2NO2 + 4 CO -→ N2 + 4 CO2 (8) 反応式 a)〜(8)がどのような割合で起こるかは、 硝酸アンモニゥムの濃度、 アルコールの添加量、 混合物の噴霧速度、 分解炉の温度等によって変化する 力 、 これら条件の最適化により、 分解ガス中の有害ガスの量を低減できる。 工程(a)で調製した混合物を特定温度以上で分解反応させる際に生じる有 害な HN03及び N2Oは、 反応式(5)及び(6)により、 前記混合物中に含有さ せた低級アルコールと速やかに反応して更に分解される。
この分解反応は、 例えば、 所定温度以上に保持した分解炉に、 工程(a)で 調製した混合物を随時供給する方法等により実施できる。 好ましくは前記混 合物の温度を速やかに所定温度以上に上昇させるために、 所定温度以上に保 持した分解炉中に前記混合物を噴霧する方法が望ましい。 この際、 分解炉內 に過剰の酸素が存在する場合、 下記式(9)に示される反応が優先的に起こる ため、 CH3NO3の生成及び N2Oの分解が効率的に行えない。
2 CH3OH + 3 O2 → 2 CO2 + 4 H2O (9) 従って、 分解炉内の雰囲気は混合物の気化ガス、 分解ガス又はこれらの混 合ガスによって構成されることが好ましい。
工程(b)において前記所定温度以上とする加熱方法は、 反応に要する熱量 を供給でき、 炉内に過剰の酸素を導入しない方法であればよい。 例えば、 電 気、 天然ガス、 プロパンガス、 灯油、 重油を使用した加熱方法が採用でき、 特に分解炉を外部から加熱する方法が好ましい。
工程 (a)で調製した混合物を分解反応させる温度は、 250°C以上とする 必要がある。 25 CTC未満では、 反応速度が遅いため分解反応が充分に行え ず、 未分解のガスが多量に発生する。 分解反応の効率化及び分解炉の小型化 を考慮した場合、 300°C以上、 特に 500°C以上が好ましい。 分解反応に 供する温度の上限は特に限定されないが、 高温に耐える分解炉を必要としな い目的から 800°C程度が適当である。
本発明の処理方法では、 工程 (b)で生成した分解ガスを特定温度以上で酸 素を含むガスと反応させ、 無害化する工程(c)を行う。
工程(b)で生成した分解ガスのうち特に有害な NH3及び COは、 式(10)及 び(11)に示される反応により無害化されると考えられる。
4 NH3 + 3 O2 → 2 N2 + 6H2O (10) 2 CO + O2 → 2 CO2 (11) この際、 使用する酸素を含むガスは、 所定温度以上で、 工程 (b)で生成し た分解ガスを酸化できるものであれば特に限定されない。 例えば、 空気、 酸 素ガス、 不活性ガスと酸素ガスとの混合ガス等が好ましく挙げられる。
工程 (b)で生成した分解ガスと前記酸素を含むガスとを反応させる際の温 度は、 反応式(10)及び(11)に示される反応が開始できる 250°C以上の温度 であれば特に限定されない。 好ましくは 300°C以上、 より好ましくは 50 0°C以上である。 この温度の上限は、 サーマル NO Xの発生する 1300°C 未満が好ましく、 高温に耐える酸化炉を必要としない目的であれば上限温度 は 1000°C、 特に 800°Cが好ましい。
前記工程 (b)で生成した分解ガスと前記酸素を含むガスとを反応させる際 の加熱方法としては、 反応開始に要する熱量を供給できる方法であればよい。 例えば、 電気、 天然ガス、 プロパンガス、 灯油、 重油を使用した加熱方法が 採用でき、 酸化炉を外部加熱する方法又は直接酸化炉内を加熱する方法のい ずれでも良い。
本発明の処理方法において、 前記工程 (b)で使用する分解炉及び前記工程 (c)で使用する酸化炉の構成は、 分解炉で生成した分解ガスが酸化炉へ導か れる構造であれば特に限定されない。 例えば、 分解炉及び酸化炉がそれぞれ の加熱装置を有し、 お互いがパイプ等によって接続されているような分離方 式の装置、 分解炉が酸化炉內に位置し、 1つの熱源を共有するような一体方 式の装置等が挙げられる。 各装置には、 集塵機、 ガスフィルター、 洗浄塔等 の排ガス処理手段を設置しても良い。 例えば、 洗浄塔の洗浄液に水酸化カル シゥム等を使用することにより、 排ガス中の C O 2を除去することができる。 この排ガス処理手段は、 分離方式の装置の場合、 分解炉と酸化炉との間のガ ス通路、 並びに酸化炉から排出されるガスの通路に、 一体方式の装置では酸 化炉から排出されるガスの通路に設置することができる。
本発明の処理方法では、 硝酸イオン含有排水に、 特定のアルコールを混合 した後、 分解反応及び酸化反応を実施するので、 低温における分解反応にお いても排ガス中の N O X及び N H3を充分低減できる。 従って、 設備コスト、 設備寿命及び処理コストを従来に比して大幅に改善できる。
実施例
