WO1998048159A1 - Installation de type turbine a gaz - Google Patents

Installation de type turbine a gaz Download PDF

Info

Publication number
WO1998048159A1
WO1998048159A1 PCT/JP1998/001843 JP9801843W WO9848159A1 WO 1998048159 A1 WO1998048159 A1 WO 1998048159A1 JP 9801843 W JP9801843 W JP 9801843W WO 9848159 A1 WO9848159 A1 WO 9848159A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
compressor
air
supplied
gas turbine
Prior art date
Application number
PCT/JP1998/001843
Other languages
English (en)
French (fr)
Inventor
Shigeo Hatamiya
Masahiko Yamagishi
Osamu Yokomizo
Yoshiki Noguchi
Moriaki Tsukamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to EP98917622A priority Critical patent/EP0990780B1/en
Priority to JP54546798A priority patent/JP4285781B2/ja
Priority to DE69836910T priority patent/DE69836910T2/de
Priority to US09/403,417 priority patent/US6389799B1/en
Publication of WO1998048159A1 publication Critical patent/WO1998048159A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection

Definitions

  • the present invention relates to a gas turbine, particularly to a high-humidity gas turbine cycle that uses high-humidity air as combustion air.
  • a low-pressure compressor and a high-pressure compressor are installed in series as a compressor.
  • a direct or indirect heat exchanger is installed between both compressors, and water is supplied to the compressed air passing through the high-pressure compressor. For injecting heat and recovering heat. Disclosure of the invention
  • an object of the present invention is to provide high-humidity gas turbine equipment with high combustion stability while obtaining desired output and efficiency.
  • the present invention provides a high-humidity gas turbine facility with high combustion stability while reducing the amount of water injection required to obtain a desired output and efficiency and obtaining a desired output and efficiency.
  • the amount of water injected is reduced, the humidifier and the water recovery device from the exhaust gas from the gas turbine are downsized, and the loss of compressed air and exhaust gas is reduced, resulting in higher efficiency and higher output and higher humidity.
  • the humidifier In a high-humidity gas turbine cycle, a large amount of moisture is added to the combustion air.However, if the same moisture is added, the humidifier can be downsized and humidified. As a result, the pressure loss of equipment connected between the air compressor and the gas turbine, such as humidifiers and heat exchangers, is reduced, and the power generation efficiency of the gas turbine is reduced. Can be improved. Also, the power of the compressor can be reduced without dividing the air compressor or providing multiple stages in series, thereby improving the output and efficiency of the gas turbine.
  • the present invention provides a compressor that compresses and discharges supplied air, a combustor in which air and fuel discharged from the compressor are burned, and driven by combustion gas of the combustor.
  • a gas turbine facility comprising:
  • a spray device configured to vaporize the sprayed droplets introduced into the compressor together with the air while flowing down the compressor, and discharged from the compressor including water sprayed by the spray device.
  • compression A water addition device for adding water to the air
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • a compressor that compresses and discharges supplied air, a combustor that burns air and fuel discharged from the compressor, and a turbine that is driven by combustion gas of the combustor.
  • a gas turbine facility comprising: a gas turbine installed in an intake chamber on an upstream side of the compressor, and spraying water to air supplied to the compressor and introducing the water into the compressor.
  • a spray device for vaporizing a part of the atomized liquid droplets and vaporizing the unvaporized liquid droplets introduced into the compressor together with the air while flowing down the compressor; and
  • a water adding device for adding water to compressed air discharged from the compressor containing water sprayed in,
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • a gas turbine system comprising: a gas turbine installed in an intake chamber on an upstream side of the compressor, wherein water supplied to the air supplied to the compressor is sprayed with water before being introduced into the compressor.
  • the liquid A spray device that vaporizes some of the droplets, and vaporizes the unvaporized droplets introduced into the compressor together with the air while flowing down the compressor; and water sprayed by the spray device.
  • a water addition device for adding water to the compressed air discharged from the compressor comprising:
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • the collected water is supplied to the spraying device and the water adding device. And a path for supplying at least one of them.
  • the recovered water containing the heat of the exhaust gas can be reused, and the heat generated by itself can be returned to the upstream side of the combustor, so that the efficiency of the gas turbine can be further improved.
  • the temperature raising equipment can be downsized, and the pressure loss can be further reduced. Efficiency can be improved.
  • the gas tarpin facility
  • the spray device includes a plurality of spray devices installed in the intake chamber along the flow of the air, and water sprayed from a spray device located downstream from water sprayed from a spray device located upstream. It is preferred that the temperature be high.
  • the weight flow rate at the compressor inlet can be increased, and droplets that can be easily evaporated in the compressor can be supplied from the compressor inlet, so that the amount of evaporation in the compressor can be stably increased.
  • the intake water is cooled by the water spray device in the preceding stage to increase the air mass flow rate.
  • the output can be further improved and the efficiency can be further improved.
  • control device that controls the amount of water sprayed from the spraying device with respect to the amount of water added from the water adding device to be in a range of 150 to 15.
  • the range is desirably in the range of 1Z25 to 110.
  • the gas turbine equipment or the gas turbine equipment,
  • a control device that controls the amount of water sprayed from the spraying device with respect to the amount of water added from the water adding device to be in a range of 1Z50 to 15;
  • the ratio of the water circulated in the water addition device to the water amount added to the water addition device is controlled to be 70% to 95%. Also, it is desirably in the range of 1Z25 to 110.
  • the amount of water sprayed from the spraying device is in the range of 0.2% to 5.0% with respect to the weight flow of air, and the amount of water added from the watering device is 30% with respect to the weight flow of compressor discharge. It is preferable to control the following.
  • the amount of the sprayed water is in the range of 0.4% to 2.5%.
  • a compressor that compresses and discharges supplied air, from the compressor A gas turbine facility comprising: a combustor in which discharged air and fuel are burned; and a turbine driven by combustion gas of the combustor, wherein the gas turbine is installed in an intake chamber on an upstream side of the compressor.
  • the water supplied to the compressor is sprayed with water to vaporize a part of the liquid droplets sprayed before being introduced into the compressor, and the air introduced into the compressor together with the air is sprayed.
  • a spray device configured to vaporize the droplets of the vaporized gas while flowing down in the compressor; a water adding device configured to add water to compressed air discharged from the compressor including moisture sprayed by the spray device;
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • the control device can use, for example, a makeup water supply device capable of supplying water at a plurality of temperature levels or a water recovery device from exhaust gas.
  • a compressor that compresses and discharges supplied air, a combustor that burns air and fuel discharged from the compressor, and a turbine that is driven by combustion gas of the combustor.
  • a gas turbine facility comprising: a gas turbine installed in an intake chamber on an upstream side of the compressor, wherein water supplied to the air supplied to the compressor is sprayed before being introduced into the compressor.
  • a spraying device configured to vaporize a part of the liquid droplets, and vaporize the unvaporized liquid droplets introduced into the compressor together with the air while flowing down the compressor; and
  • a water adding device for adding water to compressed air discharged from the compressor containing water
  • the compressed air containing the water added by the water adding device is supplied to A regenerator that is heated using the bottle exhaust gas as a heat source,
  • a cooling device for cooling the compressed air flowing upstream of the water injection device by exchanging heat with water supplied to the water adding device.
  • the gas turbine equipment
  • a spray water supply path for guiding the spray water supplied from outside the system to the spray device.
  • a compressor that compresses and discharges supplied air, a combustor that burns air and fuel discharged from the compressor, and a turbine that is driven by combustion gas from the combustor.
  • a gas turbine facility provided in an intake chamber on the upstream side of the compressor, wherein water is sprayed to air supplied to the compressor, and the air is sprayed before being introduced into the compressor.
  • a spray device configured to vaporize a part of the liquid droplets and vaporize the unvaporized liquid droplets introduced into the compressor together with the air while flowing down the compressor; and
  • a water adding device for adding water to the compressed air discharged from the compressor containing the extracted water
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • the gas turbine equipment may further include: a control device configured to reduce the amount of water added to the compressed air by the water adding device when the load drops, and then control the amount of water sprayed by the spraying device to be reduced. I like it.
  • a control device for increasing the amount of water sprayed by the spraying device when the load increases, and then controlling the amount of water added to the compressed air by the watering device.
  • a compressor that compresses and discharges the supplied air, a combustor that burns air and fuel discharged from the compressor, and a turbine that is driven by combustion gas of the combustor.
  • An efficiency-enhancing device that recovers the thermal energy of the exhaust gas from a gas turbine installed in a gas turbine facility equipped with
  • a spraying device configured to vaporize the unvaporized droplets introduced into the compressor together with the air while flowing down the compressor; and discharging from the compressor containing moisture sprayed by the spraying device.
  • a water adding device for adding water to the compressed air thus obtained,
  • regenerator that is supplied with compressed air containing the water added by the water addition device and is heated by using gas turbine exhaust gas as a heat source.
  • a compressor that compresses and discharges supplied air, a combustor that burns air and fuel discharged from the compressor, and a combustion gas of the combustor.
  • a turbine that is re-driven, and an efficiency-enhancing device that improves thermal power generation efficiency by recovering thermal energy of gas turbine exhaust gas installed in gas turbine equipment equipped with:
  • a spraying device configured to vaporize the unvaporized droplets introduced into the compressor together with the air while flowing down the compressor; and discharging from the compressor containing moisture sprayed by the spraying device.
  • a water addition device for adding water to the compressed air
  • a regenerator that is supplied with compressed air containing the water added by the water addition device and is heated using gas turbine exhaust gas as a heat source;
  • the apparatus may further include a control device that controls the amount of water sprayed from the spraying device with respect to the amount of water added from the water adding device to be in a range of 150 to 15 with respect to the amount of water added from the water adding device. I like it. Also, more preferably, it should be in the range of 1 25 to 1 Z 10.
  • FIG. 1 is a schematic diagram showing one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the effects of the intake spray device 11 and the humidifier 7.
  • FIG. 3 is a schematic diagram showing an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing one embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing one embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing one embodiment of the eight parts of the water recovery unit. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a system diagram of a gas turbine cycle showing the first embodiment.
  • the gas turbine power generation equipment is equipped with a compressor 2 that compresses and discharges air, a combustor 4 to which the air compressed by the compressor is supplied, and a combustion exhaust gas from the combustor. It is equipped with a gas turbine 1 that is re-driven and a generator 3 that is connected to the gas turbine 1 via a shaft. Generator 3 is connected to a transmission system (not shown). In addition, illustration of pumps and the like is omitted.
  • the compressor 2 is connected to an intake chamber 22 that takes in intake air supplied to the compressor 2.
  • an intake filter chamber 21 in which a filter 23 is installed is arranged at the tip of the intake chamber.
  • a louver 24 is arranged on the upstream side of the intake filter chamber 21.
  • the intake spray device 11 installed in the intake chamber includes a spray device that sprays fine droplets.
  • a spray nozzle described in JP-A-9-1236024 can be used.
  • the average particle size (S.M.D) of the ejected water droplets is about 10 ⁇ m.
  • the intake spray device 11 is installed in an intake chamber 22 spaced from the inlet of the compressor, for example, the first stage stationary blade.
  • the filter is installed downstream of the intake filter 23 in the filter chamber 21.
  • a path for supplying the water to be sprayed is connected to the intake spray device 11. Water to be sprayed from the makeup water supply device 15 is supplied to the path.
  • the compressed air discharged from the compressor 2 reaches the combustor 4 with water droplets.
  • a water addition device is provided for ejecting water to the compressed air.
  • humidifier for example, humidifier
  • the compressed air that has passed through the humidifier 7 is introduced, and a regenerator 5 that heats the compressed air using the gas turbine exhaust gas as a heat source is installed.
  • the compressed air heated by the regenerator 5 is supplied to the combustor 4.
  • the humidifier 7 has a path for supplying water to be supplied to the compressed air to be guided. Water to be injected from the makeup water supply device 15 is supplied to the path. Further, it is preferable to provide a circulation path for supplying recovered water from the injected water to the humidifier 7 again as injection water.
  • the make-up water supply device 15 may be configured, for example, to guide water from outside the gas turbine equipment and related equipment. Alternatively, water may be recovered from the system of the gas turbine equipment and related equipment. Alternatively, one of the water supply spray device 11 and the humidifier 7 may be configured to use makeup water from outside the system, and the other may be configured to mainly use recovered water.
  • the humidifier 7 may be used in a method in which water droplets are sprayed on the compressed air flow, or a method in which water is supplied to a structure facing the flow path through which the compressed air flows to contact the compressed air flow. Good.
  • a device similar to the water supply spray device 11 if a device similar to the water supply spray device 11 is used, most of the water supplied to and injected into the compressed air can be added to the compressed air.
  • the amount of water supplied to the compressed air should be recovered as recovered water, and part of the water should be added to the compressed air. It can be.
