WO1998049720A1 - Procede et dispositif de traitement sous vide - Google Patents

Procede et dispositif de traitement sous vide Download PDF

Info

Publication number
WO1998049720A1
WO1998049720A1 PCT/JP1998/001949 JP9801949W WO9849720A1 WO 1998049720 A1 WO1998049720 A1 WO 1998049720A1 JP 9801949 W JP9801949 W JP 9801949W WO 9849720 A1 WO9849720 A1 WO 9849720A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
vacuum
vacuum processing
processing chamber
processing
Prior art date
Application number
PCT/JP1998/001949
Other languages
English (en)
French (fr)
Inventor
Masaru Kasai
Original Assignee
Shibaura Mechatronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corporation filed Critical Shibaura Mechatronics Corporation
Priority to EP98917717A priority Critical patent/EP0980092B1/en
Priority to DE69826120T priority patent/DE69826120T2/de
Priority to JP54682898A priority patent/JP3394263B2/ja
Publication of WO1998049720A1 publication Critical patent/WO1998049720A1/ja
Priority to US09/429,558 priority patent/US6465363B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a vacuum processing method and apparatus for processing an object to be processed by oxygen radicals inside a processing chamber formed in a vacuum vessel.
  • a vacuum processing method and apparatus have been used as a method and apparatus for performing an etching process, an asshing process, and the like on a semiconductor wafer substrate, a liquid crystal display glass substrate, and the like (hereinafter, collectively referred to as an “object to be processed”). It is used.
  • This vacuum processing method and apparatus are a method and an apparatus for carrying an object to be processed into a processing chamber formed inside a vacuum vessel and processing the object under vacuum.
  • a process gas is activated in a plasma generation chamber separated from a processing chamber to generate radicals, and the radicals are introduced into the processing chamber to form a surface of an object to be processed.
  • CDE chemical dry etching
  • a process gas supplied into a processing chamber is turned into plasma using a high-frequency voltage, and plasma formed inside the processing chamber is used.
  • RIE reactive ion etching
  • microwave plasma etching method and apparatus for applying microwaves to a process gas supplied into a processing chamber to generate microwave-excited plasma and performing etching using the plasma.
  • an electrostatic chuck device 2 is provided on the mounting surface 3a of the mounting table 3 for the object to be processed, which is provided inside the processing chamber, in order to fix the object to be processed to the mounting table 3.
  • the electrostatic chuck device 28 is provided with an electrode 29 on a sheet surface and an electrode sheet 30 sandwiching and covering the electrode 29 from both sides.
  • the electrode sheet 30 is formed of a heat-resistant polymer material that is an organic substance, for example, polyimide.
  • the lower electrode sheet 30 of the electrostatic chuck device 28 is bonded to the mounting surface 3 a of the mounting table 3 with an organic adhesive 32 as described above. Since both 2 are made of an organic substance, the electrode sheet 30 and the organic adhesive 3 are exposed to the inside of the processing chamber by oxygen radicals used for processing the object to be processed. 2 is etched.
  • the organic substance exposed inside the processing chamber is etched by oxygen radicals used when processing the processing object, and thus the components constituting the vacuum processing apparatus, for example, the electrostatic chuck apparatus.
  • the components constituting the vacuum processing apparatus for example, the electrostatic chuck apparatus.
  • vacuum processing equipment that uses oxygen radicals should avoid the use of organic substances. At present, it is inevitable to use the Internet.
  • an object of the present invention is to provide a vacuum processing method and apparatus capable of preventing etching of an organic substance exposed inside a processing chamber even when processing an object to be processed by oxygen radicals. It is in. Disclosure of the invention
  • a vacuum processing method is a vacuum processing method for processing an object to be processed by oxygen radicals inside a processing chamber formed in a vacuum vessel of a vacuum processing apparatus, wherein the object to be processed is loaded into the processing chamber. Then, using the vacuum processing apparatus, a fluorine processing gas containing at least fluorine atoms is activated to generate fluorine radicals, and the surface of the organic substance exposed inside the processing chamber is exposed to the fluorine radicals.
  • a step of subjecting the object to be processed to the treatment chamber after the step of fluoridation a step of activating a process gas containing at least oxygen atoms to generate oxygen radicals, Treating the object with oxygen radicals.
  • radical refers to an atom or molecule in an excited state that is chemically highly active. This "radical” is also called “active species”.
  • the vacuum processing apparatus further includes a mounting table provided inside the processing chamber for mounting the object to be processed, and a mounting table to fix the object to the mounting table.
  • An electrostatic chuck device provided on a surface of the electrode, wherein the electrostatic chuck device includes: an electrode; and an electrode sheet covering the electrode. And an organic adhesive used for bonding the electrostatic chuck device to the surface of the mounting table.
  • the vacuum processing apparatus further includes a mounting table provided inside the processing chamber for mounting the object to be processed, and a mounting table to fix the object to the mounting table.
  • An electrostatic chuck device provided on the surface of a, a fluororesin protective sheet provided so as to cover the electrostatic chuck device to protect the electrostatic chuck device; and
  • the substance is an organic adhesive used for bonding the protective sheet.
  • the fluorination treatment gas is a mixed gas of gas and 0 2 gas containing at least a fluorine atom.
  • the gas containing at least the fluorine atom is a gas containing at least one or more of CF 4 , C 2 F 6 , C 3 F 8 , NF 3 , and SF 6 .
  • the flow ratio of the 0 2 gas in the fluorination treatment gas is 4 0% or less.
  • the process gas is a gas containing at least 2 gases.
  • the process gas and the gas for fusid processing are each provided in a plasma generation chamber separated from the processing chamber.
  • the fluorine radicals or the oxygen radicals are introduced into the processing chamber.
  • the step of treating the object to be treated is a step of continuously treating a plurality of the objects to be treated, and the step of performing the fluorination treatment again after the step of treating the object to be treated. Repeatedly.
  • the surface of the organic substance exposed inside the processing chamber is fluorinated with fluorine radicals, and then the object is processed with oxygen radical.
  • the fluorinated surface of the organic substance functions as a protective film, thereby preventing the etching of the organic substance by oxygen radicals.
  • a vacuum processing apparatus includes: a vacuum container capable of evacuating the inside; a processing chamber formed inside the vacuum container; and a fluorine processing gas containing at least fluorine atoms, and generating fluorine radicals.
  • Generating means having a function of activating the process gas containing at least oxygen atoms and generating oxygen radicals, and supplying the fluoridation gas or the process gas to the radical generating means.