以下、 本発明を実施例及び比較例によって更に詳細に説明するが、 本発明 はこれに限定されない。
尚、 例中における排ガス中の N O x、 N H3及び C Oの測定は、 光明理化 学工業(株)製「真空法ガス採取機 A P— 4 0 0」、 「N O x検知管」、 「N H3検 知管」及び「 C O検知管」を使用した。 4 5重量%の硝酸アンモニゥムを含む排水 9 リ ットルに、 排水とメチルァ ルコールとの合計量に対する割合が 1 0重量%となるようにメチルアルコー ルを添加混合してメチルアルコール混合排水を調製した。 次いで、 図 1に示 す反応装置 1 0を用い、 前記混合排水を分解反応及び酸化反応に供した。 反応装置 1 0は、 直径 300mm、 高さ 650mmの分解炉 1 1及び直径 500mm、 高 さ 800mmの酸化炉 1 2を備える。 分解炉 1 1は頂部に排水を所定量噴霧でき る噴霧ノズル 1 3を備え、 底部には分解ガスを酸化炉 1 2内に導入するため の導入口 1 4を備える。 図 1に示すように酸化炉 1 2の底部側面より分解炉 の底部側面に向けて L P Gバーナー 1 5が設けられており、 酸化炉 1 2の底 部には空気流入路 1 6が水平方向に設置されている。 一方、 酸化炉 1 2は、 頂部に排出口 1 7を備える。
分解反応は、 分解炉 1 1及び酸化炉 1 2内を L P Gバーナー 1 5により 7 0 0 °Cに保持し、 前記メチルアルコール混合排水を噴霧ノズル 1 3から流量 2 0 O ml Z分で分解炉 1 1内へ噴霧することによって行った。 酸化反応は、 空気流入路 1 6より 7 0 0 °Cに加熱された酸化炉 1 2内へ空気を流入させる ことにより行った。 噴霧後、 爆発は認められず安定に分解反応及び酸化反応 が進行した。 分解反応及び酸化反応によって生じた排出口 1 7からの排ガス 中の N O Xは 130ppmであり、 N H3及び C Oは検出されなかった。
I 2
6 6重量0 /。の硝酸アンモニゥムを含む排水 8リッ トルに、 排水とメチルァ ルコールとの合計量に対する割合が 2 0重量%となるようにメチルアルコー ルを添加混合してメチルアルコール混合排水を調製した。 次いで、 分解炉 1 1及び酸化炉 1 2内の温度を 3 5 0 °Cに保持した以外は、 実施例 1と同様の 条件で混合排水を噴霧して分解反応及び酸化反応を行った。 噴霧後、 爆発は 認められず安定に反応が進行した。 これら反応によって生じた排出口 1 7か らの排ガス中の N O Xは 200ppm、 N H3は 40ppmであり、 C Oは検出されなか つた。
実施例 3
6 6重量%の硝酸アンモニゥムを含む排水 7リ ッ トルに、 排水とェチルァ ルコールとの合計量に対する割合が 3 0重量%となるようにェチルアルコー ルを添加して混合排水を調製した。 次いで、 実施例 1 と同様な条件で混合排 水を噴霧して分解反応及び酸化反応を行った。 噴霧後、 爆発は認められず安 定に反応が進行した。 この際、 排出口 1 7からの排ガス中の N O Xは 220ppm、 N H3は 60ppmであり、 C Oは検出されなかった。
実施例 4
硝酸アンモニゥム換算で 5 5重量%の硝酸ナト リゥムを含む排水 1 0 リ ツ トルに、 排水とメチルアルコールとの合計量に対する割合が 1 5重量%とな るようにメチルアルコールを添加混合して混合排水を調製した。
次いで、 実施例 1で用いた反応装置 1 0に、 排出口 1 7から排出されるガ スを洗浄する洗浄塔を設けた反応装置を用いて、 実施例 1 と同様の条件で混 合排水を噴霧して分解反応及び酸化反応を行った。 噴霧後、 爆発は認められ ず安定に反応が進行した。 洗浄塔より排出された排ガス中の N O xは 230ppm であり、 N H3、 C Oは検出されなかった。
比較例 1
メチルアルコール混合排水の代わりに、 メチルアルコールを添加していな い、 4 5重量%の硝酸アンモニゥムを含む排水を噴霧した以外は実施例 1 と 同様な方法で反応を行った。 この際、 排出口 1 7からの排ガス中の N O Xは 2500ppm、 N H3は 900ppraであり、 再結合硝酸アンモニゥムと考えられる白煙 が発生した。 ^義 2
40重量%の硝酸アンモニゥムを含む排水をそのまま、 1000°Cに保持 した分解炉 1 1内へ噴霧ノズル 1 3から流量 20 OnilZ分で噴霧し、 分解反 応を行った。 この際、 排出口 1 7からの排ガス中の NOxは 1300ppm、 NH3 は 200ppmであり、 再結合硝酸アンモニゥムと考えられる白煙が発生した。
比較例
酸化炉 1 2に空気を流入しなかった以外は実施例 1と同様な方法で分解反 応を行った。 この際、 排出口 1 7からの排ガス中の NO Xは 120ppm、 NH3 は 620ppm、 C Oは 8000ppmであった。

