WO2013124899A1 - 太陽熱アシストガスタービンシステム - Google Patents

太陽熱アシストガスタービンシステム Download PDF

Info

Publication number
WO2013124899A1
WO2013124899A1 PCT/JP2012/001260 JP2012001260W WO2013124899A1 WO 2013124899 A1 WO2013124899 A1 WO 2013124899A1 JP 2012001260 W JP2012001260 W JP 2012001260W WO 2013124899 A1 WO2013124899 A1 WO 2013124899A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
compressor
gas turbine
solar
temperature
Prior art date
Application number
PCT/JP2012/001260
Other languages
English (en)
French (fr)
Inventor
小山 一仁
尚弘 楠見
重雄 幡宮
高橋 文夫
孝朗 関合
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to CN201280070349.1A priority Critical patent/CN104220727A/zh
Priority to PCT/JP2012/001260 priority patent/WO2013124899A1/ja
Priority to US14/380,232 priority patent/US20150033760A1/en
Priority to EP12869565.7A priority patent/EP2818665A4/en
Publication of WO2013124899A1 publication Critical patent/WO2013124899A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to a solar-assisted gas turbine system that uses solar thermal energy for a gas turbine.
  • a solar power generation system generally employs a system in which a steam turbine is driven by steam generated by collecting heat with a heat collector. As this type of prior art, for example, there is one described in Patent Document 1.
  • a heat collecting device for collecting solar heat which is a heat source of steam is required.
  • a heat collection method a trough type that collects heat by collecting sunlight on a heat collection tube installed in front of a curved mirror, or a tower type that collects sunlight reflected by multiple plane mirrors called heliostats on a tower.
  • heliostats a trough type that collects heat by collecting sunlight on a heat collection tube installed in front of a curved mirror
  • heliostats on a tower There are various methods such as.
  • a large amount of heat collection devices (reflecting mirrors) are required to increase the efficiency (high temperature) and high output of the steam turbine.
  • This means that a vast site for installing the heat collecting device is required. For example, in the case of a power generation facility with an output of 50 MW, it is said that 1.2 square kilometers are required as the installation area of the heat collector.
  • An object of the present invention is to provide a solar-assisted gas turbine system in which the number of heat collecting devices is significantly reduced and the site area required for installing the heat collecting devices is reduced.
  • a solar-assisted gas turbine system of the present invention includes a compressor that compresses air, a combustor that combusts air and fuel compressed by the compressor, and the combustor that is generated by the combustor.
  • a gas turbine constituted by a turbine driven by combustion gas; a heat collecting device that collects solar heat to raise the temperature of the heated medium; a heat storage tank that stores the heated medium after the temperature rise; and the heated medium
  • FIG. 1 is a configuration diagram of a solar heat assist gas turbine system (Example 1).
  • FIG. It is an atmospheric temperature-power generation output characteristic diagram of a conventional gas turbine power generation system. It is explanatory drawing of the compressor inlet_port
  • Example 2 which is a block diagram of a solar-heat assist gas turbine system. It is a figure which shows the temperature distribution of the compressed air in a compressor. It is a figure which shows the relationship between the air temperature and absolute humidity in a compression process. It is a figure which shows the relationship between intake temperature and intake weight flow volume. It is a comparison figure of a heat cycle. It is a detailed structural diagram of a gas turbine. It is a related figure of the amount of water droplet spraying and the increase rate of gas turbine output. It is the schematic of the compressor exit temperature difference before and behind spraying.
  • the breakdown of the amount of heat held in 300 ° C steam is the sensible heat from normal temperature 15 ° C to 100 ° C, the latent heat of vaporization at 100 ° C, and the sensible heat ratio of steam from 100 ° C steam to 300 ° C.
  • the latent heat of vaporization accounts for 80% or more of the total, such as 1.3%: 83.8%: 14.9%. Therefore, it can be said that the steam turbine system requires steam in principle, and requires a large amount of energy as latent heat of vaporization for generating steam.
  • 70 to 80% of the total amount of heat collected by the heat collector is consumed as latent heat of evaporation. This is a factor that enormously increases the number of heat collecting devices and the site area required for installing the heat collecting devices.
  • the present inventors effectively use the thermal energy possessed by the sun, and reduce the number and installation area of the heat storage devices that have been a problem in the conventional solar thermal power generation system. went. That is, based on the knowledge that a large amount of energy (evaporation latent heat) is required for steam generation in the steam turbine system, high-pressure hot water that does not require latent heat of evaporation in the heat collector is not a system that generates steam with solar heat. Various studies were made from the viewpoint of technology that can effectively use (for example, 150 to 200 ° C.). As a result, it was concluded that the system can be applied to a gas turbine system as a system that can be effectively used even in high-pressure hot water that is in a liquid phase and at a lower temperature than a conventional solar thermal power generation system. is there.
  • the high-pressure hot water generated by solar heat is applied to the spray water of the spray device that cools the intake air of the gas turbine, and the solar energy stored as the high-pressure hot water is used to refine the droplets in the spray device. It is comprised as follows. In particular, atomization of droplets is realized by boiling high-pressure hot water under reduced pressure as a principle.
  • solar heat becomes a solar heat utilization system that only needs to collect sensible heat for generating high-pressure hot water (amount of heat for changing temperature without changing the state of matter).
  • a large amount of energy as latent heat of vaporization which is essential in conventional systems, can be made unnecessary.
  • the basic components of a gas turbine system are a compressor that compresses air, a combustor that combusts air and fuel compressed by the compressor, and a turbine that is driven by the combustion gas generated by the combustor. It becomes.
  • a driven device is connected to the gas turbine as a load device.
  • a generator driven by the rotation of the turbine is added to the above-described configuration requirements.
  • a gas turbine power generation system will be described as a representative example of a solar thermal assist power generation system, but it can also be applied to a gas turbine system that drives a driven device (pump, compressor, etc.) other than the generator.
  • a compressor that compresses air high-pressure hot water is sprayed and mixed into the compressor inlet air in order to lower the air temperature to the atmospheric temperature or lower in the intake duct that sucks air or upstream of the intake duct.
  • the high-pressure hot water is generated by heating the water in the heat collecting pipe of the heat collecting device by solar heat and supplying the water to the upstream portion of the compressor.
  • the air temperature at the inlet of a compressor can be lowered even by spraying water at room temperature.
  • the compressor which is a rotating machine, it is possible to quickly vaporize the spray water without forming water droplets, etc.
  • the present embodiment is characterized by spraying hot water that is seemingly opposite to the purpose of lowering the compressor inlet air temperature. That is, using the fact that about 70 to 80% of the amount of heat of high-pressure hot water is vaporization latent heat, the pressure is rapidly reduced from the high-pressure state (inside the heat collection tube and the spray nozzle) to the atmospheric pressure state (the compressor inlet). And warm water is boiled under reduced pressure. In this case, in normal temperature water, the endothermic action due to the latent heat of vaporization causes the temperature to become below freezing, and it is easy to freeze at the inlet of the compressor. .
  • the spraying is performed as high-pressure hot water so that atomization is promoted during boiling under reduced pressure. Since the present embodiment uses solar heat to generate high-pressure hot water, it does not use new fossil fuels and has an effect of suppressing an increase in CO 2 that contributes to global warming.
  • FIG. 1 is a configuration diagram of a solar-assisted gas turbine power generation system in which a hot water spraying device using solar heat is provided in a gas turbine power generation system.
  • the solar-assisted gas turbine power generation system is roughly classified into a gas turbine device 100, a heat collector 200 that collects solar heat and raises the temperature of oil as a heating medium, and the heat collector 200. It is comprised by the spraying apparatus 300 which produces
  • the gas turbine device 100 is provided with an intake duct 6 on the upstream side of the compressor 1.
  • An intake chamber (not shown) for taking in air may be provided on the upstream side of the intake duct 6.
  • the air 5 under atmospheric conditions is guided to the compressor 1 through the intake duct 6.
  • the compressed air 7 pressurized by the compressor 1 flows into the combustor 3.
  • the compressed air 7 and the fuel 8 are combusted, and a high-temperature combustion gas 9 is generated.
  • the combustion gas 9 flows into the turbine 2, rotates the generator 4 through the turbine 2 and the shaft 11, and generates electric power by driving the generator 4.
  • the combustion gas 9 that has driven the turbine 2 is discharged from the turbine 2 as combustion exhaust gas 10.
  • the heat collecting apparatus 200 is mainly composed of a light collecting plate 40 that condenses sunlight and a heat collecting tube 41 that heats a medium to be heated by sunlight collected and collected by the light collecting plate 40 (heat collecting apparatus). 200 is a collection of the light collector plate 40 and the heat collection tube 41 in a narrow sense, but hereinafter, a system and equipment connected to these collections will be appropriately referred to as a heat collection device).
  • An oil pump 42 that supplies oil to be heated is connected to the upstream side of the heat collecting pipe 41 via a pipe 43, and the oil heated by the heat collecting pipe 41 passes through the pipe 44 through the three-way valve 45. Then, the pipe 46 and the pipe 47 return to the oil pump 42.
  • the other outlet side of the three-way valve 45 is connected to the next three-way valve 49 via a pipe 48.
  • One side of the three-way valve 49 is connected to a high-temperature oil heat storage tank 57 via a pipe 56.
  • a high temperature heat storage oil pump 51 is provided on the other side of the three-way valve 49 via a pipe 50.
  • a pipe 59 is connected to the pipe 50 through a valve 58 from the bottom of the high-temperature oil heat storage tank 57.
  • the outlet pipe 52 of the high-temperature heat storage oil pump 51 is led to the oil / water heat exchanger 24 and connected to the low-temperature oil heat storage tank 54 by the pipe 53.
  • the water in the water tank 20 is sent from the pipe 23 to the oil / water heat exchanger 24 by the water pump 22 via the pipe 21.
  • the water heated by the oil / water heat exchanger 24 is sprayed by a spraying device 300 which will be described later via a booster pump 26, a flow control valve 27, and a pipe 28 via an outlet pipe 25 of the oil / water heat exchanger 24.
  • a spraying device 300 which will be described later via a booster pump 26, a flow control valve 27, and a pipe 28 via an outlet pipe 25 of the oil / water heat exchanger 24.
  • the spray device 300 includes a spray mother pipe 31 installed inside the intake duct 6 located on the upstream side of the compressor 1 and a plurality of spray nozzles 32 connected to the spray mother pipe 31.
  • the spray mother pipe 31 is connected to the water supply pipe 30 described above, and high-pressure hot water is supplied from the heat collecting apparatus 200.
  • positioned the spray nozzle 32 of the spray apparatus 300 in the intake duct 6 was illustrated in FIG. 1, it is also possible to install in the intake chamber which is not illustrated.
  • a silencer is arranged in the intake chamber, it is desirable that the silencer be positioned downstream of the silencer.
  • a screen or the like it is desirable to install the spray nozzle 32 on the downstream side of the screen from the viewpoint of adhesion of spray droplets to the screen.
  • the heat collecting tube 41 is irradiated with sunlight condensed by the light collector 40, and the oil supplied into the heat collecting tube 41 is heated by the sunlight irradiation.
  • the Water is heated by the oil / water heat exchanger 24 using this oil as a heating medium.
  • the water heated by the oil / water heat exchanger 24 is pumped to the pipe 28 as high-pressure hot water by the booster pump 26.
  • the downstream side of the pipe 28 is connected to a spray mother pipe 31 installed inside the intake duct 6, and the spray mother pipe 31 is provided with a plurality of spray nozzles 32.
  • the high-pressure hot water passed through the pipe 28 is sprayed from the spray nozzle 32 into the intake duct 6 via the spray mother pipe 31 (the intake duct 6 in FIG. It is indicated by.)
  • oil as a medium to be heated is supplied to the inside of the heat collection pipe 41 by the oil pump 42, and the heat of the oil is transferred to the water supplied by the water pump 22 via the oil / water heat exchanger 24 to appropriately heat the oil.
  • the pressure is increased to a pressure suitable for spraying by the booster pump 26, and the water amount is controlled by the flow rate adjusting valve 27, so that the water pressure, water temperature, and water amount suitable for spraying are maintained within an appropriate range. It sends to the inside spray mother pipe 31.
  • the air 5 is cooled by the reduced-pressure boiling effect of the high-pressure hot water sprayed from the spray nozzle 32 inside the intake duct 6, and the intake flow rate of the compressor 1 increases and the output of the gas turbine 2 increases.
  • the oil heated excessively in the heat collecting process of oil is stored in the high-temperature oil heat storage tank 57 and used to compensate for a time zone in which heat collection is insufficient such as cloudy weather.
  • the three-way valve 45 opens and closes according to the oil temperature in the pipe 44. That is, when the oil temperature in the pipe 44 is equal to or lower than the predetermined temperature, the three-way valve 45 closes the pipe 48 side connected to the oil / water heat exchanger 24 side, and the pipe 46 serving as a return system to the heat collecting pipe 41 side.