  • a mounting table provided inside the processing chamber for mounting the object to be processed, and a surface of an organic substance exposed inside the processing chamber. After the fluorination treatment with the fluorine radical, the object is placed on the mounting table in the treatment chamber, and the object is treated with the oxygen radical.
  • the vacuum processing apparatus includes: a vacuum container capable of evacuating the inside; a processing chamber formed inside the vacuum container; and a radical generation for activating a process gas containing at least oxygen atoms to generate oxygen radicals.
  • Means a gas supply means for supplying the process gas to the radial generating means, a mounting table provided inside the processing chamber for mounting the processing object, and An electrostatic chuck device provided on the surface of the mounting table for fixing an object to the mounting table, and fluorine provided so as to cover the electrostatic chuck device for protecting the electrostatic chuck device.
  • a protection sheet made of resin made of resin.
  • the surface of the organic substance exposed inside the processing chamber is a fluorine radical generated by activating a fluorinating gas containing at least a fluorine atom using the radical generating means. Has been fluorinated.
  • the fluorination treatment gas is a mixed gas of gas and 0 2 gas containing at least a fluorine atom.
  • the gas containing at least the fluorine atom is a gas containing at least one or more of CF 4 , C 2 F 6 , C 3 F 8 , NF 3 , and SF 6 .
  • the flow ratio of the 0 2 gas in the fluorination treatment gas is 4 0% or less.
  • the process gas, Ru Gasudea also includes a less 0 2 gas.
  • the radical generating means includes a plasma generating chamber separated from the processing chamber, and the radical generated in the plasma generating chamber is introduced into the processing chamber.
  • the surface of the organic substance exposed inside the processing chamber is fluorinated by fluorine radicals, and then the object is processed by oxygen radical.
  • the fluorinated surface of the organic substance functions as a protective film, thereby preventing the etching of the organic substance by oxygen radicals.
  • the vacuum processing apparatus of the present invention since a protective sheet made of a fluororesin is provided so as to cover the electrostatic chuck device in order to protect the electrostatic chuck device, the electrostatic sheet due to oxygen radicals is provided by the protective sheet. It is possible to prevent the etching of the chuck device.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a chemical dry etching apparatus (CDE apparatus) which is a vacuum processing apparatus according to one embodiment of the present invention.
  • CDE apparatus chemical dry etching apparatus
  • FIG. 2 is an enlarged longitudinal sectional view showing a part of a mounting table of the vacuum processing apparatus shown in FIG.
  • Figure 3 shows the results of a comparative experiment showing the protective effect of fluorination treatment on organic substances.
  • FIG. 4 is a graph showing the results obtained by analyzing the etching rate and the radical generation ratio when an organic substance is etched by a mixed gas of CF 4 and O 2 by emission spectrometry. 5, using the CDE system shown in FIG. 1, when treated fluoride film made of a material of the organic system by a gas mixture of CF and 0 2, the organic material for the 0 2 flow ratio It is the graph which showed the fluoride rate.
  • FIG. 6 is an enlarged longitudinal sectional view showing a part of a mounting table of a conventional vacuum processing apparatus.
  • FIG. 1 shows, as an example of a vacuum processing apparatus for performing a vacuum processing method according to the present embodiment, a discharge separation type chemical dry etching apparatus (hereinafter, referred to as a “CDE apparatus”) belonging to a so-called downflow type. Is shown.
  • CDE apparatus discharge separation type chemical dry etching apparatus
  • reference numeral 1 denotes a vacuum vessel, and a processing chamber 2 is formed inside the vacuum vessel 1.
  • the processing chamber 2 is provided with a mounting table 3 inside the processing chamber 2, and the workpiece S is mounted on the mounting table 3.
  • the mounting table 3 is provided with a temperature control mechanism (not shown), and the temperature of the workpiece S can be controlled by the temperature control mechanism.
  • An exhaust port 5 is formed in the bottom plate 4 of the vacuum vessel 1, and an exhaust pipe 6 having one end connected to a vacuum pump (not shown) is attached to the exhaust port 5.
  • a gas inlet 8 is formed in the ceiling 7 of the vacuum vessel 1, and a gas inlet 9 made of fluororesin is attached to the gas inlet 8.
  • One end of a quartz tube 10 is connected to the gas introducing tube 9 by force.
  • a sealing member 11 is attached to the other end of the quartz tube 10.
  • the channel has nineteen forces.
  • One end of a gas transport pipe 18 is connected to the sealing member 11, and the other end of the gas transport pipe 18 is branched into a pipe 20 and a pipe 21.
  • a first gas cylinder 23 having a first flow control valve 22 and a second gas cylinder 25 having a second flow control valve 24 are connected to the pipe 20 and the pipe 21, respectively. Have been.
  • the first gas cylinder 23 and the second gas cylinder 25 constitute gas supply means 26.
  • the gas filled in the first gas cylinder 23 is a gas containing at least a fluorine atom, and is preferably at least one of CF 4 , C 2 FC 3 F 8 , NF 3 , and SF 6 It is a gas containing one or more types.
  • radical generating means having a microwave waveguide 12, that is, a plasma generator 13 is provided so as to surround the quartz tube 10.
  • a plasma generation chamber 14 is formed inside a quartz tube 10 surrounded by 3.
  • the microwave generator 12 is connected to the microwave waveguide 12.
  • a shower nozzle 16 is provided so as to form a gas storage chamber 15 above the processing chamber 2.
  • the shower nozzle 16 has a large number of gas outlets 17.
  • FIG. 2 is an enlarged longitudinal sectional view showing a part of the mounting table 3 of the CDE apparatus shown in FIG.
  • the mounting surface 3a of the mounting table 3 is provided with an electrostatic chuck device 28 for fixing the workpiece S by electrostatic attraction.
  • the electrostatic chuck device 28 includes a sheet-like electrode 29 made of a conductive material such as copper, and an electrode sheet 30 sandwiching and covering the electrode 29 from both sides. I have.
  • the electrode sheet 30 is formed of a heat-resistant polymer material which is an organic substance, for example, polyimide.
  • the lower electrode sheet 30 is adhered to the mounting surface 3 a of the mounting table 3 by an organic adhesive 32.
  • the surface of the electrostatic chuck device 28 is covered with a protective sheet 31, and the protective sheet 31 is preferably formed of a fluororesin.
  • the protective sheet 31 is made up of an organic adhesive 3 2, which is an organic substance, and the surface of the upper electrode sheet 30 of the electrostatic chuck device 28 and the periphery of the mounting surface 3 a of the mounting table 3. This organic adhesive 3 2 is at its end 3 3 Force treatment chamber 2 ( Figure
  • the exposed end portions 33 of the organic adhesive 32 will be etched during the processing of the processing object S using oxygen radicals.
  • the end 33 of the organic adhesive 32 for example, there is a portion of the inner wall surface of the vacuum vessel 1 that is strongly exposed to organic material.
  • the inside of the vacuum vessel 1 is evacuated through the exhaust pipe 6 and the exhaust port 5 by a vacuum pump. To a vacuum (reduced pressure).
  • a gas containing at least a fluorine atom is introduced from one end of the quartz tube 10 from the first gas cylinder 23 through the pipe 20, the gas transport tube 18, and the gas passage 19 of the sealing member 11. I do.