Claims

請 求 の 範 囲
1) 硝酸イオン含有排水を分解反応及び酸化反応させて有害ガスを除去する 硝酸イオン含有排水の処理方法であって、
硝酸イオンを硝酸アンモニゥム換算濃度で 1 0〜9 0重量%含有する排 水に、 炭素数 1〜 4の低級アルコールを混合する工程 (a)と、
得られた混合物を 2 5 0 °C以上で分解反応させ、 分解ガスを生成するェ 程 (b)と、
生成した分解ガスを 2 5 0 °C以上で酸素を含むガスと反応させ、 無害化 する工程(c)とを含む硝酸イオン含有排水の処理方法。
2) 低級アルコールがメチルアルコールを含む請求の範囲 1に記載の処理方 法。
3) 低級アルコールの混合割合が、 排水と低級アルコールとの合計量に対し て、 1 0〜5 0重量%である請求の範囲 1に記載の処理方法。
4) 前記工程 (b)において、 混合物を分解反応させるにあたり、 工程(a)で得 られた混合物を 3 0 0〜8 0 0 °Cに保持された分解炉中に噴霧して分解反 応させることを特徴とする請求の範囲 1に記載の処理方法。
5) 前記工程(c)において、 分解ガスを無害化するにあたり、 前記工程 (b)に おいて生成した分解ガスと、 酸素を含むガスとを 3 0 0 - 8 0 0 °Cに保持 された酸化炉中で反応させることを特徴とする請求の範囲 1に記載の処理 方法。
6) 前記工程(c)において、 酸素を含むガスが空気である請求の範囲 1に記 載の処理方法。
PCT/JP1998/002557 1997-06-18 1998-06-10 Procede de traitement d'eaux residuelles contenant des ions nitrate WO1998057894A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98924559A EP1016631A4 (en) 1997-06-18 1998-06-10 PROCESS FOR TREATING RESIDUAL WATER CONTAINING NITRATE IONS
AU76732/98A AU725895B2 (en) 1997-06-18 1998-06-10 Method for treating waste water containing nitrate ions
US09/445,787 US6294097B1 (en) 1997-06-18 1998-06-10 Method for treating waste water containing nitrate ions
KR1019997011405A KR100354556B1 (ko) 1997-06-18 1998-06-10 질산이온 함유 배수의 처리방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/160922 1997-06-18
JP16092297 1997-06-18

Publications (1)

Publication Number Publication Date
WO1998057894A1 true WO1998057894A1 (fr) 1998-12-23

Family

ID=15725199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002557 WO1998057894A1 (fr) 1997-06-18 1998-06-10 Procede de traitement d'eaux residuelles contenant des ions nitrate

Country Status (6)