  • the oil in the heat collecting pipe 41 is circulated until the oil temperature in the pipe 44 rises. Thereafter, when the oil temperature in the pipe 44 becomes equal to or higher than the predetermined temperature, the three-way valve 45 opens the pipe 48 side and closes the pipe 46 side.
  • the three-way valve 49 is normally provided with both a pipe 50 connected to the oil / water heat exchanger 24 side and a pipe 56 connected to the high-temperature oil heat storage tank 57 side, which are necessary for the oil / water heat exchanger 24.
  • the amount of oil to be transferred is sent to the pipe 52 by the high-temperature heat storage oil pump 51. Excess oil heated in the three-way valve 49 is stored in a high-temperature oil heat storage tank 57 via a pipe 56.
  • Both the valve 58 at the bottom of the high-temperature oil heat storage tank 57 and the valve 55 at the bottom of the low-temperature oil heat storage tank 54 are normally open, and the oil flows downstream when necessary.
  • the oil whose temperature has decreased due to heat exchange in the oil / water heat exchanger 24 flows into the low-temperature oil heat storage tank 54 via the pipe 53, and is supplied again to the heat collecting pipe 41 by the oil pump 42 and heated.
  • FIG. 2 is a diagram showing the relationship between the atmospheric temperature and the power generation output in a conventional gas turbine system as a comparative example.
  • the gas turbine power generation output ratio at 35 ° C. is reduced by about 10% as an example in summer.
  • the compressor inlet temperature remains at atmospheric conditions, when the air temperature is high in summer, etc., the generation density that can be extracted to the outside along with the decrease in turbine output is reduced by the amount that the intake air flow rate is reduced because the air density decreases. Decrease.
  • the feature of this embodiment is that solar thermal energy is used to make the droplets finer. That is, as shown in the cross-sectional view of the compressor inlet portion of the solar-assisted gas turbine system in FIG. 3, the spray device in which the high-pressure hot water generated based on the heat of the oil heated by the heat collecting pipe 41 is provided in the intake duct 6.
  • the spray flow rate of the high-pressure hot water is 1% (mass flow rate ratio) of the flow rate of the compressor inlet air 5.
  • the high-pressure hot water of 5 MPa and 150 ° C. upstream of the spray nozzle 32 is decompressed to the atmospheric pressure immediately after being ejected from the spray nozzle 32, so that the air 5 is introduced into the airflow duct 6 inside the intake duct 6.
  • the liquid boiled under reduced pressure, and a part of the droplet 33 is vaporized, thereby absorbing heat (-Q) from the surrounding fluid.
  • the mixed fluid 34 of the air 5 whose temperature has been lowered ( ⁇ 15 ° C.) due to the vaporization of a part of the droplets of vaporized hot water and 35 ° C air and the unvaporized droplets 33 is introduced into the compressor 1. Is done. Further, the remaining droplets that have not been vaporized before being introduced into the compressor are all vaporized while flowing down in the compressor 1.
  • the mixed fluid 34 flows through the gap between the stationary blade 35 and the moving blade 36 of the compressor 1 and is guided to the combustor 3 as compressed air 7.
  • the upstream pressure of the spray nozzle 32 is set to a pressure equal to or higher than the operating pressure line, for example, so as to be equal to or higher than the saturation pressure with respect to the water temperature, and the high-pressure hot water state is maintained.
  • the heat collector 200 heats the pressurized water to a temperature higher than the boiling point at atmospheric pressure and lower than the boiling point under the increased pressure to generate high-pressure hot water for spraying. You can also.
  • the area of the sunlight collector plate 40 is compared with the case of obtaining the steam itself that requires the amount of heating up to the latent heat of evaporation. Only a fraction of the installation space is required.
  • the output of the gas turbine can be increased by the spray device 300 of the present embodiment.
  • the reason for this can be explained as follows from the increased output mechanism of the intake spray.
  • the characteristics of the spraying apparatus used in this embodiment are that droplets are sprayed on the gas supplied to the compressor, the temperature of the gas entering the compressor is lowered below the outside air temperature, and the gas is introduced into the compressor together with this gas and compressed. The sprayed droplets are vaporized while flowing down the machine. Thereby, with simple equipment suitable for practical use, it is possible to realize both improvement in output and improvement in thermal efficiency by spraying droplets into the intake air introduced into the inlet of the compressor.
  • Fig. 6 shows the temperature distribution of the compressed air in the compressor.
  • the air temperature T at the outlet of the compressor 1 is lower when 81 is sprayed with water and vaporized in the compressor 1 than when 80 is not mixed. Even in the compressor, it continuously decreases.
  • the increase output mechanism can be qualitatively arranged as follows. 1) Cooling of intake air on an iso-humid bulb temperature line in an intake chamber introduced into the compressor 1, 2) Cooling of internal gas by vaporization of droplets introduced into the compressor 1, and 3) Compressor 1 A difference in the amount of working fluid passing through the turbine 2 and the compressor 1 corresponding to the amount of vaporization in the interior, and 4) an increase in the low pressure specific heat of the air-fuel mixture due to the mixing of water vapor having a large constant pressure specific heat.
  • FIG. 10 shows a detailed structural diagram of a gas turbine equipped with the present invention.
  • the spray droplets ejected into the intake air by the spray nozzle 32 ride on the airflow and flow from the compressor inlet.
  • the average air flow velocity of the intake air flowing through the intake chamber is, for example, 10 m / s.
  • the droplet 33 moves between the blades of the compressor 1 along the streamline.
  • the intake air is heated by adiabatic compression, and the droplets are transported to the rear blade side while reducing the particle size while being vaporized from the surface.
  • the temperature of the air in the compressor is lower than when the present invention is not applied (see FIG. 6).
  • the droplets have a large particle size, they collide with the blades and casing of the compressor 1 and are vaporized by obtaining heat from the metal, which may hinder the effect of reducing the temperature of the working fluid. For this reason, from such a viewpoint, it is preferable that the droplet diameter is small.
  • the droplets to be sprayed are mainly made to have a particle size of 50 ⁇ m or less.
  • the maximum particle size is preferably 50 ⁇ m or less.
  • the Sauter mean particle size is set to 30 ⁇ m or less. It is preferable. Since the droplets ejected from the spray nozzle have a particle size distribution, it is not easy to measure at the maximum particle size. Therefore, in practice, those measured with the Sauter mean particle size (SMD) can be applied. Although it is preferable that the particle size is small, the spray nozzle for producing droplets with a small particle size requires high-precision manufacturing technology, so the lower limit that can be technically reduced is the practical range of the particle size. .
  • the main particle size, the maximum particle size, or the average particle size has a lower limit of 1 ⁇ m in terms of measurement accuracy.
  • the lower limit may be determined in consideration of the energy used for producing the droplet.
  • the surface of the contact surface is good if it is floated in the atmosphere and is not easily dropped.
  • the weight flow rate of the working fluid increases as the droplets vaporize.
  • the gas in the compressor 1 is further subjected to adiabatic compression.
  • the constant-pressure specific heat of water vapor has a value about twice that of air near the typical temperature (300 ° C.) in the compressor. Therefore, in terms of heat capacity, it is about twice the weight of water droplets to be vaporized in terms of air.
  • action which the air temperature of a compressor exit falls by vaporization of the water droplet in a compressor arises.
  • the power of the compressor is equal to the difference in the enthalpy of the air at the compressor inlet and outlet, and the air enthalpy is proportional to the temperature. Therefore, when the air temperature at the compressor outlet is lowered, the required power of the compressor can be reduced.
  • the working fluid (air) pressurized by the compressor is heated by combustion of fuel in the combustor and then flows into the turbine to perform expansion work.
  • This work called turbine axial power, is equal to the enthalpy difference of turbine inlet / outlet air.
  • the amount of fuel input is controlled so that the gas temperature at the turbine inlet does not exceed a predetermined temperature.
  • the turbine inlet temperature is calculated from the measured values of the exhaust gas temperature at the turbine outlet and the pressure Pcd at the compressor outlet, and the fuel flow rate to the combustor 3 is controlled so that the calculated value is equal to the value before application of this embodiment.
  • the amount of fuel input is increased by the amount that the gas temperature T2 'at the compressor outlet is lowered. Further, if the combustion temperature is unchanged and the weight ratio of the water spray is about several percent of the intake air, the pressure at the turbine inlet and the compressor outlet pressure do not change approximately before and after the spray, and therefore the gas temperature T4 at the turbine outlet. Will not change. Therefore, the shaft output of the turbine does not change before and after spraying. On the other hand, the net output of the gas turbine is obtained by subtracting the power of the compressor from the shaft output of the turbine. Therefore, by applying the present invention, the net output of the gas turbine is reduced as much as the power of the compressor is reduced. Can be increased.
  • the electrical output QE of the turbine 2 is obtained by subtracting the work Cp (T2-T1) of the compressor 1 from the shaft output Cp (T3-T4) of the turbine 2, and can be approximately expressed by the following equation.
  • the thermal energy Cp (T4-T1) (numerator of the second term of Equation 2) discarded outside the system from a heat engine called a gas turbine is not much different before and after the application of this embodiment, but is input.
  • the fuel energy Cp (T3-T2 ′) increases as Cp (T2-T2 ′), that is, as the compressor work decreases.
  • the decrease in the compressor work is equal to the increased output, so that the increased fuel contributes substantially to the increased output of the gas turbine. That is, the increased output has a thermal efficiency of 100%.
  • FIG. 9 shows the thermal cycle of this example compared with other thermal cycles.
  • the area of the closed region of the cycle diagram represents the gas turbine output per unit intake flow rate, that is, the specific output.
  • Each number in the figure indicates the working fluid at each location in the corresponding cycle diagram.
  • 1 is the compressor inlet
  • 1 "exits the intercooler and enters the second stage compressor
  • 2 is the Brayton cycle.
  • the combustor inlet 2 'exits the second stage compressor and enters the combustor inlet
  • 3 exits the combustor and the turbine inlet 4 represents the turbine outlet.
  • the temperature T-entropy S diagram in the lower column of FIG. 9 shows a comparison of characteristics when the values of the temperature T-entropy S at the positions 1, 3 and 4 in each cycle are fixed.
  • the magnitude of the specific output is obtained by spraying the above-mentioned fine water droplets in the intake chamber of the compressor and introducing the water droplets from the compressor inlet as in this embodiment, Japanese Patent Laid-Open No. 6-10702.
  • This is the order of the intermediate cooling cycle as disclosed in the Gazette and the normal Brayton cycle.
  • the difference from the intermediate cooling cycle is derived from the fact that the present invention continuously vaporizes water droplets introduced into the compressor from the compressor inlet, and appears in the shape of the cycle.
  • the thermal efficiency of the intermediate cooling cycle is inferior to that of the Brayton cycle, but as described above, the present example is superior to the Brayton cycle. Therefore, the present invention has a higher thermal efficiency than the intermediate cooling cycle.
  • the droplets ejected by the spray nozzle 32 have such a size that substantially the entire amount is vaporized up to the outlet of the compressor 1. Actually, it is lower than 100%, but it may be up to the upper limit that can be achieved by the above configuration. Practically, it is only necessary to vaporize 90% or more at the compressor outlet.
  • the outlet pressure Pcd of the compressor 1 is 0.84 MPa
  • the correlation between the absolute humidity at the outlet of the compressor 1 estimated from the outside air condition and the measured value of the absolute humidity at the EGV (Exit guide vane) position is considered.
  • the vaporization rate was calculated, the droplets were vaporized by 95% or more by the compressor outlet.
  • the Sauter mean particle size is preferably 30 ⁇ m or less.
  • the high-precision manufacturing technique is requested
  • the measurement accuracy is 1 ⁇ m.
  • the amount of droplets introduced can be adjusted by temperature and humidity, or the degree of output increase. In consideration of the amount of vaporized sprayed droplets from the spray location to the compressor inlet, 0.2 wt% or more of the intake weight flow rate can be introduced.
  • the upper limit is determined from the viewpoint of maintaining a satisfactory function of the compressor. For example, the upper limit can be 5 wt%, and the introduction range can be less than this.
  • Spray water consumption is the maximum amount of use when the output that has declined during summer high temperatures is restored to the rated value. Pressurized air consumption when supplying air at the time of spray generation cannot be ignored as power consumption, and is preferably less than the amount of water consumption as a guide. Therefore, if even the particle size condition is satisfied, it is more economical not to supply air to produce droplets of the above particle size.
  • This embodiment can provide a power plant that can suppress output fluctuations throughout the year by adjusting the spray flow rate according to the outside air temperature.
  • the opening degree of the control valve (not shown) is adjusted so that the spray flow rate increases when the temperature of the air introduced into the compressor is higher than when the air temperature is low.
  • the combustion shaft temperature can be lowered to reduce the turbine shaft output.
  • the fuel consumption can be saved by applying this embodiment during partial load operation.