  • a gas containing at least oxygen atoms is also supplied from the second gas cylinder 25.
  • the first flow control valve 22 and the second flow control valve 24 are adjusted so that the flow rate and the flow rate ratio of the gas containing at least a fluorine atom and the gas containing at least an oxygen atom can be adjusted for the organic substance.
  • microwaves are applied from the microwave generator 27 to the plasma generation chamber 14 via the microwave waveguide 12 of the plasma generator 13.
  • a glow discharge force is generated inside the plasma generation chamber 14 and plasma?
  • the mixture for fluoridation is generated Fluorine in the joint gas is excited to generate fluorine radicals.
  • a fluoridation gas containing fluorine radicals is supplied into the gas storage chamber 15 from the gas inlet 8 through the quartz tube 10 and the gas inlet tube 9.
  • the fluoridation gas supplied into the gas storage chamber 15 is rapidly and uniformly injected into the processing chamber 2 from the gas outlet 17 due to the pressure difference between the gas storage chamber 15 and the processing chamber 2. Is done.
  • the fluorine radicals supplied to the inside of the processing chamber 2 reach the surface of the organic substance exposed inside the processing chamber 2, for example, the end 33 of the organic adhesive 32.
  • the surface of the end 33 is fluorinated.
  • the fluoridation gas that has reacted with the end 33 of the organic adhesive 32 is exhausted by a vacuum pump through the exhaust port 5 and the exhaust pipe 6.
  • the above-described fluoridation treatment is performed for a time necessary to form a fluorinated film having a desired thickness, and thereafter, the supply of gas from the first gas cylinder 23 and the second gas cylinder 25 is performed. Is temporarily stopped, and the workpiece S is carried into the processing chamber 2. Next, a gas containing at least oxygen atoms is supplied to the quartz tube 10 through the gas passage 19 of the pipe 21, the gas transport pipe 18, and the sealing member 11. Introduce from one end. At this time, a gas containing at least a fluorine atom is also supplied from the first gas cylinder 23.
  • the first flow rate control valve 22 and the second flow rate control valve 24 are adjusted so that the flow rate and the flow rate ratio of the gas containing at least a fluorine atom and the gas containing at least an oxygen atom are determined by the etching of the processing target S.
  • microwaves are applied from the microwave generator 27 to the plasma generation chamber 14 via the microwave waveguide 12 of the plasma generator 13.
  • a glow discharge is generated inside the plasma generation chamber 14 to generate plasma P, and oxygen in a process gas comprising at least a gas containing oxygen atoms and a gas containing at least fluorine atoms is excited to generate oxygen radicals.
  • oxygen radicals Will be ⁇ .
  • the process gas containing oxygen radicals is supplied through the quartz tube 10 and the gas introduction tube 9
  • the gas is supplied from the inlet 8 into the gas storage room 15.
  • the process gas containing oxygen radicals supplied into the gas storage chamber 15 is vigorously and uniformly distributed from the gas outlet 17 into the processing chamber 2 due to the pressure difference between the gas storage chamber 15 and the processing chamber 2. Injected to. Then, the oxygen radicals supplied into the processing chamber 2 reach the surface of the processing target S, react with the thin film on the surface of the processing target S, and etch the thin film.
  • the process gas that has reacted with the thin film on the surface of the workpiece S is exhausted by the vacuum pump through the exhaust port 5 and the exhaust pipe 6.
  • the oxygen radicals supplied into the processing chamber 2 also reach the organic substance exposed inside the processing chamber 2, for example, the surface of the end 33 of the organic adhesive 32.
  • the surface of the end 33 of the organic adhesive 32 has already been fluorinated, etching of the organic adhesive 32 by oxygen radicals is significantly suppressed, and the etching amount Is extremely small.
  • the present embodiment can be applied to asshing processing of an object to be processed, which has been described with reference to the example of the etching processing of the object to be processed.
  • the fluoridation treatment gas is preferably a gas containing at least one or more of CF 4 , C 2 F 6 , C 3 F 8 , NF 3 , and SF 6 .
  • the process gas is a gas preferably containing at least 0 2 gas.
  • the process gas is a gas preferably containing at least 0 2 gas.
  • the surface of the polyimide electrode sheet 30 and the exposed portion of the organic adhesive 32 are The fluorination treatment is performed in the same manner as the above fluorination treatment method.
  • Fig. 3 shows the results of a comparative experiment conducted using the CDE device shown in Fig. 1 and verifying the effect of fluorination treatment on the protection of organic substances.
  • a wafer having a carbon film formed on the surface as an organic substance was used.
  • the target was an organic material on the surface of the ueno or on the surface, but the organic material exposed on the inner wall surface of the vacuum vessel 1, the mounting table 3, etc., for example, an organic adhesive or polyimide This also applies to
  • the upper column shows the result when the sample was subjected to a 60-minute etching treatment with oxygen radicals without performing the fluoridation treatment.
  • the etching amount of the carbon film when the sample was not preliminarily fluorinated was 3.9.
  • the lower column of FIG. 3 shows the result when the sample was first subjected to a fluoridation treatment for one minute, and then the etching treatment was performed under the same conditions as above.
  • the sample was etched under the same conditions as in the upper column of FIG.
  • the etching amount of the carbon film when the fluoridation treatment is performed in advance is 0.5 m, and the etching by oxygen radicals is significantly suppressed as compared with the case where the fluoridation treatment is not performed. I knew it was.
  • the flow ratio of 0 2 gas fluoride treatment gas is preferably 4 or less 0%.
  • the surface of the organic substance exposed inside the processing chamber 2 is fluorinated with fluorine radicals, and then is oxidized with oxygen radicals.
  • the workpiece S is to be etched. Therefore, the etching of the organic substance by the oxygen radical can be prevented.
  • a fluororesin protection sheet 31 is provided so as to cover the electrostatic chuck device 28, so that this protection sheet 31 provides oxygen radicals. This prevents the electrode sheet 30 of the electrostatic chuck device 28 from being etched.
  • the fluoridation of the organic substance can be performed by the vacuum processing apparatus itself, a separate apparatus for the fluoridation of the organic substance is not required. It is not necessary to remove the member from the vacuum processing device
  • the vacuum processing method and apparatus to which the present invention can be applied are not limited to the CDE method and apparatus described above, but may be applied to various vacuum processing methods and apparatuses for processing an object to be processed under vacuum. it can.
  • the present invention can be applied to various dry etching methods and apparatuses such as a reactive ion etching (RIE) method and apparatus, microwave plasma etching methods and apparatuses, or asshing methods and apparatuses.
  • RIE reactive ion etching
  • the present invention can be used for an etching process or an ashing process for a semiconductor wafer substrate, a liquid crystal display glass substrate, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Description