  • the temperature of the water injected into the compressed air be high so that the water is easily evaporated.
  • Water supplied from the makeup water supply device 15 or recovered water after being injected into the compressed air by the humidifier 7 is supplied, and the exhaust gas of the gas turbine 1 is used as a heat source. It is preferable to install a feed water heater 6 that exchanges heat. The water supplied to the feed water heater 6 is once heated here, and then supplied to the humidifier 7 as water.
  • the water supplied to the feed water heater 6 is once heated here, and then supplied to the humidifier 7 as water. This is preferable by installing the feed water heater 6, since it is possible to recover the heat energy that was conventionally released into the atmosphere as exhaust gas, thereby improving the output and efficiency of the gas turbine power generation system.
  • water supplied from the makeup water supply device 15 or recovered water after being injected into the compressed air by the humidifier 7 is supplied, and heat exchange is performed using the compressed air guided to the humidifier 7 as a heat source. It is preferable to install a post-cooler 13. The water supplied to the post-cooler 13 is once heated here, and then supplied to the humidifier 7 as water.
  • the temperature of the humidified air at the outlet of the humidifier can also be reduced because the temperature of the air guided to the humidifier is reduced, and the temperature range that can be recovered by the regenerator 5 that recovers heat from the gas turpentine exhaust gas Because it becomes wider, it becomes possible to recover the heat energy that had previously been released into the atmosphere as exhaust gas, which is preferable for improving the output and efficiency of the gas turbine power generation system.
  • both the feed water heater 6 and the post-cooler 13 are provided as in the embodiment of FIG.
  • the spraying device 11, the humidifier 7, the post-cooler 13, and the recovered water after supplying water to the compressed air with the humidifier are used as the post-cooler 13 or the feedwater heating.
  • the operation method of this system is provided with a control device 18 that performs control including each amount of water such as the amount of water circulating in the vessel 6, as follows.
  • the air 20 that has entered the intake filter chamber 21 from outside air is sprayed with the water droplets by the intake spray device 11, and then guided to the compressor 2 inlet through the intake chamber 22.
  • the compressed air is compressed to, for example, about 15 atm by the compressor 2 and discharged (for example, about 360 ° C).
  • the discharge pressure may be 20 atm or more depending on the gas turbine.
  • the temperature of the compressed air discharged from the compressor 2 is reduced via the post-cooler 13 and guided to the humidifier 7. In the humidifier 7, the high-temperature water that has recovered heat in the post-cooler 13 and the feedwater heater 6 flows downward from above, and passes through the post-cooler 13 to about 100 ° C.
  • the cooled air flows in from below and flows upward, and the air and hot water come into direct contact with each other in countercurrent, increasing the moisture in the air.
  • the air leaving the humidifier 7 is saturated air (high humidity air) having a temperature of about 140 ° C. and a relative humidity of about 100%, and flows into the regenerator 5.
  • the high-humidity air that has flowed into the regenerator recovers heat energy from the gas turbine exhaust gas, raises the temperature, and is sent to the combustor 4.
  • the fuel 50 is burned in the combustor 4, and the high-temperature combustion gas is sent to the gas turbine 1.
  • Gas turbine 1 drives generator 3.
  • the combustion gas flowing through the gas turbine 1 becomes high-temperature exhaust gas, and is discharged into the atmosphere via the regenerator 5 and the feedwater heater 6.
  • the water supplied to the intake spray device 11 and the humidifier 7 is supplied from the makeup water supply device 15.
  • the air into which the liquid droplets are sprayed from the suction spray device 11 enters the suction chamber 22 and partially enters the compressor 2 after evaporating and cooling the air. Air cooling As the density increases, the weight flow rate of the air flowing into the compressor increases, which has the effect of increasing the turbine output.
  • the air In the compressor, the air is compressed and the temperature rises, so that the unvaporized droplets in the air guided to the compressor 2 take off latent heat of evaporation from the surrounding gas and evaporate. Therefore, when there is a droplet, the air temperature at the compressor outlet can be kept lower than when there is no droplet.
  • the compression work of the air compressor is related to the inlet and outlet temperatures. Suppressing the rise in air temperature is equivalent to reducing the compression work of the compressor. In a gas turbine, for example, 50% or more of the output generated by the turbine is consumed as compressor power, and this ratio is further increased in a gas turbine having a high compression ratio. Therefore, reducing compressor work leads to an increase in the net output of the gas turbine.
  • the droplets sprayed by the suction spray device 11 are vaporized while flowing down in the suction chamber up to the compressor inlet and in the compressor, and become high-temperature (eg, about 360 ° C) compressed air containing moisture.
  • This air is once cooled by the post-cooler 13 to become compressed air containing moisture at about 100 ° C., and is guided to the humidifier 7.
  • the humidifier is installed to increase the moisture in the air, but the heat energy required to evaporate water in the humidifier is the heat recovered from the gas turbine exhaust gas through the feedwater heater 6. Alternatively, the heat held by the compressed air itself is used. In order to improve the efficiency of the power generation system, it is desirable to effectively recover heat to as low a temperature range as possible and reduce the amount of heat discharged to the outside.
  • the high-humidity air flowing out of the humidifier 7 is, for example, a phase with a temperature of about 140 ° C.
  • the air is saturated air with a relative humidity of 100%, and the air is supplied to the regenerator 5 to recover the heat of the exhaust gas from the gas turbine.
  • the combustor 4 burns fuel to obtain combustion gas at a predetermined temperature.However, since the combustion air is heated to a high temperature, the required fuel consumption is higher than when the regenerator is not used. Less is needed. Therefore, the use of regenerators has a great effect on improving efficiency.
  • the amount of water to be supplied to obtain the same output or efficiency can be reduced as compared with the case where water is added to the pressurized air, and therefore the air supplied to the combustor 4 can be reduced.
  • the oxygen concentration of the gas can be increased, and more stable combustion can be achieved.
  • the amount of fuel input required for obtaining the same output or efficiency can be reduced, and the efficiency can be further improved.
  • stable combustion can be achieved while improving the power generation output and efficiency. Therefore, stable combustion can be achieved with high efficiency even at a partial load.
  • the temperature of the air that is installed in the intake chamber 22 on the upstream side of the compressor 2 and sprays water on the air supplied to the compressor 2 and enters the compressor 2 is determined by the temperature of the outside air. Together with the temperature-reduced air in the compressor 2.
  • a spray device 11 configured to vaporize the sprayed droplets introduced into the compressor 2 while flowing down the compressor 2, and discharge from the compressor 2 including water sprayed by the spray device 11.
  • the humidifier increases the moisture in the combustion air, but the heat energy required to evaporate water in the humidifier
  • the heat used is heat recovered from the exhaust gas from the gas turbine via the feedwater heater, heat recovered by the intermediate cooling of the compressor, and heat held by the compressed air itself.
  • the system of the present invention does not use an intercooler as described above and thus does not have the heat equivalent thereto, but sprays fine droplets on the air supplied to the compressor and flows into the compressor. Before and after the droplets evaporate in the compressor and flow into the humidifier, some humidification of the combustion air takes place.
  • Fig. 2 shows the system of the present invention and the compressor in two stages with a low-pressure compressor and a high-pressure compressor arranged in series, an intercooler, and humidification by adding water to the compressed air discharged from the high-pressure compressor.
  • the figure shows the rate at which the output of the system of the present invention increases with respect to the system of the comparative example under the condition that the amount of water used is made equal.
  • the method of adding moisture is performed before the air flows into the compressor as the intake spray, and the pressure is increased after the air leaves the compressor. Because there are two types of methods (for example, using a humidifier) for the compressed air, the ratio of the amount of water added before flowing into the compressor is plotted on the horizontal axis. The case where the intake spray amount is 0 corresponds to the case where the entire amount is added to the humidifier.
  • the dashed line shows a system in which water is added in the intercooler and water is added to the compressed air discharged from the high-pressure compressor. Therefore, the ratio is equal to the amount of water injected into the intercooler and the total amount of make-up water.
  • the evaluation result shows that the system of the present invention has a larger output increase ratio than the comparative system as the supply ratio from the intake spray device 11 is increased.
  • the water consumption of the present invention can be reduced as the intake spray ratio is increased.
  • the system of the present invention more stable combustion can be obtained while obtaining high output or high efficiency, and the reliability as gas turbine equipment can be improved. The reason can be explained as follows from the mechanism of increasing the output of the intake spray.
  • Fig. 2 also shows the evaluation results showing the ratio of the system of the present invention that improves the efficiency of the comparative system.
  • the evaluation result showed that the system of the present invention had a higher efficiency improvement ratio than the comparative system as the intake spray ratio was increased.
  • the output and efficiency will also be determined to a certain value.
  • the heat recovered in the intercooling is used to increase the humidification of the humidifier. That is, to improve the output and efficiency, the amount of water must be increased.
  • the present embodiment has a Compression work can be reduced.
  • the regenerator heats the combustion air, and even when moisture is added to the air, the output can be increased with little increase in fuel consumption in the combustor. Has a remarkable effect.
  • the amount of water sprayed to the air by the intake spray device 11 with respect to the amount added to the air by the humidifier 7 is increased.
  • Output and efficiency can be improved without increasing the amount of water compared to the system.
  • the embodiment of the present embodiment has a unique effect that the amount of water contained in the compressed air supplied to the combustor 4 can be reduced and the combustion stability can be improved. Have.
  • the water droplets sprayed from the suction spray device 11 have a particle size of 30 ttn or less from the viewpoint of suppressing erosion of the blade. Preferably it is less than 10 m. The lower limit is considered to be about 1 im in consideration of the technical point of view and the energy required for producing the fine particle size, and the above-mentioned intake spray device 11 is provided in the intake chamber 22. If you have a silencer, it is preferred that it be located downstream of the silencer. No. For example, it can be located close to the downstream end of the silencer. Further, when a screen or the like is arranged, it is preferable to install the screen, for example, on the downstream side of the screen from the viewpoint of spray water droplets adhering to the screen.
  • Ratio of the amount of water sprayed from the intake spray device 11 to the amount of water added to the compressed air from the humidifier 7 in the range from 150 to 1 to 5, preferably from 1/25 to 1Z10 It is preferable that the temperature is controlled to fall within the range. By setting the temperature in the range, a more substantial effect can be obtained, and stable combustion can be achieved. It is also good from the viewpoint of equipment stability. However, it is preferable to adjust the limit appropriately according to the device.
  • a spraying device 11 configured to vaporize the sprayed droplets introduced into the compressor 2 together with the air having the lowered temperature while flowing down the compressor 2 (most of the amount of sprayed water) Takes in the intake air, and there is practically no recovered water. Even if the amount is very small), the structure is arranged facing the flow path of the compressed air, and water is flowed through the structure.
  • the amount of water sprayed from the suction spray device 11 with respect to the amount of water added to the compressed air from the humidifier 7 is in the range of 150 to 1 Z5, preferably 125 to 1/10.
  • a control device that is controlled so as to be within the range of water, wherein water is supplied from the water supply device to the compressed air flow. It is preferable that the proportion of water recovered in the storage is controlled to be 70% or more and 95% or less.
  • the amount of water sprayed from the spraying device 11 is in the range of 0.2% or more and 5.0% or less, preferably in the range of 0.4% or more and 2.5% or less with respect to the air weight flow rate.
  • the amount of water sprayed from the water injection device 7 is controlled to be 1.0% or more and 30% or less with respect to the compressor discharge weight flow rate.
  • a bypass system (not shown) is installed to guide the compressed air discharged from the compressor 2 to the regenerator 5 by bypassing the humidifier 7 or the post-cooler 13, and the compressed air is supplied to the bypass system. Shed.
  • control can be performed as follows.
  • the input fuel 50 may be reduced at the same time.
  • FIG. 3 is a schematic diagram showing another embodiment of the present invention.
  • a water recovery device 8 for recovering moisture contained in exhaust gas is provided instead of the makeup water supply device 15.
  • the combustion exhaust gas that has passed through the regenerator 5 (if there is a feed water heater 6, the flue gas that has passed through the feed water heater 6) is supplied to recover the moisture in the exhaust gas.
  • a water recovery unit 8 for collecting for collecting.
  • a water treatment device 10 for purifying water collected by the water collector 8 is provided. The water purified by the water treatment device 10 is guided to the intake spray device 11 or the humidifier 7.
  • the exhaust gas passing through the feed water heater 6 and the exhaust gas passing through the water recovery unit 8 are supplied and heat-exchanged.
  • Container 9 is installed.
  • the collected water is guided to the humidifier 7 and the collected water is given priority to the humidifier 7 so that the collected water is supplied to the humidifier 7 so that the collected water is supplied to the intake spray device 11. Make sure that it flows. Supply water to the intake spray device from outside the system as necessary.
  • the exhaust gas passing through the reheater 5 (feed water heater 6) is supplied to the exhaust gas reheater 9, and the moisture content is reduced through the water recovery device 8. It exchanges heat with low-temperature exhaust gas, the temperature drops, and the water is supplied to the water collector 8 to collect water.
  • a method for recovering moisture contained in exhaust gas there is a method of cooling the gas below the saturation temperature (dew point) of the water vapor contained in the gas. For example, cooling water is supplied from outside the system to lower the temperature.
  • the exhaust gas that has exited the water recovery unit 8 is heated via an exhaust gas reheater 9 and then released into the atmosphere from an exhaust tower (not shown).
  • the present embodiment is characterized in that moisture is recovered from exhaust gas and reused.
  • the percentage of the moisture contained in the exhaust gas to be recovered depends on how much the exhaust gas is cooled by the water recovery unit.If the entire exhaust gas can be cooled to about 38 ° C, it will be used as makeup water. Thus, recovered water equivalent to the amount used can be obtained. In this case, it is possible to construct a system that does not need make-up water by reusing recovered water. As make-up water, for example, treated industrial water is usually used, but from the viewpoint of thermal energy, the temperature of industrial water is often equal to or slightly lower than the atmospheric temperature.
  • the water recovered from the exhaust gas is at a temperature level of around 38 ° C, which is higher than the normal atmospheric temperature, and if the recovery method is devised, water with a higher temperature level of around 60 ° C can be obtained. It is also possible.
  • the water supplied to the humidifier 7 is, for example, high-temperature water of about 180 ° C., and heat is recovered by various heat exchangers to obtain the high-temperature water. Therefore, supply to this humidifier The higher the temperature of the water, the better.
  • the moisture is recovered from the exhaust gas and reused, water having a higher temperature than ordinary industrial water can be used.
  • the heat recovery of various heat exchangers can be reduced, and the heat exchanger can be reduced in size or heat can be reduced.
  • the circulation flow rate of the exchange medium can be reduced.
  • the pressure loss of the equipment connected to the gas turbine can be reduced, so that the power generation efficiency is improved.
  • the recovered water containing heat from the flue gas can be used, and the heat generated by the gas turbine can be returned to the upstream side of the combustor and reused. Can be achieved. Also, it can contribute to highly efficient operation even under partial load.
  • the fuel supply path may be provided with a fuel heater that exchanges heat with water supplied through a water supply path to the intake spray device 11. it can. Fuel guided to the combustor 4 is heated by supplying water to the intake spray device 11. The water supplied to the intake spray device 11 is supplied to the intake spray device 11 in a state where the heat is deprived when passing through the fuel heater and the temperature is further reduced.
  • FIG. 4 is a schematic diagram showing still another embodiment of the present invention.
  • the water recovery unit 8 is assumed to be a direct contact type water recovery unit that sprays cold water, and the water and humidifier 7 that are supplied to the intake spray unit 11
  • the water to be supplied to the water is collected from different positions.
  • the flue gas that has passed through the regenerator 5 if there is a feed water heater 6, the flue gas that has passed through the feed water heater 6) is supplied, and the water in the exhaust gas is recovered.
  • a water recovery device 8 is provided.
  • the water recovery unit 8 A water treatment apparatus 10 for purifying collected water is provided.
  • a circulating water cooler 14 for cooling the water collected by the water collector 8 is provided.
  • the water recovered by the water recovery unit 8 is supplied to the water supply path leading to the humidifier 7, and the water recovered by the water recovery unit 8 and further cooled is supplied to the water supply path to the intake spray device 11. You.
  • the exhaust gas passing through the feed water heater 6 and the exhaust gas passing through the water recovery unit 8 are supplied to exchange heat.
  • An exhaust gas reheater 9 will be installed.
  • the exhaust gas that has passed through the regenerator 5 (feed water heater 6) is supplied to the exhaust gas reheater 9, and the temperature is reduced by the exhaust gas that has passed through the water recovery device 8. Then, the water is supplied to the water recovery unit 8 to recover the water.
  • the exhaust gas that has exited the water recovery unit 8 is heated via an exhaust gas reheater 9 and then released into the atmosphere from an exhaust tower (not shown).
  • Part of the water recovered by the water recovery device 8 is guided to the humidifier 7 through the water treatment device 10. Another part is cooled through the circulating water cooler 14 and then guided again to the water collector 8 to contribute to water recovery. Part of the water cooled by the circulating water cooler 14 is supplied to the intake spray device 11. All water is purified and supplied as needed.
  • the intake spray device 1 1 is expected to cool the gas turpentine intake. For this purpose, lower water temperature is preferred. On the other hand, since the make-up water of the humidifier 7 recovers heat and raises the temperature to a high temperature, it is preferable that the temperature of the make-up water is high.
  • the system is configured so that a part of the water is branched and supplied to the humidifier 7 from the hottest recovered water in the water recovery loop. The output can be expected to increase because the recovery effect is enhanced and the intake air cooling effect is increased. In addition, the amount of recovered water is large, and the amount of water to be replenished can be reduced. In addition, since the supply temperature of makeup water to the humidifier rises, the humidifier and the waste heat recovery heat exchanger can be miniaturized and the pressure loss is reduced, resulting in an improvement in efficiency.
  • the latent heat of condensation of water vapor at 40 ° C at atmospheric pressure is about 570 kcal / kg. If 1 kg of this water vapor is condensed by spraying cold water, the temperature rise of the cold water will be 10 ° C. If so, the specific heat of water is about 1 kcal / kg K, so the required spray flow is about 57 kg.
  • the spray flow required for water recovery from the exhaust gas in other words, for the condensation of water vapor, depends on the design conditions of the water recovery unit, but usually requires several times the steam flow. Therefore, if the water recovery method is devised, it is possible to obtain high-temperature recovered water and low-temperature spray water separately.
  • FIG. 6 shows a configuration example for obtaining high-temperature recovered water.
  • the flue gas containing a large amount of steam that has passed through the feedwater heater 6 is cooled by a heat exchanger (for example, an exhaust gas reheater 9), flows into the water recovery device 8, where it comes into direct contact with the cooling water and is cooled. It becomes wet steam and partly condensed and collected. The remaining exhaust gas is heated by a heat exchanger and then released to the atmosphere via a chimney.
  • a plurality of water recovery means are arranged in series with respect to the gas flow, and each water recovery means includes a cooling water spraying unit for spraying the exhaust gas flowing through the cooling water, and spray water and condensed water. Equipped with a collection unit for collection.
  • the exhaust gas flows between the cooling water spraying section and the recovery section. Ma At least a part of the recovered water is used as cooling water for the cooling water spraying part of the water recovery means located on the upstream side of the gas flow. The details are shown below.
  • the cooling water passes through the pipe 41 and is sprayed into the exhaust gas at the cooling water spraying section 51a, and the spray water and the condensed water are collected in the water collecting section 51b.
  • the collected water is cooled by the circulating water cooler 14 through the pipe 43, and then circulated as cooling water through the pipe 41.
  • part of the recovered water collected in 5 lb is sent to the cooling water spraying section 52 a via the pipes 44 and 45. Since the spray water sent to 52 a absorbs latent heat of condensation, the temperature is higher than that of 5 l spray water.
  • the spray water of 52 a is collected in 52 b and sent to the cooling water spray section 53 a through pipes 46 and 47.
  • the recovered water in the pipe 60 at the outlet of the water recovery device is higher in temperature than the recovered water in the pipe 42.
  • the recovered water in the pipe 60 exiting from the water recovery section 59 b of the most upstream water recovery means is reused via the water treatment device 10.
  • the exhaust gas reheater 9 is for heating the exhaust gas after water recovery.
  • the exhaust gas reheater 9 is a gas-gas heat exchanger using the exhaust gas before water recovery as a heat source. If a separate heat source is available, it may be used.
  • high-temperature recovered water and low-temperature spray circulating water can be obtained in spray cooling in direct contact.
  • the dew point of the flue gas is close to 70 ° C.
  • Water can be recovered by cooling the exhaust gas to a temperature lower than the dew point.
  • direct contact spray cooling employs a structure like that of this embodiment, for example, 60 ° C. Recovered water with a high temperature of about C and circulating water with a low temperature of about 30 ° C can be obtained. If this high-temperature water is used as make-up water for the humidifier, the same effect as that of the third embodiment shown in FIG. 4 can be obtained.
  • high-temperature recovered water from the recovered water in the water recovery unit 8 can be further improved in plant thermal efficiency by supplying light oil to the water treatment unit 10 and feed water heater 6 to the humidifier 7, and then to the humidifier 7. Can be enhanced.
  • the low-temperature recovered water passes through the water treatment device 10 and then becomes spray water in the suction spray device 11, which is effective for further lowering the temperature of the suction air flowing through the suction chamber 22.
  • FIG. 5 is a schematic diagram showing still another embodiment of the present invention.
  • the water recovery unit 8 is assumed to be a direct contact type water recovery unit that sprays cold water, and the water and humidifier 7 that are supplied to the intake spray unit 11
  • sprayers are installed in multiple stages along the flow of air in the intake chamber 22 and the water discharged from the sprayer located upstream is The point is that the temperature of the water jetted from the spray device located downstream becomes higher.
  • the flue gas that has passed through the regenerator 5 (if there is a feed water heater 6, the flue gas that has passed through the feed water heater 6) is supplied, and the water in the exhaust gas is recovered.
  • a water recovery device 8 is provided.
  • a water treatment device 10 for purifying water collected by the water recovery device 8 is provided.
  • a circulating water cooler 14 for cooling the water collected by the water collector 8 is provided.
  • the water recovered by the water collector 8 is supplied to the water supply path leading to the humidifier 7. Minutes from the middle Part of the divergence is supplied as spray water to the suction spray device 16 installed on the compressor inlet side from the suction spray device 11 in the suction chamber 22.
  • the water supply path leading to the intake spray device 11 is supplied with water which has been recovered by the water recovery device 8 and has been further reduced in temperature, or preferably, as shown in FIG.
  • an exhaust gas reheater 9 that exchanges heat with the exhaust gas that has passed through the feedwater heater 6 and the exhaust gas that has passed through the water recovery unit 8 will be installed.
  • the suction spray device 16 can use the same effect as the suction spray device 11.
  • low-temperature water is supplied to the intake spray device 11
  • high-temperature water is supplied to the intake spray device 16 as well as make-up water to the humidifier 7.
  • the spray water can be expected to have a large effect of cooling the spray from the spray device 11 (corresponding to the output increase mechanism 1) described in the embodiment of FIG. 1).
  • Spray water from the compressor is more likely to evaporate in the compressor, and the effects of the above-mentioned output increase mechanism 2) to 4) are enhanced.
  • the reason why the spray water from the intake spray device 16 is more likely to evaporate in the compressor is that the higher temperature means that less heat energy is required for evaporation, and that the temperature rises. As the surface tension of water decreases as the pressure increases, the spray water is finer and finer, and fine droplets have a larger surface area per unit weight, which may promote evaporation. Can be
  • the amount of water that evaporates to the compressor outlet out of the droplets sprayed from the intake spray device 11 and the intake spray device 16 is considered to be greater than in the example of Fig. 4, and the output And efficiency is further improved.
  • the spray device 11 is provided in the intake chamber 22.
  • the temperature of the water ejected from the spray device 16 located downstream is higher than the water ejected from the spray device 11 located upstream, which is installed in multiple stages along the flow of the air.
  • the intake air is cooled by the water spray device 11 in the preceding stage, and the air mass flow rate is increased.
  • water that easily evaporates in the compressor 22 contains a large amount of air entering the compressor 22. It can be done.
  • the output can be further improved and the efficiency can be improved while maintaining the stability. It can contribute to combustion.
  • the intake spray device 11 is disposed in the intake chamber 22 near one intake filter.
  • the silencer is installed immediately adjacent to the silencer.
  • it may be installed immediately after the filter in the intake filter chamber 21.
  • the intake spray device 16 is disposed near the compressor inlet in the intake chamber 22. For example, near the boundary between the suction chamber 22 and the inlet of the compressor 2 in the suction chamber 22, the distance until the droplet sprayed from the spray device 11 flows into the compressor is reduced. As the size increases, the effect of increasing the re-output, which increases the intake air cooling effect, is obtained.
  • the embodiments of the above embodiments can achieve high output and high efficiency while obtaining the stability of the combustor, even when viewed as an efficiency-enhancing device installed to improve efficiency in existing gas turbine equipment. .
  • the intake chamber 22 that normally takes in air 20 and the compressed air that is supplied are discharged.
  • a compressor 2 a combustor 4 in which air and fuel discharged from the compressor 2 are burned, a gas turbine 1 driven by combustion gas from the combustor 4, and power generation driven by the gas turbine Machine 3.
  • An intake spray device 11 configured to vaporize a part of the droplet and vaporize the unvaporized droplet introduced into the compressor 2 together with the air while flowing down the compressor 2.
  • a humidifying device (water adding device) 7 for adding water to the compressed air discharged from the compressor 2 containing the water sprayed by the spraying device 11, and a compressed air containing the water added by the humidifying device 7.
  • An efficiency enhancement device equipped with a regenerator 5 that is supplied and heated using gas turbine exhaust gas as a heat source will be installed.
  • a make-up water supply device 15 that supplies water to the intake spray device 11 and the humidifier 7 will be installed.
  • a post-cooler 13 for cooling the compressed air supplied to the humidifier 7 with the water supplied to the humidifier 7 as a cooling source is provided as needed.
  • a feed water heater 6 for heating water supplied to the humidifier 7 using the exhaust gas passing through the regenerator 5 as a heat source is provided.
  • a high-humidity gas turbine facility with high combustion stability can be configured while obtaining desired output and efficiency, and the same effects as in FIG. 1 can be obtained.
  • water in the flue gas is recovered from the flue gas that has passed through the regenerator, and the recovered water is reduced by the spray device and the water adding device.
  • a path for supplying both to the water adding device and a path for supplying water may be provided. Thereby, the same effect as in FIG. 3 can be obtained.