  • the output can be adjusted according to the required load even in the range where the output is limited by the outside air temperature.
  • the gas in the compressor can be cooled. Therefore, when the compressor bleed air is used for cooling the blades of the gas turbine by utilizing this, the amount of bleed air for cooling can be reduced. In addition, since the amount of working fluid in the gas turbine can be increased in this way, high efficiency and increased output can be expected.
  • FIGS. 7 and 8 show the state change of the working fluid and the relationship between the intake air temperature and the intake weight flow rate in the process in which the outside air is guided to the compressor 1 and compressed.
  • FIG. 7 shows a state change when the outside air condition is 30 ° C. and 70% humidity (RH).
  • the outside air state is indicated by point A. Assuming that the state of the outside air is humidified and cooled along the iso-humidity bulb temperature line and reaches a saturated wet state before flowing into the compressor, the intake air moves to the state B at the inlet of the compressor 1.
  • the humidity of the gas introduced into the compressor 1 by spraying the droplets is preferably increased to about 90% or more from the viewpoint of increasing vaporization before introducing the compressor. From the viewpoint of further cooling the intake air, it is preferably 95% or more.
  • the droplets that have not been vaporized in the intake duct 6 are continuously vaporized in the compression process from B to C.
  • FIG. 11 shows the relationship between the amount of water spray and the rate of increase in gas turbine output.
  • FIG. 11A shows the change of the output relative value with respect to the intake air temperature
  • FIG. 11B shows the relationship between the spray amount and the increased output.
  • the calculation conditions are: outside air condition 35 ° C., 53% relative humidity, compressor airflow characteristics 417 kg / s, compressor polytropic efficiency 0.915, turbine heat insulation efficiency 0.89, combustion temperature 1290 ° C., compressor This is the value when the extraction amount is 20%, the discharge pressure is 1.48 MPa, and the vaporization paragraph pressure is 0.25 MPa.
  • When normal temperature water is sprayed 0.35% of the intake flow rate is vaporized in the intake chamber before flowing into the compressor. As a result, the intake air temperature is lowered and the air density is increased. As a result, the intake air weight flow rate of the compressor is increased by several percent, which contributes to the increased output of the gas turbine. The remainder of the spray water accompanies the air flow and is sucked into the compressor as droplets and vaporizes inside, thereby contributing to a reduction in the work of the compressor.
  • the thermal efficiency improvement rate when spraying 2.3% is 2.8% relative value.
  • the amount of water consumption required to recover the gas turbine output to the output during 5 ° C. base load operation is about 2.3 wt% of the intake weight flow rate.
  • the breakdown of the increased output when the operation for recovering the gas turbine output to the maximum value is performed is about 35% based on the cooling until entering the compressor 1, and based on the cooling due to the internal vaporization of the compressor. Based on approximately 37%, the difference in the amount of working fluid passing through the turbine and compressor, and the increase in low pressure specific heat due to the inclusion of water vapor was estimated to be approximately 28%.
  • FIG. 12 shows the relationship between the spray outlet temperature difference before and after spraying with respect to the spray amount. It can be seen that vaporization and cooling before entering the compressor 1 can be efficiently performed with a small flow rate. The ultimate humidity of the intake air flowing into the compressor 1 inlet was about 95%.
  • the solid line shows the two conditions that the absolute humidity of the outlet gas of the compressor 1 and the outlet gas enthalpy of the compressor 1 obtained on the assumption that all the droplets flowing into the compressor 1 are vaporized are equal to the values before spraying.
  • the difference between the outlet gas temperature of the compressor 1 calculated from the above and the temperature before spraying is shown. This line is for the case where there is no power reduction. However, the actual values indicated by white circles (with a broken line drawn for ease of understanding) exceed this, and power reduction is actually present. This is because the temperature drop due to vaporization is amplified in the compression process in the paragraph after the vaporization point.
  • the droplet introduced into the compressor 1 by the spray nozzle 32 has a larger vaporization amount on the front stage side than the vaporization amount on the rear stage side, and the droplet introduced into the compressor 1 is It is thought that it is effective in reducing power by mainly vaporizing on the front side.
  • the droplets are sprayed to such an extent that the temperature of the compressed air discharged from the compressor 1 is lowered by 5 ° C. or more from before the spraying. From the viewpoint of further increasing the output, the temperature is reduced to 25 ° C. or more.
  • the upper limit can be determined from a practical viewpoint. For example, it is appropriate to set it to 50 ° C. or lower.
  • the temperature of the spray water supplied to the spray device is set to be equal to or higher than the boiling point of water at the pressure of the air supplied to the compressor (atmospheric pressure), and the high-pressure hot water is atomized by boiling under reduced pressure.
  • the fine droplets generated thereby are sprayed on the intake air of the compressor.
  • pressure reduction to atmospheric pressure is performed by a spray nozzle, bubbles are generated by boiling under reduced pressure in the nozzle, and droplets are atomized. Since only the spray water is supplied to the spray nozzle, the structure is very simple and does not require pressurized air or the like. Therefore, the effect of reducing the compressor power is great, and the cycle efficiency can be increased.
  • the body area average droplet diameter d sprayed from a single nozzle having a diameter d N is expressed by the following equation 3 according to the jet velocity u, surface tension ⁇ , gas density ⁇ G , liquid viscosity coefficient ⁇ , and liquid density ⁇ L. It is expressed as
  • the controlling factors of the droplet diameter generated by spraying are the change in physical property value due to the change in fluid temperature and pressure, and the jet velocity u.
  • the surface tension ⁇ and the viscosity coefficient ⁇ L decrease, and the droplet size obtained from Equation 3 decreases as a comprehensive result of changes in the physical properties of the water.
  • the jet velocity increases as the pressure difference between the pre-spray pressure and the spray environment increases, the droplet diameter decreases.
  • Patent Document 2 discloses an invention in which a spraying device using vacuum boiling is installed at the compressor inlet, regarding a gas turbine power generation system of the HAT cycle.
  • the heat source for spray water in Patent Document 2 is a device unique to the regeneration cycle existing in the regeneration cycle (a post-cooler at the outlet of the compressor, a humidifier for humidifying the compressed air, and heat for heating the humidifier humidified water). Exchange). That is, since the target cycle is a regeneration cycle and has a system configuration in which high-pressure hot water is generated in the cycle, the high-pressure hot water generated in the cycle can be used as spray water. Is.
  • both systems are based on the premise that the exhaust heat of the gas turbine is used as a heat source for generating steam.
  • the heat balance of the entire system is designed based on the amount of heat required for steam generation, so if the gas turbine exhaust heat is used to generate high-pressure hot water for intake spray, This may cause fluctuations in the heat balance and affect steam generation, which is the original purpose. For this reason, it is not preferable to use a system configuration that changes the heat balance of the gas turbine as a result of using the gas turbine exhaust heat. Therefore, when the gas turbine is applied to a solar heat utilization system, it is desirable to avoid a system configuration that causes fluctuations in the heat balance, and the gas turbine device itself also minimizes changes to the reference configuration.
  • the gas turbine apparatus can be kept to a minimum change with respect to the standard configuration when the gas turbine is applied to the solar thermal power generation system. That is, the only newly added device configuration is a spray device installed on the upstream side (inside the intake chamber or the intake duct) of the compressor. And also from the viewpoint of heat balance, the high-pressure hot water does not use the heat in the gas turbine cycle and can be generated regardless of the gas turbine device side, so that the heat balance does not fluctuate. .
  • This can be realized by adopting a system configuration using solar heat for intake of the compressor, which is located on the most upstream side on the gas turbine device side.
  • high-pressure hot water generated by solar heat is applied to a spraying device that sprays and cools droplets on the intake air of the compressor, and high-temperature water is used for atomization of sprayed droplets in the spraying device.
  • high-temperature water is used for atomization of sprayed droplets in the spraying device.
  • atomization of droplets is realized by boiling high-temperature water under reduced pressure as a principle.
  • the solar system can collect sensible heat (heat amount for changing the temperature without changing the state of the substance) for generating high-pressure hot water and Therefore, a large amount of energy as latent heat of evaporation, which is essential in conventional systems, can be made unnecessary. As a result, it is possible to significantly reduce the number of heat collecting apparatuses installed for collecting a large amount of energy and the site area for installing the heat collecting apparatus.
  • the installation area of the heat collecting device per generated output can be reduced to 1/10 or less of the conventional one.
  • the number of heat collecting devices that occupy most of the cost in the solar heat utilization system can be reduced, a significant cost reduction can be achieved.
  • the power generation output can be improved without increasing the CO 2 that is a greenhouse gas, and the environmental conservation aspect
  • a preferable power generation system can be provided.
  • no special spraying device is required for droplet miniaturization.
  • the spray device of the present embodiment uses the principle of boiling under reduced pressure to make droplets fine, and uses solar heat as its energy. Can be planned.
  • the droplets can be further refined by boiling under reduced pressure, the amount of drain discharge can be greatly reduced and the output can be improved efficiently.
  • FIG. 5 is characterized in that an oil / oil heat exchanger 65, an oil circulation pump 66, and an expansion tank 68 are provided in order to suppress fluctuations due to solar radiation changes in the first embodiment of FIG.
  • a first system that circulates the first heated medium raised in temperature by the heat collecting device; and a first heat exchanger that exchanges heat between the first heated medium and the second heated medium.
  • the system configuration different from FIG. 1 is as follows.
  • the heat collecting apparatus 201 includes a light collecting plate 40 that mainly collects sunlight, a heat collecting tube 41 that heats a medium to be heated by the sunlight collected and collected by the light collecting plate 40, and an oil / oil heat exchanger. 65, a high-temperature oil heat storage tank 57, and a low-temperature oil heat storage tank 54.
  • An oil circulation pump 66 that supplies oil to be heated is connected to the upstream side of the heat collection pipe 41 via a pipe 43, and the oil heated by the heat collection pipe 41 passes through the pipe 44 to be oil / oil heat. It is guided to the exchanger 65 and returns to the oil circulation pump 66 via the pipe 67.
  • An expansion tank 68 connected by a pipe 69 is provided in the middle of the pipe 67.
  • the heat of the high-temperature oil supplied from the pipe 44 in the oil circulation pump 66 is transferred to the oil supplied from the oil pump 42 through the pipe 70, and then via the pipe 71 and the three-way valve 45 through the pipe 46 and the pipe 47.
  • a pipe 48 is connected to the three-way valve 45, and is connected to a high-temperature oil heat storage tank 57 via a pipe 56 via a next three-way valve 49.
  • the three-way valve 49 is provided with a high-temperature heat storage oil pump 51 via a pipe 50.
  • a pipe 59 is connected to the pipe 50 through a valve 58 from the bottom of the high-temperature oil heat storage tank 57.
  • the outlet pipe 52 of the high-temperature heat storage oil pump 51 is led to the oil / water heat exchanger 24 and connected to the low-temperature oil heat storage tank 54 by the pipe 53. Furthermore, it connects to the piping 47 through the valve 55 from the bottom part of the low-temperature oil thermal storage tank 54.
  • the water in the water tank 20 is sent from the pipe 23 to the oil / water heat exchanger 24 by the water pump 22 via the pipe 21.
  • the water heated by the oil / water heat exchanger 24 is sprayed by a spraying device 300 which will be described later via a booster pump 26, a flow control valve 27, and a pipe 28 via an outlet pipe 25 of the oil / water heat exchanger 24. Connected to the mother pipe 31.
  • FIG. 1 shows a simple configuration in which oil heated by solar heat is transferred to water by an oil / water heat exchanger 24.
  • the flow rate is changed by the oil circulation pump 66 according to the solar heat collection state, and the temperature of the oil flowing through the outlet pipe 71 of the oil / oil heat exchanger 65 is changed. Maintain within a certain range.
  • the temperature of the oil flowing through the pipe 71 can be controlled even if the flow rate of the oil pump 42 is changed, the oil temperature is controlled by the most upstream solar heat collecting system so that the oil can be operated more than can be operated with the configuration of FIG. This means that the means for controlling the temperature is increased.
  • Excess heat is stored in the high-temperature oil heat storage tank 57 in the same manner as in FIG. 1 and is supplied to the oil / water heat exchanger 24 as needed, such as during cloudy weather, to stabilize the water temperature of the pipe 25.
  • the intake air cooling of the compressor 1 can be performed stably.
  • the present embodiment in addition to the effects in the first embodiment, it is possible to stably suppress the output decrease in the summer in the gas turbine power generation system without being affected by the change in weather, and the use of solar energy. By improving the rate, there is an effect that can contribute to the reduction of CO 2 that is a greenhouse gas.