明 細 書 真空処理方法及び装置 技 術 分 野
本発明は、 真空容器内に形成された処理室の内部で酸素ラジカルによって被処 理物を処理する真空処理方法及び装置に関する。
背 景 技 術
従来、 半導体用ウェハ基板や液晶表示用ガラス基板等 (以下、 「被処理物」 と 総称する。 ) に対してエッチング処理やアツシング処理等を実施するための方法 及び装置として真空処理方法及び装置が使用されている。 この真空処理方法及び 装置は、 真空容器の内部に形成された処理室の内部に被処理物を搬入し、 この被 処理物を真空下において処理する方法及び装置である。
従来の真空処理方法及び装置の一例としては、 処理室から分離されたプラズマ 発生室においてプロセスガスを活性ィ匕してラジカルを生成し、 ラジカルを処理室 の内部に導入して被処理物の表面に供給し、 ラジカルによって被処理物表面の薄 膜のエツチング処理を行うケミカルドライエッチング (C D E) 方法及び装置が ある。
また、 従来の真空処理方法及び装置の他の例としては、 処理室の内部に供給さ れたプロセスガスを、 高周波電圧を利用してプラズマ化し、 処理室内部に形成さ れたプラズマを利用してエッチング処理を行う反応性イオンエッチング (R I E) 方法及び装置がある。 さらに、 処理室の内部に供給されたプロセスガスにマイク 口波を印加してマイクロ波励起プラズマを生成し、 このプラズマを利用してエツ チングを行うマイクロ波プラズマエツチング方法及び装置がある。
ところが、 従来の真空処理方法及び装置においては、 酸素ラジカルによって被 処理物を処理する場合、 真空処理装置の処理室の内部に有機系の物質、 すなわち 有機系の構造材料や有機系の接着剤等が露出していると、 この有機系の物質が酸 素ラジカルによってエッチングされてしまう。
例えば、 図 6に示したように処理室の内部に設けられた被処理物の載置台 3の 載置面 3 aには、 被処理物を載置台 3に固定するために静電チャック装置 2 8が 設けられており、 この静電チャック装置 2 8は、 シート伏の電極 2 9と、 この電 極 2 9を両面から挟み込んで覆っている電極用シート 3 0とを備えている。
そして、 この電極用シート 3 0は、 有機系の物質である耐熱性高分子材料、 例 えばポリイミ ドで形成されている。 また、 静電チャック装置 2 8の下側の電極用 シート 3 0は有機系の接着剤 3 2によって載置台 3の載置面 3 aに接着されてい このように電極用シート 3 0及び接着剤 3 2は共に有機系の物質よりなるので、 被処理物を処理するために使用される酸素ラジカルによって、 処理室の内部に露 出している部分の電極用シート 3 0及び有機系の接着剤 3 2がエッチングされて しまう。
このように、 処理室の内部に露出した有機系の物質は被処理物を処理する際に 使用される酸素ラジカルによってエッチングされてしまうので、 真空処置装置を 構成する部品、 例えば静電チヤック装置の寿命が短くなると同時に、 パーティク ルの発生原因となつて製品の歩留まりの低下をもたらすという問題があつた。 本 来的には、 酸素ラジカルを使用する真空処理装置においては有機系の物質の利用 を避けるべきである力 部品加工上の要求、 或いは部品共通化の要求等があるた めに有機系の物質の利用を避けられないのが現状である。
そこで、 本発明の目的は、 酸素ラジカルによって被処理物を処理する場合でも、 処理室の内部に露出している有機系の物質のェッチングを防止することができる 真空処理方法及び装置を提供することにある。 発 明 の 開示
本発明による真空処理方法は、 真空処理装置の真空容器内に形成された処理室 の内部で酸素ラジカルによって被処理物を処理する真空処理方法において、 前記 被処理物を前記処理室に搬入する前に、 前記真空処理装置を用いてフッ素原子を 少なくとも含むフッ化処理用ガスを活性化してフッ素ラジカルを生成し、 前記処 理室の内部に露出している有機系の物質の表面を前記フッ素ラジカルによってフ ッ化処理する工程と、 前記フッ化処理する工程の後に前記被処理物を前記処理室 に搬入する工程と、 酸素原子を少なくとも含むプロセスガスを活性化して酸素ラ ジカルを生成し、 前記酸素ラジカルによって前記被処理物を処理する工程と、 を 備えたことを特徴とする。
なお、 本明細書中において 「ラジカル」 とは、 化学的に活性度の高い励起状態 にある原子或いは分子のことである。 この 「ラジカル」 は 「活性種」 と呼ばれる しともめる。
また、 好ましくは、 前記真空処理装置は、 前記被処理物を載置するために前記 処理室の内部に設けられた載置台と、 前記被処理物を前記載置台に固定するため に前記載置台の表面に設けられた静電チャック装置と、 を備え、 前記静電チヤッ ク装置は、 電極と、 前記電極を覆っている電極用シートと、 を有し、 前記有機系 の物質は、 前記電極用シートを構成する有機系の材料、 及び前記静電チャック装 置を前記載置台の表面に接着するために使用された有機系の接着剤である。 また、 好ましくは、 前記真空処理装置は、 前記被処理物を載置するために前記 処理室の内部に設けられた載置台と、 前記被処理物を前記載置台に固定するため に前記載置台の表面に設けられた静電チヤック装置と、 前記静電チヤック装置を 保護するために前記静電チャック装置を覆うようにして設けられたフッ素樹脂製 の保護シートと、 を備え、 前記有機系の物質は、 前記保護シートを接着するため に使用された有機系の接着剤である。 また、 好ましくは、 前記フッ化処理用ガスは、 フッ素原子を少なくとも含むガ スと 02ガスとの混合ガスである。
また、 好ましくは、 前記フッ素原子を少なくとも含むガスは、 C F 4、 C 2 F 6、 C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を少なくとも含むガスで ある。
また、 好ましくは、 前記フッ化処理用ガス中の前記 02ガスの流量比は 4 0 % 以下である。
また、 好ましくは、 前記プロセスガスは、 〇2ガスを少なく とも含むガスであ また、 好ましくは、 前記プロセスガス及び前記フツイ匕処理用ガスは、 それぞれ、 前記処理室から分離されたプラズマ発生室において活性ィヒされ、 しかる後に前記 フッ素ラジカル又は前記酸素ラジカルが前記処理室の内部に導入される。
また、 好ましくは、 前記被処理物を処理する工程は、 複数の前記被処理物を連 続的に処理する工程であり、 前記被処理物を処理する工程の後に再び前記フッ化 処理する工程を繰り返して実施する。
そして、 本発明による真空処理方法によれば、 処理室の内部に露出している有 機系の物質の表面をフッ素ラジカルによってフッ化処理し、 しかる後に酸素ラジ カルによつて被処理物を処理するようにしたので、 有機系の物質のフッ化した表 面が保護膜として機能し、 酸素ラジカルによる有機系の物質のェッチングを防止 することができる。
本発明による真空処理装置は、 内部を真空排気可能な真空容器と、 前記真空容 器の内部に形成された処理室と、 フッ素原子を少なくとも含むフッ化処理用ガス を活性化してフッ素ラジカルを生成する機能及び酸素原子を少なくとも含むプロ セスガスを活性化して酸素ラジカルを生成する機能を有するラジカル生成手段と、 前記フッ化処理用ガス又は前記プロセスガスを前記ラジカル生成手段に供給する ためのガス供給手段と、 前記被処理物を載置するために前記処理室の内部に設け られた載置台と、 を備え、 前記処理室の内部に露出している有機系の物質の表面 を前記フッ素ラジカルによってフッ化処理した後に、 前記被処理物を前記処理室 内の前記載置台に載置して、 前記酸素ラジカルによって前記被処理物を処理する ことを特徴とする。
本発明による真空処理装置は、 内部を真空排気可能な真空容器と、 前記真空容 器の内部に形成された処理室と、 酸素原子を少なくとも含むプロセスガスを活性 化して酸素ラジカルを生成するラジカル生成手段と、 前記プロセスガスを前記ラ ジ力ル生成手段に供給するためのガス供給手段と、 前記被処理物を載置するため に前記処理室の内部に設けられた載置台と、 前記被処理物を前記載置台に固定す るために前記載置台の表面に設けられた静電チヤック装置と、 前記静電チヤック 装置を保護するために前記静電チヤック装置を覆うようにして設けられたフッ素 樹脂製の保護シートと、 を備えたことを特徴とする。
また、 好ましくは、 前記処理室の内部に露出している前記有機系の物質の表面 は、 フッ素原子を少なくとも含むフッ化処理用ガスを前記ラジカル生成手段を用 ヽて活性化して生成したフッ素ラジカルによってフッ化処理されている。
また、 好ましくは、 前記フッ化処理用ガスは、 フッ素原子を少なくとも含むガ スと 02ガスとの混合ガスである。
また、 好ましくは、 前記フッ素原子を少なくとも含むガスは、 C F 4、 C 2 F 6、 C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を少なくとも含むガスで ある。