Country Link
US (1) US6294097B1 (ja)
EP (1) EP1016631A4 (ja)
KR (1) KR100354556B1 (ja)
CN (1) CN1260766A (ja)
AU (1) AU725895B2 (ja)
WO (1) WO1998057894A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527369A (en) * 1975-07-08 1977-01-20 Mitsubishi Metal Corp Process for decomposing ammonium nitrate and ammonium nitrite
JPS5222751B2 (ja) * 1973-03-19 1977-06-20
JPS6252277B2 (ja) * 1979-01-12 1987-11-04 Shinryo Air Cond
JPH0140318B2 (ja) * 1982-11-26 1989-08-28 Kerunfuorushungusutsuentorumu Kaarusuruue Gmbh
JPH08309370A (ja) * 1995-03-16 1996-11-26 Nippon Shokubai Co Ltd 硝酸根含有排水の処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222751A (en) 1975-08-13 1977-02-21 Hitachi Ltd High speed fuse
JPS6252277A (ja) 1985-09-02 1987-03-06 Taiyo Valve Seisakusho:Kk チョウ弁型チェッキ弁
JPH0725135B2 (ja) 1987-08-06 1995-03-22 株式会社アイジー技術研究所 エンボス加工装置
DE3830850A1 (de) * 1988-09-10 1990-03-22 Gutec Gmbh Verfahren zur entfernung des nitrit- und/oder nitratgehaltes in wasser
US5234584A (en) * 1991-02-04 1993-08-10 United Technologies Corporation Catalytic oxidation of aqueous organic contaminants
US5221486A (en) * 1991-04-12 1993-06-22 Battelle Memorial Institute Aqueous phase removal of nitrogen from nitrogen compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222751B2 (ja) * 1973-03-19 1977-06-20
JPS527369A (en) * 1975-07-08 1977-01-20 Mitsubishi Metal Corp Process for decomposing ammonium nitrate and ammonium nitrite
JPS6252277B2 (ja) * 1979-01-12 1987-11-04 Shinryo Air Cond
JPH0140318B2 (ja) * 1982-11-26 1989-08-28 Kerunfuorushungusutsuentorumu Kaarusuruue Gmbh
JPH08309370A (ja) * 1995-03-16 1996-11-26 Nippon Shokubai Co Ltd 硝酸根含有排水の処理方法

Also Published As

Publication number Publication date
KR20010013404A (ko) 2001-02-26
AU7673298A (en) 1999-01-04
EP1016631A1 (en) 2000-07-05
CN1260766A (zh) 2000-07-19
KR100354556B1 (ko) 2002-09-30
US6294097B1 (en) 2001-09-25
EP1016631A4 (en) 2001-05-30
AU725895B2 (en) 2000-10-26

Similar Documents

Publication Publication Date Title
JP4512238B2 (ja) 廃ガス流から窒素酸化物を除去する方法
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
AU2002244966B2 (en) Desulfurizer and method of desulfurization
US5378442A (en) Method for treating combustion exhaust gas
US4119702A (en) Process for abating concentration of nitrogen oxides in combustion flue gas
EP0617698A4 (en) AQUEOUS AMMONIA INJECTION TECHNIQUE.
JPH02172590A (ja) 水溶液から亜硝酸塩および硝酸塩を無残渣で除去する方法
JP4172938B2 (ja) 排ガスの処理方法および処理装置
EP0819464A1 (en) Processes for the scrubbing of noxious substances
EP0502156A1 (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
EP3875167A1 (en) Improved nox removal method
WO1998057894A1 (fr) Procede de traitement d'eaux residuelles contenant des ions nitrate
EP0416631B1 (en) Method for removing harmful gas from refuse combustion exhaust gas
CN100396361C (zh) 干式同时脱硫脱硝装置
JP3863610B2 (ja) アンモニアの除害方法及び装置
JPS61257292A (ja) 高濃度硝酸アンモニウム含有廃水の処理方法
JP2005125285A (ja) N2o含有排ガスの処理方法およびその装置
JP3188830B2 (ja) Nf3排ガスの除害方法及び除害装置
KR102474635B1 (ko) 배가스 중 황산화물 및 질소산화물 동시 저감을 위한 배가스 처리액 및 이를 이용한 배가스 처리방법
KR100406510B1 (ko) 산화촉매를 이용한 질소산화물 제거장치 및 그 제거방법
RU2146168C1 (ru) Способ очистки отходящих газов от оксидов азота
JPH08108172A (ja) 酸化態窒素を含む廃水の処理方法
KR100197517B1 (ko) 발전소 배가스 중 유해성분 제거방법과 그 장치
KR19990018051A (ko) 전자선 조사에 의한 배가스 처리방법
JP3259159B2 (ja) 酸化態窒素を含有する廃水の処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98806306.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997011405

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 76732/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09445787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998924559

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998924559

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 76732/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1019997011405

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997011405

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998924559

Country of ref document: EP