Abstract

 本発明の目的は、集熱装置の数を大幅に低減するとともに、集熱装置の設置に要する敷地面積を縮小化した太陽熱アシストガスタービンシステムを提供することにある。 本発明は、空気を圧縮する圧縮機1と、該圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器3と、該燃焼器で発生した燃焼ガスによって駆動されるタービン2により構成されるガスタービン装置100と、太陽熱を集熱して高圧温水を生成する集熱装置200と、昇温後の前記被加熱媒体を蓄える蓄熱槽57と、前記被加熱媒体と水とを熱交換して温水を生成する熱交換器24と、該熱交換器で生成された温水を前記圧縮機に取り込まれる空気に噴霧する噴霧装置300を設けたことを特徴とする。

Description

太陽熱アシストガスタービンシステム
 本発明は、太陽熱エネルギーをガスタービンに利用した太陽熱アシストガスタービンシステムに関する。
 近年、地球温暖化物質の一つである二酸化炭素(CO2)の排出量をできる限り抑制することが求められている。このような動向の中、再生可能エネルギーを利用した発電システムが注目されている。再生可能エネルギーの代表例としては、水力,風力,地熱,太陽(光/熱)エネルギー等が存在するが、これらの中でも特に太陽熱を利用した発電システムに関する技術開発が活発化している。太陽熱利用発電システムは、集熱器で集熱して発生させた蒸気により蒸気タービンを駆動する方式が一般的である。この種の従来技術としては、例えば特許文献1に記載のものがある。
 一方、天然ガスや石油などの化石資源を燃料とするシステムとして、ガスタービンシステムが存在する。なお、ガスタービンシステムでは、夏場など大気温度が上昇する条件では圧縮機における空気の吸気量が減少し、それに伴って発電出力も低下することが知られている。大気温度の上昇に伴う出力低下を抑制する手段の一つとして、例えば特許文献2の技術がある。具体的には、再生サイクルの一種であるHAT(Humid Air Turbine)サイクルのガスタービン発電システムに関し、当該サイクル内(再生サイクル特有の機器である圧縮機出口の後置冷却器,圧縮空気を加湿する加湿器,加湿器加湿水を加熱する熱交換器等)で生成された高圧高温水を、圧縮機入口に設置した噴霧装置にて減圧沸騰を利用して噴霧する技術が開示されている。
特開2008-39367号公報 特開2001-214757号公報
 ところで、前述の太陽熱利用発電システムでは、蒸気の熱源である太陽熱を集熱するための集熱装置が必要となる。集熱方式としては、曲面鏡の前に設置した集熱管に太陽光を集光させて集熱するトラフ型、ヘリオスタットと呼ばれる複数の平面鏡で反射させた太陽光をタワーに集光させるタワー型、といった種々の方式が存在する。しかしながら、集熱方式を問わず、蒸気タービンを高効率化(高温化),高出力化するためには膨大な集熱装置(反射鏡)が必要となる。これはすなわち、集熱装置を設置するための広大な敷地が必要であることを意味する。例えば、出力50MWの発電設備の場合、集熱装置の設置面積として1.2平方キロメートルが必要と言われている。
 一方、太陽熱利用発電システムをコストの点から着目すると、設置される集熱装置の数は膨大であるが故、システム全体を占める集光,集熱装置の割合は80%程度となっているのが現状である。このため、コスト低減を図るには集熱装置の数を大幅に削減する必要があるが、集熱装置の設置数の削減は太陽熱利用発電システムにおける高効率化,高出力化の目的とは相反する課題となっていた。
 本発明の目的は、集熱装置の数を大幅に低減するとともに、集熱装置の設置に要する敷地面積を縮小化した太陽熱アシストガスタービンシステムを提供することにある。
 上記目的を達成するために、本発明の太陽熱アシストガスタービンシステムは、空気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生した燃焼ガスによって駆動されるタービンにより構成されるガスタービンと、太陽熱を集熱して被加熱媒体を昇温させる集熱装置と、昇温後の前記被加熱媒体を蓄える蓄熱槽と、前記被加熱媒体と水とを熱交換して温水を生成する熱交換器と、該熱交換器で生成された温水を前記圧縮機に取り込まれる空気に噴霧する噴霧装置を設けたことを特徴とする。
 本発明によれば、集熱装置の数を大幅に低減するとともに、集熱装置の設置に要する敷地面積を縮小化した太陽熱アシストガスタービンシステムを提供することが可能となる。
太陽熱アシストガスタービンシステムの構成図である(実施例1)。 従来型ガスタービン発電システムの大気温度-発電出力特性図である。 太陽熱アシストガスタービンシステムの圧縮機入口吸気冷却の説明図である。 水温と飽和圧力、運用圧力例の関係図である。 太陽熱アシストガスタービンシステムの構成図である(実施例2)。 圧縮機内の圧縮空気の温度分布を示す図である。 圧縮過程における空気温度と絶対湿度の関係を示す図である。 吸気温度と吸気重量流量の関係を示す図である。 熱サイクルの比較図である。 ガスタービンの詳細構造図である。 水滴噴霧量とガスタービン出力の増加率との関係図である。 噴霧前後の圧縮機出口温度差の概略図である。
 先ず、本発明者等による本発明に至るまでの検討の経緯、並びに本発明の基本的思想について説明する。
 本発明者等は、集熱装置の数並びに敷地面積の低減を検討するに際して、太陽熱の集熱装置のみならず、太陽熱の利用機器(発電装置)側も含めたシステム全体について総合的な検討を行った。先ず、検討の基礎となる一般的な集熱装置を熱源とする蒸気タービン方式では、駆動用蒸気の熱源として数百℃(例えば300℃程度)の蒸気を発生させる必要がある。ここで、水の蒸発過程に着目すると、水を蒸気に状態変化させる際には、蒸発潜熱(気化潜熱,気化熱とも言う)として大量の熱量が必要となる。たとえば、300℃蒸気における保有熱量の内訳は、常温15℃から100℃までの顕熱,100℃時の蒸発潜熱,100℃蒸気から300℃までの蒸気の顕熱の三者の熱量比率は、1.3%:83.8%:14.9%というように、蒸発潜熱が全体の80%以上を占める。よって、蒸気タービン方式では、その原理上、蒸気が必要であり、且つ、蒸気を発生させるための蒸発潜熱として大量のエネルギーが必要となる構成と言える。実際、蒸気タービン方式においては、集熱装置で収集した熱量全体の70~80%を蒸発潜熱として消費している計算となる。これが、集熱装置の数、並びに集熱装置の設置に必要とする敷地面積が膨大となる要因である。
 そこで、本発明者等は、太陽が有する熱エネルギーは有効利用すると共に、従来の太陽熱利用発電システムにおいて課題となっていた蓄熱装置の数並びに設置面積を大幅に低減するものとして、以下の発明を行った。すなわち、蒸気タービン方式では蒸気発生のために大量のエネルギー(蒸発潜熱)が必要であるとの知見に基づき、太陽熱で蒸気を発生させるシステムではなく、集熱装置では蒸発潜熱を必要としない高圧温水(例えば150~200℃)の生成に留め、これを有効利用することが可能な技術との観点で種々検討した。その結果、従来の太陽熱利用発電システムよりも低温であり、且つ液相状態である高圧温水でも有効利用が可能なシステムとして、ガスタービンシステムへの適用が可能であるとの結論に至ったものである。
 具体的には、太陽熱で生成した高圧温水を、ガスタービンの吸気を冷却する噴霧装置の噴霧水に適用するとともに、噴霧装置における液滴の微細化に高圧温水として蓄熱された太陽エネルギーを利用するように構成したものである。特に、噴霧液滴の微細化には、その原理として高圧温水を減圧沸騰させることにより実現するものである。
 上記の方式により、本発明では、太陽熱は高圧温水を生成するための顕熱(物質の状態を変化させずに温度を変化させるための熱量)分を集熱すれば済む太陽熱利用システムとなるため、従来システムで必須であった、蒸発潜熱としての大量のエネルギーを不用とすることができる。この結果、大量のエネルギーを集熱するために設置していた集熱装置の数、並びに集熱装置の設置のための敷地面積を大幅に低減することが可能となる。
 次に、本発明において太陽熱エネルギーを適用する太陽熱アシストガスタービンシステムについて説明する。
 ガスタービンシステムの基本的な構成要素は、空気を圧縮する圧縮機と、この圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、当該燃焼器で生成した燃焼ガスによって駆動されるタービンとなる。通常、ガスタービンには負荷機器として被駆動機器が接続される。特に、ガスタービン発電システムの場合には、上述した構成要件に対して、上記タービンの回転によって駆動される発電機が加えられることになる。以下では、太陽熱アシスト発電システムとして、ガスタービン発電システムを代表例として説明するが、発電機以外の被駆動機器(ポンプ,圧縮機等)を駆動するガスタービンシステムに適用することも可能である。
 先ず、以後詳述する本発明の実施の形態に共通する基本概念について説明する。 
 空気を圧縮する圧縮機において、空気を吸い込む吸気ダクト内部もしくは吸気ダクトの上流側にて空気温度を大気温度以下に下げるため、圧縮機入口空気に高圧温水を噴霧し混入する。ここで、高圧温水は集熱装置の集熱管内の水を太陽熱で加熱して生成し、圧縮機上流部へ供給する構成である。一般に常温の水噴霧でも圧縮機入口空気温度を低下できることが知られているが、回転機である圧縮機内部では、水滴などを形成させず、速やかに噴霧水を気化させることが吸気性能および機器信頼性(回転機バランス)の観点から望ましい。その観点から本実施例では、圧縮機入口空気温度を下げる目的とは一見逆方向となる温水を噴霧することを特徴としている。すなわち、高圧温水の有する熱量の約70~80%が気化潜熱であることを利用して、高圧状態(集熱管内部および噴霧ノズル内部)から大気圧状態(圧縮機入口部)へと急激に減圧させて温水を減圧沸騰させる。この場合、常温水では気化潜熱による吸熱作用で氷点下となり圧縮機入口部で氷結し易い上に、噴霧後の粒径が小さくなりにくく、圧縮機内部での速やかな気化が望めない状態が生じ得る。そこで本実施例のように、減圧沸騰時に微粒化が促進するように高圧温水として噴霧する形態を取っている。本実施例は、高圧温水の生成に太陽熱を利用しているので、新たな化石燃料を使わず、地球温暖化の一因となっているCO2の増加を抑制できる効果がある。
 以下、本発明を実施するための形態について、図面を用いて詳細に説明する。
 本発明の実施例1を図1により説明する。図1は、ガスタービン発電システムに太陽熱を利用した温水の噴霧装置を設けた太陽熱アシストガスタービン発電システムの構成図である。
 図1において、本実施例の太陽熱アシストガスタービン発電システムは、大別して、ガスタービン装置100、太陽熱を集熱して被加熱媒体である油を昇温する集熱装置200、集熱装置200で昇温した油から高圧温水を生成し吸気に噴霧する噴霧装置300によって構成される。
 ガスタービン装置100は、圧縮機1の上流側には吸気ダクト6が設けられている。なお、吸気ダクト6の上流側には空気を取り込む吸気室(図示せず)が設けられる場合もある。大気条件の空気5は、吸気ダクト6を通して圧縮機1に導かれる。圧縮機1で加圧された圧縮空気7は燃焼器3へ流入する。燃焼器3では圧縮空気7と燃料8が燃焼し、高温の燃焼ガス9が発生する。燃焼ガス9はタービン2へ流入し、タービン2と軸11を介して発電機4を回転させ、その駆動により発電する。タービン2を駆動した燃焼ガス9は、燃焼排ガス10としてタービン2より排出される。
 集熱装置200は、主に太陽光を集光する集光板40と、集光板40で集光及び集熱された太陽光によって被加熱媒体を加熱する集熱管41により構成される(集熱装置200は、狭義には集光板40及び集熱管41の集合体であるが、以下では適宜、これら集合体に接続された系統や機器を含めて集熱装置と称するものとする)。なお、集熱管41の上流には、被加熱媒体である油を供給する油ポンプ42が配管43を経由して接続され、集熱管41で加熱された油は配管44を通り三方弁45を介して配管46および配管47により油ポンプ42に戻る。さらに三方弁45もう一方の出口側は配管48を介して、次の三方弁49に接続される。三方弁49の一方は、配管56を経由して高温油蓄熱槽57に接続される。加えて三方弁49の他方側は配管50を経由して高温蓄熱油ポンプ51が設けられている。この配管50には高温油蓄熱槽57の底部より弁58を介して配管59が接続されている。高温蓄熱油ポンプ51の出口配管52は油/水熱交換器24に導かれ、配管53により低温油蓄熱槽54へ接続されている。さらに低温油蓄熱槽54の底部より弁55を介して配管47に接続される。一方、水タンク20の水は、配管21を経由して水ポンプ22によって配管23から油/水熱交換器24へ送水される。油/水熱交換器24で加熱された水は、油/水熱交換器24の出口配管25を経由して昇圧ポンプ26および流量調整弁27,配管28を介して後述する噴霧装置300の噴霧母管31に接続される。