また、 好ましくは、 前記フッ化処理用ガス中の前記 02ガスの流量比は 4 0 % 以下である。
また、 好ましくは、 前記プロセスガスは、 02ガスを少なく とも含むガスであ る。 また、 好ましくは、 前記ラジカル生成手段は、 前記処理室から分離されたブラ ズマ発生室を備えており、 前記プラズマ発生室にて生成された前記ラジカルが前 記処理室の内部に導入される。
また、 好ましくは、 前記処理室の内部に露出している有機系の物質を前記フッ 素ラジカルによってフッ化処理した後に、 複数の前記被処理物を連続的に処理す ることを繰り返して実施する。
そして、 本発明による真空処理装置によれば、 処理室の内部に露出している有 機系の物質の表面をフッ素ラジカルによってフッ化処理し、 しかる後に酸素ラジ カルによつて被処理物を処理するようにしたので、 有機系の物質のフッ化した表 面が保護膜として機能し、 酸素ラジカルによる有機系の物質のェッチングを防止 することができる。
また、 本発明による真空処理装置によれば、 静電チャック装置を保護するため に静電チャック装置を覆うようにしてフッ素樹脂製の保護シートを設けたので、 この保護シートによって酸素ラジカルによる静電チヤック装置のエッチングを防 止することができる。
図面の簡単な説明
図 1は、 本発明の一実施形態による真空処理装置であるケミカルドライエッチ ング装置 (C D E装置) の概略構成を示した縦断面図である。
図 2は、 図 1に示した真空処理装置の載置台の一部を拡大して示した縦断面図 である。
図 3は、 フッ化処理による有機系の物質の保護効果を示した比較実験結果を示 した である。
図 4は、 C F 4と 02との混合ガスによつて有機系の物質をェッチングした場合 のエッチングレートと、 そのときのラジカルの生成比率を発光分析によって解析 した結果を示したグラフである。 図 5は、 図 1に示した C D E装置を用いて、 C F と 02との混合ガスによって 有機系の物質よりなる膜をフッ化処理した場合の、 02の流量比に対する有機系 の物質のフッ化レ一トを示したグラフである。
図 6は、 従来の真空処理装置の載置台の一部を拡大して示した縦断面図である。
発明を実施するための最良の形態
以下、 本発明の一実施形態による真空処理方法及び装置について図面を参照し て説明する。
図 1は、 本実施形態による真空処理方法を実施するための真空処理装置の一例 として、 いわゆるダウンフロー型に属する放電分離型のケミカルドライエツチン グ装置 (以下、 「C D E装置」 と言う。 ) を示している。
図 1において符号 1は真空容器を示し、 この真空容器 1の内部に処理室 2が形 成されている。 処理室 2の内部には載置台 3力設けられており、 この載置台 3の 上には被処理物 Sが載置されている。 なお、 載置台 3には図示しない温度調節機 構が設けられており、 この温度調節機構によつて被処理物 Sの温度を制御できる ようになつている。
真空容器 1の底板 4には排気口 5が形成されており、 この排気口 5には、 一端 が真空ポンプ (図示を省略) に接続された排気管 6が取り付けられている。 真空 容器 1の天扳 7にはガス導入口 8力《形成されており、 このガス導入口 8にはフッ 素樹脂で形成されたガス導入管 9力取り付けられている。
このガス導入管 9には石英管 1 0の一端力接続されており、 この石英管 1 0の 他端には封止部材 1 1力'取り付けられ、 この封止部材 1 1の内部にはガス流路 1 9力形成されている。 封止部材 1 1にはガス輸送管 1 8の一端が接続されており、 ガス輸送管 1 8の他端は配管 2 0及び配管 2 1に分岐している。
配管 2 0及び配管 2 1には、 第 1の流量調整弁 2 2を有する第 1のガスボンベ 2 3及び第 2の流量調整弁 2 4を有する第 2のガスボンベ 2 5がそれぞれ接続さ れている。 第 1のガスボンベ 2 3及び第 2のガスボンベ 2 5はガス供給手段 2 6 を構成する。
ここで、 第 1のガスボンベ 2 3に充填されるガスは、 少なくともフッ素原子を 含むガスであって、 好ましくは、 少なくとも C F 4、 C 2 F C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を含むガスである。 また、 第 2のガスボン ベ 2 5に充填されるガスは、 少なくとも酸素原子を含むガスであって、 好ましく は、 少なくとも 02ガスを含むガスである。
石英管 1 0の途中にはマイクロ波導波管 1 2を備えたラジカル生成手段、 すな わちプラズマ発生装置 1 3が石英管 1 0を取り囲むようにして設けられており、 このプラズマ発生装置 1 3によって取り囲まれた石英管 1 0の内部にプラズマ発 生室 1 4が形成されている。 マイクロ波導波管 1 2にはマイクロ波発生器 2 Ίが 接続されている。
さらに、 真空容器 1の天板 7に設けられたガス導入口 8を介して処理室 2の内 部に導入されたラジカルを、 被処理物 Sの表面全体にわたつて均一に供給するた めに、 処理室 2の上部にガス貯留室 1 5を形成するようにしてシャワーノズル 1 6力設けられている。 そして、 シャワーノズル 1 6には多数のガス噴出口 1 7力 形成されている。
また、 図 2は、 図 1に示した C D E装置の載置台 3の一部を拡大して示した縦 断面図である。 図 2に示したように載置台 3の載置面 3 aには、 被処理物 Sを静 電吸着力により固定するための静電チヤック装置 2 8が設けられている。 この静 電チャック装置 2 8は、 銅などの導電性部材よりなるシート状の電極 2 9と、 こ の電極 2 9を両面から挟み込んで覆っている電極用シ一ト 3 0と、 を備えている。 ここで、 電極用シート 3 0は、 有機系の物質である耐熱性高分子材料、 例えばポ リイミ ドで形成されている。 また、 下側の電極用シート 3 0は有機系の接着剤 3 2によって載置台 3の載置面 3 aに接着されている。 さらに、 静電チヤック装置 2 8の表面は保護シート 3 1で覆われており、 この 保護シ一ト 3 1は、 好ましくはフッ素樹脂によって形成されている。 このように 有機系の物質よりなる電極用シ一ト 3 0は保護シ一ト 3 1によって覆われている ので、 被処理物 Sのエツチングの際に使用される酸素ラジカルによつて電極用シ ―ト 3 0の表面がエッチングされて損耗することを防止することができる。 保護シート 3 1は、 有機系の物質である有機系の接着剤 3 2によって静電チヤ ック装置 2 8の上側の電極用シート 3 0の表面及び載置台 3の載置面 3 aの周縁 部に接着されている力 この有機系の接着剤 3 2はその端部 3 3力処理室 2 (図
1参照) の内部に露出している。 このため、 何ら措置を講じない場合には、 酸素 ラジカルを用いた被処理物 Sの処理中に有機系の接着剤 3 2の露出した端部 3 3 がエッチングされてしまう。 また、 有機系の接着剤 3 2の端部 3 3以外にも、 例えば真空容器 1の内壁面に おいて有機系の物質力く露出している部分がある。
そこで、 本実施形態による真空処理方法及び装置においては、 まず、 被処理物 Sを処理室 2に搬入する前に、 排気管 6及び排気口 5を介して真空容器 1の内部 を真空ポンプによって排気して真空状態 (減圧状態) にする。
次に、 配管 2 0、 ガス輸送管 1 8及び封止部材 1 1のガス流路 1 9を介して、 第 1のガスボンベ 2 3から少なくともフッ素原子を含むガスを石英管 1 0の一端 から導入する。 このとき、 第 2のガスボンベ 2 5からも、 少なくとも酸素原子を 含むガスを供給する。 そして、 第 1の流量調整弁 2 2及び第 2の流量調整弁 2 4 を調節して、 少なくともフッ素原子を含むガス及び少なくとも酸素原子を含むガ スの流量及び流量比を、 有機系の物質のフッ化処理に適した値に設定する。 そして、 プラズマ発生装置 1 3のマイクロ波導波管 1 2を介して、 マイクロ波 発生器 2 7からプラズマ発生室 1 4にマイクロ波を印加する。 すると、 プラズマ 発生室 1 4の内部にグロ一放電力生じてプラズマ?カ発生し、 フッ化処理用の混 合ガス中のフッ素が励起されてフッ素ラジカルが生成される。
そして、 フッ素ラジカルを含むフッ化処理用ガスを石英管 1 0及びガス導入管 9を介してガス導入口 8からガス貯留室 1 5の内部に供給する。 ガス貯留室 1 5 の内部に供給されたフッ化処理用ガスは、 ガス貯留室 1 5と処理室 2との圧力差 によって、 ガス噴出口 1 7から処理室 2の内部に勢い良く均一に噴射される。 すると、 処理室 2の内部に供給されたフッ素ラジカルは、 処理室 2の内部に露 出している有機系の物質、 例えば有機系の接着剤 3 2の端部 3 3の表面に到達し、 この端部 3 3の表面をフッ化処理する。 有機系の接着剤 3 2の端部 3 3と反応し たフッ化処理用ガスは、 排気口 5及び排気管 6を介して真空ポンプによつて排気 される。