Description

明 細 書
ガスタービン設備 技術分野
本発明は、 ガスターピン、 特に、 高湿分空気を燃焼用空気と して利用 する高湿分ガスタービンサイ クルに係る。 背景技術
ガスタービン燃焼排ガス等の熱エネルギを回収して蒸気を発生させ、 その蒸気をガスタービンの燃焼用空気に混入し燃焼器で得られた高湿分 の燃焼排ガスでタービンを駆動し、 出力および発電効率の向上を図る高 湿分ガスタービンサイ クルに関して特開昭 57— 79224 号公報, 特開昭 57 一 79225号公報, 特開昭 58— 1 0 1 228号公報, U SP 4 , 448 , 0 1 8 等に開示され ている。
これらには、 圧縮機と して低圧圧縮機と高圧圧縮機と を直列に設置し . 両圧縮機の間に直接或いは間接の熱交換器を設置すると共に、 高圧圧縮 機を経た圧縮空気に水を注入して熱回収する構成が開示されている。 発明の開示
しかし、 いずれの公知例においても、 所望の出力或いは効率を得るに は、 燃焼器に入る圧縮空気に大量の水を注入する必要がある。
多量の水を含む空気を燃焼器に供給すると燃焼器の燃焼安定性が低く なる。 特に発電用のガスタービンにおいては、 排ガスの低 No x化を図る ベ く 、 安定燃焼範囲の狭い空気と燃料との予混合燃焼を行う場合影響が 大きい。 そこで、 本発明は、 所望の出力及び効率を得つつ、 燃焼安定性の高い 高湿分のガスタービン設備を提供する ことにある。
本発明は、 所望の出力及び効率を得るために必要な水注入量を減ら し て所望の出力及び効率を得つつ、 燃焼安定性の高い高湿分のガスタービ ン設備を提供する。
ま た、 水注入量を減ら して、 加湿器やガスタービン排ガスからの水回 収装置等を小型化して、 圧縮空気及び排ガスの損失を少な く して、 更に 高効率 · 高出力の高湿分ガスタービンを提供する。
高湿分ガスタービンサイ クルでは燃焼用空気に多量の湿分を加えるが 昇圧した空気に湿分を加える方法等よ リ も、 同 じ湿分を加える場合には 加湿器を小型化でき、 加湿器に温水を供給する熱交換器も小型にできる その結果、 加湿器および熱交換器といった空気圧縮機からガスタービ ンの間に接続される機器の圧力損失が減少するので、 ガスタービンの発 電効率を向上させる ことができる。 ま た、 空気圧縮機を分割する或いは 直列に複数段備えなく とも圧縮機動力を低減でき、 ガスタービンの出力 および効率の向上が図れる。
具体的には本発明は、 供給される空気を圧縮して吐出する圧縮機、 前 記圧縮機から吐出した空気と燃料とが燃焼される燃焼器、 前記燃焼器の 燃焼ガスによ り駆動されるタービンと、 を備えたガスタービン設備であ つて、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に入る空気の温度を外気温度よ り低下さ せ、 この温度を低下させた空気と共に前記圧縮機内に導入される噴霧さ れた前記液滴を前記圧縮機内を流下中に気化するよ う に した噴霧装置と 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 を備える こと を特徴とする。
これによ り 、 燃焼器に供給する注入水量を少な く 抑えつつ高出力 · 高 効率の運転ができる。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動されるタ一ビンと、 を備えたガスタービン設備であって、 前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に嘖霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器へ供給される経路と、 を備える こと を特徴とする。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動されるタ一ビンと、 を備えたガスタービン設備であって、 前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記噴霧装置と前記加水装置の少な く とも一方に供給する経路と を有する こと を特徴とする。
これによ り 、 補給水の量を少な く することができる。 ま た、 排ガスの 熱を含む回収水を再び利用でき、 自身によ り生じた熱を再び燃焼器上流 側に戻すこ とができるので、 よ リ ガスタービンの効率向上を図る こ とが できる。 ま た、 回収水を圧縮空気或いはガスタービン排ガスを熱源と し て昇温して、 圧縮空気に注水する場合昇温設備を小型化でき、 圧力損失 をよ リ低減する ことができるので、 更に高効率化を図る こ とができる。 ま たは、 前記ガスターピン設備であって、
前記噴霧装置は、 前記吸気室内に前記空気の流れに沿って複数段に噴 霧装置が設置され、 上流に位置する噴霧装置から噴出される水よ り下流 に位置する噴霧装置から噴出される水の温度が高く なるよ う にする こ と が好ま しい。
これによ り 、 圧縮機入口の重量流量を増加して、 圧縮機内で蒸発させ やすい液滴を圧縮機入口から供給できるので、 安定して圧縮機内での蒸 発量を増加させる ことができる。
具体的には、 前段の水噴霧装置で吸気を冷却 して、 空気重量流量を増 98
加させる。 加えて、 圧縮機の入口近傍に設置した後段の水噴霧装置から 高温水を噴霧する ことによ り圧縮機内で蒸発し易い水を圧縮機に入る空 気に多く 含ませる ことができる。
このため、 注水装置から供給する水量に対する噴霧装置から空気に供 給する水量の比率をよ り多く する こ とによ り 、 更に出力向上及び高効率 化を図る ことができる。
または、 前記ガスタービン設備であって、
前記加水装置から加えられる水量に対する前記噴霧装置から噴霧され る水量を 1 5 0から 1 5の範囲になるよう制御される制御装置を備 える ことが好ま しい。
ま た、 前記範囲は、 望ま し く は 1 Z 2 5から 1 1 0の範囲にする。 ま たは、 前記ガスタービン設備であって、
前記加水装置から加えられる水量に対する前記噴霧装置から噴霧され る水量を 1 Z 5 0から 1 5の範囲になるよう制御される制御装置と を 備ん、
前記加水装置に加えた水量のう ち加水装置で循環する水の割合を 7 0 % ~ 9 5 %となるよ う制御される こ とが好ま しい。 ま た、 望ま しく は 1 Z 2 5から 1 1 0の範囲にする。
または、 前記ガスタービン設備であって、
前記噴霧装置から噴霧される水量を空気重量流量に対して、 0. 2 % 〜 5. 0 %の範囲と し、 前記加水装置から加え られる水量を圧縮機吐出 重量流量に対して、 3 0 %以下となるよ う制御される ことが好ま しい。
また、 望ま し く は前記噴霧される水量を 0. 4 %~ 2. 5 %の範囲にす る。
または、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動されるタービンと、 を備えたガスタービン設備であって、 前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記噴霧装置に供給される水温よ り前記注水装置に供給される水温のほ う が高く なるよ う制御される制御装置と、 を備える こと を特徴とする。 前記制御装置は、 例えば、 複数の温度レベルの水を供給可能な補給水 供給装置も し く は排ガスからの水回収装置を使用する ことができる。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ リ駆動されるタービンと、 を備えたガスタービン設備であって、 前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入される までの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させる よう に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収した 水を前記噴霧装置と前記注水装置に供給する水供給経路と、
前記注水装置の上流を流れる圧縮空気を前記加水装置に供給される水 と熱交換させて冷却する冷却装置と、 を有する こと を特徴とする。 ま たは、 前記ガスタービン設備であって、
前記水供給経路に代えて、
前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記加水装置に供給する加水供給経路と、
前記噴霧装置に系外から供給される噴霧水を導く 噴霧水供給経路と、 を備える ことが好ま しい。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ リ駆動されるタービンと、 を備えたガスタービン設備であって、 前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入される ま での間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させる よ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気が供給される前記燃焼器と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記噴霧装置と前記加水装置に供給する水供給経路と、 前記加水装置に供給される水を前記再生器を経た燃焼排ガスを熱源と して昇温する給水加熱器と、 を有する こと を特徴とする。
ま たは、 前記ガスタービン設備において、 負荷降下時に前記加水装置 で圧縮空気に加える水量を減少させた後、 前記噴霧装置で噴霧する水量 を減少させるよう制御する制御装置と、 を備える こ とが好ま しい。 或い は、 負荷上昇時に前記噴霧装置で噴霧する水量を増加させた後、 前記加 水装置で圧縮空気に加える水量を増加させたよ う制御する制御装置と、 を備える こ とが好ま しい。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動されるタービンと、 を備えたガスタ一ビン設備に設置されるガス タービン排ガスの熱エネルギを回収し発電効率を向上させる増効率装置 であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入される までの間に噴霧されだ該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、 を備える こと を特徴とす る。
ま たは、 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から 吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ リ駆動されるタービンと、 を備えたガスタービン設備に設置されるガス タービン排ガスの熱エネルギを回収し発電効率を向上させる増効率装置 であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮空 気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記噴霧装置と前記加水装置の少なく とも加水装置に供給する経 路と、 を有する こと を特徴とする。
ま たは、 前記増効率装置であって、 前記加水装置から加え られる水量 に対する前記噴霧装置から噴霧される水量を 1 5 0〜 1 5 の範囲に なるよ う制御される制御装置を備えることが好ま しい。 また、 よ り好ま しく は、 1 ノ 2 5から 1 Z 1 0 の範囲になるよ う にする。 図面の簡単な説明
第 1 図は本発明の一実施例を示す概要図である。
第 2 図は吸気噴霧装置 1 1 および加湿器 7 の効果を示す概要図である 第 3 図は本発明の一実施例を示す概要図である。
第 4図は本発明の一実施例を示す概要図である。 第 5 図は本発明の一実施例を示す概要図である。
第 6 図は水回収器 8部の一実施例を示す概要図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図面を参照して説明する。 第 1 図は、 第 1 実 施例を示すガスタービンサイ クルの系統図である。 ガスタービン発電設 備は、 第 1 図に示すよ う に、 空気を圧縮して吐出する圧縮機 2 , 圧縮機 によ り圧縮された空気が供給される燃焼器 4 , 燃焼器の燃焼排ガスによ リ駆動されるガスタービン 1 , ガスタービン 1 に軸を介して連結されて いる発電機 3 、 を備えている。 発電機 3 は、 図示していない送電系統に 連絡される。 ま た、 ポンプ等は図示を省略した。
圧縮機 2 は、 圧縮機 2 に供給される吸気を取り込む吸気室 2 2 が連結 されている。 例えば、 吸気室には先端には、 フ ィルタ 2 3 が設置される 吸気フ ィルタ室 2 1 が配置されている。 ま た、 吸気フ ィルタ室 2 1 の上 流側部分にはルーバ 2 4が配置されている。
吸気室内に設置される吸気噴霧装置 1 1 は、 微細液滴を噴霧する噴霧 装置を備える。 例えば、 特開平 9一 236024 号公報に記載された噴霧ノ ズ ルを用いる ことができる。 噴出される水滴の Zaut o r平均粒径 (S. M. D ) は、 1 0 μ m程度である。 ま た、 本実施例においては、 吸気噴霧装置 1 1 は圧縮機の入口、 例えば第 1 段静翼、 から間隔を置いた吸気室 2 2 内に設置される。 本図では、 フ ィルタ室 2 1 内の吸気フ ィルタ 2 3 の下 流に設置している。
吸気噴霧装置 1 1 には、 噴霧する水を供給する経路が連絡する。 補給 水供給装置 1 5 から噴霧する水が該経路に供給される。
圧縮機 2から吐出された圧縮空気が燃焼器 4 に至る経路には、 水滴を 噴出して圧縮空気に水分を加える加水装置が設置される。 例えば加湿器
7 が設置される。 加湿器 7 を経た圧縮空気が導かれ、 ガスタービン排ガ スを熱源と して前記圧縮空気を加熱する再生器 5 が設置される。 再生器 5 によ り加熱された圧縮空気は燃焼器 4 に供給される。
加湿器 7 は、 導かれる圧縮空気に供給する水を供給する経路を有する 補給水供給装置 1 5から注入する水が該経路に供給される。 ま た、 注入 した水のう ち回収された水は再び加湿器 7 に注入水と して供給するよ う 循環する経路を備えている ことが好ま しい。 補給水供給装置 1 5 は、 例 えば本ガスタービン設備及び関連機器の系外から水を導く 形態になって いても よい。 或いは、 本ガスタービン設備及び関連機器の系内から水を 回収する形態でもよい。 又或いは、 給水噴霧装置 1 1 或いは、 加湿器 7 の何れか一方を系外からの補給水を利用 し、 他方を回収水を主に利用す るよ う に してもよい。
ま た、 加湿器 7 は、 圧縮空気流に対して水滴を噴霧する方式や、 庄縮 空気の流れる流路に面する構造物に水を供給して圧縮気流と接触させる 方式等使用 してもよい。 前者の場合において、 給水噴霧装置 1 1 と同様 のものを用いると圧縮空気に供給 · 注水された水のほとんどが圧縮空気 に加え られるよ う にする ことができる。 後者の場合、 或いは前者の場合 でも一般の噴霧ノズル等の装置を使用する場合は、 圧縮空気に供給され る水量の多く は回収水と して回収され、 一部が圧縮空気に加えられるよ う にする ことができる。
いずれの方式においても、 圧縮空気に注水される水は蒸発しやすいよ う に、 温度が高い方が好ま しい。
ま た、 補給水供給装置 1 5 から供給される水或いは加湿器 7 で圧縮空 気に注入した後の回収水が供給され、 ガスタービン 1 の排ガスを熱源と して熱交換する給水加熱器 6 を設置するこ とが好ま しい。 該給水加熱器 6 に供給された水はこ こで一旦加熱された後、 加湿器 7 に入水と して供 給する。
これによ り、 加湿器で蒸発しやすく なる。 該給水加熱器 6 に供給され た水はこ こで一旦加熱された後、 加湿器 7 に入水と して供給する。 これは、 給水加熱器 6 を設置する ことによ り 、 従来は排ガスと して大 気中に放出 していた熱エネルギを回収できるので、 ガスタービン発電シ ステムの出力および効率の向上につながり好ま しい。
ま た、 補給水供給装置 1 5 から供給される水或いは加湿器 7 で圧縮空 気に注入した後の回収水が供給され、 加湿器 7 に導かれる圧縮空気を熱 源と して熱交換する後置冷却器 1 3 を設置する こ とが好ま しい。 該後置 冷却器 1 3 に供給された水はこ こで一旦加熱された後、 加湿器 7 に注水 と して供給する。
これは、 後置冷却器 1 3 を設置すること によ り 、 加湿器に供給される 水の温度が上昇し蒸発しやすく なるため、 同 じ加湿量の場合には加湿器 を小型化できるという利点の他に、 加湿器に導く 空気温度が低く なるた め、 加湿器出口の加湿された空気の温度も低く でき、 ガスターピン排ガ スからの熱回収を行う再生機 5で回収できる温度範囲が広く なるため、 従来は排ガスと して大気中に放出 していた熱エネルギを回収できる よ う になるため、 ガスタービン発電システムの出力および効率の向上につな がリ好ま しい。
よ り好ま し く は、 前記第 1 図の形態のよう に給水加熱器 6 と後置冷却 器 1 3 を共に備える。
また、 前記噴霧装置 1 1 や加湿装置 7 、 後置冷却器 1 3 、 加湿器で圧 縮空気に水を供給後回収された回収水を後置冷却器 1 3或いは給水加熱 器 6 に循環する水量等の各水量を含む制御を行う制御装置 1 8 を備える , このシステムの運転方法は以下のよ う になる。
外気から吸気フ ィルタ室 2 1 に入った空気 2 0 は吸気噴霧装置 1 1 で 前記水滴を噴霧された後、 吸気室 2 2 内を圧縮機 2入口に導かれる。 圧 縮機 2で例えば 1 5気圧程度に圧縮されて吐出される (例えば 3 6 0 °C 程度) 。 吐出圧力はガスタービンによっては 2 0気圧或いはそれ以上に なるものを用いても良い。 圧縮機 2 から吐出された圧縮空気は後置冷却 器 1 3 を経由 して減温され、 加湿器 7 に導かれる。 加湿器 7 では後置冷 却器 1 3 および給水加熱器 6 で熱回収し高温となった水が上方から下方 に流下し、 後置冷却器 1 3 を通過して約 1 0 0 °Cに冷却された空気が下 方から流入して上方に流れ、 空気と温水が対向流で直接接触し空気中の 湿分が増加する。 加湿器 7 を出た空気は温度が約 1 4 0 °Cで相対湿度が ほぼ 1 0 0 %の飽和空気 (高湿分空気) になっており 、 再生器 5 に流入 する。 再生器に流入した高湿分空気はガスタービン排ガスから熱ェネル ギーを回収し昇温した後、 燃焼器 4 に送られる。 燃焼器 4で燃料 5 0 を 燃焼させ、 高温の燃焼ガスがガスタービン 1 に送られる。 ガスタービン 1 は発電機 3 を駆動する。 ガスタービン 1 を流れた燃焼ガスは高温の排 気ガスとなって、 前記再生器 5 、 前記給水加熱器 6 を経由 し大気中に放 出される。
例えば、 吸気噴霧装置 1 1 と加湿器 7 に供給する水は補給水供給装置 1 5 から供給される。
次に、 このシステム構成によ リ 出力が増加 し効率が上昇する作用につ いて述べる。
前記吸気室 2 2 に入り 、 吸気噴霧装置 1 1 から液滴が噴霧された空気 は、 一部が蒸発して空気を冷却した後圧縮機 2入口に入る。 空気は冷却 されると密度が大き く な リ 、 圧縮機に流入する空気の重量流量が増える ため、 タービン出力が増加するという効果がある。
圧縮機内では空気が圧縮され温度が高く なるので、 圧縮機 2 に導かれ た空気中の未気化の液滴は、 蒸発潜熱を周囲の気体から奪い蒸発する。 そのため、 液滴が無い場合に比べ、 液滴がある場合は圧縮機出口での空 気温度が低く抑え られる。 空気圧縮機の圧縮仕事は入口と出口の温度に 関係し、 空気の温度上昇が抑え られる ことには圧縮機の圧縮仕事が低減 する こと に相当する。 ガスタービンでは、 例えばタービンで発生した出 力の 5 0 %以上を圧縮機動力と して消費しており 、 圧縮比の高いガスタ —ビンではこの割合は更に大き く なる。 したがって、 圧縮機仕事の低減 はガスタービンの正味出力の増加につながる。
吸気噴霧装置 1 1 で噴霧した液滴は、 圧縮機入口までの吸気室内及び 圧縮機内を流下中に気化し、 湿分を含んだ高温 (例えば 3 6 0 °C程度) の圧縮空気になる。 この空気は、 一旦後置冷却器 1 3 で冷却して約 100 °Cの湿分を含んだ圧縮空気にな り 、 加湿器 7 に導かれる。 加湿器は空気 中の湿分を増加させる目的で設置されているが、 加湿器において水を蒸 発させるために必要な熱エネルギーは、 ガスタービン排ガスから給水加 熱器 6 を介して回収した熱、 あるいは圧縮空気自身が保有している熱が 利用される。 発電システムの効率を向上させるためには、 できるだけ低 温域まで熱を有効に回収し外部に排出する熱を少な く する ことが望ま し い。 後置冷却器と加湿器を組み合わせることによ り 、 水が蒸発する際に 潜熱を失い温度が低下する現象を利用 したいわゆる冷却塔と同様な原理 によ り 、 低温の水を得る こ とができ、 低温域まで熱を回収できるよ う に なる。 その結果、 発電システムの効率向上につながる。
加湿器 7 から流出した高湿分空気は例えば、 温度が 1 4 0 °C程度の相 対湿度 1 0 0 %の飽和空気であ リ 、 その空気は再生器 5 に供給されガス タービン排ガスの熱を回収し、 再生器出口では、 例えば 5 5 0 °C程度の 高温空気となり 、 燃焼器に流入する。 燃焼器 4では燃料を燃焼させ、 所 定の温度の燃焼ガスが得られるが、 燃焼用空気が高温に加熱されている ため、 再生器を使用 しなかつた場合よ リ も必要な燃料使用量が少な く て 済む。 そのため、 再生器の利用は効率向上に大きな効果がある。
ま た、 例えば、 燃焼温度一定制御運転等の場合、 燃焼器 4 に供給され る空気に水分が多いと酸素濃度が小さ く なる。 本実施例によ り 、 昇圧 し た空気に水を加える場合等よ リ 、 同じ出力あるいは効率を出すために供 給すべき水量を少なく する こ とができるため、 燃焼器 4に供給される空 気の酸素濃度を高く でき、 さ らに安定燃焼を図る ことができる。 ま た、 吸気噴霧装置 1 1 を単に使用する場合よ り 、 同 じ出力あるいは効率を出 すために必要な燃料投入量を少なく でき、 さ らに高効率化を図る こ とが できる。
タービン 1 では、 燃焼ガス中に多量の湿分が含まれているため、 湿分 が加え られた分だけ流量が増え、 タービン出力が増加する効果と、 空気 に比べ比熱が大きな水蒸気が混入されたこ と によ り 、 混合気体の比熱が 大き く なり圧縮された混合気体がタービンで膨張する際に取り 出せる仕 事が増大する効果によ り 出力が増加する。
このよ う に、 本実施例では、 発電出力と効率を向上させつつ、 安定燃 焼を図る ことができる。 このため、 部分負荷時においても高効率で安定 燃焼を図る ことができる。
ま た、 前記圧縮機 2 の上流側の吸気室 2 2 内に設置され、 前記圧縮機 2 に供給される空気に水を噴霧して前記圧縮機 2 に入る空気の温度を外 気温度よ り低下させ、 この温度を低下させた空気と共に前記圧縮機 2 内 に導入される噴霧された前記液滴を前記圧縮機 2 内を流下中に気化する よ う に した噴霧装置 1 1 と、 前記噴霧装置 1 1 で噴霧された水分を含む 前記圧縮機 2 から吐出された圧縮空気に水を加えるする注水装置 7 と を 備える ことによ り 、 燃焼器に供給する注入水量を少なく抑えつつ高出力 • 高効率の運転ができる。
圧縮機で昇圧された空気に湿分を加える方法よ り も、 少ない水使用量 で同 じ出力、 効率を達成する ことができるという特徴がある。
この作用について以下に説明する。
次に発明のシステムでは、 従来のよ り も水量を少なく できる点につい て説明する。
圧縮空気に湿分を加える方式 (高湿分ガスターピンシステム (例えば H A Tシステム) ) では加湿器によ り燃焼用空気に湿分を増加させるが 加湿器において水を蒸発させるために必要な熱エネルギーは、 ガスター ビン排ガスから給水加熱器を介して回収した熱、 圧縮機の中間冷却によ リ 回収した熱、 および圧縮空気自身が保有している熱が利用される。 一 方、 本発明のシステムでは、 前述のよ う に中間冷却器を使用 しないため これに相当する熱が無いが、 圧縮機に供給される空気に微細液滴を噴霧 して、 圧縮機に流入する前及び、 圧縮機中で液滴を蒸発させ、 加湿器に 流入する前に幾分か燃焼用空気の加湿を行っている。
第 2 図は本発明のシステムと圧縮機を低圧圧縮機および高圧圧縮機を 直列に配置して 2段と し、 中間冷却器を備え、 高圧圧縮機から吐出 した 圧縮空気に水を加えて加湿するシステムと について、 水の使用量を等し く した条件のもとに、 本発明のシステムが比較例のシステムに対し出力 増加となる割合を示したものである。 本発明では湿分の加え方が、 吸気 噴霧と して圧縮機に流入する前に行う ものと、 圧縮機を出た後の昇圧さ れた空気に行う もの (例えば加湿器で行う ) 方法の 2種類があるため、 圧縮機に流入する前に加えた水量の割合を横軸にとつている。 吸気噴霧 量が 0の場合が全量を加湿器に加えた場合に相当する。
ま た、 破線は、 中間冷却器において水を加え、 さ らに高圧圧縮機から 吐出された圧縮空気に水を加えたシステムの場合を示している。 よ って 比率は中間冷却器での水注入量 Z全補給水量となる。
評価結果は、 吸気噴霧装置 1 1 からの供給割合を増加させるほど、 本 発明のシステムが比較のシステムよ り も出力増加割合が大きいという結 果になった。
したがって、 同 じ出力で比較するならば、 吸気噴霧割合を増加させる ほど本発明の方が水の使用量が少なく できる。 このため、 本発明のシス テムによれば、 高出力あるいは高効率を得つつ、 よ り安定燃焼を得るこ とができ、 ガスタービン設備と しての信頼性を高めるこ とができる。 この理由は吸気噴霧の増出力メカニズムから以下のよ う に説明する こ とができる。
圧縮機に吸気噴霧を した場合、 ガスターピンの出力が増加するが、 そ れは以下の 4種類の効果を含む。
1 ) 吸気が圧縮機に流入するまでの間に冷却されて密度が大き く な リ 圧縮機に流入する空気の重量流量が増え、 タービン出力が増加する効果
2 ) 圧縮機内で液滴が蒸発する際に蒸発潜熱を周囲の気体から奪い、 圧縮され温度が上昇する空気の温度上昇が抑えられること によ り圧縮機 の圧縮仕事が低減する効果。
3 ) 液滴蒸発量相当分だけタービン側で流量が増え、 タ一ビン出力が 増加する効果。
4 ) 空気に比べ比熱が大きな水蒸気が混入されたことによ り混合気体 の比熱が大き く なリ圧縮された混合気体がタービンで膨張する際に取り 出せる仕事が増大する効果。
本発明では、 上記の 1 ) から 4 ) の効果が生ずるのに対し、 比較のプ ラ ン トでは湿分の増加では 3 ) と 4 ) の効果は得られるが、 所望の 1 ) や 2 ) の効果は得られない。
一方、 第 2 図には本発明のシステムが比較システムに対し、 効率向上 となる割合を示した評価結果も併記した。 評価結果は吸気噴霧割合を 増加させるほど、 本発明のシステムが比較のシステムよ り も効率向上割 合が大きいという結果になった。
したがって、 同 じ効率で比較するな らば、 吸気噴霧割合を増加させる ほど本発明の方が水の使用量が少ないという こと を示している。
圧縮機に単純に吸気噴霧装置 1 1 を設置したガスターピンシステムで は、 圧縮仕事の低減によ り 出力が増加する効果は大きいが、 圧縮機出口 の空気温度が下がる、 すなわち燃焼器に流入する空気温度が下がるため 燃焼器での燃料使用量も多く な リ 、 効率の向上は大き く ない。
ま た、 昇圧空気に水を供給する比較のシステムでは、 水の使用量をあ る値に決めると出力および効率もある値に決ま って しまい、 例えば中間 冷却を強化して出力おょぴ効率の向上をはかろう とすれば、 中間冷却で 回収した熱は加湿器の加湿量を増加させる こと に費やされる。 すなわち . 出力および効率を改善するためには、 水分量を增やしていかざるを得な い
一方、 これに対して、 前記圧縮機 2 の上流側の吸気室 2 2 内に設置さ れ、 前記圧縮機 2 に供給される空気に水を嘖霧して前記圧縮機 2 に入る 空気の温度を外気温度よ り低下させ、 この温度を低下させた空気と共に 前記圧縮機 2 内に導入される噴霧された前記液滴を前記庄縮機 2 内を流 下中に気化するよ う に した噴霧装置 1 1 と、 前記噴霧装置 1 1 で噴霧さ れた水分を含む前記圧縮機 2 から吐出された圧縮空気に水を加えする加 湿器 7 と、 前記加湿器 7 で加え られた水分を含む圧縮空気が供給されて ガスタービン排ガスを熱源と して加熱される再生器 5 と、 を有する本実 施例においては燃焼器流入空気温度低下を抑制 しつつ圧縮仕事の低減を 図る ことができる。 特に、 再生器の働きによ り燃焼用空気が加熱され、 空気に湿分を加えた場合でも燃焼器での燃料使用量は殆ど増加せずに出 力を増加する こ とができるという特有の顕著な効果を有する。 それに加 えて、 比較のシステムと同じ水量を供給する場合、 前記本実施例では、 加湿器 7 で空気に加える量に対する吸気噴霧装置 1 1 で空気に噴霧する 量を増やすこと によ リ 、 比較のシステムに比べて水分量を増やさずに出 力および効率を改善できる。 言い換えると同 じ出力あるいは効率の場合 前記本実施例の形態では、 燃焼器 4 に供給される圧縮空気中に含有する 水分量を少なく でき、 燃焼安定性を向上させる ことができるという特有 の効果を有する。
ま た、 圧縮機の動力を低減するために中間冷却器を設置する場合は、 熱交換器に伴う圧力損失や、 放熱損失が発生するが、 吸気噴霧の場合に はこれらの損失が極めて少ないことも、 出力および効率の向上に有効と 考え られる。
ま た、 前記吸気噴霧装置 1 1 から噴霧される水滴は、 翼のエロージョ ンを抑制する観点からは 3 0 t tn以下の粒径にする。 よ リ好ま し く は 1 0 m以下にする。 下限と しては技術的観点及び微細粒径を製造する ために必要なエネルギ等を考慮して 1 i m程度とすることが考え られる ま た、 前記吸気噴霧装置 1 1 は、 吸気室 2 2 にサイ レンサを配置して いる場合は、 サイ レンザの下流側に位置するよ う にすることが、 好ま し い。 例えばサイ レンザの下流端に近接して配置することもできる。 さ ら に、 スク リ ーン等が配置されている場合は、 例えば当該スク リーンの下 流側に設置する ことが噴霧水滴のスク リ 一ン付着の点からは好ま しい。 吸気噴霧装置 1 1 から噴霧される水量の加湿器 7 から圧縮空気に加え られる水量に対する割合 1 5 0以上 1 ノ 5以下の範囲に、 望ま し く は 1 / 2 5以上 1 Z 1 0以下の範囲になるよ う制御される こ とが好ま しい 当該範囲にする ことによ り 、 よ り実質的な効果が得られるとともに、 安定燃焼を図る ことができる。 ま た、 機器の安定性の観点からも良い。 ただし、 機器に応じてその限界を適宜調整する こ とが好ま しい。
また、 圧縮機 2 の上流側の吸気室 2 2 内に設置され、 前記圧縮機 2 に 供給される空気に水を噴霧して前記圧縮機 2 に入る空気の温度を外気温 度よ り低下させ、 この温度を低下させた空気と共に前記圧縮機 2 内に導 入される噴霧された前記液滴を前記圧縮機 2 内を流下中に気化するよう に した噴霧装置 1 1 と (噴霧水量のほとんどが吸気に乗り 、 回収される 水は実質ない。 あっても微量である) 、 圧縮空気の流れる流路に面して 構造物を配置してその構造物に水を流して、 前記噴霧装置 1 1 で噴霧さ れた水分を含む前記圧縮機 2 から吐出された圧縮空気を水を接触させて 圧縮空気に水を加える加湿器 7 と (供給水量に対して一部の水が空気に 加えられ、 他は回収される) 、 を備え、 前記加湿器 7 で回収された水を 後置き冷却器 1 3 あるいは給水加熱器 6 で熱を回収する構成にする こと によ り 、 十分な回収熱量を確保してよ り 、 高効率の運転ができる。 また、 前記加湿器 7から圧縮空気に加え られる水量に対する前記吸気 噴霧装置 1 1 から噴霧される水量を 1 5 0以上 1 Z 5以下の範囲に、 望ま しく は 1 2 5以上 1 / 1 0以下の範囲になるよ う制御される制御 装置と を備え、 前記加水装置から圧縮気流に供給される水のう ち加水装 置で回収される水の割合を 7 0 %以上 9 5 %以下となるよ う制御される ことが好ま しい。
当該範囲にする ことにする こ とによ リ十分な回収熱量を確保して、 安 定燃焼を図りつつ、 さ らに高出力 · 高効率を得る ことができる。
ま た、 前記噴霧装置 1 1 から噴霧される水量を空気重量流量に対して 0 . 2 %以上 5 . 0 %以下の範囲に、 望ま し く は 0 . 4 %以上 2 . 5 %以下 の範囲と し、 前記注水装置 7 から噴霧される水量を圧縮機吐出重量流量 に対して、 1 . 0 % 以上 3 0 %以下となるよ う制御される ことが好ま し い
ま た、 起動時は、 たとえば以下のよ う にする こ とができる。
起動からガスタービンで負荷を取り始めるまで、 は、 吸気噴霧装置 1 1 に噴霧水を供給を停止する。 ま た、 圧縮機 2 から吐出 した圧縮空気 を加湿器 7或いは更に後置冷却器 1 3 をバイパス して再生器 5 に導く 図 示しないバイパス系統を設置しておき、 当該バイパス系統を圧縮空気を 流す。
その後定格運転までは、 吸気噴霧装置 1 1 への水供給を停止したま ま 圧縮機 2 から吐出 した圧縮空気を前記バイパス系統から加湿器 7或いは 更に後置冷却器 1 3へ圧縮空気を流して加湿器 7 で水を加える。
定格運転後、 吸気噴霧装置 1 1 から水を噴霧する。 これによ り 、 短時 間で起動を行う こ とができる。
ま た、 負荷変化の際には、 たとえば以下のよう に制御する ことができ る。
負荷を下げる場合は、 加湿器 7 で圧縮空気に加え られる水量を下げる 次に吸気噴霧装置で噴霧する水量を下げる。
加湿器 7 で圧縮空気に加えられる水量を下げる際には、 必要に応じて 投入燃料 5 0量を併せて下げるよう に してもよい。
負荷を上げる場合は、 吸気噴霧装置 1 1 で噴霧する量を増加し、 その 後加湿器 7 で圧縮空気に加え られる水量を上げる。
このよ う にする こ と によ り 、 前記効果に加えて、 部分負荷時の高効率 運転に寄与する ことができる。
上記制御は一例を示したものであ り 、 これに限られるわけではない。 第 2 の実施例を第 3 図を用いて説明する。
第 3図は本発明の別な実施例を示す概要図である。
第 1 図の例との違いは、 補給水供給装置 1 5 の代わり に排ガス中に含 まれる湿分を回収する水回収器 8 を有する点である。 具体的には、 第 1 図の構成に加えて、 再生器 5 を経た燃焼排ガス (給水加熱器 6がある場 合は給水加熱器 6 を経た燃焼排ガス) が供給され、 排ガス中の水分を回 収する水回収器 8 を備える。 また、 水回収器 8 で回収した水を浄化処理 する水処理装置 1 0 を備える。 水処理装置 1 0 で浄化された水は吸気噴 霧装置 1 1 或いは加湿器 7 に導かれる。
好ま し く は、 第 3 図に図示したよ う に、 前記構成に加えてさ らに、 給 水加熱器 6 を経た排ガスおよび水回収器 8 を経た排ガスが供給されて熱 交換する排ガス再加熱器 9 を設置する。