 噴霧装置300は、圧縮機1の上流側に位置する吸気ダクト6の内部に設置された噴霧母管31と、噴霧母管31に接続された複数の噴霧ノズル32により構成される。噴霧母管31は前述した給水管30と接続され、集熱装置200から高圧温水が供給される。なお、図1では噴霧装置300の噴霧ノズル32を吸気ダクト6内に配置した例を図示したが、図示しない吸気室に設置することも可能である。吸気室にサイレンサを配置している場合は、サイレンサの下流側に位置するようにすることが望ましい。また、スクリーン等が配置されている場合は、スクリーンの下流側に噴霧ノズル32を設置することが、噴霧液滴のスクリーンへの付着の観点から望ましい。
 上記のように構成された本実施例の構成において、集熱管41には集光板40によって集光された太陽光が照射され、その太陽光照射によって集熱管41内に供給された油が加熱される。この油を加熱媒体として、油/水熱交換器24で水を加熱する。油/水熱交換器24で加熱された水は、昇圧ポンプ26で高圧温水として配管28に圧送される。配管28の下流は吸気ダクト6の内部に設置された噴霧母管31に接続されており、さらに噴霧母管31には複数の噴霧ノズル32が設けられている。配管28に通水された高圧温水は噴霧母管31を経由し噴霧ノズル32から吸気ダクト6内部に噴霧される(図1の吸気ダクト6は、噴霧ノズル32の状況を表すため、部分断面図で示してある。)。
(動作・作用・効果)
 次に、図1の実施例の動作を説明する。 
 本実施例では、油ポンプ42によって集熱管41内部に被加熱媒体である油を供給し、その油の熱を油/水熱交換器24を介して水ポンプ22によって送水した水に授熱し適正温度に昇温したのち、昇圧ポンプ26で噴霧に適した圧力に高めると共に、流量調整弁27で水量を制御することにより、噴霧に適した水圧と水温および水量を適正範囲に保ち、吸気ダクト6内部の噴霧母管31に送る。吸気ダクト6内部で噴霧ノズル32から噴霧した高圧温水の減圧沸騰効果によって空気5が冷却されて圧縮機1の吸気流量が増加すると共にガスタービン2の出力が増大する。なお、油の集熱過程で余分に加熱された油は高温油蓄熱槽57に蓄えられて、曇天のような集熱が不十分な時間帯を補うために使用される。なお、三方弁45は配管44内の油温に応じて開閉する。すなわち、配管44内の油温が所定温度以下の場合、三方弁45は油/水熱交換器24側に接続される配管48側を閉止し、集熱管41側への戻り系統となる配管46のみを開として、配管44内の油温が上昇するまで集熱管41内の油を循環させる。その後、配管44内の油温が所定温度以上となった場合、三方弁45は配管48側を開とし、配管46側を閉止する。さらに、三方弁49は通常、油/水熱交換器24側に接続する配管50と高温油蓄熱槽57側に接続する配管56の両方が開いており、油/水熱交換器24に必要となる油量が高温蓄熱油ポンプ51によって配管52に送油される。三方弁49において昇温された余剰な油は配管56を経由して高温油蓄熱槽57に蓄えられる。高温油蓄熱槽57の底部にある弁58および低温油蓄熱槽54の底部にある弁55は、いずれも通常は開の状態にあり、必要に乗じて下流に油が流れる。油/水熱交換器24で熱交換し温度が低下した油は、配管53を経由して低温油蓄熱槽54に流入し、油ポンプ42によって再度集熱管41に供給され昇温される。
 本実施例では、水圧5MPa,水温150℃での運用を例に取り説明する。 
 図2は、比較例として従来型ガスタービンシステムにおける大気温度と発電出力の関係を示した図である。たとえば、ガスタービン圧縮機入口の大気温度15℃を基準に考えると、夏場の例として35℃時のガスタービン発電出力比率は約10%低下することになる。このように圧縮機入口温度が大気条件のままであれば、夏場などの気温が高い場合、空気密度が低下するため吸入空気流量が減少した分だけ、タービン出力の低下と共に外部に取り出せる発電出力が減少する。
 そこで上記のような大気温度の上昇による発電出力低下を抑制するため、圧縮機入口の空気温度を低下させる手段として、温水が気化する際に周囲から熱を奪う蒸発潜熱を利用すると共に、その噴霧液滴の微細化に太陽熱エネルギーを利用したのが本実施例の特徴である。すなわち、図3の太陽熱アシストガスタービンシステムの圧縮機入口部の断面図に示すように、集熱管41で加熱した油の熱を元に生成させた高圧温水を吸気ダクト6内に設けた噴霧装置300の噴霧母管31に導き、噴霧母管31に複数個設置した噴霧ノズル32より吸気ダクト6内で噴霧させる。たとえば、高圧温水の噴霧流量は、圧縮機入口空気5の流量の1%(質量流量比)である。このとき、噴霧ノズル32の上流で5MPa,150℃の高圧温水は、噴霧ノズル32から噴出した直後に大気圧下に減圧されるため、吸気ダクト6内部に導入している空気5の気流内にて減圧沸騰し、液滴33の一部が気化することにより周囲の流体より吸熱(-Q)する。そして、35℃の空気5と温水が気化した液滴の一部の気化により温度が低下(-15℃)した空気5と、未気化の液滴33の混合流体34は圧縮機1内に導入される。また、圧縮機に導入されるまでの間に気化しなかった残りの液滴は、圧縮機1の内部を流下中に全て気化する。この混合流体34は圧縮機1の静翼35と動翼36の間隙を流れ圧縮空気7として燃焼器3へ導かれる。なお、噴霧ノズル32の上流圧力は、図4に示したように、水温に対して飽和圧力以上になるように、たとえば運用圧力線以上の圧力に設定され、高圧温水の状態が維持される。なお、集熱装置200は昇圧された水の温度を大気圧における沸点より高く、且つ昇圧された圧力下における沸点より低い温度まで加熱して、噴霧用の高圧温水を生成するものと説明することもできる。
 そして、この高圧温水を得るための加熱量は水の顕熱分であるので、太陽光の集光板40の面積は、蒸発潜熱までの加熱量を必要とする蒸気そのものを得る場合に比較して数分の一の設置スペースで済む。
 本実施例の噴霧装置300により、ガスタービンの出力を増加することができる。この理由は、吸気噴霧の増出力メカニズムから以下のように説明することができる。
 1)吸気が圧縮機に流入するまでの間に冷却されて密度が大きくなり、圧縮機に流入する空気の重量流量が増え、タービン出力が増加する効果。 
 2)圧縮機内で液滴が蒸発する際に蒸発潜熱を周囲の気体から奪い、圧縮され温度が上昇する空気の温度上昇が抑えられることにより圧縮機の圧縮仕事が低減する効果。 
 3)液滴蒸発量相当分だけタービン側で流量が増え、タービン出力が増加する効果。 
 4)空気に比べ比熱が大きな水蒸気が混入されたことにより混合気体の比熱が大きくなり圧縮された混合気体がタービンで膨張する際に取り出せる仕事が増大する効果。
(吸気噴霧冷却による出力低下の抑制の原理)
 次に、微細液滴の噴霧により出力低下を抑制することの原理について詳細に説明する。
 本実施例において用いる噴霧装置の特徴は、圧縮機に供給される気体に液滴を噴霧し、圧縮機に入る気体の温度を外気温度より低下させて、この気体と共に圧縮機内に導入され、圧縮機内を流下中に前記噴霧された液滴が気化するものである。これにより、実用に適する簡単な設備によって、圧縮機の入口に導入される吸気中に液滴を噴霧して出力の向上と熱効率の向上の双方を実現できる。
 これにより、実用に適する簡単な設備によって微細液滴を圧縮機吸気に供給でき、圧縮機に供給する吸気気流に水滴を良好に乗せることができるので、効率良く液滴を含む気体を圧縮機入口から圧縮機内に搬送できる。さらに圧縮機内に導入された液滴は良好な状態で気化させることができる。これによりガスタービンの出力向上及び熱効率を向上できる。
 図6に圧縮機内の圧縮空気の温度分布を示す。圧縮機1出口の空気温度Tは、水噴霧し圧縮機1内で水滴気化させた場合81の方が、水滴を混入しない場合80よりも低下する。圧縮機内においても連続的に低下している。
 本実施例による増出力機構は定性的には、以下のように整理できる。 
 1)圧縮機1に導入される吸気室内での、等湿球温度線上での吸気の冷却、2)圧縮機1内に導入された液滴の気化による内部ガスの冷却、3)圧縮機1内での気化量に相当するタービン2と圧縮機1を通過する作動流体量の差、4)定圧比熱の大きい水蒸気の混入による混合気の低圧比熱の増大、等である。
 図10は、本発明を具備したガスタービンの詳細構造図を示す。噴霧ノズル32により吸気中に噴出された噴霧液滴は、気流に乗って圧縮機入口から流入する。吸気室を流れる吸気の平均空気流速は例えば10m/sである。液滴33は、流線に沿って圧縮機1の翼間を移動する。圧縮機内では断熱圧縮により吸気は加熱され、この熱で液滴は表面から気化しながら粒径を減少しつつ後段翼側へ輸送される。この過程で、気化に必要な気化潜熱は、圧縮機内の空気から賄われるために圧縮機内の空気の温度は本発明を適用しない場合よりも低下する(図6参照)。液滴は粒径が大きいと圧縮機1の翼やケーシングに衝突し、メタルから熱を得て気化することになるので作動流体の減温効果が阻害されるおそれがある。このため、このような観点からは、液滴の粒径は小さい方が好ましい。
 噴霧液滴には粒経の分布が存在する。圧縮機1の翼やケーシングに衝突することを抑制することや、翼のエロージョンを防止するという観点から、噴霧される液滴は主に50μm以下の粒径になるようにする。翼に作用する影響をより少なくする観点からは、最大粒径で50μm以下にすることが好ましい。
 更に、粒径が小さい方が流入空気中に液滴をより均一に分布させることができ、圧縮機内の温度分布が生じることを抑制する観点から、ザウター平均粒径(SMD)で30μm以下にすることが好ましい。噴霧ノズルから噴出される液滴は粒度の分布があることから前記最大粒径では計測が容易ではないので、実用上は前述のようにザウター平均粒径(SMD)で測定したものを適応できる。尚、粒径は小さい方が好ましいが、小さい粒径の液滴を作る噴霧ノズルは高精度な製作技術が要求されるので、技術的に小さくできる下限までが、前記粒径の実用範囲となる。よって、係る観点からは、例えば、前記主な粒径,最大粒径、或いは平均粒径は計測精度上それぞれ1μmが下限となる。又、細粒径の液滴になる程製造するためのエネルギーが大きくなることが多いので、液滴製造のための使用エネルギーを考慮して前記下限を定めてもよい。大気中に浮遊し落下し難い程度の大きさにすると、一般に、接触表面の状態も良い。
 液滴が気化することにより作動流体の重量流量が増加する。圧縮機内で気化が完了すると、圧縮機1内の気体はさらに断熱圧縮を受ける。その際水蒸気の定圧比熱は圧縮機内の代表的な温度(300℃)付近では、空気の約2倍の値を有するので、熱容量的には空気換算で、気化する水滴の重量の約2倍の空気が作動流体として増したのと等価な効果がある。すなわち圧縮機の出口空気温度T2′低下に効果(昇温仰制効果)がある。このようにして圧縮機内での水滴の気化により圧縮機出口の空気温度が低下する作用が生じる。圧縮機の動力は、圧縮機出入口の空気のエンタルピの差に等しく空気エンタルピは温度に比例するので、圧縮機出口の空気温度が下がると、圧縮機の所要動力を低減することができる。
 圧縮機で加圧された作動流体(空気)は、燃焼器で燃料の燃焼により昇温された後タービンに流入して膨張仕事を行う。この仕事はタービンの軸出力と呼ばれタービンの出入口空気のエンタルピ差に等しい。燃料の投入量は、タービン入口のガス温度が所定の温度を越えない様に制御される。例えば、タービン出口の排ガス温度と圧縮機出口の圧力Pcdの実測値からタービン入口温度が計算され、計算値が本実施例適用前の値と等しくなる様に燃焼器3への燃料流量が制御される。このような燃焼温度一定制御が行われると、先に述べた様に、圧縮機出口のガス温度T2′が低下している分だけ燃料投入量が増すことになる。また、燃焼温度が不変かつ水噴霧の重量割合が吸気の数パーセント程度であれば、タービン入口部の圧力と圧縮機出口圧力は噴霧の前後で近似的に変わらないので、タービン出口のガス温度T4も変化しない。よって、タービンの軸出力は噴霧の前後で変化しないことになる。一方、ガスタービンの正味出力は、タービンの軸出力から圧縮機の動力を差し引いたものであるから、結局、本発明を適用することで圧縮機の動力が低減した分だけガスタービンの正味出力を増すことができる。