上述したフッ化処理は、 所望の厚さのフッ化膜を形成するために必要な時間に わたって実施され、 しかる後、 第 1のガスボンベ 2 3及び第 2のガスボンベ 2 5 からのガスの供給を一旦停止し、 被処理物 Sを処理室 2に搬入する。 次に、 第 2 のガスボンベ 2 5力、ら、 少なくとも酸素原子を含むガスを、 配管 2 1、 ガス輸送 管 1 8及び封止部材 1 1のガス流路 1 9を介して石英管 1 0の一端から導入する。 このとき、 第 1のガスボンベ 2 3からも、 少なくともフッ素原子を含むガスを供 給する。 そして、 第 1の流量調整弁 2 2及び第 2の流量調整弁 2 4を調節して、 少なくともフッ素原子を含むガス及び少なくとも酸素原子を含むガスの流量及び 流量比を、 被処理物 Sのエツチング処理に適した値に設定する。
そして、 プラズマ発生装置 1 3のマイクロ波導波管 1 2を介して、 マイクロ波 発生器 2 7からプラズマ発生室 1 4にマイクロ波を印加する。 すると、 プラズマ 発生室 1 4の内部にグロ一放電が生じてプラズマ Pカ発生し、 少なくとも酸素原 子を含むガス及び少なくともフッ素原子を含むガスからなるプロセスガスの中の 酸素が励起されて酸素ラジカルが^^される。
酸素ラジカルを含むプロセスガスを石英管 1 0及びガス導入管 9を介してガス 導入口 8からガス貯留室 1 5の内部に供給する。 ガス貯留室 1 5の内部に供給さ れた酸素ラジカルを含むプロセスガスは、 ガス貯留室 1 5と処理室 2との圧力差 によって、 ガス噴出口 1 7から処理室 2の内部に勢い良く均一に噴射される。 す ると、 処理室 2の内部に供給された酸素ラジカルは被処理物 Sの表面に到達し、 被処理物 Sの表面の薄膜と反応してこの薄膜をェッチングする。 被処理物 Sの表 面の薄膜と反応したプロセスガスは、 排気口 5及び排気管 6を介して真空ポンプ によって排気される。
一方、 処理室 2の内部に供給された酸素ラジカルは、 処理室 2の内部に露出し ている有機系の物質、 例えば有機系の接着剤 3 2の端部 3 3の表面にも到達する。 しかしながら、 この有機系の接着剤 3 2の端部 3 3等の表面は既にフッ化処理さ れているので、 酸素ラジカルによる有機系の接着剤 3 2等のエッチングは著しく 抑制され、 そのエッチング量は極めて小さい。
そして、 数枚又は数十枚の被処理物 Sに対して連続的に順次ェッチング処理を 実施した後、 被処理物 Sのエッチング処理を一旦中止して、 載置台 3に被処理物 Sがな 、状態で上述したフッ化処理工程を再び実施する。 このようにして有機系 の物質の表面を再びフッ化した後、 被処理物 Sのエツチング処理を再開して数枚 又は数十枚を処理し、 以後、 上述した有機系の物質のフッ化処理工程と被処理物 Sのエッチング工程とを交互に繰り返して実施する。
なお、 これまで被処理物のエッチング処理を例にとって説明した力 本実施形 態は被処理物のアツシング処理にも適用できる。
また、 フッ化処理用ガスは、 好ましくは、 C F 4、 C 2 F 6、 C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を少なくとも含むガスである。
また、 プロセスガスは、 好ましくは、 少なくとも 02ガスを含むガスである。 上述した実施形態においては、 静電チヤック装置 2 8の表面が保護シ一ト 3 1 で覆われている場合について説明したが、 図 6に示したように静電チヤック 2 8 の表面に保護シー卜 3 1を設けない場合にも、 本実施形態による真空処理方法及 び装置を適用することができる。
すなわち、 図 6に示した構成においては、 被処理物 Sを載置台 3に載置する前 に、 ポリイミ ド製の電極用シート 3 0の表面及び有機系の接着剤 3 2の露出部分 を、 上述したフッ化処理方法と同様の方法にてフッ化処理する。
このようにすれば、 被処理物 Sを酸素ラジカルによってエツチング処理する際 に、 電極用シ一ト 3 0及び有機系の接着剤 3 2の酸素ラジカルによるエッチング を防止することができる。
図 3に、 図 1に示した C D E装置を用いて実施した、 フッ化処理による有機系 の物質の保護効果を検証した比較実験結果を示す。 試料としては、 有機系の物質 としてカーボン膜が表面に形成されたウェハを使用した。 なお、 この実験におい てはウエノ、表面上の有機系の物質を対象としているが、 真空容器 1の内壁面や載 置台 3等における露出した有機系の物質、 例えば有機系の接着剤やポリイミ ドに 対しても当てはまるものである。
図 3において上欄は、 フッ化処理を実施することなく、 いきなり酸素ラジカル によって 6 0分間のェッチング処理を試料に対して実施した場合の結果である。 エッチングガスとして C F 4ガスと 02ガスとを 1 : 3の比率で混合した混合ガス を使用し、 マイクロ波パワー = 4 5 0 W、 圧力 = 4 0 P a、 載置台温度 = 5 °Cと してエッチング処理を実施した。 このように、 試料に対して予めフッ化処理を実 施しない場合のカーボン膜のエッチング量は 3. 9 であった。
これに対して図 3の下欄は、 まず初めに 1分間のフッ化処理を試料に対して実 施し、 その後に上記と同一の条件でエッチング処理を行った場合の結果である。 具体的には、 フッ化処理のためのフッ素ラジカルを発生させるガスとして C F 4 ガスと 02ガスとを 3 : 1の比率で混合した混合ガスを使用し、 マイクロ波パヮ 一 = 7 0 0 W、 圧力 = 4 0 P a、 載置台温度 = 5 °Cとして試料に対してフッ化処 理を実施した。 その後に、 図 3上欄と同一条件で試料に対してエッチング処理を 行った。
このように予めフッ化処理を実施した場合の力一ボン膜のェッチング量は 0. 5 mであり、 フッ化処理を実施しな L、場合に比べて酸素ラジカルによるエッチ ングが大幅に抑制されていることが分かった。
図 4は、 図 1に示した C D E装置を用いて、 C F 4と 02との混合ガスによって 有機系の物質よりなる膜をエッチングした場合のエッチングレートと、 そのとき のラジカルの生成比率を発光分析によつて解析した結果を示したグラフであり、 横軸は混合ガスの全流量に対する 02の流量比を示している。
図 4から分かるように 02の流量比力 <増大すると共に酸素ラジカルの生成比が 増大し、 これと同時に有機系の物質よりなる膜のエッチングレートが増大してい る。 また、 〇2の流量比を 2 5 % (つまり、 C F 4ガス: 02ガス = 3 : 1 ) 程度 にすれば有機系の物質よりなる膜のェツチングレートは無視し得るほどに小さく なり、 このような条件の下でフッ化処理を実施すれば、 フッ化処理の際の有機系 の物質のエツチングは問題とはならな L、。
図 5は、 図 1に示した C D E装置を用いて、 C F 4と 02との混合ガスによって 有機系の物質よりなる膜をフッ化処理した場合の、 02の 比に対する有機系 の物質のフッ化レー卜を示したグラフである。 図 5から分かるように、 0 2の流 量比の増加と共にフッ化レートカ減少しており、 02の流量比が 4 0 %を超える と有機系の物質のフッ化はほとんど行われない。
このように、 フッ化処理用ガスとして C F 4と 02との混合ガスを使用した場合、 フッ化処理用ガス中の 02ガスの流量比は、 好ましくは、 4 0 %以下である。 以上述べたように本実施形態による真空処理方法及び装置によれば、 処理室 2 の内部に露出している有機系の物質の表面をフッ素ラジカルによってフッ化処理 し、 しかる後に酸素ラジカルによつて被処理物 Sをエツチング処理するようにし たので、 酸素ラジカルによる有機系の物質のェッチングを防止することができる。 また、 静電チャック装置 2 8を保護するために、 静電チャック装置 2 8を覆う ようにしてフッ素樹脂製の保護シ一ト 3 1を設けたので、 この保護シー卜 3 1に よって酸素ラジカルによる静電チヤック装置 2 8の電極用シート 3 0のエツチン グを防止することができる。
さらに、 有機系の物質のフッ化処理は真空処理装置自身によって ¾すること ができるので、 有機系の物質のフッ化処理のための別の装置は不要であり、 また、 フッ化処理の対象となる部材を真空処理装置から取り外すような作業は不要であ る
なお、 本発明を適用し得る真空処理方法及び装置は、 上述した C D E方法及び 装置に限られるものではなく、 真空下において被処理物を処理する各種の真空処 理方法及び装置に適用することができる。 具体的には、 反応性イオンエッチング (R I E ) 方法及び装置、 マイクロ波プラズマエッチング方法及び装置等の各種 のドライエッチング方法及び装置、 或いはアツシング方法及び装置等に本発明を 適用することができる。
産業上の利用可能性
本発明は、 半導体用ウェハ基板や液晶表示用ガラス基板等のエッチング処理や アツシング処理に用いることができる。