ま た、 回収水が不足する場合は、 吸気噴霧装置 1 1 或いは加湿器 7 に 供給する給水を系外から補給する。 好ま し く は、 回収水を加湿器 7 に導 き、 加湿器 7 へ供給する給水量に対して回収水量が多い場合に吸気噴霧 装置 1 1 に給水する よ う 、 加湿器に回収水を優先的に流すよ う にする。 吸気噴霧装置には必要に応じて系外から補給水を導く よう にする。
本実施例においては、 再熱器 5 (給水加熱器 6 ) を経た排ガスは排ガ ス再加熱器 9 に供給されて、 水回収器 8 を経て湿分含有率が低く なつた 低温の排ガスと熱交換を行い、 温度が低下し、 水回収器 8 に供給され水 分が回収される。 排気ガス中に含まれる湿分を回収するための方策例と しては、 ガスをその内部に含まれる水蒸気の飽和温度 (露点) 以下に冷 却する方法がある。 例えば、 系外から冷却水を供給して温度を低下させ る。 水回収器 8 を出た排ガスは、 排ガス再加熱器 9 を経由 して加熱され た後、 排気塔 (図示せず) から大気中に放出される。
回収された水には燃焼排ガス中の炭酸ガスや不純物が溶解している こ とが考え られるので水処理装置 1 0 で除去処理した後、 加湿器 7 の補給 水および吸気噴霧装置 1 1 の散布水と して再利用する。 なお、 吸気噴霧 装置 1 1 の散布水は回収水を利用せずに、 補給水供給装置 1 5 (図示せ ず) から供給しても良い。
本実施例においては、 排ガス中から湿分を回収し再利用する点に特徴 がある。
排ガス中に含まれる湿分の何割を回収するかは、 水回収器で排ガスを どの程度まで冷却するかに関係するが、 排ガス全体を 3 8 °C程度まで冷 却できれば、 補給水と して使用する量に相当する回収水を得る ことがで きる。 この場合回収水を再利用し、 実質的に補給水を不要と したシステ ムを構築する ことも可能である。 補給水と して通常は、 例えば工業用水 を処理したものが利用されるが、 熱エネルギーの観点からすれば、 工業 用水の温度は大気温度に等しいかそれよ リ幾分低い場合が多い。 一方、 排ガスから回収した水は 3 8 °C前後の温度レベルにあ リ 、 通常の大気温 度よ リ も高く 、 回収方法を工夫すれば 6 0 °C前後の更に高い温度レベル の水を得ることも可能である。 本実施例において、 加湿器 7 に供給する 水は例えば 1 8 0 °C前後の高温水であ り 、 この高温水を得るために各種 熱交換器によ り熱回収を行っている。 したがって、 この加湿器への補給 水は温度の高いほうが好ま しい。
本実施例では、 排ガス中から湿分を回収し再利用するので、 通常のェ 業用水よ り も高い温度の水が利用できる。 このことは、 加湿器に供給す る高温水を得るための熱量を同じとする場合には、 各種熱交換器の熱回 収量を低減できる ことになり 、 熱交換器を小型化する或いは、 熱交換媒 体の循環流量を低減する ことができる。 これによ り 、 ガスタービンに接 続されている機器の圧力損失を低減できるので、 発電効率の向上がはか れる。 ま た、 燃焼排ガスから熱を含む回収水を利用でき、 ガスターピン によ り生じた熱を燃焼器上流側まで戻して再利用できるので、 第 1 図の 実施例の形態よ リ ガスタービンの効率向上を図ることができる。 ま た、 部分負荷時においても高効率の運転に寄与する ことができる。
ま た、 燃料 5 0 が液化天然ガスを気化したものである場合、 燃料供給 経路に吸気噴霧装置 1 1 への給水経路を流れる給水と熱交換する燃料加 熱器を設けるよ う にする ことができる。 燃焼器 4 に導かれる燃料が吸気 噴霧装置 1 1 への給水で加熱される。 吸気噴霧装置 1 1 への給水は前記 燃料加熱器を通過する際に熱を奪われて更に温度が低下した状態で吸気 噴霧装置 1 1 へ供給される。
第 3実施例を第 4図を用いて説明する。
第 4図は本発明の更に別な実施例を示す概要図である。
第 3図の例との違いは、 水回収器 8 と して、 冷水をスプレイ噴霧する 直接接触式の水回収器を想定した点、 および吸気噴霧装置 1 1 に供給す る水と加湿器 7 に供給する水を異なる位置から採取している点である。 具体的には、 第 1 図の構成に加えて、 再生器 5 を経た燃焼排ガス (給 水加熱器 6 がある場合は給水加熱器 6 を経た燃焼排ガス) が供給され、 排ガス中の水分を回収する水回収器 8 を備える。 また、 水回収器 8 で回 収した水を浄化処理する水処理装置 1 0 を備える。 ま た、 水回収器 8で 回収した水を冷却する循環水冷却器 1 4 を備える。 加湿器 7へ導く 給水 経路には水回収器 8 で回収された水が供給され、 吸気噴霧装置 1 1 へ導 く 給水経路には水回収器 8 で回収されて更に減温した水は供給される。 ま た、 好ま し く は、 第 4図に図示したよ う に、 前記構成に加えてさ ら に、 給水加熱器 6 を経た排ガスおよび水回収器 8 を経た排ガスが供給さ れて熱交換する排ガス再加熱器 9 を設置する。
再生器 5 (給水加熱器 6 ) を経た排ガスは排ガス再加熱器 9 に供給さ れて、 水回収器 8 を経た排ガスによ り減温される。 そ して水回収器 8 に 供給され水分が回収される。 水回収器 8 を出た排ガスは、 排ガス再加熱 器 9 を経由 して加熱された後、 排気塔 (図示せず) から大気中に放出さ れる。
水回収器 8 で回収された水は、 一部は水処理装置 1 0 を経て加湿器 7 の方へ導かれる。 ま た、 他の一部は、 循環水冷却器 1 4 を経て冷却され た後、 再び水回収器 8 に導かれ水回収に寄与する。 循環水冷却器 1 4で 冷却された水の一部は吸気噴霧装置 1 1 に供給される。 何れの水も必要 に応じて浄化処理されて供給される。
吸気噴霧装置 1 1 はガスターピン吸気を冷却する作用を期待しており . この目的には水の温度は低い方が好ま しい。 一方、 加湿器 7 の補給水は 熱回収し高温に昇温するので補給水と しては温度の高いほう が好ま しい, そのため、 吸気噴霧装置 1 1 には循環水冷却器 1 4 を出た水の一部を分 岐して供給し、 加湿器 7 の補給水には水回収ループの中で最も温度が高 く なる回収水から供給するよ う にシステムを構成したことによ リ 、 水回 収効果を高めると共に吸気冷却の効果が大き く なるため出力増加が期待 できる。 加えて、 回収水量が多く な リ 、 補給する水量をすく なく できる , ま た、 加湿器への補給水供給温度が高く なるので、 加湿器および排熱回 収熱交換機が小型化でき圧力損失が少なく なるため効率が向上するとい う効果がある。
よって、 安定燃焼を図り つつ、 高効率、 高出力の運転を図る ことがで きる。 ま た、 部分負荷時の効率向上に寄与する こ とができる。
水回収器 8の具体例を第 6 図を用いて説明する。
大気圧で 4 0 °Cの条件における水蒸気の凝縮潜熱は約 5 7 0 kca l / kg であ り 、 この水蒸気 1 kgを冷水のスプレイで凝縮させる場合、 冷水の温 度上昇を 1 0 °Cとすれば、 水の比熱は約 1 kcalノ kg Kなので必要なスプ レイ流量は約 5 7 kgになる。 排ガスからの水回収、 言い換えれば水蒸気 の凝縮に必要なスプレイ流量は、 水回収器の設計条件によ リ異なるが、 通常、 蒸気流量の数 1 0倍が必要である。 そこで、 水回収方法を工夫す れば、 高温の回収水と低温のスプレイ水を分離して得る ことが可能であ リ 、 第 6 図は、 高温の回収水を得るための構成例を示す。
本実施例は、 水回収装置 8 から低温と高温の 2種類の回収する。 高温 の回収水を加湿器 7 の方へ供給し、 低温の回収水を吸気噴霧装置 1 1 の 方へ供給する。
給水加熱器 6 を経た、 水蒸気を多く 含んだ燃焼排ガスは、 熱交換器 (例えば排ガス再加熱器 9 ) で冷却された後、 水回収装置 8 に流入し、 そこで冷却水と直接接触して冷却されて湿り蒸気とな り 、 一部は凝縮し 回収される。 残り の排ガスは熱交換器で加熱された後、 煙突を経由 し て大気に放出される。 水回収装置 8 は、 ガス流れに対して直列に複数の 水回収手段が配置されており 、 各水回収手段は、 冷却水を流れる排ガス に散布する冷却水散布部と、 散布水及び凝縮水を回収する回収部を備え る。 冷却水散布部と回収部との間を排ガスが流れるよ う構成される。 ま た、 回収された水の少なく とも一部はガス流れの上流側に位置する水回 収手段の冷却水散布部の冷却水と して用いられる。 具体的には以下に示 す。
水回収装置 8 では冷却水は配管 4 1 を通り 、 冷却水散布部 5 1 aで排 ガス中に散布され、 散布水と凝縮水は水回収部 5 1 b に回収される。 回 収水は配管 4 3 を通り循環水冷却器 1 4で冷却された後、 配管 4 1 を通 つて冷却水と して循環使用される。 と ころで、 5 l b で回収された回収 水の内一部は配管 4 4, 4 5 を経由 して、 冷却水散布部 5 2 a に送られ る。 5 2 a に送られた散布水は凝縮潜熱を吸収しているので、 5 l aの 散布水よ リ温度が高く なっている。 5 2 aの散布水は 5 2 b で回収され 配管 4 6, 4 7 を通して冷却水散布部 5 3 aに送られる。 このプロセス を繰り返すこ と によ り 、 水回収装置出口の配管 6 0 における回収水は配 管 4 2 の回収水よ り も高温の回収水が得られる。 最も上流側の水回収手 段の水回収部 5 9 bから出る配管 6 0 における回収水は水処理装置 1 0 を経由 して、 再び使用される。
なお、 排ガス再加熱器 9 は水回収した後の排ガスを加熱するためのも のであ り 、 この例では、 水回収する前の排ガスを熱源と したガス一ガス 熱交換器となっているが、 別に熱源が得られる場合はそれを利用 しても 良い。
これによ り 、 温度の異なる回収水が得られる。 ま た、 高温の回収水が 容易に得られる。 このため、 排ガスの保有する熱エネルギをエネルギの 高い状態で回収できる。
このよ う な構成にすれば、 直接接触のスプレイ冷却において温度の高 い回収水と温度の低いスプレイ循環水を得ることができる。
高湿分ガスタービンでは、 燃焼ガス中に体積割合で 2 5〜 3 0 %程度 の湿分がふく まれており燃焼排ガスの露点は 7 0 °C近く になる。 この露 点温度よ り も低い温度に排ガスを冷却すれば水が回収できるが、 直接接 触式のスプレイ冷却では本実施例のよ う な構造をとる こと によ リ 、 例え ば、 6 0 °C程度の温度の高い回収水と 3 0 °C程度の温度の低い循環水を 得る ことができる。 この高温水を前記加湿器の補給水と して利用すれば 第 4図に示した実施例 3 と同様の効果を奏することができる。
このよ う に、 水回収器 8 での回収水のう ち高温の回収水は水処理装置 1 0 , 給水加熱器 6 を軽油して加湿器 7 へ送入すれば、 プラ ン ト熱効率 を一層高める こ とができる。 一方、 低温の回収水は水処理装置 1 0 を通 過したのち、 吸気噴霧装置 1 1 での噴霧水とするので、 吸気室 2 2 を流 れる吸気の温度を一層低めるのに有効である。
第 4の実施例を第 5図を用いて説明する。
第 5図は本発明の更に別な実施例を示す概要図である。
第 3 図の例との違いは、 水回収器 8 と して、 冷水をスプレイ噴霧する 直接接触式の水回収器を想定した点、 および吸気噴霧装置 1 1 に供給す る水と加湿器 7 に供給する水を異なる位置から採取している構成に加え て、 吸気室 2 2 内に空気の流れに沿って複数段に噴霧装置が設置され、 上流に位置する噴霧装置から噴出される水よ り下流に位置する噴霧装置 から噴出される水の温度が高く なるよ う になっている点である。
具体的には、 第 1 図の構成に加えて、 再生器 5 を経た燃焼排ガス (給 水加熱器 6 がある場合は給水加熱器 6 を経た燃焼排ガス) が供給され、 排ガス中の水分を回収する水回収器 8 を備える。 ま た、 水回収器 8 で回 収した水を浄化処理する水処理装置 1 0 を備える。 また、 水回収器 8で 回収した水を冷却する循環水冷却器 1 4 を備える。 加湿器 7 へ導く 給水 経路には水回収器 8で回収された水が供給される。 更にその途中から分 岐して一部は吸気室 2 2 内の吸気噴霧装置 1 1 よ り圧縮機入口側に設置 した吸気噴霧装置 1 6 に噴霧水と して供給される。 吸気噴霧装置 1 1 へ 導く 給水経路には水回収器 8 で回収されて更に減温した水は供給される ま た、 好ま し く は、 第 5 図に図示したよう に、 前記構成に加えてさ ら に、 給水加熱器 6 を経た排ガスおよび水回収器 8 を経た排ガスが供給さ れて熱交換する排ガス再熱器 9 を設置する。 吸気噴霧装置 1 6 は吸気噴 霧装置 1 1 と同じ効果を奏する ことができるものを使用する ことができ る。
吸気噴霧装置 1 1 には第 4図の実施例と同様に低温の水を供給し、 吸 気噴霧装置 1 6 には加湿器 7 への補給水と同じ く 温度の高い水を供給す る。
このよ う な構成にすると、 吸気噴霧装置 1 1 から噴霧水には吸気冷却 の効果が多く 期待でき(第 1 図の実施例説明時の出力増加メカニズム 1 ) に対応) 、 吸気噴霧装置 1 6 からの噴霧水は圧縮機内でよ り蒸発しやす く なつているので、 前述の出力増加メカニズムの 2 ) 〜 4 ) の効果が大 き く なる。
吸気噴霧装置 1 6からの噴霧水が圧縮機内でよ り蒸発しやすく なる理 由と しては、 温度が高く なっているので蒸発に要する熱エネルギーが少 なく てすむこ とと、 温度が上昇するのに伴い水の表面張力が小さ く なる ため噴霧水を よ リ微細化しゃすく 、 微細な液滴は単位重量あたリ の表面 積が大き く なるので、 蒸発が促進される ことが考え られる。
その結果、 吸気噴霧装置 1 1 と吸気噴霧装置 1 6 から噴霧された液滴 のう ち圧縮機出口までに蒸発する水の量は、 第 4図の例よ り も多く なる と考えられ、 出力および効率がさ らに向上する。
このよ う に、 本実施例のよ う に噴霧装置 1 1 を、 前記吸気室内 2 2 に 前記空気の流れに沿って多段に設置され、 上流に位置する噴霧装置 1 1 から噴出される水よ り下流に位置する噴霧装置 1 6 から噴出される水の 温度が高く なるよう に したこ と によ り 、 前段の水噴霧装置 1 1 で吸気を 冷却して、 空気重量流量を増加させる。 加えて、 圧縮機の入口近傍に設 置した後段の水噴霧装置 1 6 から高温水を噴霧する こと によ り圧縮機 2 2 内で蒸発し易い水を圧縮機 2 2 に入る空気に多く 含ませる ことがで きる。
このため、 注水装置から供給する水量に対する噴霧装置 1 1 , 1 6 か ら空気に供給する水量の比率を よ り多く する こ と によ り 、 更に出力向上 及び高効率化を図 りつつ、 安定燃焼に寄与する ことができる。
尚、 吸気噴霧装置 1 1 は吸気室 2 2 内の吸気フ ィルタ一室近傍に配置 する。 たとえば、 サイ レンサ等が吸気室 2 2 内に設置される場合は、 た とえば、 サイ レンザの直後に隣り合わせて設置する。 或いは吸気フ ィル タ室 2 1 内のフ ィルタの直後に設置してもよい。 ま た、 吸気噴霧装置 1 6 は吸気室 2 2 内の圧縮機入リ 口近傍に配置する ことが好ま しい。 た とえば、 吸気室 2 2内の吸気室 2 2 と圧縮機 2入口との境界付近である これによ り 、 噴霧装置 1 1 から噴霧された液滴が圧縮機に流入するまで の距離が大き く なるので、 吸気冷却効果が大き く な リ 出力が増加すると いう効果が得られる。
第 6 の実施例を第 1 図および第 3 図を用いて説明する。
前記各実施例の形態は、 既存のガスタービン設備に効率向上を図るベ く 設置する増効率装置と して見ても、 高出力 · 高効率を燃焼器の安定性 を得つつ行う ことができる。
例えば、 第 1 図に示すよう な既存のガスタービン発電設備では、 通常 空気 2 0 を取り込む吸気室 2 2 と、 供給される空気を圧縮して吐出する 圧縮機 2 , 前記圧縮機 2 から吐出した空気と燃料とが燃焼される燃焼器 4, 前記燃焼器 4の燃焼ガスによ り駆動されるガスタービン 1 と、 ガス タービンによ リ駆動される発電機 3 を有する。
そこに、 前記圧縮機 2 の上流側の吸気室 2 2 内に設置され、 前記圧縮 機 2 に供給される空気に水を噴霧して前記圧縮機 2 に導入されるまでの 間に噴霧された該液滴の一部を気化させ、 前記空気と共に前記圧縮機 2 内に導入された未気化の該液滴を前記圧縮機 2 内を流下中に気化させる よ う に した吸気噴霧装置 1 1 と、 前記噴霧装置 1 1 で噴霧された水分を 含む前記圧縮機 2から吐出された圧縮空気に水を加える加湿装置 (加水 装置) 7 と、 前記加湿装置 7 で加え られた水分を含む圧縮空気が供給さ れてガスタービン排ガスを熱源と して加熱される再生器 5 を備える増効 率装置を設置する。
ま た、 吸気噴霧装置 1 1 及び加湿器 7 に水を供給する補給水供給装置 1 5 を設置する。
ま た必要に応じて、 加湿器 7 に供給される圧縮空気を、 加湿器 7 に供 給される水を冷熱源と して冷却する後置冷却器 1 3 を備える。 ま た、 加 湿器 7 に供給される水を、 再生器 5 を経た排ガスを熱源と して加熱する 給水加熱器 6 を備える。
これによ り 、 所望の出力及び効率を得つつ、 燃焼安定性の高い高湿分 ガスタービン設備を構成でき、 第 1 図と同様の効果を奏することができ る。
ま た、 前記補給水供給装置と共にま たは、 これに代えて、 前記再生器 を経た燃焼排ガスから排ガス中の水分を回収し、 該回収した水を前記噴 霧装置と前記加水装置の少な く とも加水装置に供給する経路と、 を有す るよ う に してもよい。 これによ り 、 第 3 図と同様の効果を奏する ことができる。

Claims

請 求 の 範 囲
1 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 し た空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動 されるタービンと、 を備えたガスタービン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に入る空気の温度を外気温度よ り低下さ せ、 この温度を低下させた空気と共に前記庄縮機内に導入される噴霧さ れた前記液滴を前記圧縮機内を流下中に気化するよ う に した噴霧装置と 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 を備えること を特徴とするガスタービン設備。
2 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 し た空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動 されるタ一ビンと、 を備えたガスタービン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う にした噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮空 気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、 前記再生器で加熱された圧縮空気を前記燃焼器へ供給される経路と、 を備える こと を特徴とするガスタービン設備。
3 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 し た空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動 されるタービンと、 を備えたガスタービン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮空 気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収した 水を前記噴霧装置と前記加水装置の少なく とも一方に供給する経路と、 を有する こ と を特徴とするガスタービン設備。
4 . 請求項 1 のガスタービン設備であって、
前記噴霧装置は、 前記吸気室内に前記空気の流れに沿って複数段に噴 霧装置が設置され、 上流に位置する噴霧装置から噴出される水よ り下流 に位置する噴霧装置から噴出される水の温度が高く なるよう に した、 こ とを特徴とするガスタービン設備。
5 . 請求項 1 のガスターピン設備であって、
前記加水装置から加え られる水量に対する前記噴霧装置から噴霧され る水量を 1 ノ 5 0以上 1 / 5以下の範囲になるよ う制御される制御装置 と、 を備える こと を特徴とするガスターピン設備。
6 . 請求項 1 のガスタービン設備であって、
前記加水装置から加え られる水量に対する前記噴霧装置から噴霧され る水量を 1 / 5 0以上 1 / 5以下の範囲になる よ う制御される制御装置 と を備え、
前記加水装置に加えた水量のう ち加水装置で循環する水の割合を 7 0 %以上 9 5 %以下となるよ う制御される こと を特徴とするガスタービン 設備。
7 . 請求項 1 のガスタービン設備であって、
前記噴霧装置から噴霧される水量を空気重量流量に対して、 0 . 2 % 以上 5 . 0 % 以下の範囲と し、 前記加水装置から加え られる水量を圧縮 機吐出重量流量に対して、 3 0 %以下となるよ う制御される こと を特徴 とするガスタービン設備。
8 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 し た空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスにょ リ駆動 されるタ一ビンと、 を備えたガスタービン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させる よ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記噴霧装置に供給される水温よ り前記注水装置に供給される水温のほ う が高く なるよう制御される制御装置と、
を備える こと を特徴とするガスターピン設備。
9 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出し た空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆動 されるタービンと、 を備えたガスタービン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気を前記燃焼器に供給される経路と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収した 水を前記噴霧装置と前記注水装置に供給する水供給経路と、
前記注水装置の上流を流れる圧縮空気を前記加水装置に供給される水 と熱交換させて冷却する冷却装置と、 を有する こ と を特徴とするガスタ 一ピン設備。
1 0 . 請求項 1 のガスタ一ビン設備であって、
前記水供給経路に代えて、
前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記加水装置に供給する加水供給経路と、
前記噴霧装置に系外から供給される噴霧水を導く 噴霧水供給経路と、 を備える こと を特徴とするガスタービン設備。
1 1 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆 動されるターピンと、 を備えたガスタ一ビン設備であって、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器で加熱された圧縮空気が供給される前記燃焼器と、 前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記噴霧装置と前記加水装置に供給する水供給経路と、
前記加水装置に供給される水を前記再生器を経た燃焼排ガスを熱源と して昇温する給水加熱器と、 を有する こ と を特徴とするガスタービン設 偸。
1 2 . 請求項 1 のガスタービン設備において、 負荷降下時に前記加水装 置で圧縮空気に加える水量を減少させた後、 前記噴霧装置で噴霧する水 量を減少させるよ う制御する制御装置と、
を備える ことを特徴とするガスタービン設備。
1 3 . 請求項 1 のガスタービン設備において、 負荷上昇時に前記噴霧装 置で噴霧する水量を増加させた後、 前記加水装置で圧縮空気に加える水 量を増加させたよ う制御する制御装置と、 を備えること を特徴とするガスタービン設備。
1 4 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ リ駆 動されるタービンと、 を備えたガスタービン設備に設置されるガスター ビン排ガスの熱エネルギを回収し発電効率を向上させる増効率装置であ つて、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入されるまでの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
を備える ことを特徴とする増効率装置。
1 5 . 供給される空気を圧縮して吐出する圧縮機、 前記圧縮機から吐出 した空気と燃料とが燃焼される燃焼器、 前記燃焼器の燃焼ガスによ り駆 動されるタービンと、 を備えたガスタービン設備に設置されるガスター ビン排ガスの熱エネルギを回収し発電効率を向上させる増効率装置であ つて、
前記圧縮機の上流側の吸気室内に設置され、 前記圧縮機に供給される 空気に水を噴霧して前記圧縮機に導入される までの間に噴霧された該液 滴の一部を気化させ、 前記空気と共に前記圧縮機内に導入された未気化 の該液滴を前記圧縮機内を流下中に気化させるよ う に した噴霧装置と、 前記噴霧装置で噴霧された水分を含む前記圧縮機から吐出された圧縮 空気に水を加える加水装置と、
前記加水装置で加え られた水分を含む圧縮空気が供給されてガスター ビン排ガスを熱源と して加熱される再生器と、
前記再生器を経た燃焼排ガスから排ガス中の水分を回収し、 該回収し た水を前記噴霧装置と前記加水装置の少なく とも加水装置に供給する経 路と、
を有する こと を特徴とする増効率装置。
1 6 . 請求項 1 4の増効率装置であって、
前記加水装置から噴霧される水量に対する前記噴霧装置から噴霧され る水量を 1 Z 5 0以上 1 5以下の範囲になるよ う制御される制御装置 と、
を備えるこ と を特徴とする増効率装置。
PCT/JP1998/001843 1997-04-22 1998-04-22 Installation de type turbine a gaz WO1998048159A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98917622A EP0990780B1 (en) 1997-04-22 1998-04-22 Gas turbine equipment
JP54546798A JP4285781B2 (ja) 1997-04-22 1998-04-22 ガスタービン発電設備
DE69836910T DE69836910T2 (de) 1997-04-22 1998-04-22 Vorrichtung für eine gasturbine
US09/403,417 US6389799B1 (en) 1997-04-22 1998-04-22 Gas turbine Installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/104179 1997-04-22
JP10417997 1997-04-22

Publications (1)

Publication Number Publication Date
WO1998048159A1 true WO1998048159A1 (fr) 1998-10-29

Family

ID=14373796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001843 WO1998048159A1 (fr) 1997-04-22 1998-04-22 Installation de type turbine a gaz

Country Status (5)

Country Link
US (7) US6389799B1 (ja)
EP (1) EP0990780B1 (ja)
JP (1) JP4285781B2 (ja)
DE (1) DE69836910T2 (ja)
WO (1) WO1998048159A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008326A3 (en) * 1998-07-24 2000-10-19 Gen Electric Methods and apparatus for water injection in a turbine engine
JP2001055929A (ja) * 1999-05-07 2001-02-27 General Electric Co <Ge> ガスタービン入口空気用の複合型水飽和−過飽和システムおよび方法
US6470668B2 (en) 1998-07-24 2002-10-29 General Electric Company Methods and apparatus for water injection in a turbine engine
US6484508B2 (en) 1998-07-24 2002-11-26 General Electric Company Methods for operating gas turbine engines
JP2003529701A (ja) * 1999-06-10 2003-10-07 エンハンスド タービン アウトプット ホールディング エル エル シー 過給発電ガスタービン装置、過給補助装置、過給発電ガスタービン装置作動方法、高圧流体搬送用ダクト及び発電設備
US6865893B2 (en) 2002-06-25 2005-03-15 Hitachi, Ltd. Production process of gas turbine
US7340881B2 (en) 2002-12-12 2008-03-11 Hitachi, Ltd. Gas turbine combustor
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
WO2010013316A1 (ja) * 2008-07-29 2010-02-04 株式会社 日立製作所 ハイブリッド発電システム及びその運転方法
WO2012042641A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用コンバインドサイクルプラント
WO2012042638A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用ガスタービンプラント
WO2012042639A1 (ja) 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用コンバインドサイクル発電プラント
WO2012042655A1 (ja) 2010-09-30 2012-04-05 株式会社日立製作所 ガスタービンシステム、ガスタービンシステムの制御装置及びガスタービンシステムの制御方法
US8640438B2 (en) 2006-05-26 2014-02-04 Hitachi, Ltd. High humidity gas turbine equipment
US9010081B2 (en) 2010-10-19 2015-04-21 Alstom Technology Ltd. Combined cycle plant including chilled ammonia based CO2 capture unit and utilizing system produced nitric acid