 タービン2の電気出力QEは、タービン2の軸出力Cp(T3-T4)から圧縮機1の仕事Cp(T2-T1)を差し引いて得られ、近似的には次式で表わせる。
Figure JPOXMLDOC01-appb-M000001
 通常、燃焼温度T3は一定となるように運転されるので、ガスタービン出口温度T4は変化せず、タービンの軸出力Cp(T3-T4)も一定である。この時圧縮機出口温度T2が、水噴霧の混入によりT2′(<T2)に低下すると、圧縮機仕事の低下分に等価な増出力T2-T2′が得られることになる。一方、ガスタービンの効率ηは近似的に次式で与えられる。
Figure JPOXMLDOC01-appb-M000002
 この場合、T2′<T2であるから、右辺第2項は小さくなるので、水噴霧により効率も向上することがわかる。別な言い方をすると、ガスタービンという熱機関から系外に廃棄される熱エネルギーCp(T4-T1)(数2第2項の分子)は本実施例の適用前後で大差ない一方、投入される燃料エネルギーCp(T3-T2′)は本実施例の適用時は、Cp(T2-T2′)ほど、すなわち圧縮機仕事の低下分ほど増えている。一方、上述したように圧縮機仕事の低下分は増出力に等しいので、この燃料増加分は、実質全部ガスタービンの出力増加に寄与していることになる。即ち、増出力分は熱効率が100%となる。このため、ガスタービンの熱効率を向上できる。このように、本実施例では、吸気を冷却する従来技術では明示されていない圧縮機の仕事を低減すべく、水噴霧を圧縮機1の吸気に混入させて、トータルのガスタービンの出力アップを図ることができる。一方、燃焼器3入口に水を注入する従来技術は、作動流体を増加することで出力増を図るものであるが、圧縮機1の仕事は低減しないので、効率は逆に低下する。
 図9は、本実施例の熱サイクルを他の熱サイクルと比較して示したものである。サイクル図の閉領域の面積が、単位吸気流量あたりのガスタービン出力、すなわち比出力を表している。図の各番号は、対応するサイクル図の各々の場所の作動流体を示す。図9においては、1は圧縮機入口、1′は1段目の圧縮機を出てインタークーラへの入口、1″インタークーラを出て第2段目の圧縮機の入口、2はブレイトンサイクルにおける燃焼器入口、2′は2段目の圧縮機を出て燃焼器の入口、3は燃焼器を出てタービンの入口、4はタービン出口を表すものとする。
 図9下欄の温度T-エントロピS線図は、各サイクルの前記1,3及び4の位置の温度T-エントロピSの値を固定した場合の特性の比較を示す。
 図から明らかなように、比出力の大きさは、本実施例のように圧縮機の吸気室で前述の微細水滴を噴霧して圧縮機入口から水滴を導入させたもの、特開平6-10702号公報に開示のような中間冷却サイクル,通常のブレイトンサイクルの順である。特に、中間冷却サイクルとの相違は、本発明が、圧縮機内に導入された水滴が、圧縮機入口部から連続的に気化することに由来しており、サイクルの形状に現れている。
 中間冷却サイクルの熱効率は、ブレイトンサイクルに劣るのに対し、先に示したように本実施例はブレイトンサイクルに優るので、本発明は中間冷却サイクルよりも熱効率が高い。
 一般に、圧縮機1内での噴霧液滴の気化する位置が圧縮機1の入口に近いほど、圧縮機1出口の空気温度が下がり、出力増,効率向上の点から有利である。したがって、吸気である空気5に噴霧を混合する方法では、噴霧粒径は小さいほど効果的である。なぜなら、噴霧が圧縮機1流入後速やかに気化するからである。また、噴霧液滴が気中に浮遊し、吸気に同伴して圧縮機にスムーズに導入される。
 よって、噴霧ノズル32により噴出される液滴は、圧縮機1出口までに実質的全量が気化してしまう程度の大きさであることが好ましい。現実的には、100%より低いが前記構成によって達成できる上限まででよい。実用上は圧縮機出口で90%以上気化していればよい。
 例えば、圧縮機1の出口圧力Pcdが0.84MPaのとき、外気条件から推定した圧縮機1の出口の絶対湿度とEGV(Exit guide vane)位置での絶対湿度の測定値の相関を考慮して気化割合を算出すると、前記液滴は圧縮機出口までに95%以上気化していた。
 空気が圧縮機内を通過する時間はわずかであり、この間に液滴を良好に気化させ、気化効率を高める観点からは、ザウター平均粒径(SMD)で30μm以下が望ましい。
 尚、小さい粒径の液滴を作る噴霧ノズルは高精度な製作技術が要求されるので、技術的に小さくできる下限までが、前記粒径の下限となる。例えば、計測精度上から1μmである。
 液滴が大きすぎると、圧縮機で液滴の良好な気化をし難くなるからである。 
 液滴の導入量は温度及び湿度又は、出力増加の程度により調整することができる。噴霧した液滴が噴霧箇所から圧縮機入口までの間で気化する量を考慮して、吸気重量流量の0.2wt%以上導入することができる。上限は、圧縮機の機能を良好に維持できる程度にする観点から上限を定める。例えば、上限を5wt%とし、導入範囲をこれ以下にすることができる。
 夏期等や乾燥条件等を考慮して調整できるが、より出力増加等を図るために0.8wt%以上5wt%以下を導入することもできる。
 圧縮機入口に導入される空気温度を低下させるために単に導入空気に液滴(例えば、100~150μm等)を噴霧し、噴霧後水を回収し再度噴霧に利用するタイプの従来の液滴噴霧手段と比べ、本実施例では、少量の液滴を噴霧することで足りる。
 噴霧水の消費量は、夏期高温時に低下した出力を定格値まで回復する場合が最大使用量となる。噴霧生成の際に空気を供給する場合の加圧空気消費量は、消費動力として無視できず、目安として消費水量以下が望ましい。したがって、粒径条件さえ満足するなら前記粒径の液滴をつくるために給気のない方が経済的である。
 本実施例により、外気温に応じて噴霧流量を調節することにより、年間を通じて出力変動を抑制できる発電プラントを提供できる。例えば、圧縮機に導入される空気温度が低い時より高いときの方が噴霧流量を増加するよう調節弁(図示せず)の開度を調節する。
 また、等燃焼温度運転時に、前記液滴を供給するよう運転することが好ましい。これにより、効率を向上させると共に、出力を向上できる。
 また、発電を旨としないガスタービン,ガスタービンの駆動によるトルクを得るためのガスタービンにおいては、燃焼温度を下げてタービン軸出力を低下できる。特に、部分負荷運転時に本実施例を適応して、燃料を節約することができる。
 本実施例では、外気温から制約される出力以上の範囲においても、要求負荷に応じた出力調整ができる。
 又、燃焼温度を上昇させなくとも出力を向上できるので、寿命の長いガスタービンを提供することもできる。
 また、本実施例により、圧縮機内のガスを冷却できる。よって、これを活用してガスタービンの翼の冷却に圧縮機抽気を用いる場合は、冷却用の抽気量を低減できる。また、こうすることでガスタービン内の作動流体量をより多くできるので、高効率,増出力を期待できる。
 図7,図8は、外気が圧縮機1に導かれて圧縮される過程での作動流体の状態変化、並びに吸気温度と吸気重量流量との関係をそれぞれ示している。
 図7は、外気条件を30℃,70%湿度(R.H.)とした場合の状態変化を示している。
 外気状態は点Aで示されている。圧縮機に流入する前までに外気の状態が等湿球温度線に沿って加湿冷却され飽和湿り状態に至るとすると、圧縮機1入口では吸気が状態Bに移動する。前記液滴の噴霧によって圧縮機1内に導入する気体の湿度は、圧縮機導入前の気化を大きくする観点からは、90%以上程度に上昇することが好ましい。より吸気の冷却を図る観点からさらに95%以上にすることが好ましい。吸気ダクト6内で気化しなかった液滴はBからCの圧縮過程で連続気化する。気化の過程が飽和状態を保つと仮定すると状態Cで沸騰は完了し、CからDに至る過程では単層圧縮過程に入り昇温する。気化が等エントロピ変化と仮定すると沸騰終了点は状態C′の過飽和状態に至る。実際には、液滴からの気化速度は有限であるから状態変化は熱的に非平衡であり飽和線からずれて破線の軌跡を辿るものと考えられる。これに対し、通常の圧縮過程は状態がAからD′の軌跡を辿る。
 図7では、Aでの温度をT1としBでの温度をT1′とすると、温度がT1からT1′に低下することによる吸気流量増大は、図8に模式的に示してあるようにWからW′へ増加する。残りの液滴は、圧縮機1内に導入されて気化することにより圧縮機1の仕事低減に寄与する。
 図11は、水滴噴霧量とガスタービン出力の増加率との関係を示す。図11(a)は吸気温度に対する出力相対値の変化を示し、図11(b)は噴霧量と増出力との関係を示す。
 例えば、計算条件は、外気条件35℃,53%相対湿度,圧縮機風量特性を417kg/s,圧縮機ポリトロープ効率を0.915,タービン断熱効率を0.89,燃焼温度を1290℃,圧縮機抽気量を20%,吐出圧力を1.48MPa,気化段落圧力0.25MPaとしたときの値である。常温水を噴霧すると、吸気流量の0.35%は、圧縮機に流入する前に吸気室の中で気化している。このために、吸気温度が低下し空気の密度が高くなる結果、圧縮機の吸込空気重量流量は数%増し、ガスタービンの増出力に寄与する。噴霧水の残りは、気流に同伴して液滴のまま圧縮機に吸引され内部で気化して、圧縮機の仕事低減に寄与する。
 2.3%噴霧時の熱効率向上率は相対値で2.8%である。ガスタービン出力を5℃ベースロード運転時の出力まで回復するのに必要な消費水量は吸気重量流量の2.3wt%程度である。このようにガスタービン出力を最大値まで回復する運転を行った時の増出力の内訳は、圧縮機1に入るまでの冷却に基づくものは約35%、圧縮機内部気化による冷却に基づくものは約37%、タービンと圧縮機内を通過する作動流体量の差、および水蒸気を含むことによる低圧比熱の増大に基づくものは約28%と概算された。
 図のスケールに記載していないが、さらに噴霧水量を増加して、5wt%程度の噴霧流量で認可出力レベルまでの増出力が得ることもできる。噴霧量が増大する程、圧縮機1外の作用(冷却作用)より、圧縮機1内での水滴の気化作用が出力増加に大きく影響している。
 また、図12は噴霧量に対する噴霧前後の圧縮機出口温度差との関係を示す。圧縮機1に入る前での気化・冷却が小流量で効率良く行えることが分かる。圧縮機1入口に流入する吸気の到達湿度は約95%付近であった。実線は圧縮機1内に流入した液滴が全量気化したものと仮定して求めた圧縮機1の出口ガスの絶対湿度と圧縮機1の出口ガスエンタルピが噴霧前の値に等しいという2つの条件から算出した圧縮機1の出口ガス温度と噴霧前の温度との差を示している。この線は動力低減がないとした場合のものである。しかし、白丸(理解容易のため破線を引いた)で示した現実の値はこれを上回っており、動力低減が実在している。これは、気化による温度降下量が気化点以降の段落での圧縮過程で増幅することによる。
 このことからも、前記噴霧ノズル32により圧縮機1に導入された液滴は後段側での気化量より前段側での気化量を大きくすることが好ましく、圧縮機1に導入された液滴は前段側で主に気化させることにより、動力低減上有効であると考えられる。
 液滴は、圧縮機1から吐出される圧縮空気の温度を噴霧前より5℃以上低下させる程度噴霧する。より出力増加を図る観点からは、25℃以上低下させる程度にする。尚、上限は、実用的見地から定めることができる。例えば、50℃以下にすることが妥当である。
(減圧沸騰による液滴の微細化の原理)
 次に、減圧沸騰による噴霧液滴の微細化の原理について詳細に説明する。 
 以上では、圧縮機に流入する前の空気中に微細な液滴を噴霧し、圧縮機入口までに液滴の一部を蒸発させ、残りの液滴は圧縮機内で蒸発させる吸気噴霧装置について説明した。この噴霧装置によれば、圧縮機内で液滴が蒸発する際には周囲の気体から蒸発潜熱を奪い、圧縮されている空気の温度上昇を抑える効果がある。このため、吸気噴霧装置はHAT(Humid Air Turbine)サイクルにおける中間冷却器と同様な機能を有する機器と見なすことができる。ただし、圧縮機入口に液滴を噴霧する際には、噴霧した液滴が圧縮機の翼に損傷を与えないように、また、圧縮機の内部で完全に蒸発しきるように、噴霧する液滴径を十分に微粒化する必要がある。