Claims

請 求 の 範 囲
1. 真空処理装置の真空容器内に形成された処理室の内部で酸素ラジカルに よつて被処理物を処理する真空処理方法において、
前記被処理物を前記処理室に搬入する前に、 前記真空処理装置を用いてフッ素 原子を少なくとも含むフッ化処理用ガスを活性ィ匕してフッ素ラジカルを生成し、 前記処理室の内部に露出している有機系の物質の表面を前記フッ素ラジカルによ つてフッ化処理する工程と、
前記フッ化処理する工程の後に前記被処理物を前記処理室に搬入する工程と、 酸素原子を少なくとも含むプロセスガスを活性化して酸素ラジカルを生成し、 前記酸素ラジカルによって前記被処理物を処理する工程と、 を備えたことを特徴 とする真空処理方法。
2. 前記真空処理装置は、 前記被処理物を載置するために前記処理室の内部 に設けられた載置台と、 前記被処理物を前記載置台に固定するために前記載置台 の表面に設けられた静電チャック装置と、 を備え、
前記静電チャック装置は、 電極と、 前記電極を覆っている電極用シートと、 を 有し、
前記有機系の物質は、 前記電極用シートを構成する有機系の材料、 及び前記静 電チヤック装置を前記載置台の表面に接着するために使用された有機系の接着剤 であることを特徴とする請求項 1記載の真空処理方法。
3. 前記真空処理装置は、 前記被処理物を載置するために前記処理室の内部 に設けられた載置台と、 前記被処理物を前記載置台に固定するために前記載置台 の表面に設けられた静電チヤック装置と、 前記静電チヤック装置を保護するため に前記静電チャック装置を覆うようにして設けられたフッ素樹脂製の保護シ一ト と、 を備え、 前記有機系の物質は、 前記保護シートを接着するために使用された有機系の接 着剤であることを特徴とする請求項 1記載の真空処理方法。
4. 前記フッ化処理用ガスは、 フッ素原子を少なくとも含むガスと 0 2ガス との混合ガスであることを特徴とする請求項 1乃至請求項 3の 、ずれか一項に記 載の真空処理方法。
5. 前記フッ素原子を少なくとも含むガスは、 C F 4、 C 2 F 6、 C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を少なくとも含むガスであることを 特徴とする請求項 4記載の真空処理方法。
6. 前記フッ化処理用ガス中の前記 02ガスの流量比は 4 0 %以下であるこ とを特徴とする請求項 4又は請求項 5に記載の真空処理方法。
7. 前記プロセスガスは、 02ガスを少なくとも含むガスであることを特徴 とする請求項 1乃至請求項 6のいずれか一項に記載の真空処理方法。
8. 前記プロセスガス及び前記フッ化処理用ガスは、 それぞれ、 前記処理室 から分離されたブラズマ発生室にお L、て活性化され、 しかる後に前記フッ素ラジ カル又は前記酸素ラジカルが前記処理室の内部に導入されることを特徴とする請 求項 1乃至請求項 7のいずれか一項に記載の真空処理方法。
9. 前記被処理物を処理する工程は、 複数の前記被処理物を連続的に処理す る工程であり、
前記被処理物を処理する工程の後に再び前記フッ化処理する工程を繰り返して ¾ϋすることを特徴とする請求項 1乃至請求項 8の ゝずれか一項に記載の真空処 理方法。
1 0. 内部を真空排気可能な真空容器と、 前記真空容器の内部に形成された 処理室と、 フッ素原子を少なくとも含むフッ化処理用ガスを活性化してフッ素ラ ジ力ルを生成する機能及び酸素原子を少なくとも含むプロセスガスを活性ィ匕して 酸素ラジカルを生成する機能を有するラジカル生成手段と、前記フッ化処理用ガ ス又は前記プロセスガスを前記ラジカル生成手段に供給するためのガス供給手段 と、 前記被処理物を載置するために前記処理室の内部に設けられた載置台と、 を 備え、
前記処理室の内部に露出している有機系の物質の表面を前記フッ素ラジカルに よってフッ化処理した後に、 前記被処理物を前記処理室内の前記載置台に載置し て、 前記酸素ラジカルによつて前記被処理物を処理することを特徴とする真空処
1 1. 内部を真空排気可能な真空容器と、前記真空容器の内部に形成された 処理室と、 酸素原子を少なくとも含むプロセスガスを活性化して酸素ラジカルを 生成するラジカル生成手段と、 前記プロセスガスを前記ラジカル生成手段に供給 するためのガス供給手段と、 前記被処理物を載置するために前記処理室の内部に 設けられた載置台と、前記被処理物を前記載置台に固定するために前記載置台の 表面に設けられた静電チヤック装置と、 前記静電チヤック装置を保護するために 前記静電チャック装置を覆うようにして設けられたフッ素樹脂製の保護シートと、 を備えたことを特徴とする真空処理装置。
1 2. 前記処理室の内部に露出している有機系の物質の表面は、 フッ素原子 を少なくとも含むフッ化処理用ガスを前記ラジカル生成手段を用いて活性化して 生成したフッ素ラジカルによってフッ化処理されていることを特徵とする請求項 1 0又は請求項 1 1に記載の真空処理装置。
1 3. 前記フッ化処理用ガスは、 フッ素原子を少なくとも含むガスと 02ガ スとの混合ガスであることを特徴とする請求項 1 2記載の真空処理装置。
1 4. 前記フッ素原子を少なくとも含むガスは、 C F 4、 C 2 F 6、 C 3 F 8、 N F 3、 S F 6のうちのいずれか 1種又は複数種を少なくとも含むガスであること を特徴とする請求項 1 3記載の真空処理装置。
1 5. 前記フッ化処理用ガス中の前記 02ガスの流量比は 4 0 %以下である ことを特徴とする請求項 1 3又は請求項 1 4記載の真空処理装置。
1 6. 前記プロセスガスは、 02ガスを少なくとも含むガスであることを特 徴とする請求項 1 0乃至請求項 1 5のいずれか一項に記載の真空処理装置。
1 7. 前記ラジカル生成手段は、 前記処理室から分離されたプラズマ発生室 を備えており、 前記プラズマ発生室にて生成された前記ラジカルが前記処理室の 内部に導入されることを特徵とする請求項 1 0乃至請求項 1 6のいずれか一項に 記載の真空処理装置。
1 8. 前記処理室の内部に露出している有機系の物質を前記フッ素ラジカル によってフッ化処理した後に、 複数の前記被処理物を連続的に処理することを繰 り返して実施することを特徴とする請求項 1 0乃至請求項 1 7のいずれか一項に 記載の真空処理装置。
PCT/JP1998/001949 1997-04-28 1998-04-28 Procede et dispositif de traitement sous vide WO1998049720A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98917717A EP0980092B1 (en) 1997-04-28 1998-04-28 Vacuum processing method
DE69826120T DE69826120T2 (de) 1997-04-28 1998-04-28 Vakuumbehandlungsverfahren
JP54682898A JP3394263B2 (ja) 1997-04-28 1998-04-28 真空処理方法及び装置
US09/429,558 US6465363B1 (en) 1997-04-28 1999-10-28 Vacuum processing method and vacuum processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/111319 1997-04-28
JP11131997 1997-04-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/429,558 A-371-Of-International US6465363B1 (en) 1997-04-28 1999-10-28 Vacuum processing method and vacuum processing apparatus
US09/429,558 Continuation US6465363B1 (en) 1997-04-28 1999-10-28 Vacuum processing method and vacuum processing apparatus
US10/152,001 Division US20020134753A1 (en) 1997-04-28 2002-05-22 Vacuum processing method and vacuum processing apparatus

Publications (1)

Publication Number Publication Date
WO1998049720A1 true WO1998049720A1 (fr) 1998-11-05

Family

ID=14558215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001949 WO1998049720A1 (fr) 1997-04-28 1998-04-28 Procede et dispositif de traitement sous vide

Country Status (8)

Country Link
US (2) US6465363B1 (ja)
EP (1) EP0980092B1 (ja)
JP (1) JP3394263B2 (ja)
KR (1) KR100319662B1 (ja)
CN (1) CN1149646C (ja)
DE (1) DE69826120T2 (ja)
TW (1) TW411491B (ja)
WO (1) WO1998049720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177479A (ja) * 2007-01-22 2008-07-31 Tokyo Electron Ltd プラズマ処理装置の部品及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233080A (ja) 2002-02-05 2003-08-22 Lg Phillips Lcd Co Ltd 合着装置及びこれを用いた液晶表示装置の製造方法
US20070252347A1 (en) * 2005-12-28 2007-11-01 Trig Cycling Ltd. Quick release mechanism with integrated/attached multi-tool
JP4912907B2 (ja) * 2007-02-06 2012-04-11 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマエッチング装置
DE102007060515A1 (de) 2007-12-13 2009-06-18 Christof-Herbert Diener Oberflächenbehandlungsverfahren
US8785331B2 (en) * 2012-05-25 2014-07-22 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for replacing chlorine atoms on a film layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582782A (en) * 1978-12-18 1980-06-21 Fujitsu Ltd Dry etching method
JPS5779620A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma etching process
JPH07106300A (ja) * 1993-09-29 1995-04-21 Shibaura Eng Works Co Ltd 静電チャック装置
JPH0982787A (ja) * 1995-09-19 1997-03-28 Toshiba Corp プラズマ処理装置およびプラズマ処理方法
JPH09246242A (ja) * 1996-03-07 1997-09-19 Nec Corp 半導体装置及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180432A (en) * 1977-12-19 1979-12-25 International Business Machines Corporation Process for etching SiO2 layers to silicon in a moderate vacuum gas plasma
JPS59150427A (ja) 1983-02-15 1984-08-28 Toshiba Corp 半導体装置およびその製造方法
JPS59173273A (ja) 1983-03-18 1984-10-01 Matsushita Electric Ind Co Ltd 反応性イオンエツチング装置
US4673456A (en) * 1985-09-17 1987-06-16 Machine Technology, Inc. Microwave apparatus for generating plasma afterglows
US4996077A (en) * 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
US5198634A (en) * 1990-05-21 1993-03-30 Mattson Brad S Plasma contamination removal process
JPH05114592A (ja) * 1991-10-22 1993-05-07 Hitachi Chem Co Ltd 有機膜のエツチング方法および半導体装置の製造法
KR0164618B1 (ko) * 1992-02-13 1999-02-01 이노우에 쥰이치 플라즈마 처리방법
JPH05226653A (ja) 1992-02-14 1993-09-03 Toshiba Corp Tftアレイのエッチング加工方法
JPH05275326A (ja) 1992-03-30 1993-10-22 Sumitomo Metal Ind Ltd レジストのアッシング方法
JPH05347282A (ja) 1992-06-15 1993-12-27 Fujitsu Ltd アッシング装置及びその処理方法
TW255839B (ja) * 1993-05-20 1995-09-01 Hitachi Seisakusyo Kk
FI95421C (fi) * 1993-12-23 1996-01-25 Heikki Ihantola Puolijohteen, kuten piikiekon, prosessoinnissa käytettävä laitteisto ja menetelmä
JPH0864581A (ja) 1994-08-25 1996-03-08 Sumitomo Metal Ind Ltd プラズマアッシング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582782A (en) * 1978-12-18 1980-06-21 Fujitsu Ltd Dry etching method
JPS5779620A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma etching process
JPH07106300A (ja) * 1993-09-29 1995-04-21 Shibaura Eng Works Co Ltd 静電チャック装置
JPH0982787A (ja) * 1995-09-19 1997-03-28 Toshiba Corp プラズマ処理装置およびプラズマ処理方法
JPH09246242A (ja) * 1996-03-07 1997-09-19 Nec Corp 半導体装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0980092A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177479A (ja) * 2007-01-22 2008-07-31 Tokyo Electron Ltd プラズマ処理装置の部品及びその製造方法

Also Published As

Publication number Publication date
TW411491B (en) 2000-11-11
EP0980092A1 (en) 2000-02-16
KR100319662B1 (ko) 2002-01-16
US20020134753A1 (en) 2002-09-26
US6465363B1 (en) 2002-10-15
KR20010020335A (ko) 2001-03-15
CN1149646C (zh) 2004-05-12
EP0980092A4 (en) 2000-03-29
DE69826120T2 (de) 2005-09-22
EP0980092B1 (en) 2004-09-08
JP3394263B2 (ja) 2003-04-07
DE69826120D1 (de) 2004-10-14
CN1261460A (zh) 2000-07-26

Similar Documents

Publication Publication Date Title
US5795399A (en) Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
US5198634A (en) Plasma contamination removal process
US6923189B2 (en) Cleaning of CVD chambers using remote source with cxfyoz based chemistry
EP0488393B1 (en) Method for treating substrates
EP0889976B1 (en) Apparatus for uniform distribution of plasma
US5795831A (en) Cold processes for cleaning and stripping photoresist from surfaces of semiconductor wafers
JP3598602B2 (ja) プラズマエッチング方法、液晶表示パネルの製造方法、及びプラズマエッチング装置
KR101313426B1 (ko) 기판 상의 잔류물을 제거하기 위한 에칭후 처리 시스템
JP4968028B2 (ja) レジスト除去装置
US10490399B2 (en) Systems and methodologies for vapor phase hydroxyl radical processing of substrates
US20030213561A1 (en) Atmospheric pressure plasma processing reactor
KR102538188B1 (ko) 플라즈마 처리 장치의 세정 방법
US6664184B2 (en) Method for manufacturing semiconductor device having an etching treatment
EP0416646B1 (en) Apparatus and method for processing substrates
TWI809019B (zh) 處理基板之方法
US5972799A (en) Dry etching method
WO1998049720A1 (fr) Procede et dispositif de traitement sous vide
CN109427575B (zh) 蚀刻方法和蚀刻装置
US5858258A (en) Plasma processing method
JPH07106300A (ja) 静電チャック装置
JPH0974086A (ja) プラズマ処理装置
JPH1050656A (ja) 半導体製造装置のクリーニング方法,半導体ウエハのクリーニング方法、および半導体装置の製造方法
JPH04302143A (ja) 表面処理装置
CA2440328A1 (en) Atmospheric pressure plasma etching reactor
JPH028380A (ja) ドライエッチング方法およびその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98806501.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998917717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997009949

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09429558

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998917717

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997009949

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997009949

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998917717

Country of ref document: EP