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750474B2 (ja) * 2000-03-08 2006-03-01 株式会社日立製作所 熱電併給設備およびその運転方法
US6449953B1 (en) * 2000-04-28 2002-09-17 General Electric Company Methods for reducing gas turbine engine emissions
WO2002084091A1 (fr) * 2001-04-09 2002-10-24 Hitachi, Ltd. Générateur de puissance à turbine à gaz
GB2382847A (en) * 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
GB2382848A (en) * 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
JP4179496B2 (ja) * 2002-10-08 2008-11-12 川崎重工業株式会社 常圧燃焼タービンシステム
DE10256193A1 (de) 2002-12-02 2004-06-09 Alstom Technology Ltd Verfahren zur Steuerung der Flüssigkeitseinspritzung in einen Zuströmkanal einer Kraft- oder Arbeitsmaschine
DE10333208A1 (de) * 2003-07-22 2005-03-31 Alstom Technology Ltd Verfahren zum Betrieb einer luftatmenden Kraftmaschine
JP4100316B2 (ja) * 2003-09-30 2008-06-11 株式会社日立製作所 ガスタービン設備
US7441410B2 (en) * 2003-10-31 2008-10-28 Hitachi, Ltd. Gas turbine and manufacturing process of gas turbine
US6938405B2 (en) * 2003-11-13 2005-09-06 General Electric Company Spray nozzle grid configuration for gas turbine inlet misting system
DE10357711A1 (de) * 2003-12-09 2005-07-14 Abb Turbo Systems Ag Kühlungsverfahren
DE102004004135A1 (de) * 2004-01-28 2005-09-29 Alstom Technology Ltd Fördervorrichtung
US7228682B2 (en) * 2004-12-16 2007-06-12 Yefim Kashler System for augmented electric power generation with distilled water output
JP4811991B2 (ja) * 2005-07-06 2011-11-09 株式会社日立製作所 高湿分利用ガスタービン設備
US20070044485A1 (en) * 2005-08-26 2007-03-01 George Mahl Liquid Natural Gas Vaporization Using Warm and Low Temperature Ambient Air
JP4275690B2 (ja) * 2006-09-07 2009-06-10 株式会社日立製作所 ガスタービンシステム
US7703272B2 (en) * 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7712301B1 (en) 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
JP4466667B2 (ja) * 2007-03-19 2010-05-26 株式会社日立製作所 高湿分空気利用ガスタービン,高湿分空気利用ガスタービンの制御装置及び高湿分空気利用ガスタービンの制御方法
CN100455781C (zh) * 2007-06-29 2009-01-28 中国船舶重工集团公司第七�三研究所 湿压缩-后表冷-回热循环燃气轮机
JP4371278B2 (ja) * 2007-08-07 2009-11-25 株式会社日立製作所 高湿分利用ガスタービン設備
US8601821B2 (en) * 2007-08-07 2013-12-10 General Electric Company Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbines
US8220268B2 (en) * 2007-11-28 2012-07-17 Caterpillar Inc. Turbine engine having fuel-cooled air intercooling
CA2710280A1 (en) * 2007-12-21 2009-07-09 Green Partners Technology Holdings Gmbh Gas turbine systems and methods employing a vaporizable liquid delivery device
US8051654B2 (en) * 2008-01-31 2011-11-08 General Electric Company Reheat gas and exhaust gas regenerator system for a combined cycle power plant
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
EP2280841A2 (en) 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US20100071878A1 (en) * 2008-09-19 2010-03-25 General Electric Company System and method for cooling using system exhaust
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
JP5023101B2 (ja) * 2009-04-22 2012-09-12 株式会社日立製作所 高湿分利用ガスタービンシステム
US20100281870A1 (en) * 2009-05-08 2010-11-11 General Electric Company System and method for heating fuel for a gas turbine
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US20100319359A1 (en) * 2009-06-19 2010-12-23 General Electric Company System and method for heating turbine fuel in a simple cycle plant
US20110100005A1 (en) * 2009-10-30 2011-05-05 Sampson Glenn A Water reclamation in a concentrated solar power-enabled power plant
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
WO2011076973A1 (en) * 2009-12-22 2011-06-30 Reijo Alander Arrangement in a gas turbine process
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8261528B2 (en) * 2010-04-09 2012-09-11 General Electric Company System for heating an airstream by recirculating waste heat of a turbomachine
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
CN102278207B (zh) * 2010-06-13 2013-07-31 中国科学院工程热物理研究所 基于溶液除湿的燃气轮机进气冷却方法
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
EP2610465B1 (en) * 2010-08-27 2019-11-20 Mitsubishi Hitachi Power Systems, Ltd. Solar gas turbine system
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
FR2969263B1 (fr) * 2010-12-15 2013-01-04 Air Liquide Procede et appareil integres de compression d'air et de production d'un fluide riche en dioxyde de carbone
US9546574B2 (en) * 2010-12-28 2017-01-17 Rolls-Royce Corporation Engine liquid injection
JP2014522460A (ja) 2011-05-17 2014-09-04 サステインエックス, インコーポレイテッド 圧縮空気エネルギー貯蔵システムにおける効率的二相熱移送のためのシステムおよび方法
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
WO2013124899A1 (ja) * 2012-02-24 2013-08-29 株式会社 日立製作所 太陽熱アシストガスタービンシステム
JP6010348B2 (ja) 2012-06-01 2016-10-19 三菱日立パワーシステムズ株式会社 軸流圧縮機及びこれを備えたガスタービン
FR2993926A1 (fr) * 2012-07-24 2014-01-31 Vianney Rabhi Turbomoteur basse-pression a combustion interne et/ou externe
US20140041393A1 (en) * 2012-08-08 2014-02-13 Bhalchandra Arun DESAI Systems and methods for processing inlet air
US9816391B2 (en) 2012-11-07 2017-11-14 General Electric Company Compressor wash system with spheroids
US8567177B1 (en) * 2012-11-30 2013-10-29 Yoganeck, LLC Gas turbine engine system with water recycling feature
US20150159509A1 (en) * 2013-12-06 2015-06-11 General Electric Company Method and System for Dispensing Gas Turbine Anticorrosive Protection
FR3014504A1 (fr) * 2013-12-10 2015-06-12 Air Liquide Procede de compression de gaz avec introduction en exces de refrigerant en entree de compresseur
JP5778369B1 (ja) * 2015-05-13 2015-09-16 隆逸 小林 高密度空気の製造方法及び利用方法
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US20180306112A1 (en) * 2017-04-20 2018-10-25 General Electric Company System and Method for Regulating Flow in Turbomachines
US10794369B1 (en) 2018-08-22 2020-10-06 Walter B. Freeman Solar powered closed loop system and method for powering a cooling device
CN111720215B (zh) * 2020-06-19 2021-10-26 中国科学院工程热物理研究所 一种基于燃气轮机的热电联供系统
IL299501A (en) * 2020-06-29 2023-02-01 Lummus Technology Inc heat exchange system
US11821699B2 (en) 2020-06-29 2023-11-21 Lummus Technology Llc Heat exchanger hanger system
US11719141B2 (en) 2020-06-29 2023-08-08 Lummus Technology Llc Recuperative heat exchanger system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779225A (en) * 1980-11-05 1982-05-18 Mitsubishi Gas Chem Co Inc Method of recovering heat
US4509324A (en) * 1983-05-09 1985-04-09 Urbach Herman B Direct open loop Rankine engine system and method of operating same
JPS6329091B2 (ja) * 1980-11-04 1988-06-10 Mitsubishi Gas Chemical Co
JPS6332970B2 (ja) * 1980-11-25 1988-07-04 Mitsubishi Gas Chemical Co
JPH0131013B2 (ja) * 1981-12-10 1989-06-22 Mitsubishi Gas Chemical Co
JPH04228832A (ja) * 1990-02-27 1992-08-18 Turbine Dev Ag ガスタービン及びその作動方法
JPH0586898A (ja) * 1991-03-18 1993-04-06 Gaz De France 半開放サイクル動作型天然ガス蒸気タービンシステム
JPH07166888A (ja) * 1993-07-22 1995-06-27 Ormat Ind Ltd ガスタービンから発生する電力を増大させる方法および装置
JPH08284685A (ja) * 1995-04-10 1996-10-29 Mitsubishi Heavy Ind Ltd ガスタービンの吸気冷却装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115338A (en) * 1932-12-15 1938-04-26 Milo Ab Gas turbine system
DE717711C (de) * 1939-04-12 1942-02-21 Michael Martinka Dipl Ing Arbeitsverfahren fuer Brennkraftturbinen
FR1467142A (fr) * 1965-12-13 1967-01-27 Perfectionnements aux installations fixes de turbine à gaz
CH457039A (de) * 1967-05-03 1968-05-31 Bbc Brown Boveri & Cie Gasturbinenanlage mit Wassereinspritzung
US3657879A (en) * 1970-01-26 1972-04-25 Walter J Ewbank Gas-steam engine
US4418527A (en) * 1980-04-21 1983-12-06 Schlom Leslie A Precooler for gas turbines
JPS5939936A (ja) * 1982-08-30 1984-03-05 Hitachi Ltd ガスタ−ビンの吸気装置
US4773846A (en) * 1985-07-30 1988-09-27 Michael Munk Combustion system and method with fog injection and heat exchange
JPS6329091A (ja) 1986-07-21 1988-02-06 Matsushita Refrig Co ロ−タリ−圧縮機
JPS6332970A (ja) 1986-07-25 1988-02-12 Fujitsu Ltd 半導体装置の製造方法
JPS6431013A (en) 1987-07-28 1989-02-01 Nippon Kokan Kk Linearly inspecting apparatus of buried pipe
JPS6431013U (ja) 1987-08-21 1989-02-27
JPH01147199A (ja) * 1987-12-04 1989-06-08 Mitsubishi Heavy Ind Ltd 圧縮機
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
JP2634722B2 (ja) * 1991-12-25 1997-07-30 川崎製鉄株式会社 ガスタービンにおける燃焼排ガス中の窒素酸化物の低減方法
JP3181084B2 (ja) * 1992-01-21 2001-07-03 東北電力株式会社 ガスタービン燃焼用空気冷却装置
JP2887857B2 (ja) 1992-08-07 1999-05-10 株式会社日立製作所 ガス絶縁開閉装置
US5537813A (en) * 1992-12-08 1996-07-23 Carolina Power & Light Company Gas turbine inlet air combined pressure boost and cooling method and apparatus
JP3576254B2 (ja) 1995-03-10 2004-10-13 同和鉄粉工業株式会社 現像剤用キャリヤおよびその製造法
JP2877098B2 (ja) * 1995-12-28 1999-03-31 株式会社日立製作所 ガスタービン,コンバインドサイクルプラント及び圧縮機
SG104914A1 (en) * 1997-06-30 2004-07-30 Hitachi Ltd Gas turbine
NL1011383C2 (nl) * 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329091B2 (ja) * 1980-11-04 1988-06-10 Mitsubishi Gas Chemical Co
JPS5779225A (en) * 1980-11-05 1982-05-18 Mitsubishi Gas Chem Co Inc Method of recovering heat
JPS6332970B2 (ja) * 1980-11-25 1988-07-04 Mitsubishi Gas Chemical Co
JPH0131013B2 (ja) * 1981-12-10 1989-06-22 Mitsubishi Gas Chemical Co
US4509324A (en) * 1983-05-09 1985-04-09 Urbach Herman B Direct open loop Rankine engine system and method of operating same
JPH04228832A (ja) * 1990-02-27 1992-08-18 Turbine Dev Ag ガスタービン及びその作動方法
JPH0586898A (ja) * 1991-03-18 1993-04-06 Gaz De France 半開放サイクル動作型天然ガス蒸気タービンシステム
JPH07166888A (ja) * 1993-07-22 1995-06-27 Ormat Ind Ltd ガスタービンから発生する電力を増大させる方法および装置
JPH08284685A (ja) * 1995-04-10 1996-10-29 Mitsubishi Heavy Ind Ltd ガスタービンの吸気冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0990780A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008326A3 (en) * 1998-07-24 2000-10-19 Gen Electric Methods and apparatus for water injection in a turbine engine
US6470668B2 (en) 1998-07-24 2002-10-29 General Electric Company Methods and apparatus for water injection in a turbine engine
US6470667B1 (en) 1998-07-24 2002-10-29 General Electric Company Methods and apparatus for water injection in a turbine engine
US6484508B2 (en) 1998-07-24 2002-11-26 General Electric Company Methods for operating gas turbine engines
JP2001055929A (ja) * 1999-05-07 2001-02-27 General Electric Co <Ge> ガスタービン入口空気用の複合型水飽和−過飽和システムおよび方法
JP2003529701A (ja) * 1999-06-10 2003-10-07 エンハンスド タービン アウトプット ホールディング エル エル シー 過給発電ガスタービン装置、過給補助装置、過給発電ガスタービン装置作動方法、高圧流体搬送用ダクト及び発電設備
US6865893B2 (en) 2002-06-25 2005-03-15 Hitachi, Ltd. Production process of gas turbine
US7320175B2 (en) 2002-06-25 2008-01-22 Hitachi, Ltd. Production process of gas turbine
EP1918547A2 (en) 2002-06-25 2008-05-07 Hitachi, Ltd. Gas turbine production process
US7340881B2 (en) 2002-12-12 2008-03-11 Hitachi, Ltd. Gas turbine combustor
US8640438B2 (en) 2006-05-26 2014-02-04 Hitachi, Ltd. High humidity gas turbine equipment
JP4859929B2 (ja) * 2007-04-11 2012-01-25 株式会社日立製作所 天然ガス液化プラント用動力供給設備
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
WO2010013316A1 (ja) * 2008-07-29 2010-02-04 株式会社 日立製作所 ハイブリッド発電システム及びその運転方法
JP5399565B2 (ja) * 2010-09-30 2014-01-29 株式会社日立製作所 太陽熱利用コンバインドサイクル発電プラント
WO2012042639A1 (ja) 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用コンバインドサイクル発電プラント
WO2012042655A1 (ja) 2010-09-30 2012-04-05 株式会社日立製作所 ガスタービンシステム、ガスタービンシステムの制御装置及びガスタービンシステムの制御方法
JP5400969B2 (ja) * 2010-09-30 2014-01-29 株式会社日立製作所 ガスタービンシステム、ガスタービンシステムの制御装置及びガスタービンシステムの制御方法
WO2012042638A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用ガスタービンプラント
WO2012042641A1 (ja) * 2010-09-30 2012-04-05 株式会社日立製作所 太陽熱利用コンバインドサイクルプラント
JP5422747B2 (ja) * 2010-09-30 2014-02-19 株式会社日立製作所 太陽熱利用コンバインドサイクルプラント
JP5422746B2 (ja) * 2010-09-30 2014-02-19 株式会社日立製作所 太陽熱利用ガスタービンプラント
US8978386B2 (en) 2010-09-30 2015-03-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine system, control device for gas turbine system, and control method for gas turbine system
US9359953B2 (en) 2010-09-30 2016-06-07 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power plant with solar assisted cooling of compressor inlet air
EP2623741A4 (en) * 2010-09-30 2017-12-06 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle power generation plant utilzing solar heat
EP2623742A4 (en) * 2010-09-30 2018-01-03 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine system, control device for gas turbine system, and control method for gas turbine system
US9010081B2 (en) 2010-10-19 2015-04-21 Alstom Technology Ltd. Combined cycle plant including chilled ammonia based CO2 capture unit and utilizing system produced nitric acid

Also Published As

Publication number Publication date
US7278255B2 (en) 2007-10-09
US20060032211A1 (en) 2006-02-16
US7146794B2 (en) 2006-12-12
DE69836910T2 (de) 2007-06-21
US20050011180A1 (en) 2005-01-20
DE69836910D1 (de) 2007-03-08
US6854259B2 (en) 2005-02-15
US20020092286A1 (en) 2002-07-18
US6389799B1 (en) 2002-05-21
EP0990780B1 (en) 2007-01-17
US20040060276A1 (en) 2004-04-01
US20030163982A1 (en) 2003-09-04
EP0990780A1 (en) 2000-04-05
US6973772B2 (en) 2005-12-13
US20070039307A1 (en) 2007-02-22
EP0990780A4 (en) 2002-06-12
US6637185B2 (en) 2003-10-28
JP4285781B2 (ja) 2009-06-24
US6560957B2 (en) 2003-05-13

Similar Documents

Publication Publication Date Title
WO1998048159A1 (fr) Installation de type turbine a gaz
KR100372064B1 (ko) 가스 터빈 발전 설비 및 공기 증습 장치
JP2877098B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
US7082749B2 (en) Gas turbine electric power generation equipment and air humidifier
US6578354B2 (en) Gas turbine electric power generation equipment and air humidifier
JPH11324710A (ja) ガスタービン発電プラント
JP4299313B2 (ja) ガスタービン設備
JP4315625B2 (ja) ガスタービン設備
JP2980095B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP4120699B2 (ja) ガスタービン発電設備及び空気増湿装置
JPH11287132A (ja) ガスタ―ビン,コンバインドサイクルプラント及び圧縮機
JP3567090B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP2000282894A (ja) ガスタービンプラント及びその運転方法並びにその制御方法
JP2010053690A (ja) 吸気に水を噴霧する圧縮機を有する設備

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID JP KR MX RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998917622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09403417

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998917622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998917622

Country of ref document: EP