 圧縮機に流入する前の空気(支燃焼ガス)中に液滴を噴霧するようにしたガスタービン設備では、前述したように液滴が蒸発する際、周囲の気体から蒸発潜熱を奪い、圧縮されている空気の温度上昇を抑える効果があり、圧縮に必要な動力が低減され、有効なものである。
 このような噴霧装置を設置する場合には、噴霧する液滴の粒径をより微粒化するとともに、噴霧する液滴の微粒化に必要な動力が小さく、構造が簡単な噴霧形態が望ましい。なお、微粒化の一例として、水を加圧空気とともに噴霧する方法がある。しかし、この噴霧方法の問題点は、加圧空気を供給するための動力が余分に必要となり、噴霧の効果による圧縮機動力の低減効果が小さくなってしまうと云うことである。
 そこで、本実施例においては、噴霧装置に供給される噴霧水の温度を、圧縮機に供給される空気の圧力(大気圧)における水の沸点以上とし、そしてこの高圧温水を減圧沸騰により微粒化させ、これにより生成した微細液滴を圧縮機の吸気に噴霧している。具体的には、例えば大気圧までの減圧を噴霧ノズルにより行い、ノズル内での減圧沸騰により気泡を発生させ液滴を微粒化する。噴霧水を噴霧ノズルに供給するだけであるので、構造は非常に簡単で、加圧空気等も必要としない。そのため、圧縮機動力の低減効果が大きく、サイクルの高効率化が達成できるという効果がある。
 上記のような噴霧方式であると、噴霧される液滴の微粒化が促進され、目標とする液滴径にするために必要な動力の低減が図れるのである。すなわち、直径dNの単一噴口ノズルから噴霧される体面積平均液滴径dは、噴流速度u,表面張力σ,気体密度ρG,液体粘性係数η,液体密度ρLにより次の式3のように表わされる。
Figure JPOXMLDOC01-appb-M000003
 この式より、ノズル径dNを一定とすれば、噴霧により生じる液滴径の支配因子は、流体の温度、圧力の変化による物性値の変化と、噴流速度uであることが分かる。噴霧する水の温度が高くなると、表面張力σ,粘性係数ηLは小さくなり、その水の物性値の変化の総合的な結果として式3から求められる液滴径は小さくなる。また、噴霧前の圧力と、噴霧環境との圧力差があるほど噴流速度が早くなるため、液滴径は小さくなる。
 以上のことから、温度および圧力の高い水を用いることにより、噴霧液滴の微粒化が促進されることがわかる。また、噴霧水温度が噴霧後の周囲の圧力における水の沸点よりも高い条件で噴霧される場合には、噴霧ノズル内およびノズル吐出直後の噴流内で気泡が発生する減圧沸騰を生じ、液滴はさらに微粒化される。液滴が微粒化されることにより、液滴の空気中への蒸発が速くなり、液滴の蒸発による冷却効果が短時間で得られるようになる。
 液滴蒸発の観点から見ると、一般に液滴の温度が高いほうが液滴の蒸発は早くなる。圧縮機内で液滴が蒸発する場合、圧縮機の入口に近い位置で蒸発するほど、蒸発に伴う冷却効果が後段にも反映され、動力低減効果が大きくなり、発電設備としての効率が向上する。
(本実施例の特徴)
 本実施例においては、噴霧水に利用する高圧温水の熱源として太陽熱エネルギーを利用するため、高圧温水の生成のために特別な熱源を必要としない。また、本実施例の噴霧装置は減圧沸騰により液滴を微細化するものであるため、微細液滴の生成のために特別な噴霧装置を必要としない。
 なお、前述した特許文献2には、HATサイクルのガスタービン発電システムに関し、減圧沸騰を利用した噴霧装置を圧縮機入口に設置した発明が開示されている。しかしながら、特許文献2における噴霧水の加熱源は、再生サイクル内に存在する再生サイクル特有の機器(圧縮機出口の後置冷却器,圧縮空気を加湿する加湿器,加湿器加湿水を加熱する熱交換器等)を用いるものである。すなわち、特許文献2は対象とするサイクルが再生サイクルであり、当該サイクル内で高圧温水が生成される系統構成を備えているため、当該サイクル内で生成される高圧温水を噴霧水としても利用できるものである。
 このような、元々、自身のサイクル内に高圧温水を生成させる機器を備えていないガスタービンサイクル(例えば、サイクル構成が圧縮機、燃焼器、タービンの3つの要素のみで構成されるシンプルサイクル)では、噴霧水とする高圧温水の熱源をタービン排ガスとする関係上、ガスタービン設備側に大幅な変更が要求される。具体的には、ガスタービン排ガスから排熱回収する熱交換器、これにより生成された高圧温水を噴霧装置に供給する給水系統等を追加する必要がある。
 また、電気と共に蒸気(熱)を発生させるコジェネシステム、並びにガスタービンと蒸気タービンを組み合わせたコンバインドサイクルでは、何れもガスタービンの排熱は蒸気発生の熱源とすることを前提としたシステムである。これらのシステムでは蒸気発生に必要とする熱量に基づいてシステム全体のヒートバランスが設計されるため、吸気噴霧用の高圧温水の生成のためにガスタービン排熱を利用してしまうと、システム全体のヒートバランスの変動を招き、本来の目的である蒸気の生成に影響を与えてしまう可能性がある。このため、ガスタービン排熱の利用により、結果としてガスタービンのヒートバランスに変動を与えてしまうシステム構成とすることは好ましくない。よって、ガスタービンを太陽熱利用システムに適用する際には、ヒートバランスに変動を生じさせるようなシステム構成は避けるとともに、ガスタービン装置自体もその基準構成に対する変更点を最小限とすることが望ましい。
 一方、本実施例においては、太陽熱エネルギーを高圧温水の熱源としているため、太陽熱利用発電システムにガスタービンを適用するに際して、ガスタービン装置は標準構成に対して最小限の変更に留めることができる。すなわち、新たに追加される機器構成としては、圧縮機の上流側(吸気室や吸気ダクト内)に設置される噴霧装置のみである。そして、ヒートバランスの観点からも、高圧温水はガスタービンサイクル内の熱を利用するものではなく、ガスタービン装置側とは無関係に生成することができるため、ヒートバランスに変動を生じさせることはない。このことは、ガスタービン装置側の最上流側に位置する、圧縮機の吸気に太陽熱を利用するシステム構成としたことにより実現が可能となるものである。
 上述のように、本実施例では、太陽熱で生成した高圧温水を圧縮機の吸気に液滴を噴霧して冷却する噴霧装置に適用するとともに、噴霧装置における噴霧液滴の微細化に高温水が持つエネルギーを利用するようにしている。特に、噴霧液滴の微細化には、その原理として高温水を減圧沸騰させることにより実現している。
 上記の方式により、本実施例によれば、太陽熱は高圧温水を生成するための顕熱(物質の状態を変化させずに温度を変化させるための熱量)分を集熱すれば済む発電システムとなるため、従来システムで必須であった、蒸発潜熱としての大量のエネルギーを不用とすることができる。この結果、大量のエネルギーを集熱するために設置していた集熱装置の数、並びに集熱装置の設置のための敷地面積を大幅に低減することが可能となる。
 具体的には、発生出力当りの集熱装置の設置面積を従来の1/10以下とすることができる。また、太陽熱利用システムにおけるコストの大半を占める集熱装置の数を低減できるため、大幅なコストの低減を図ることができる。
 また、本実施例によれば、圧縮機入口空気温度を低下させるエネルギーとして太陽熱を利用しているので、温室効果ガスであるCO2を増加させずに発電出力を向上でき、環境保全性の面で好ましい発電システムを提供できる。特に、液滴の微細化のために特別な噴霧装置を必要としない。また、本実施例の噴霧装置は減圧沸騰の原理を用いて液滴を微細化するものであり、そのエネルギーとして太陽熱を利用するものであるため、一般的な噴霧装置に対して動力の低減を図ることができる。更には、減圧沸騰により液滴をより微細化することができるため、ドレンの排出量を大きく低減するとともに、効率良く出力向上させることができる。
 さらに、余剰の太陽熱を蓄熱して熱量が不足する場合にその蓄熱を用いて温水を生成できるので、安定な温水温度と温水量を提供でき、ガスタービンの増出力効果を維持できる。
 次に、本発明の実施例2における構成を図5により説明する。 
 図5は、図1の実施例1における日射変化に対する変動を抑制するために、油/油熱交換器65と油循環ポンプ66および膨張タンク68を設けたことを特徴とする。また、集熱装置で昇温させた第1の被加熱媒体を循環させる第1の系統と、第1の被加熱媒体と第2の被加熱媒体とを熱交換させる第1の熱交換器と、第1の被加熱媒体と熱交換する第2の被加熱媒体を循環させる第2の系統と、第2の被加熱媒体と水とを熱交換させる第2の熱交換器とを備え、第2の熱交換器で生成された温水を噴霧装置に供給するように構成している。図1と異なるシステム構成は、以下の通りである。
 集熱装置201は、主に太陽光を集光する集光板40と、集光板40で集光及び集熱された太陽光によって被加熱媒体を加熱する集熱管41、および油/油熱交換器65,高温油蓄熱槽57,低温油蓄熱槽54から構成される。なお、集熱管41の上流には、被加熱媒体である油を供給する油循環ポンプ66が配管43を経由して接続され、集熱管41で加熱された油は配管44を通り油/油熱交換器65に導かれ配管67を経由して油循環ポンプ66に戻る。配管67の途中には配管69により接続された膨張タンク68が設けられている。油循環ポンプ66において配管44より供給された高温油の熱は、配管70を通して油ポンプ42で供給された油へ授受されたのち配管71を経由し三方弁45を介して配管46および配管47により油ポンプ42に戻る。さらに三方弁45には配管48が接続され、次の三方弁49を介して配管56を経由して高温油蓄熱槽57に接続される。加えて三方弁49には配管50を経由して高温蓄熱油ポンプ51が設けられている。この配管50には高温油蓄熱槽57の底部より弁58を介して配管59が接続されている。高温蓄熱油ポンプ51の出口配管52は油/水熱交換器24に導かれ、配管53により低温油蓄熱槽54へ接続されている。さらに低温油蓄熱槽54の底部より弁55を介して配管47に接続される。一方、水タンク20の水は、配管21を経由して水ポンプ22によって配管23から油/水熱交換器24へ送水される。油/水熱交換器24で加熱された水は、油/水熱交換器24の出口配管25を経由して昇圧ポンプ26および流量調整弁27,配管28を介して後述する噴霧装置300の噴霧母管31に接続される。
(動作・作用・効果)
 次に図5の実施例の動作を説明する。 
 日射条件が変動した場合は、集熱管41の温度が変動するため、最終的に配管25に流れる水温を変動させることになる。圧縮機1で吸い込む空気5の温度を安定的に低下させるためには、減圧沸騰効果を一定に維持するのが好ましい。それを実現するためにはできる限り配管25の水温変動を防止する必要があり、上流側の油の温度変動を抑制することが重要である。
 図1では太陽熱で昇温した油を、油/水熱交換器24で水に熱授受する簡便な構成であった。図5では油/油熱交換器65を設けることで、太陽熱の集熱状況に応じて油循環ポンプ66により流量を変えて、油/油熱交換器65の出口配管71を流れる油の温度を一定範囲に維持する。なお、油ポンプ42の流量を変えても配管71を流れる油の温度を制御できるが、最上流の太陽熱集熱系統にて油温度を制御することで、図1の構成で操作できる以上に油の温度を制御する手段が増したことになる。なお、余剰の熱は、図1と同様に高温油蓄熱槽57に蓄えておき、曇天時など必要に応じて油/水熱交換器24に供給し配管25の水温を安定化することで、圧縮機1の吸気冷却を安定して行える。
 本実施例によれば、実施例1における効果に加えて、ガスタービン発電システムにおける夏場の出力低下を、天候の変化による影響を受けることなく安定的に抑制することができる上、太陽エネルギーの利用率も向上することで、温室効果ガスであるCO2の削減に寄与できる効果がある。
 太陽熱アシストガスタービンシステムとして利用することができる。
1 圧縮機
2 タービン
3 燃焼器
4 発電機
5 空気
6 吸気ダクト
7 圧縮空気
8 燃料
9 燃焼ガス
10 燃焼排ガス
11 軸
20 水タンク
21,23,25,28,43,44,46,47,48,50,52,53,56,59,67,69,70,71 配管
22 水ポンプ
24 油/水熱交換器
26 昇圧ポンプ
27 流量調整弁
31 噴霧母管
32 噴霧ノズル
33 液滴
34 混合流体
35 静翼
36 動翼
40 集光板
41 集熱管
42 油ポンプ
45,49 三方弁
51 高温蓄熱油ポンプ
54 低温油蓄熱槽
55,58 弁
57 高温油蓄熱槽
65 油/油熱交換器
66 油循環ポンプ
68 膨張タンク
100 ガスタービン装置
200,201 集熱装置
300 噴霧装置

Claims (7)

  1.  空気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生した燃焼ガスによって駆動されるタービンにより構成されるガスタービンと、
     太陽熱を集熱して被加熱媒体を昇温させる集熱装置と、
     昇温後の前記被加熱媒体を蓄える蓄熱槽と、
     前記被加熱媒体と水とを熱交換して温水を生成する熱交換器と、
     該熱交換器で生成された温水を前記圧縮機に取り込まれる空気に噴霧する噴霧装置を設けたことを特徴とする太陽熱アシストガスタービンシステム。
  2.  前記太陽熱アシストガスタービンシステムは、該集熱装置で昇温させた第1の被加熱媒体を循環させる第1の系統と、前記第1の被加熱媒体と第2の被加熱媒体とを熱交換させる第1の熱交換器と、該第1の被加熱媒体と熱交換する第2の被加熱媒体を循環させる第2の系統と、前記第2の被加熱媒体と水とを熱交換させる第2の熱交換器とを備え、前記第2の熱交換器で生成された温水を前記噴霧装置に供給するように構成したことを特徴とする請求項1に記載の太陽熱アシストガスタービンシステム。
  3.  前記太陽熱アシストガスタービンシステムは、前記熱交換器で水との熱交換後の被加熱媒体を蓄える低温蓄熱槽を備えたことを特徴とする請求項1に記載の太陽熱アシストガスタービンシステム。
  4.  前記太陽熱アシストガスタービンシステムは、前記第1または第2の被加熱媒体を循環させる循環ポンプと、前記第1または第2の被加熱媒体の体積膨張を吸収する膨張タンクとを備えたことを特徴とする請求項2に記載の太陽熱アシストガスタービンシステム。
  5.  前記太陽熱アシストガスタービンシステムは、被加熱媒体として油を用いることを特徴とする請求項1または2に記載の太陽熱アシストガスタービンシステム。
  6.  前記太陽熱アシストガスタービンシステムは、前記集熱装置を経由した被加熱媒体を、前記集熱装置に再度循環させるルートと、前記熱交換器又は蓄熱槽に供給するルートに切替える三方弁を備えたことを特徴とする請求項1に記載の太陽熱アシストガスタービンシステム。
  7.  前記太陽熱アシストガスタービンシステムは、前記第1の熱交換器を経由した第2の被加熱媒体を、前記第1の熱交換器に再度循環させるルートと、前記第2の熱交換器又は蓄熱槽に供給するルートに切替える三方弁を備えたことを特徴とする請求項2に記載の太陽熱アシストガスタービンシステム。
PCT/JP2012/001260 2012-02-24 2012-02-24 太陽熱アシストガスタービンシステム WO2013124899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280070349.1A CN104220727A (zh) 2012-02-24 2012-02-24 太阳能辅助燃气轮机系统
PCT/JP2012/001260 WO2013124899A1 (ja) 2012-02-24 2012-02-24 太陽熱アシストガスタービンシステム
US14/380,232 US20150033760A1 (en) 2012-02-24 2012-02-24 Solar Assisted Gas Turbine System
EP12869565.7A EP2818665A4 (en) 2012-02-24 2012-02-24 GAS TURBINE SYSTEM ASSISTED BY SOLAR HEAT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001260 WO2013124899A1 (ja) 2012-02-24 2012-02-24 太陽熱アシストガスタービンシステム

Publications (1)

Publication Number Publication Date
WO2013124899A1 true WO2013124899A1 (ja) 2013-08-29

Family

ID=49005125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001260 WO2013124899A1 (ja) 2012-02-24 2012-02-24 太陽熱アシストガスタービンシステム

Country Status (4)

Country Link
US (1) US20150033760A1 (ja)
EP (1) EP2818665A4 (ja)
CN (1) CN104220727A (ja)
WO (1) WO2013124899A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156402A1 (ja) * 2014-04-11 2015-10-15 イビデン株式会社 太陽熱蓄熱システム
CN110173356A (zh) * 2019-06-10 2019-08-27 中节能城市节能研究院有限公司 一种基于制冷剂冷却的燃气轮机入口燃气压缩机组
US10876521B2 (en) 2012-03-21 2020-12-29 247Solar Inc. Multi-thermal storage unit systems, fluid flow control devices, and low pressure solar receivers for solar power systems, and related components and uses thereof
US11242843B2 (en) 2010-09-16 2022-02-08 247Solar Inc. Concentrated solar power generation using solar receivers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384939B2 (en) * 2014-04-21 2022-07-12 Southwest Research Institute Air-fuel micromix injector having multibank ports for adaptive cooling of high temperature combustor
CN105928204B (zh) * 2016-06-16 2019-03-12 碧海舟(北京)节能环保装备有限公司 太阳能光热转换式加热炉
US10494996B2 (en) * 2016-08-12 2019-12-03 Zhejiang University Device of high-temperature solar turbine power generation with thermal energy storage
JP6965221B2 (ja) * 2018-09-13 2021-11-10 三菱パワー株式会社 ガスタービンシステム
DE102020201068A1 (de) 2020-01-29 2021-07-29 Siemens Aktiengesellschaft Anlage mit thermischem Energiespeicher, Verfahren zum Betreiben und Verfahren zur Modifikation
WO2023184546A1 (zh) * 2022-04-02 2023-10-05 程玉明 一种储油和蓄能的装置及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
JPS58185911A (ja) * 1982-04-23 1983-10-29 Hitachi Ltd 動力発生装置
JPH0610702A (ja) 1992-03-16 1994-01-18 Asea Brown Boveri Ag コンプレッサーグループ
US6000211A (en) * 1997-06-18 1999-12-14 York Research Corporation Solar power enhanced combustion turbine power plant and methods
JP2001214757A (ja) 2000-01-27 2001-08-10 Hitachi Ltd ガスタービン設備
JP2007529664A (ja) * 2004-03-15 2007-10-25 オルハン ウストゥーン 電気エネルギーへの後続変換のための熱エネルギー蓄積装置
JP2008039367A (ja) 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd 太陽熱発電設備および熱媒体供給設備
JP2008121483A (ja) * 2006-11-10 2008-05-29 Kawasaki Heavy Ind Ltd 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法
JP2009041567A (ja) * 2007-08-07 2009-02-26 General Electric Co <Ge> ガスタービンのスプレー入口温度サプレッサ用の圧力を供給するための方法及び装置
JP2011214829A (ja) * 2011-07-22 2011-10-27 Kawasaki Heavy Ind Ltd 熱媒体の温度変動抑制装置、熱媒体供給設備および太陽熱発電設備
JP2011220329A (ja) * 2010-03-26 2011-11-04 Alstom Technology Ltd 太陽熱複合発電所を運転するための方法ならびにこの方法を実施するための太陽熱複合発電所

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2485169B1 (fr) * 1980-06-20 1986-01-03 Electricite De France Perfectionnements aux installations de fourniture d'eau chaude comprenant un circuit thermodynamique
JP2877098B2 (ja) * 1995-12-28 1999-03-31 株式会社日立製作所 ガスタービン,コンバインドサイクルプラント及び圧縮機
JP4285781B2 (ja) * 1997-04-22 2009-06-24 株式会社日立製作所 ガスタービン発電設備
US6256976B1 (en) * 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
NL1011383C2 (nl) * 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.
EP1820965A1 (de) * 2006-02-17 2007-08-22 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Regelung eines solaren Energieertrags in einem solarthermischen Kraftwerk
JP5022233B2 (ja) * 2006-06-16 2012-09-12 川崎重工業株式会社 太陽熱発電設備、熱媒体供給設備および温度変動抑制装置
US20080127647A1 (en) * 2006-09-15 2008-06-05 Skyfuel, Inc. Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
AU2009294230B2 (en) * 2008-09-17 2014-02-13 Siemens Concentrated Solar Power Ltd. Solar thermal power plant
CN101586879B (zh) * 2008-10-08 2011-04-20 中国华电工程(集团)有限公司 一种与燃气-蒸汽联合循环结合的太阳能热利用的系统
US8978386B2 (en) * 2010-09-30 2015-03-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine system, control device for gas turbine system, and control method for gas turbine system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146067A (en) * 1981-03-06 1982-09-09 Agency Of Ind Science & Technol Solar heat-utilizing power plant
JPS58185911A (ja) * 1982-04-23 1983-10-29 Hitachi Ltd 動力発生装置
JPH0610702A (ja) 1992-03-16 1994-01-18 Asea Brown Boveri Ag コンプレッサーグループ
US6000211A (en) * 1997-06-18 1999-12-14 York Research Corporation Solar power enhanced combustion turbine power plant and methods
JP2001214757A (ja) 2000-01-27 2001-08-10 Hitachi Ltd ガスタービン設備
JP2007529664A (ja) * 2004-03-15 2007-10-25 オルハン ウストゥーン 電気エネルギーへの後続変換のための熱エネルギー蓄積装置
JP2008039367A (ja) 2006-08-10 2008-02-21 Kawasaki Heavy Ind Ltd 太陽熱発電設備および熱媒体供給設備
JP2008121483A (ja) * 2006-11-10 2008-05-29 Kawasaki Heavy Ind Ltd 熱媒体供給設備および太陽熱複合発電設備なびにこれらの制御方法
JP2009041567A (ja) * 2007-08-07 2009-02-26 General Electric Co <Ge> ガスタービンのスプレー入口温度サプレッサ用の圧力を供給するための方法及び装置
JP2011220329A (ja) * 2010-03-26 2011-11-04 Alstom Technology Ltd 太陽熱複合発電所を運転するための方法ならびにこの方法を実施するための太陽熱複合発電所
JP2011214829A (ja) * 2011-07-22 2011-10-27 Kawasaki Heavy Ind Ltd 熱媒体の温度変動抑制装置、熱媒体供給設備および太陽熱発電設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818665A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242843B2 (en) 2010-09-16 2022-02-08 247Solar Inc. Concentrated solar power generation using solar receivers
US10876521B2 (en) 2012-03-21 2020-12-29 247Solar Inc. Multi-thermal storage unit systems, fluid flow control devices, and low pressure solar receivers for solar power systems, and related components and uses thereof
WO2015156402A1 (ja) * 2014-04-11 2015-10-15 イビデン株式会社 太陽熱蓄熱システム
CN110173356A (zh) * 2019-06-10 2019-08-27 中节能城市节能研究院有限公司 一种基于制冷剂冷却的燃气轮机入口燃气压缩机组

Also Published As

Publication number Publication date
EP2818665A1 (en) 2014-12-31
CN104220727A (zh) 2014-12-17
EP2818665A4 (en) 2016-03-23
US20150033760A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2013124899A1 (ja) 太陽熱アシストガスタービンシステム
JP5427953B2 (ja) 太陽熱利用ガスタービンシステム
JP2877098B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP4099944B2 (ja) ガスタービン発電設備及び空気増湿装置
JP4285781B2 (ja) ガスタービン発電設備
JP5399565B2 (ja) 太陽熱利用コンバインドサイクル発電プラント
JPH11324710A (ja) ガスタービン発電プラント
JP2007285298A (ja) ガスタービン吸気調整システム及び方法
US20130199202A1 (en) System and method for gas turbine inlet air heating
CN105019956A (zh) 一种燃气-蒸汽联合循环发电余热利用系统
JP2014047657A (ja) 湿分利用ガスタービンシステム
JP2001214757A (ja) ガスタービン設備
Kizilkan et al. Design a novel solar based system integrated with humidification-dehumidification unit and re-compression sCO2 cycle for sustainable development
JP5433590B2 (ja) ガスタービンシステム
JP5422747B2 (ja) 太陽熱利用コンバインドサイクルプラント
JP3937640B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP5422057B2 (ja) ガスタービンシステム及びその制御方法
JP2980095B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JPWO2013124899A1 (ja) 太陽熱アシストガスタービンシステム
JP4120699B2 (ja) ガスタービン発電設備及び空気増湿装置
JP5422746B2 (ja) 太陽熱利用ガスタービンプラント
JP3567090B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP4923010B2 (ja) 吸気に水を噴霧する圧縮機を有する設備
Momin et al. Enhancement of marib gas turbine power station using air cooling fogging system
JP2000282894A (ja) ガスタービンプラント及びその運転方法並びにその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500562

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012869565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14380232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE