WO1998039455A1 - NOVEL GENE, GROUP OF GENES, AND NOVEL β-GLUCLOSIDASE - Google Patents

NOVEL GENE, GROUP OF GENES, AND NOVEL β-GLUCLOSIDASE Download PDF

Info

Publication number
WO1998039455A1
WO1998039455A1 PCT/JP1997/003633 JP9703633W WO9839455A1 WO 1998039455 A1 WO1998039455 A1 WO 1998039455A1 JP 9703633 W JP9703633 W JP 9703633W WO 9839455 A1 WO9839455 A1 WO 9839455A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
protein
dna
amino acid
acid sequence
Prior art date
Application number
PCT/JP1997/003633
Other languages
English (en)
French (fr)
Inventor
Naoto Tonouchi
Naoki Tahara
Takahisa Hayashi
Takayasu Tsuchida
Hisato Yano
Fumihiro Yoshinaga
Original Assignee
Bio-Polymer Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio-Polymer Research Co., Ltd. filed Critical Bio-Polymer Research Co., Ltd.
Priority to US09/147,236 priority Critical patent/US6316251B1/en
Priority to KR1019980708516A priority patent/KR20000064999A/ko
Priority to JP53834998A priority patent/JP3921692B2/ja
Priority to EP97943167A priority patent/EP0916731A4/en
Publication of WO1998039455A1 publication Critical patent/WO1998039455A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1059Cellulose synthases (2.4.1.12; 2.4.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Definitions

  • the present invention relates to a gene encoding a cellulose synthase complex derived from a casepactor, xylinam, a subspecies, a chromosome, a gene encoding a cellulase, ⁇ -glucosidase (G3ase). ), A group of genes containing those genes, and a novel G-glucosidase (G3ase) itself.
  • the direct substrate is UDP-glucose, which is linked by a protein complex on the membrane called cellulose synthase and released as cellulose outside the cell. It is known to be done. It has been reported that this complex is composed of four proteins encoded by the cellulose synthase gene operator, and they are respectively named bcs A, B, C, and D (HC Wong et al., PNAS 8 Volume 7 8 13 0-8 13 4 pages (1990)). Of these, the bcs A, B, and C genes are known to be essential for cellulose synthesis because disruption of the genes results in the loss of cellulose synthesis ability.
  • CMCase cellulase gene
  • Another gene exist upstream of the cellulose synthase gene operation (R. Standal et al., Bacteriol. Volume 6 6 5 — 67 2 pages (1994)).
  • the present inventors conducted a study to obtain a new cellulase of the cellulose synthase complex derived from the genus Acetobacter.
  • Acetobacter-xylinum ⁇ Subspecies ⁇ Schlofermens Thus, the inventors succeeded in determining the nucleotide sequences of a series of genes including the novel cellulose synthase complex gene peron and cellulase gene.
  • Examination of the nucleotide sequence of the novel gene located downstream of the novel cellulose synthase complex gene op-open revealed that the sequence ⁇ region conserved by glucosidase from various organisms (Y. Kashiwagi et al. Ment Ferment. Bioeng. 7 8 39 4 _ 398 (1994)) was well preserved, and it was confirmed that this gene is a ⁇ -glucosidase gene.
  • the present invention provides a cellulose synthase complex derived from the casepactor ⁇ xylinum 'subspecies.
  • the present invention relates to a gene encoding a protein, particularly a gene encoding a protein consisting of the amino acid sequence shown in any one of SEQ ID NO: 2 to SEQ ID NO: 5.
  • the present invention also relates to an amino acid sequence represented by any one of SEQ ID NO: 2 to SEQ ID NO: 5, in which one or several amino acids are partially or partially altered by deletion, substitution, addition, or the like.
  • it relates to a gene encoding a protein having the activity of cellulose synthase.
  • the gene is not limited to the gene derived from Axactor 'Xylinum' subspecies.
  • SEQ ID NO: 1 includes the nucleotide sequences represented by bcsA, bcsB, bcsC, and bcsD. Furthermore, in consideration of the degeneracy of the genetic code, the base sequence or a part of the base sequence encoding the same amino acid sequence produced by chemical synthesis or genetic engineering techniques can be mentioned.
  • the present invention includes a gene comprising DNA which hybridizes with DNA comprising such a base sequence under stringent conditions and encodes a protein having a cellulose synthase activity.
  • the present invention relates to a gene encoding a cellulase derived from an acetate bacterium, xylinam's subspecies, or a schlofur mentans, particularly a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 6. Get involved.
  • the present invention also relates to a protein having a cellulase activity, which is a variant partially different from the amino acid sequence shown in SEQ ID NO: 6 due to deletion, substitution, or addition of one or several amino acids.
  • a protein having a cellulase activity which is a variant partially different from the amino acid sequence shown in SEQ ID NO: 6 due to deletion, substitution, or addition of one or several amino acids.
  • the gene is an A. pactor ⁇ xylinum ⁇ subspecies -It is not limited to the ones derived from the Shuklov amen.
  • nucleotide sequence of the DNA of the above gene As a specific example of the nucleotide sequence of the DNA of the above gene, the nucleotide sequence represented by CMCase in SEQ ID NO: 1 can be mentioned. Furthermore, a nucleotide sequence encoding the same amino acid sequence produced by chemical synthesis or genetic engineering technique in consideration of the degeneracy of the genetic code or a part thereof may be mentioned.
  • the present invention includes a gene comprising DNA which hybridizes with DNA comprising such a base sequence under stringent conditions and encodes a protein having cellulase activity.
  • the present invention also relates to a microorganism belonging to the genus Acetobacter, for example, A. bacterium xylinum ⁇ Subspecies ⁇ ⁇ -glucosidase (G3ase) derived from Skulov Armenus, In particular, it relates to a protein consisting of the amino acid sequence shown in SEQ ID NO: 7.
  • amino acid sequence of the above protein is not limited to the amino acid sequence shown in SEQ ID NO: 7, but one or several amino acids may be deleted or substituted in the amino acid sequence as long as it has ⁇ -glucosidase activity. Or, a variant partially different due to addition or the like is also included in the amino acid sequence.
  • the present invention also relates to the above-mentioned gene encoding glucosidase.
  • nucleotide sequence of D ⁇ ⁇ ⁇ of the gene As a specific example of the nucleotide sequence of D ⁇ ⁇ ⁇ of the gene, the nucleotide sequence represented by SEQ ID NO: U- ⁇ -glucosidase can be mentioned. Further, a base sequence encoding the same amino acid sequence or a part thereof which is prepared by chemical synthesis or genetic engineering technique in consideration of the degeneracy of a genetic code can also be mentioned.
  • a protein that hybridizes with DNA comprising such a base sequence under stringent conditions and has a glucosidase activity
  • the present invention also includes a gene consisting of a DNA encoding
  • BPR 201 strain as a representative example of the acetate packer in the present invention, xylinam, subspices, sucrose armenance, CAcetobacter rxyIinum subsp. Sue rofermenta ns
  • the bacterial cell was patented on February 24, 1993 at 1-3-1 Higashi, Tsukuba City, Ibaraki Prefecture, Japan (zip code: 2005) by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology. Deposited at the Microbial Depositary Center (Accession No. FERMP-1334666), and subsequently deposited on February 7, 1994 under the Budapest Treaty on the International Recognition of Deposited Microorganisms in Patent Procedures (Accession No. FERMBP—4545).
  • Acetobacter xylinum (Aceto ⁇ cter xy I inum) ATCC 236768, Acetobacter b. 3 7 6 9, Aspactor.
  • A. pasteurianus ATCC 1 0 2 4 5, Aspactor-Xylinum ATCC 1 4 8 5 1 1 1 1 4 2 and Acetpactor 'Xylinium ATCC 1 0 8 2 1 can be mentioned.
  • the present invention further relates to a gene (cellulose) encoding the cellulose synthase complex of the present invention, and a microorganism derived from a microorganism belonging to the genus Acetopax located downstream (at the 3 ′ end) thereof. It is related to a group of genes (complex genes) containing genes that encode ⁇ -glucosidase.
  • This group of genes may further include the cellulase gene and / or glucanase gene of the present invention upstream of the gene (cellulose) encoding the cellulose synthase complex.
  • the gene group may contain other structural genes and various regulatory genes such as a promoter and an operator. Each of these genes is separated by an appropriate number of base sequences.
  • the gene encoding ⁇ -glucosidase from the BPR201 strain is located downstream of the gene encoding bcsD of the cellulose synthase complex by a distance of 214 bp. ing.
  • SEQ ID NO: 1 shows the genes included in this gene group, their positions on the base sequence, the distance between the genes, and the like.
  • genes and genes of the present invention are thought to encode a series of enzymes necessary for the production of cellulose in the genus Acetobacter, and the genes of the present invention are regulated by a series of promoters. It may be a single transcription unit.
  • genes and genes of the present invention can be prepared by methods known to those skilled in the art.
  • a gene library is prepared by a known method from the DNA of a strain of Aspecttor 'Xylinum'Subspecies'
  • a primer consisting of synthetic DNA was prepared based on the base sequence of a gene encoding a known cellulose synthase, and the gene of the present invention was subjected to PCR by using the above-mentioned gene library as type III.
  • it can also be prepared by a hybridization method using a probe DNA prepared based on the wide DNA fragment obtained by the PCR method or the base sequence thereof.
  • each gene constituting the gene group of the present invention be derived from the same microorganism (strain).
  • the genes of the present invention can also be prepared by arbitrarily linking individually prepared genes having different origins by genetic engineering techniques.
  • genes and gene groups can be incorporated into host cells such as Escherichia coli and used to produce a series of enzymes necessary for the production of cellulose by genetic engineering.
  • the present invention also relates to an expression vector such as a plasmid vector containing the above gene or gene group, and a recombinant cell such as Escherichia coli transformed with the expression vector.
  • the expression vector of the present invention may be a gene, a gene group, or, if necessary, an enhancer, a promoter, a ribosome binding sequence, a sequence encoding a signal peptide, a replication origin, and a selection marker. It can include gene sequences that code for quality.
  • a series of enzymes necessary for constructing such an expression vector, transforming a host cell, and producing cellulose using the transformed cell can be prepared by various genetic engineering methods well known to those skilled in the art.
  • the present invention also relates to the above-mentioned enzyme, which is a recombinant protein produced in this way.
  • FIG. 1 shows the position on the base sequence of each gene contained in the novel gene group of the present invention.
  • FIG. 2 is a photograph showing the results of SDS-polyacrylamide gel electrophoresis of the purified sample of ⁇ -glucosidase of the present invention.
  • FIG. 3 is a photograph showing the results of isoelectric focusing polyacrylamide gel electrophoresis of the purified sample of / 3 -glucosidase according to the present invention.
  • a DNA of BPR 201 strain was prepared by the method of Murray MG 8 Thonpson WF (Nucl. Acids Res. 8, Vol. 4 3 2 1 _ 4 3 25 (1980)). This DNA was partially digested with a restriction enzyme Sau3AI to cut it into a fragment of about 15 to 30 kbp. This fragment and the BamHI digested fragment of cosmid pHC79 (ATCC 370) were ligated with DNA ligase, and ligated with phage particles using a commercially available DMA in vitro packaging kit (Amersham). did. The particles were infected with E. coli HB101 strain (purchased from Toyobo), spread on an L medium containing ampicillin, and colonies were formed to prepare a gene library.
  • E. coli HB101 strain purchasedd from Toyobo
  • This colony was copied onto a nylon membrane (Amersham, Hybond_N +), lysed with alkali according to the attached protocol, denatured DNA, and fixed to the nylon membrane.
  • the lysate was dialyzed against 15 I of distilled water. At this time, a precipitate was formed in the dialysate. The precipitate was collected and extracted three times with 20 mM sodium acetate buffer (pH 5.5) containing 0.15 M NaCI. did. This extract contained G3ase activity. This extract was added to a 20 mM sodium acetate buffer containing 0.15 M NaCI. -CM equilibrated with (pH 5.5) —Add to Toyopearl 65 M column (Tosoichi: column size diameter 3.2 cm, length 13.3 cm) and G 3ase activity Was adsorbed. Next, the NaCI concentration was linearly gradient from 0.151 to 0.7 M.
  • the G3ase activity eluted between 0.45 and 0.55 MNaCI.
  • the obtained active fraction was concentrated with an ultrafiltration membrane (Millipore, Ultrafree 15, fractional molecular weight 5,000), and the fraction contained 0.15 M NaCI.
  • the column was added to a Toyopearl HW55S column (manufactured by Tosoh Corporation; column size 1.5 cm, length 48 cm) equilibrated with 10 mM sodium acetate buffer (PH 5.5).
  • NaCI was added to a final concentration of 1.5 M, and a 20 mM sodium acetate buffer (pH 5.5) containing 1.5 M NaCI was added.
  • the purified S / S-glucosidase (G3ase) by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) had a molecular weight of about 81,200 (Fig. 2).
  • the isoelectric point (pi) determined by isoelectric point polyacrylamide gel electrophoresis (IEF-PAGE) was about 6.0 (Fig. 3).
  • This sequence is completely identical to the sequence after the 27th R (arginine) in the amino acid sequence (SEQ ID NO: 7) deduced from the ⁇ -g'norrecosidase (G3ase) gene shown in SEQ ID NO: 1. I did. That is, the -glucosidase (G3ase) gene had a signal sequence composed of 26 amino acid residues.
  • the stability of 8-glucosidase (G3ase) to pH was investigated.
  • ⁇ -glucosidase (G3ase) was treated with each at 30 ° C for 3 hours, and the remaining enzyme activity was determined.
  • the pH range was ⁇ ⁇ 3.6 to 0.0, and the deactivated ⁇ ⁇ was ⁇ ⁇ 3 or less and ⁇ ⁇ 8 or more.
  • the optimum pH for the activity was about 5.5.
  • the stability of glucosidase (G3ase) against temperature was examined.
  • Glucosidase (G3ase) was treated at pH 5.5 and 30 minutes at each temperature, and the remaining enzyme activity was examined.
  • the enzyme activity was stable at 30 ° C or less and lost at 50 ° C or more. Alive.
  • the optimum temperature for the activity was about 40 ° C.
  • this enzyme was antagonistically inhibited by glucon ⁇ - ⁇ -lactone and condurit to I-epoxide (Table 5). In addition, it had very low degradability against high molecular weight cellulose substrates (CMC (carboxymethylcellulose), lichenan, BC (bacterial cellulose), Avicel, and PRC (phosphate swelling cellulose)) (Table 1). 6). Table 4. K m and k of G 3 ase.
  • the figures are a percentage of the amount of glucose produced relative to the total amount of each substrate added. Represents percentage.
  • Novel genes and genes involved in cellulose synthesis were obtained from microorganisms belonging to the genus Acetobacter and their nucleotide sequences were determined. These genes and genes are useful as means for transforming microorganisms by genetic engineering and producing cellulose using the transformed bacteria.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 新規な遺伝子及び遺伝子群並びに新規な S—グルコシダ一ゼ 技術分野
本発明は、 ァセ 卜パクター ■ キシリナム ■ サブスピ一シーズ■ シュク ロフアーメ ン夕ンス由来のセルロース合成酵素複合体をコードする遺伝 子、 セルラ一ゼをコードする遺伝子、 β -グルコシダ一ゼ ( G 3 a s e ) をコードする遺伝子、 及びそれらの遺伝子を含む遺伝子群、 並びに新 規な ーグルコ シダーゼ ( G 3 a s e ) 自体に関する。 背景技術
酢酸菌におけるセルロースの生合成については、 直接の基質が U D P —グルコースであり、 それがセルロース合成酵素と呼ばれる膜上の夕ン パク複合体によつて連結されてセルロースとなって細胞外へと放出され ることが知られている。 この複合体はセルロース合成酵素遺伝子オペ口 ンにコードされる 4つのタンパクから構成されることが報告されており 、 それぞれ b c s A、 B、 C、 Dと名付けられている (H. C. Wongら、 P. N. A. S. 8 7巻 8 1 3 0 - 8 1 3 4頁 ( 1 9 9 0 ) ) 。 これらの内 、 b c s A、 B、 C遺伝子はその遺伝子を破壊するとセルロース合成能 がなくなることからセルロース合成に必須であることが知られている。 また、 b c s Dについては、 遺伝子破壊によりセルロースの構造が著し く変化することから、 これもセルロース合成に大きな役割を担っている と報告されている (に M. Saxenaら、 丄 Bacteriol. 1 7 6巻 5 7 3 5 — 5 7 5 2頁 ( 1 9 9 4 ) ) 。 また最近、 一つのセルロース生産菌から 2つめのセルロース合成遺伝子オペ口ンが得られたという報告もある ( I. M. Saxenaら、 J. Bacter iol. 1 7 7巻 5 2 7 6 — 5 2 8 3頁 ( 1 9 9 5 ) ) o
このセルロース合成酵素複合体にはコファクタ一として環状 d i 一 G M Pが必要であリ、 それを合成するサイクラーゼの遺伝子も報告されて いる (R. Tal and D. H. Gelfand、 P C T W0 9 3 / 1 1 2 4 4 ( 1
9 9 3 ) ) o
また、 このセルロース合成酵素遺伝子オペ口ンの上流にはセルラーゼ 遺伝子 (C M C a s e ) およびもう一つ別の遺伝子が存在することが報 告されている (R. Standal ら、 丄 Bacter iol. 1 7 6巻 6 6 5 — 6 7 2 頁 ( 1 9 9 4 ) ) 。
今回、 発明者らは、 新たにァセ トパクター属由来のセルロース合成酵 素複合体遺伝子才ペロンを獲得すべく研究の結果、 ァセ 卜パクター - キ シリナ厶 ■ サブスピーシーズ ■ シュクロファーメ ン夕ンスから、 新規な セルロース合成酵素複合体遺伝子才ペロン及びセルラーゼ遺伝子等を含 む一連の遺伝子群の塩基配列を決定することに成功した。 この新規なセ ルロース合成酵素複合体遺伝子オペ口ンの下流に位置する新規な遺伝子 の塩基配列を調べたところ、 種々の生物の 一グルコシダーゼで保存さ れている配列 ' 領域 (Y. Kashiwagiら、 丄 Ferment. Bioeng. 7 8巻 3 9 4 _ 3 9 8頁 ( 1 9 9 4 ) ) を良く保存しており、 この遺伝子が^— グルコシダ一ゼ遺伝子であることが確認された。
更に、 この ;8—グルコシダーゼ遺伝子がコー ドする酵素夕ンパク質を 実際に精製し、 その諸特性を検討した。 発明の開示
即ち、 本発明は、 ァセ 卜パクター ■ キシリナ厶 ' サブスピーシーズ . シュクロファーメ ン夕ンス由来のセルロース合成酵素複合体を構成する タンパク質をコー ドする遺伝子、 特に、 配列番号 : 2〜配列番号 : 5の いずれか一つに示されたアミノ酸配列から成る夕ンパク質をコー ドする 遺伝子に係わる。
本発明はまた、 配列番号 : 2〜配列番号 : 5のいずれか一つに示され たアミノ酸配列において 1 若しく は数個のアミノ酸の欠失、 置換又は付 加等によってその一部が異なる改変体であって、 セルロース合成酵素の 活性を有するタンパク質をコー ドする遺伝子に係わる。
従って、 該遺伝子はァセ 卜パクター ' キシリナム ' サブスピーシーズ ■ シュクロフアーメン夕ンス由来のものに限定される訳ではない。
上記遺伝子の D N Aの塩基配列の一具体例として、 配列番号 : 1 に b c s A、 b c s B、 b c s C及び b c s Dで示された塩基配列を挙げる ことができる。 更に、 遺伝暗号の縮重を考慮して化学合成や遺伝子工学 的手法によつて作製される同一ァミノ酸配列をコー ドする塩基配列もし くはその一部も挙げることが出来る。
また、 かかる塩基配列から成る D N Aとス ト リ ンジ X ン トな条件下で ハイブリダィズし、 且つ、 セルロース合成酵素活性を有するタンパク質 をコー ドする D N Aから成る遺伝子も本発明に含まれる。
更に、 本発明は、 ァセ 卜パクター ■ キシリナム ' サブスピーシーズ ■ シュクロフアーメ ンタンス由来のセルラーゼをコ一ドする遺伝子、 特に 配列番号 : 6に示されたアミノ酸配列から成る夕ンパク質をコー ドする 遺伝子に係わる。
本発明はまた、 配列番号 : 6に示されたアミノ酸配列において 1 若し く は数個のアミノ酸の欠失、 置換又は付加等によってその一部が異なる 改変体であって、 セルラーゼ活性を有するタンパク質をコー ドする遺伝 子に係わる。
従って、 該遺伝子はァセ トパクター ■ キシリナ厶 ■ サブスピーシーズ - シュクロフアーメン夕ンス由来のものに限定される訳ではない。
上記遺伝子の D N Aの塩基配列の一具体例として、 配列番号: 1 に C M C a s eで示された塩基配列を挙げることができる。 更に、 遺伝暗号 の縮重を考慮して化学合成や遺伝子工学的手法によつて作製される同一 ァミノ酸配列をコ一ドする塩基配列もしくはその一部も挙げることが出 来る。
また、 かかる塩基配列から成る D N Aとス ト リ ンジ I ン トな条件下で ハイブリダィズし、 且つ、 セルラーゼ活性を有するタンパク質をコー ド する D N Aから成る遺伝子も本発明に含まれる。
本発明は、 又、 ァセ 卜パクター属に属する微生物、 例えば、 ァセ 卜バ クタ一 · キシ リナム ■ サブスピーシーズ ■ シュク ロフ アーメ ン夕ンス由 来の β 一グ'ルコシダーゼ (G 3 a s e ) 、 特に、 配列番号: 7に示され たアミノ酸配列から成るタンパク質に係わる。
上記タンパク質のアミノ酸配列は、 配列番号 : 7に示されたアミノ酸 配列に限られるものではな 、 β—グルコシダーゼの活性を有する限り 、 該アミノ酸配列において 1若しく は数個のアミノ酸の欠失、 置換又は 付加等によってその一部が異なる改変体も当該ァミノ酸配列の範疇であ る ο
本発明はまた、 上記 —グ'ルコシダーゼをコ一ドする遺伝子に係わり
、 該遺伝子の D Ν Αの塩基配列の一具体例として、 配列番号 : Uこ β - g l ucos i dase で示された塩基配列を挙げることができる。 更に、 遺伝暗 号の縮重を考慮して化学合成や遺伝子工学的手法によって作製される同 一アミノ酸配列をコードする塩基配列もしくはその一部も挙げることが 出来 。
また、 かかる塩基配列から成る D N Aとス ト リ ンジ I ン 卜な条件下で ハイブリダィズし、 且つ、 ーグルコシダーゼ活性を有するタンパク質 をコードする D N Aから成る遺伝子も本発明に含まれる。
本発明に於けるァセ 卜パクター ■ キシリナム ■ サブスピ一シ一ズ■ シ ュク ロフ アーメ ン夕 ンス CAcetobacte r xy I i num subsp. sue rof e rmenta ns) の代表例として B P R 2 0 0 1 株があり、 該菌体は平成 5年 2月 2 4日に日本国茨城県つくば市東 1 丁目 1 番 3号 (郵便番号 3 0 5 ) の通 商産業省工業技術院生命工学工業技術研究所特許微生物寄託センターに 寄託され (受託番号 F E R M P - 1 3 4 6 6 ) 、 その後、 1 9 9 4年 2月 7日付で特許手続上の微生物の寄託の国際的承認に関するブダぺス 卜条約に基づく寄託 (受託番号 F E R M B P— 4 5 4 5 ) に移管され ている。
尚、 ァセ 卜パクター属に属する微生物の他の例として、 ァセ 卜バク夕 一 ■ キシリナム (Aceto^cter xy I inum) A T C C 2 3 7 6 8 , ァセ 卜バ クタ一 . キジリナ厶 A T C C 2 3 7 6 9、 ァセ トパクター . パスッ リ ア ヌス (A. pasteur ianus) A T C C 1 0 2 4 5、 ァセ 卜パクター - キシリ ナム A T C C 1 4 8 5 1 、 ァセ 卜バク夕一 · キジリナ厶 A T C C 1 1 1 4 2及びァセ 卜パクター ' キシリナ厶 A T C C 1 0 8 2 1等を挙げるこ とができる。
本発明は、 更に、 本発明のセルロース合成酵素複合体をコー ドする遺 伝子 (才ペロ ン) 、 及びその下流 ( 3 ' 末端側) に位置するァセ トパク 夕ー属に属する微生物由来の β一グルコシダーゼをコ一ドする遺伝子を 含む遺伝子群 (複合遺伝子) に係わる。
この遺伝子群は、 セルロース合成酵素複合体をコー ドする遺伝子 (才 ペロ ン) の上流に更に本発明のセルラーゼ遺伝子及び 又はグルカナー ゼ遺伝子を含むものでも良い。 又、 該遺伝子群には、 その外の構造遺伝 子並びにプロモーター及びオペレータ一等の各種調節遺伝子が含有され ていてもよい。 これらの各遺伝子は適当な数の塩基配列によって隔てら れておリ、 例えば、 B P R 2 0 0 1 株由来の β -グルコシダーゼをコ一 ドする遺伝子はセルロース合成酵素複合体の b c s Dをコードする遺伝 子の下流に 2 1 4 bp隔てられて位置している。 このような本発明の遺伝 子群の塩基配列の一具体例を配列番号: 1 に示す。 又、 この遺伝子群に 含まれている各遺伝子、 その塩基配列上の位置及び各遺伝子間の距離等 を図 1 に示す。
尚、 配列番号 : 1 に示された遺伝子群に於いて、 セルラーゼ遺伝子と セルロース合成酵素複合体の b c s Aをコー ドする遺伝子の間に、 もう —つの遺伝子の読み取り枠 (0 R F 2 ) が存在する。 この 0 R F 2がコ —ドするアミノ酸配列を配列番号 : 8に示す。 このアミノ酸配列を有す るタンパク質の機能は未だ解明されていないが、 別の菌体に於いて、 同 様な位置にある遺伝子を破壊するとセルロースの生合成に支障をきたす との報告もなされており、 この 0 R F 2で示される遺伝子もセルロース の生合成に関与していることは間違いないものと思われる。
上記本発明の遺伝子及び遺伝子群は、 ァセ 卜パクター属に於けるセル ロースの生産に必要な一連の酵素をコードしているものと考えられ、 本 発明の遺伝子群は一連のプロモータ一によって調節されている一つの転 写単位である可能性がある。
本発明の遺伝子及び遺伝子群は、 当業者に公知の方法で調製すること が出来る。
例えば、 まず、 ァセ トパクター ' キシリナム ' サブスピーシーズ ' シ ュクロフアーメン夕ンスの菌株の D N Aより公知の方法で遺伝子ライブ ラリーを作成する。 一方、 既に知られているセルロース合成酵素をコー ドする遺伝子の塩基配列をもとに合成 D N Aから成るプライマーを作成 し、 上記の遺伝子ライブラリーを铸型として用いた P C R法によって本 発明の遺伝子を調製することが出来る。 また、 こうして P C R法によって得られた增幅 D N A断片又はその塩 基配列に基づいて作製したプローブ D N Aを使用したハイブリダイゼー ション法によっても調製することができる。
更に、 本明細書に開示された各遺伝子の塩基配列及びそれがコー ドす るアミノ酸配列に基づいて、 当業者であれば、 化学合成によっても本発 明の遺伝子を容易に調製することが出来る。
従って、 本発明の遺伝子群を構成する各遺伝子が同一の微生物 (菌株 ) に由来している必要はない。 それぞれに異なる由来を有し個別に調製 した各遺伝子を遺伝子工学的手法によって任意に連結して本発明の遺伝 子群を調製することもできる。
かかる遺伝子及び遺伝子群は、 大腸菌等の宿主細胞に組み込んで上記 セルロースの生産に必要な一連の酵素を遺伝子工学的に生産するために 利用することができる。
よって、 本発明は、 上記遺伝子又は遺伝子群を含有するプラスミ ドべ クタ一等の発現ベクター、 並びに該発現ベクターによって形質転換され た大腸菌等の組み換え細胞にも係わるものである。
本発明の発現ベクターは、 当該遺伝子又は遺伝子群の他に、 必要に応 じて、 更に、 ェンハンサ一、 プロモーター、 リボソーム結合配列、 シグ ナルペプチドをコードする配列、 複製開始点及び選択マーカーとなる物 質をコー ドする遺伝子配列等を含むことが出来る。
かかる発現ベクターの構築、 宿主細胞の形質転換及び該形質転換細胞 を使用したセルロースの生産に必要な一連の酵素は当業者に周知の様々 な遺伝子工学的方法によつて調製することができる。
従って、 本発明は、 こうして製造された組み換えタンパク質である上 記酵素にも係わる。 図面の簡単な説明
図 1 は、 本発明の新規な遺伝子群に含まれている各遺伝子の塩基配列 上の位置を示す。
図 2は、 本発明の β -グルコシダーゼ精製標品の S D S—ポリアクリ ルアミ ドゲル電気泳動の結果を示す写真である。
図 3は、 本発明の /3 -グルコシダ一ゼ精製標品の等電点ポリアクリル アミ ドゲル電気泳動の結果を示す写真である。 発明を実施するための最良の形態
実施例 1 . 遺伝子の調製及び塩基配列の決定
Murray M. G. 8 Thonpson W. F. (Nucl. Acids Res. 8巻 4 3 2 1 _ 4 3 2 5頁 ( 1 9 8 0 ) ) の方法により B P R 2 0 0 1 株の D N Aを調 製した。 この D N Aを制限酵素 S a u 3 A I で部分分解することにより 、 約 1 5 — 3 0 kbp の断片に切断した。 この断片とコスミ ド p H C 7 9 (A T C C 3 7 0 3 0 ) の B a m H I 切断断片を D N Aリガーゼによリ 連結し、 市販の DMA in vitro packaging kit (アマシャム社製) を用 いてファージ粒子とした。 この粒子を大腸菌 H B 1 0 1 株 (東洋紡よリ 購入) に感染させ、 アンピシリン含有 L培地に撒き、 コロニーを生じさ せることにより遺伝子ライブラリーを作製した。
このコロニーをナイロン膜 (アマシャ厶社製、 H y b o n d — N +) に写し取り、 添付のプロ トコールに従ってアルカリで溶菌して D N Aを 変性させナイロン膜に固定した。
—方、 公知のァセ 卜パクター ' キシリナ厶 1 3 0 6 — 3株のセル口一 ス合成遺伝子の塩基配列 (H. C. Wongら、 Pro atl. Acad. Scに USA 、 8 7巻 8 1 3 0 - 8 1 3 4頁 ( 1 9 9 0年) ) をもとに、 以下の合成 D N A 2種類を作製した。 A C C G A A T G C G T C T G A C G G T T
T G A T G A T G G T T A C G C G C A C C
この合成 D N Aをプライマーとして用い、 上記の方法によリ調製した B P R 2 0 0 1 株の D N Aを錶型として用い、 通常の条件で P C R法を 行ったところ、 セルロース合成酵素遺伝子の一部にあたる D N A断片が 増幅した。 この D N A断片をァガロースゲル電気泳動にて分離 ' 回収し 、 プローブとして用いた。
上記の D N Aが固定されたナイロン膜と、 プローブ D N Aを用いて、 E C Lラベリングキッ ト (アマシャ厶社製) を用いて添付のプロ トコ一 ルに従ってハイブリダイズさせた。 シグナルが得られたク口ーンの中よ り、 該遺伝子の全長を含む D N A断片を有するクローンを選択し、 A M 9と命名した。 この株は、 1 9 9 7年 2月 1 4日付で特許手続上の微生 物の寄託の国際的承認に関するブダぺス 卜条約に基づき、 日本国茨城県 つくば市東 1 丁目 1番 3号 (郵便番号 3 0 5 ) の通商産業省工業技術院 生命工学工業技術研究所特許微生物寄託センターに寄託され、 受託番号 F E R M B P _ 5 8 2 2を付されている。
この A M 9株よリブラスミ ド D N Aを調製し、 そこに含まれる D N A 断片の塩基配列を決定したところ、 図 1 に示された 16.8kbp の塩基配列 が存在することが確認された。
この領域について、 タンパク質をコー ドする遺伝子を検索したところ 、 いくつかの遺伝子が見出された。 それらについて、 D N A S I S (日 立) のプログラムを用いて、 他のセルロース生産菌株の既知の配列 (セ ルラーゼと 0 R F 2については、 R. Standal ら、 丄 Bacterioし 1 7 6 巻 6 6 5 — 6 7 2頁 ( 1 9 9 4 ) ) セルロース合成酵素については、 H. C. Wongら、 P. N. に S. 、 8 7巻 8 1 3 0 — 8 1 3 4頁 ( 1 9 9 0 ) ) と比較した。 その結果、 A M 9株に組み込まれている遺伝子配列と既 知の遺伝子配列の間で、 下表に示す通りの D N A或いは夕ンパク質にお ける高い相同性を持つことを見出し、 取得した D N Aがそれぞれの遺伝 子であることが確認された。 表 1 相同性 (%)
D N A タンパク質 セルラーゼ 7 0 6 9
0 R F 2 3 8 1 9
b c s A 9 2 9 4
b c s B 6 2 5 4
b c s C 8 3 7 3
b c s D 9 6 9 9
また、 セルロース合成酵素遺伝子の下流に存在する遺伝子について、 Gen Bank Data Baseにおいてホモロジ一検索を行なったところ、 Y. Kas hi agiら、 丄 Ferment. Bioeng. 、 7 8巻 3 9 4 — 3 9 8頁 ( 1 9 9 4 ) に報告されている Cel Ivibrio gi Ivus の) 8—グルコシダーゼの遺伝子 と、 D N Aで 4 9 %、 タンパク質で 3 3 %と高い相同性を示すことを見 出し、 この遺伝子がァセ トバクターにおける β—グ'ルコシダーゼ遺伝子 であることを確認した。 尚、 ーグルコシダーゼ遺伝子の翻訳開始コ ド ンは、 D Ν Α塩基配列上におけるシャイン . ダルガノ配列 (Shine- Dal g arno sequenceゾの |ϋ置(こ基づき决定した。 以下に配列番号 : 1 の塩基配列中の各遺伝子の位置を示す。 表 2
塩基配列 セルラーゼ遺伝子 8 6 9〜 1 8 9 4
0 R F 2遺伝子 1 8 9 1 〜 2 9 2 5
b c s A遺伝子 3 1 0 1 〜 5 3 7 1
b c s B遺伝ナ 5 3 7 3〜 7 7 8 1
b c s C這伝十 7 7 8 4〜 1 1 7 6 4
b c s D這伝ナ 1 1 7 6 4〜 1 2 2 3 4
β一グルコシダ一ゼ遺伝子 1 2 4 4 8 - 1 4 6 5 5
実施例 2. 3—グルコシダーゼ ( G 3 a s e ) の精製
Acetobacte r xyl mum subsp. sucrof ermentans B P R 2 0 0 1 株 ¾· C S L - F r u培地で内容積 3 I 、 培養液張り込み量 1 . 8 I のジャー ファーメンターで培養した。 培養温度は 3 0 °C、 培養 p Hは 5、 培養時 間は 6 8時間であった。 得られた培養液 (合計約 8, 0 0 0 ml) を遠心 分離することで培養上清 3 , 6 0 O mlを得た。 この培養上清を 6 0 %飽 和硫酸アンモニゥ厶で塩析し、 得られた沈殿を遠心分離で回収し、 3 5 2 mlの蒸留水に溶解した。 この溶解液を蒸留水 1 5 I に対して透析した 。 この際、 透析物中に沈殿が発生したので、 この沈殿を回収し、 0. 1 5 Mの N a C I を含んだ 2 0 mM酢酸ナ トリゥムバッファー ( p H 5. 5 ) で 3回抽出した。 この抽出液に G 3 a s e活性が含まれていた。 この 抽出液を 0. 1 5 Mの N a C I を含んだ 2 0 mM酢酸ナ 卜リゥ厶バッファ - ( p H 5. 5 ) で平衡化した C M— トヨパール 6 5 0 Mカラム (東ソ 一製 : カラムサイズ直径 3. 2 cm、 長さ 1 3. 3 cm) に添加し、 G 3 a s e活性を吸着させた。 次いで、 0. 1 5 1\1から 0. 7 MまでN a C I 濃度をリニアグラジェン 卜した。 G 3 a s e活性は 0 . 4 5 〜 0. 5 5 M N a C I で溶出した。 得られた活性フラクショ ンを限外濾過膜 (ミ リポア製、 ウルトラフリー 1 5、 分画分子量 5 , 0 0 0 ) で濃縮し、 そ のフラクショ ンを 0. 1 5 Mの N a C I を含んだ 1 0 mM酢酸ナ ト リウム バッファー ( P H 5. 5 ) で平衡化した トヨパール H W 5 5 Sカラム ( 東ソー製 ; カラムサイズ直径 1 . 5 cm、 長さ 4 8 cm) に添加した。 得ら れた活性フラクシヨ ンに N a C I を最終濃度が 1 . 5 Mになるように添 加し、 1 . 5 Mの N a C I を含んだ 2 0 mM酢酸ナ ト リウムバッファー ( p H 5. 5 ) で平衡化した Butyl — トヨパール 6 5 0 Mカラム (東ソ一 製 ; カラムサイズ直径 1 . 5 cm、 長さ 4 cm) に添加し、 同バッファーで 洗浄後、 1 . 0 Mの N a C I を含んだ 2 0 mM酢酸ナ トリウムバッファー ( p H 5. 5 ) で溶出した。 この活性フラクショ ンをセフアデックス G 2 5 P D - 1 0 カラム (ファルマシア製) で 0. 1 5 Mの N a C I を含 んだ 2 0 mM酢酸ナ トリウムバッファー ( p H 5. 5 ) にバッファー交換 したものを集めて精製標品を得た。 この精製標品は S D S—ポリアク リ ルアミ ド電気泳動的に単一であった。 比活性は 8 4 O U/mg—タンパク、 精製倍率は 3 3 7倍、 回収率は培養上清の全酵素活性を 1 0 0 %とする と 5. 5 %であった。
尚、 ーグルコシダーゼ ( G 3 a s e ) の活性は次のように行った。
2 n I の酵素溶液に 2 ^ I の 1 % (w/v)のセロ ト リオース (G 3 ; 生化 学工業製) 溶液、 ならびに 2 / I の 0. 3 % (v/v)の Triton X- 100 (Si gma 製) を混合し、 3 0でで 2時間反応後、 グルコース測定キッ 卜 (GI ucose C IIテス トヮコ一 ; 和光純薬製) の反応液 3 0 0 I を添加し、 1 5分室温反応後、 5 0 5 nmの吸光度から、 グルコース量を求めた。 1 活性単位 (U ) は G 3から 1 mol のグルコースを、 3 0 °C、 2時間で 生成するのに必要な酵素量と定義した。
実施例 3. ;8—グルコ シダーゼ (G 3 a s e ) 精製標品の分子量と等電
S D S —ポリアクリルアミ ドゲル電気泳動法 (SDS- PAGE) による / S— グルコシダーゼ (G 3 a s e ) の精製標品の分子量は約 81, 200であった (図 2 ) 。 また、 等電点ポリアクリルアミ ドゲル電気泳動法 (IEF- PAGE ) による等電点 (pi) は約 6. 0であった (図 3 ) 。
実施例 4. β —グルコシダーゼ (G 3 a s e ) の N末端アミノ酸配列
S D S —ポリアクリルアミ ドゲル電気泳動法 (SDS- PAGE) により、 β -グルコシダーゼ ( G 3 a s e ) を分離後、 P V D F (ポリ ビニリデン ジフルオリ ド) 膜にエレク トロブロッテイ ングし、 クーマシーブリ リア ン卜ブル一で染色し、 β—グ'ルコシダーゼ (G 3 a s e ) のバン ドを可 視化した。 そのバン ドの部分を切り出したものをサンプルとし、 自動ァ ミ ノ酸シーケンサ一 (Hewlett Packard 社製、 HP G1005A)で N末端アミ ノ酸配列分析を行った。 結果は、 RHAHDGGGDQADARARQVLASMSLEDKMS (ァ ミノ酸は 1文字表記) であった。 この配列は、 配列番号: 1 に示される βーグ'ノレコシダーゼ (G 3 a s e ) 遺伝子から推定されるアミノ酸配列 (配列番号: 7 ) の 2 7番目の R (アルギニン) 以降の配列と完全に一 致した。 すなわち、 この —グルコシダーゼ (G 3 a s e ) 遺伝子には 2 6アミノ酸残基よりなるシグナル配列が存在していた。
実施例 5. p H -温度の影響
8—グルコシダーゼ ( G 3 a s e ) の p Hに対する安定性について調 ベた。 β —グルコシダーゼ ( G 3 a s e ) を各 で、 3 0 °C、 3時間 処理し、 残存する酵素活性を調べたところ、 8 0 %以上の残存活性を示 す p H域は ρ Η 3 · 6〜了 . 0であり、 失活する ρ Ηは ρ Η 3以下およ び ρ Η 8以上であった。 また、 活性の至適 p Hは約 5. 5であった。 一 方、 —グルコ シダーゼ (G 3 a s e ) の温度に対する安定性について 調べた。 —グルコシダーゼ (G 3 a s e ) を各温度で p H 5. 5、 3 0分処理し、 残存する酵素活性を調べたところ、 3 0 °C以下で安定であ リ、 5 0 °C以上で失活した。 活性の至適温度は約 4 0 °Cであった。
実施例 6. 金属イオン '化学薬剤の影響
各種金属イオンおよび化学薬剤 1 mM存在下における β —グル Ώシダー ゼ (G 3 a s e ) 活性の影響を調べた。 結果を表 3に示した。 金属ィ才 ンについては、 Hg + +イオンは若干活性は低下 (無添加を 1 0 0 %とした とき 8 5. 5 %) させたが、 その他の金属イオンは大きな影響を与えな かった。 一方、 化学薬剤においては、 N B S ( N—プロモスクシイミ ド ) は活性を完全に失活させた。 S D S (ドデシル硫酸ナ トリウム) も部 分的に失活させた ( 3 1 . 3 %) 。 一方、 S H基修飾剤である 2 — M E ( 2 —メルカプトエタノール) 、 I A A (ョー ド酢酸) 、 及び金属キレ 一卜剤である E D T A (エチレンジァミ ン四酢酸) は影響を与えなかつ
表 3. 金属 · 化学薬剤に対する影響
Compound ( 1 mM) Relative activity(%)
N o n e 1 0 0
C a C I z 1 0 0
Figure imgf000017_0001
C u S 04 1 1 5.
H g C I 2 8 5.
E D T A 1 0 0
N B S 0
1 A A 1 2 6 5
S D S 3 1 3
2 M E 1 0 6
実施例 7. 3—グルコシダーゼ (G 3 a s e ) の基質特異性
セ口才リゴ糖 (セロビオース (G 2 ) 、 セ口 ト リオース (G 3 ) 、 セ ロテ トラオース (G 4 ) 、 セロペン夕オース (G 5 ) 、 セ口へキサ才一 ス (G 6 ) ) を基質として、 各基質に対する反応速度パラメ一夕 (ミカ エリス定数 K m 、 分子活性 k。 ) を測定した。 結果を表 4に示した。 β —グルコシダーゼ ( G 3 a s e ) は G 2を基質としたときの K m が他の 基質に比べ非常に大きく、 k。 は非常に小さいことがわかる。 すなわち 、 ーグルコシダーゼ (G 3 a s e ) は他のセ口才リ ゴ糖の分解力に比 ベ G 2の分解力が非常に小さいことがわかる。 また、 本酵素は、 glucon ο - δ - lactone および condu r i to I— epox i deにより拮抗的に阻害さ れた (表 5 ) 。 さらに、 高分子のセルロース基質 (C M C (カルボキシ メチルセルロース) 、 リケナン、 B C (バクテリ アセルロース) 、 アビ セル、 P R C (リ ン酸膨潤セルロース) ) に対しては分解力が非常に小 さかった (表 6 ) 。 表 4. G 3 a s eの Km 、 k。
Subst rate Km (mM) k。 (sec—')
G 2 2 2 1 . 7 5 3 8
G 3 3. 7 3 2 9 8
G 4 2. 7 0 3 6 9
G 5 1 . 4 9 3 2 1
G 6 1 . 3 1 3 1 0
表 5. 阻害物質定数
Inhibi tor Ki (mM) Type
G I ucono — δ — lactone 0 6 Compet i t i ve Condur i to I— ^ epoxide 0 0 Compet i t i ve
表 6. セルロース基質との反応性
Subst rate G 3 a s e
Reaction time
2 hi 2 4 hi
C M C 0 0. 1
し i chenan 0 0. 2
B C 0 0
Av i ce I 0 0
P R C 0. 1 0. 2
Ce I I ob i ose 0. 4 5. 2
Ce I I ot r iose 1 3. 1 1 7. 5
Ce I I ohexaose 2 4. 3 2 8. 2
数値は添加した各基質の全量に対する生成したグルコースの量のパー センテージを表わす。 産業上の利用可能性
ァセ 卜パクター属に属する微生物からセルロース合成に関与する新規 な遺伝子及び遺伝子群を取得し、 その塩基配列を決定した。 これらの遺 伝子及び遺伝子群は、 遺伝子工学的に微生物を形質転換させ、 該形質転 換菌を利用してセルロースを生産させる手段として有用である。
〔配列表〕
配列番号: 1
GGATCCACTGGCGCGGCGCATCACGGCGCGGCTGGTGCTGGGGCACCCCTGAACACAAAT 60
GCGGGGCGTGCGTGATTCTTTGOTGCATGCCCCCGCAACATCGCCTAGAAGGCGGCTAC 120 CGGCCTTTTGTCCCGnCGTCTAGAGGCCTAGGACACTGCCCTCTCACGGCGGCAACAGG 180
GGTTCGAATCCCCTACGGGACGCCAGCCAGTTCTGGCTGAATAAAAGACTGACTGATGAA 240
MCCCGCCGCMGGCGGGTTTTTCGTATGTACTTCGTm TTATAAATATCTTTGACCA 300
G GCCTGTCTGCGCTATGGCMGGC CTTTAT TATAnAATATATAATAAAAGCATC 360 mTATACTGCGGTCTGCCCGTCTGCTAAAAAGCA GATCCAGATCAATCGCGTCTGAA 420
ATTTAA ATATTTTCCGTCTn MTTTTGCAAAAGATGACACCAGTAGTGMCGGCGA 480
TCGT TGCCATATTTCTCTTCTTTMTTTCC TAGGM ATCMCGGTTTTTACAGAGG 540
GCCAmGCCCCTGCGTGACAAA TGC CTTTTTCTTCCCTGTAGCCAGnGTGGCGC 600
TGGTGGCGGTTTCGCCGCTGGGGGGAGAGACGTTATGCTCCTTTTCAGTMTAAAGTCTG 660
TCCCGGMTGGTCGCCTTCGACTTGCAGGATGGAGGAGTTTCCGATTMGGCGTCATGGC 720
GTGGCAGGGTATTGAGGGCGCATCAGGCGTTCGGCCAGACACTGGCGTGGGTTCAGACTT 780
CnGAGGGTGTGGTGGTAGATGCTGTOGATTTTATGAAGCTGCAAAAACATGTATCCGG 840
GATGGGGCGTCGCTCCmCTGTCCGTCATGGCTGTGGCTGGCAGCT TCCCATGCTTTC 900
CMCase
CTCCGGCGCTGAAGCTGATGATGCCATTGGCATCAACCCGCAGATCGCCCAGCAGTGGGC 960
CATmCCGGGAC GTATTTTCATCCCAACGGGCGCATCATCGATACGGGCAATAGCGG 1020
CGAATCCCACAGCGAGGGGCAGGGCTACGGCATGCTCTTTTCCGCTGCGGCGGGCGACCA 1080 GGCGGCGTOGAGGTAATCTGGGTCTGGGCGCGCACCAACCTGCAGCACAAGGATGACGC 1140
CCTGTTCTCCTGGCGnACCTTGACGGGCACAAACCGCCCGTGGCCGACAAGAACAACGC 1200
AACCGACGGGGACCTGCTCA GCCCTCGCCCTGGHTGGGCCGGCMGCGATGGMGCG 1260
CGCCGACTATATOAGGACGCCATGAACATCTATGGCGACGTGCTGAAACTCATGACGAA 1320
GTCCGTCGGCCCCTACACGGTGCTGCTGCCGGGCGCTGTCGGGTTTCTCACCAAGGATAC 1380
GGTCACGCTGAACCTGTCCTATTACGTCATGCCCTCCCTCATGCAGGCCTTTGCGCTCAC 1440
GGGTGATGCGAAGTGGACAAAGGTGATGGGCGACGGGCTGCAGATCATCGCCAAGGGACG 1500
ATTCGGTGAATGGAAGCTCCCGCCGGACTGGCTGTCGATCAACCTGCATACCAACGCOT 1560
CTCCATTGCCAAGGGCTGGCCGCCGCGC CTCGTATGATGCGATTCGCGTGCCGCTCTA 1620
CTTGTOTGGGCGCATATGCTGACCCCGGAACTGCTGGCGGATTTCAGCCGGTOTGGAA 1680
CCAmTGGCGCATCCGCCCTGCCGGGCTGGGmATCTGACCAACGGCGCGCGnCGCC 1740
CTATAATGCGCCGCCGGGCTATCTGGCGGTGGCGTCATGCACGGGCCTGGCCTCGGCGGG 1800
TGAACTGCCCACGCTCGATCATGCGCCCGACTACTATTCGGCCGCGTTGACGATGCTGGC 1860
CTATATCGCCCGGAACCAGGGAGATGGGATGTGAGCACACCTGAAAAGGAAGCAGGAACG 1920
CMCaseORF2
CAGGTGAATATCGACAACCAGCAGGATGTCGACCGTATGCTGACGGATGGCTACGGTATC 1980
AGCAGTGCAGGTTTTCACTACCGCCCTTTCAAGCAGAAGCGCCCGCCCAGGCCAGAAGTC 2040
AGGCACGACGAGTCTGGCGCAGAGCAGGCCGCAGCAGCCGAGCACGCTCCTGCCGCTGAA 2100
GAAGCATCGCAGCATTTCGTTTOTCCTACGATGATACCTATTCCACCCCGGCAGCGCCT 2160 GAGGCTGCGCCTGnGAGGCAGCAGAACAGCCGCAGCACTACGGGGAAACAGCCTACACG 2220
CCTGCCGCGCATGATGCCTATGCCGCACAGCCGGAGCCGGAACAGGCCGCGCCCGAGCCT 2280
TATC^GCGCATGACGATACGCCCGCAGCCGAACCCGAGACCTATGCCGCCACGCACGCC 2340
GAAACCGTAACGGTTCCGGAATATGCGGCCGCCCCTCAGCCAGTTGCGACCCCCGTGCCG 2400
CCGCAGCCCGCGCCCGTGGCCCCGGnGnGCTGCCGTGGCGCAGCCGGTCAGGCAGGAG 2460
CGGCCCTCATTGTCGCCAGTGACGCCCCCCAAACCTGCGGTGTCTOOTCATGGCGCCC 2520
CGTCCTGCCCCGGCmTGGCTCGGCTTCAGCCACGCCCCCCATCGCAGCAGAGGACTGG 2580
GCCCCCGTGCCCAAGGCCCAGCAGCAGCGTGGGCAGCGTTTGACAGGGCCAGGCTOTTT 2640
TTTGGTGCGGGAAGTGAGCGGGCGCCCGCAGCAAGGCTG CCAGTCGGCACCGGTGTCC 2700
CGGCCTGTTTCAAAACCTGTTTCCMGGTGACCACMTGACCAAAG GACMGAGTTCC 2760
CCGAATGACAGTCAGGCAGGCCGCCCTGCACCGACCGACAATTCTCCGACCCTGACCGAA 2820
GTGTTCATGACCCTTGGCGGTCGGGCCACGGATCGGCTGGTGCCCAAGCCCAGCCTGCGT 2880
GATGCCCTGTTGCGCAAGCGTGAAGGCACGAACGGCGAATCCTGACACCGTGCCGGGAGC 2940
0RF2
AGTCTGCTCCCGGCCTGCCAAAGGAAAGAAGGGGGAAGGTTTTCCCCATCCCGCACAAGC 3000
GGCGGGCCGA GGCGACATGACGGACCGMTGCGTCTGACGGTmCTTTTGAATATAT 3060
CTACCTGTmATCAGTATTTATTATCGGACGAGCTAnGATGTCAGAGGTOAGTCGCC 3120
bcsA
AGTACCCACGGAGAGTAGGCTAGGCCGCATCTCCAACAAGATACTGTCACTGCGTGGGGC 3180
CAGCTATATAGnGGAGCGC!GSGGCTTTGTGCAOTA GCCGCGACCACGGTTACGC 3240 OZ£ 3V0XV33093JJ 3XV130LII0D930V330001L0WDX3300003DD031301V0333
09Z W1V901030331L31V0V331V01V3003D3D30DD130301V3039V33D031V1V33 OZV 3V03VD10VD30V033V330010100I0V330 L03D3LLV3030I03VLL3033V3010 0130D3033030V301V333013D3033VIV30301V0W003V01030VW0LL00301
080 LL3003003XV03XWOU,V3399VDX03DD301301V330301V3100030131L31LO
0Z0 3V3301V000I31L3V03W3001V09V33XV3I03000VX31LDI33W3D0 09300
096S 3303V30D0V130001D3000133W1039V331LD3D1V03331313V10LL0V31V30
006S 3393V0V301V01333D31V0W0933V9I303100XVDDI00001V33D31V0V30I33
0 lL030303V3V0331LVlV33V0X0 LV0DJL331V31301V3VlLV030033ii3V0030
08Z9 LV0303V33W3 33W109D300 33D0V300030V3V03103V00I01030D03 ZL XVIV1DJL3330300301LV00W3303 LDV30V031LW03330030101003V01V01
099S 1301V1V10101W010WV1V03300330013V03JLV3003X3D3D30001301030V9
009S lOOOOOIODXVOOVOIOOVOOVOlVOIVIOOVOOOOlvaiLOlVIVODlOlOVDOOOOlO
0 V03V0LLDlW3V0vL33913333013033030103IV3113D330V331W3V0V33111
08½ V130V31DUJL01391V3V10ID3301VI0130V003001V31391331W10300010V ZK 1V3000V31LV001V3V1W3LL3V031303VW033V0I3393001V3V01D3V L030
09SS i033iii0D130303310130100V00X01L XV0V333V30a00330V0W3001000
00££ D9310J 0JJJ11L3IV31D1L0101V1D130V30DIDILVVI30V39VOIVV1W3VVO £9£0IL6dilLDd SSfr6€/86 OAV GTCGTOTTCTTCGCCATTCCGCGCGmTCTTCCTTGCCTCGCCGCTGGCGTTCCTGTT 4380
TGCGGGCCAGAACATCATCGCCGCCGCGCCACTGGCCGTGGCGGCCTATGCCCTCCCGCA 4440
CATGTOCACTCCATTGCAACCGCCGCCAAGGTGAACAAGGGCTGGCGCTATTCGTTCTG 4500
GAGTGAGGTGTACGAAACCACCATGGCGCTGTOCTGGTGCGCGTGACCATCGTCACCCT 4560
GCTGTTCCCCTCCMGGGCAAATTCMCGTGACGGAAAAGGGCGGCGTGn GAGGAGGA 4620
AGAGTTCGATCTTGGGGCGACCTACCCCAACATCATTTTCGCCACCATCATGATGGGTGG 4680
CCTGCTGATCGGTCTGnCGAGTTGATCGTGCGTTTCAATCAGCTCGATGTCATTGCCAG 4740
G CGCTTATCTCCTGAACTGCGCCTGGGCGCTGATCAGTCTCATCATCCTTTTCGCTGC 4800
CAnGCCGTGGGGCGCGAGACCAAGCAGGTCCGTTACAACCATCGTGTCGAAGCGCATAT 4860
CCCGGTAACGGTTTACGATGCGCCTGCCGAAGGGCAGCCCCATACCTAmTAATGCGAC 4920
GCACGGCATGACCCAGGATGTTTCCATGGGTGGTGnGCCGTGCACATCCCCnGCCCGA 4980
TGTCACCACGGGGCCTGTCAAGAAACGTATCCATGCCGTGOTGATGGCGAGGAAATCGA 5040
TATOCCGCCACCATGCTGCGCTGCACGAATGGCAAGGCCGTGTTCACATGGGACAATAA 5100
TGACCTTGATACGGAACGCGATATTGTCCGCTOGTGTTCGGGCGGGCTGATGCCTGGCT 5160
GCAATGGAACAAmTGAGGATGACAGACCGCTACGCAGCCTGTGGAGCCTGCTGCTCAG 5220
CATTAAGGCGCTGmCGCAAAAAAGGCAAAATAATGGCCAATAGTCGTCCAAAAAAGAA 5280
ACCAC GCACTACCGGnGAGCGCAGGGAGCCCACAACCATCCACAGTGGACAGACTCA 5340
AGAAGGAAAGATCAGCCGTGCGGCCTCGTGATATGAAAATGGTGTCCCTGATCGCGCTGC 5400
bcsA bcsB TGGTn TGCMCGGGGGCACAGGCTGCGCCTXnTGCTTCCAAGGCGCCAGCTCCGCAGC 5460
CCGCAGGTOAGACCTGCCACCTCTCCCTGCCGCACCGCCGCAGGCTGCTCCGCCCGCAG 5520
CCGCGAGTGCCGCCCCGCCCGCCACAACCCCGGCGGCGGATGCCTCAGCAGCCAGCGCGG 5580
ΟΤ6ΑΤΟΟ66π0Τ66Α0ΑΑΤ6α0ΟΑ6ΑΑ€60€ΑΤ060066ΟΤ0ΤΟΑ0ΟΤ6606Α06ΓΙΤΓΓ 5640
ATACATATOCCTCAGGGAAOTGGTGCGCAGAGTGCCCTCAAAATGCAGGGCGCTGCTA 5700
CGCTGCAGGGCCTGCAGTOGGTATTCCGGCCGACCAGCTCGTGACTTCGGCGCGGCTTG 5760
TCGTGTCGGGTGCGATGTCGCCCAGCCTCCAGCCTGACACCAGCGCGGTCACGATCACGC 5820
TGAACGAACAGTTCATCGGCACGCTGCGGCCTGACCCCACACACCCTACATTTGGGCCGC 5880 mCGmGATATC CCCCATCnC^CATCAGTGGC CCGGCTGAATTTCAGCTTCG 5920
CnCMGCTCGMGGGCTGCACGGACCCCAGCMCGGG GnCTGGGCCAGCGTGTC 6000
AACAnCCGAGCTGCAGATCACCACCATCCCGCnCCCCCGCATCGCCAGCTGTCGCGTC 6060
TGCCCCAGCCGnCTTCGACAAGAACGTAAAGCAGAAGATCGTCATTCCGnCGTTCTCG 6120
CACAGACATTTGATCCCGAAGTGCTGAAGGCGACGGGCATCCTGGCATCGTGGTTCGGCC 6180
AGCAGACCGAmCCGTGGCGTCACCTOCCGGTCmTCCACCATTCCGCAAACGGGCA 6240
ACGCCGTTGmTCGGCGTGGCTGACGAGCTGCCTOCGCCCTCGGGCGCCAGGCGGTCA 6300
GTGGCCCCACGCTTATGGAAGTGGCCAATCCATCCGACCCCAACGGCACGATCCTGCTCG 6360
TMCCGGGCGCGACCGTGATGAAGTCATCACCGCGAGCAAGGGCATCGGTTTTGGTTCGA 6420
GCACCCTGCCGACAGCCAACCGCATGGACGTGGCGCCGATCGAGGTCGGGGCCCGCGTGG 6480 COG LCCGCCGCGCTCTTTTTGTT一
Figure imgf000027_0001
* i σ¾ cr> en n
J1 >(^- O CO t CO o o n
o
CCGTGョ C ;CCTGC nCGCCCCTGGCGCGCTAGGCTA一
ACTGGTGCCCGCCTGGGCGACCAACCGCCCGGT一 TGACGCGCCCTCCCATTCCGATT ATGGGGATGACCTGACCTCCTACCGCAGCTCGCCGCTGTATACGG GGCACCGTGCCGC 7620
TGTGGCTCAAGCCTGACTGGTATATGCACAACCATCCCAGCCGCGTGGTCGTGGnGGCC 7680
TG CGGmCCTTCTGGTGGTGGCTGTCCTGATGCGCGCCCTGACCAAGCATGCTCTGC 7740
GCCGCCGTCGGGAGTTGCAGGAAGAAAGGCAGAGAACGTGATCATGAACAGGCGATACGC 7800
bcsB bcsC
CCTTTCGCTTTCTGGTGCCCTGCTGGCCAGCAGTTGCATGACGGTGCTGGTGGCGGTTCC 7860
TGnGCGCGGGCGCAGCAGGCTOCACTGCCGTGACTOCACAGCCGCGAGTCCGGCTGC 7920
GGCCCCACGGCAGATCCTG CAGCAGGCACGOTCTGGCTOAGCAGCAGCMTATGA 7980
CAATGCCCGCCAGGCCCTGCAGAATGCGCAGCGCATCGCCCCCGATGCCCCTGACGTGCT 8040
GGMGTGGAGGGTGMTACCAGGCGGCCG GGCMCCGCGMGCCGCTGCCGATACCCT 8100
GCGCCACCTGCAGCAGGTGGCCCCGGCCAGCACGGCGGTCAGCAACCTGAGCGATCTGCT 8160
CAGCGAGCGGGCCATTTCCCAAAGCGACCTGTCACAGATCCGTOGCTGGCGGGTOGGG 8220
CCAGAACGCGCAGGCGGTGGCGGGGTACCAGAAGCTGTOCACGGTGGCAAGCCGCCCCG 8280
TTCGCTTGCGGTGGAATACTACCAGACCATGGCGGGCGTGCCGACCCAGTGGGACCAGGC 8340
GCGCGCGGGGCTGGCCGGGATCGnGCGTCCAACCCGCAGAAmCCGCGCCCAGCTCGC 8400
CTTTGCCCAGGCCCTGACCTATAATACCTCGACCCGCATGGAAGGCCTGACCCGGCTCAA 8460
GGATCTGCAATCCnCCAGAGTCAGGCCCCGGTCGAAGCTGCCGCCGCGACGCAGTCCTA 8520
TCGCCAGACCCTGAGCTGGCTGCCGGTCAATCCCGATACGCAGCCCCTCATGGAGCAGTG 8580
GCTTTCCGCCCACCCCAATGATGCCGCGCTGCGCGAACACATGCTTCACCCCCCCGGCGG 8640 ΰ άτά ss/一
§〕〕〕8l;。w )
謹 O 寸
oo u〕〕〕§V3〕1 XI〕 1 OO CT3
SI 謹〕30§ 1〕謹J: Jmov ,
8V§〕§0D )。〕:
06
O
。1 。i
Figure imgf000029_0001
l
§vl〕。围譲l0〕 >3 )
v8 )〕uv§ S80J:ix§〕0:1LVJ1〕101讓 I
9 SV。aso〕〕: )l。
3008v§0謹 §sv )8ls 3o§1 avi
s〕 §a CGACCTTTCGCCCGACCAGCGCCTGTCCTACGCCACCGAATACATGAAGATCAGCAACCC 9780 GGTGGCAGCCGCACGCCTGCTGGCCCCGCTGGGGGATGGCACGGGTOGGGCGCGGGCAA 9840 TGCGCTGCTGCCCGAGCAGATGCAGACA GCAGCAACTGCGCATGGGCATCTCGGTGGC 9900 GCAGTCCGATCTGCTCAACCAGCGTGGCGATCAGGCGCAGGCCTACGATCATCTGGCGCC 9960 CGCCCTGCAGGCCGACCCGGAGGCGACATCGCCCAAGCTGGCGCTCGCGCGGCTGTATAA 10020 CGGCCACGGCMGCCGGGCAAGGCGCTCGAGATCGACOTGCGGTGCTGCGCCACMCCC 10080 GCAGGATCTTGATGCGCGGCAGGCGGCGGTGCAGGCGGCGGTCAACAGCAACCACAACAG 10140 TCTTGCCACCCGTCTCGCGATGGATGGCGTGCAGGAAAGCCCGATGGATGCCCGCGCCTG 10200 GCTGGCCATGGCCGTAGCTGACCAGGCCGATGGCCATGGTCAGCGCACCATCGAGGACCT 10260 GCGCCGCGCCTATGACCTGCGCCTGCAGCAGGTCGAGGGCACGCGGGCCGCGTCTGGTCC 10320 GGTCGGGGCGCATGAAGAAGCGOTGCCCCGCCATCGACCAACCCGnCCAGTCGCGTGG 10380 CTACGGGCATCAGGTGGAACTGGGCGCGCCGGTGACCGGTGGCTCCTACAGTGCCGAGGC 10440 GGCATCGCCCGATACGTCGGACCAGATGCTCTCCTCCA GCTGGCCAGATCCACACGCT 10500 GCGTGAAAACCTTGCACCCTCCATTGATGGTGGGCTGGGCTOCGGTCGCGTOGGGCGA 10560 GCATGGCATGGGCCGCCTGACGGAAGCGAACATOCCATCGTGGGCCGCCTGCCGCTGCA 10620 GGCCGGTGCTOCGCCCTGACOTCTCGATCACGCCAACCATGATCTGGTCGGGCCAGCT 10680 CAACACAGGCTCCGTCTATGATGTGCCGCGnATGGCACGTOATGGCAACGCAGGCTGC 10740 CAACCAGTGCGCGGGCCACAGnCGTGTGGCGGGCTTGATTTCCTGAGCGCCAACCATAC 10800 6Z
088Π 0D33093I0DV0303DlL0I33VDlWD0V3100VD31VD0033D0V0IV0iV031V0V0 asつ q J soq
09m VODVOOIVILVILDIVJLOVOVOOODLUVOIVOOOOOOOOVWOIOVOOIOWXDDDDOO 00ΖΠ WOV3XV13930000013XaiV01L3103JLL01VV093V3VlUOD lVJ30D010DOVX O il OOlWL OOOOOOOOVlLOlOOIODlLVlDVlVOOOOOOOlVlOV j'jyOOVOWOXOO 089ΪΤ 3WV00V3031013IV LV003W330103301W0V30101 L3W0'J1V301L03V1L Ζ Π W33D1003310V3DI301303IV3I03V3333 L31L333D3D03D3V3 DXV33 L0 09 i IOOV33VI3000103DVI0003VD1DXV009I3V00130D3DW3V30VD3000301VXX OO U 0301003301033νν30030ΐνΐΐνΐ001θ 30030313113νΐ300300θν ΰΰ0ΐνΐ3 OKU 3V1V13LUVOOVD3 1V33301VXXD03 UVX30V0133DVD1D300LLV3030IOO 082Π rJDlVOWOOODWlVOOOIOIODlODOVIWOODOOODlVDDOOODWODOJDVDOOVD Ο^ΐΐ 3030V30XD3W0W30030V0V33XV0303V1300300I00I00IV101331V33VD 09ΠΪ WOOODlOOOVOOOOVDOlDOVOlDOaVOO LOVODWOOVDXODlDDODlOO'jyWJO 00ΠΤ DVIOOOOIOV30W33VDI33V01V31001VI310DV31D00003VlL031D0 JDV03 OWn OVOWOVlOWOOOIVOlOOOlOOODXOOlVXDaiOIODlOODVOWOOVOJLVDDlDODO 0860Ϊ D3DV033030V31DIDOD L03VDJLDD33D0001030D03300131LOVDD1D0003000
09801 WODOOILDVOOIOIVOOOODDOIIIOOOODDOVOODOVDOIODIOOODDDIV'JDDDVDD
££9Z0/L6dr/∑Dd SSf^6£/86 OA\ 0%ΖΙ 300D301VlW01U3W3033D0000100D33aV030303V0I00V00301D03D0300 006 XlOOlOOlVOWOlLOOOOOVOVODDIVODOVOOOaDOOOlVOXVOIOXO'JODDOVODDD O i 03D01V3VOOXVlV009103V10V33003V3310Va000931033010031LL9D30WO LZI IDOIWODVOOOOIVIVOOOOOOOOWODOOIOOOOJLLODODOODIVODDIUVOVOOID QZLZl 3VDI33013300031LD00V333303D3030133V1V3013003100D013300100333 099ΖΪ IDDODDOIDODVDOOOWIILODOOOODODIVOLLOIOVOILOIOOIDODIOIVOWOVO 009ZT 0V01L330V0IV33X3303I30X0DV30339300033301V03300V03V03D03000D0 z\ IVOIV0030IV3D033301 330030D309V333001303001V300I0X030D1O330
33IV L0133 LV1V0W3003D1013V0V01V3V300V300V00V00W0103030V33
OZm i01DV3103I010333013DD300D3DDIVOVDDW3300DXWV3V31L301300V300
09010300301V31VOVX3030JJJI10X33301U3X3V3313000IVlV1030JmL
OOSC ΐ 0000300VJ,0X3330JLV0 L010300V3V3330X333WW3ID301UV330393I0V3
as q
O i 3VLL33V013aV03033030V30330V30301V3VX01301V01D03VDV3330D033X0 Omi D3I3W0103VOW00300V031VXV010303VOI0010IV1LV01D031L30030D033 ZIZ\ 0V303103V31V00X3033DD1V 30D9W00130XD0333301L3001V3V30D33D 0902T 333W030DD3030V0000I0DV3033DI33V0W01V30I931V30301V330DV0W0 00021 W00300130I3DVOOX30VWX03VI3D00013W31V01V3300130X033DDW010 0 6ΐΐ 'JVy'JlVOVOOiaDVODVOOIVOOVJVV'JDIDIDDDDODDOVOOl DOXDDlDODIV j'J GAAGATCCGCTGCAGACCGGGCGCATGGTGGGCAGCACCA GCAGGCGTGCAGTCGCAG 13020 CATGTGATCTCCACGCTCAAGCATTATGCGATGAATGACCTCGAAACCTCGCGCATGACC 13080 ATGAGCGCGGATATCGACCCTGTGGCCATGCGTGAAAGCGACCTGCTGGGOTCGAGATC 13140 GCGCTTGAAACCGGGCATCCGGGCGCGGTCATGTGCTCGTACAACCGCGTCAACGACCTG 13200 TATGCGTGTGAAAACCCGTACCTGCTGAACAAGACGCTGAAGCAGGACTGGCAnATCCC 13260 GGCTTTGTCATGTCCGACTGGGGGGCCACGCAnCCTCCGCGCGGGCGGCGCTGGCGGGG 13320 CTGGATCAGGAATCCGCAGGTGACCATACGGATGCCCGGCCCTA1TTCCGCACCCTGCTG 13380 GCTGCTGACGTCAAGGCCGGACGCGTGCCCGAAGCGCGCATCAACGACATGGCGGAGCGC 13440 GTTGTCCGCGCGCTGnCGCGGCGGGGC GTGGACCATCCGGCGCAGCGCGGGCCGCTT 13500 GATGTCGTGACCGATACCCTCGTGGCCCAGAAGGATGAGGAAGAAGGCGCGGTCCTGCTG 13560 CGCAACCAGGGCMCATCCTGCCGCTTTCGCCTACCGCGCGCA GCCGTCA GGTGGC 13620 CATGCCGATGCGGGCGTGATTTCGGGCGGTGGCTCCAGCCAGGTCGATCCCATCGGGGGC 13680 GAGGCGGTGAAGGGGCCGGGCAAGAAGGAATGGCCGGGTGATCCGGTCTATTTCCCGTCC 13740 TCGCCGCTCAAGGCCATGCAGGCCGAGGCGCCCGGTGCCCGGATCACCTATGATCCCGGC 13800 ACCAGTATCGCCTCTGCCGTGCGGGCCGCGCGGGCGGCTGACGTGGTGGTGGTATATGCC 13860 ACGCAGnCACCnCGAGGGGATGGACGCGCCCAGCATGCACCnGATGACAATGCCGAT 13920 GCGCTGAmCGGCCGTGGCCGCCGCCAACCCGCGCACGGTGGTGGTGATGGAAACCGGC 13980 GACCCGGTGCTGATGCCGTGGAACAGCAGCGTGGCGGGCGTGCTCGAGGCATGGTTCCCC 14040 02TST 301303300 0X90XD V33003 L331V3V3V030WOOOVOOi393V0303W01VOV
090ST 303333V0130ID3DD33D0101VI0013W1V00300I0031U39101V1V3300039
0009T 13100130030100V00033V30030XOD33W3030X30IOVOX03000X31V0030DO m 30100D30D0333DI03333V03330V3033DX333D3I00W0V0D30910310LL033
088W 3303V39V3001VXVD3V333V13030I00 DV00V00I303091003V33330V3333V
028^1 333V3I301330W1VW0013W00V301030V01V01VD133030303030V0330V3 mm 3D3V1V0331091VD U330V33003001301V3333DV330133DI301330000000
dSE TsoonjS- g
0 LH 00IV01V030030V10101V1000D00V30001V3 01V001000V0103303001V33V
0t9 l 0030D01V00101V30XV33V33VOV3DV330V3V01V033V33D3DXV31030 L3001
0103D331L33V3DD0313330I930V0010033V91V3WW031V031UV33300I3
OZSW 013D0D003DV0LL30V00I03311L00V3XD030V0V00000330300I330V3XV303
09 l 0V3D9130DD300I33030030003D019D1V0333D1330D L01V131D9V00301L0
00^1 1V00X030003D00303V33033V3W3V30103W31L00V33003VLL00V30001V3
0 303W903V0100W0100001V033V30V3 L03V3DV0V133V0X33001V L0031L
08 ODDIVIOIOOOOOWO LOVDIWOOOOVDO LOOIOOOIVILOODIOIVOOOVOOOWO
0^1 3V03V1LL0013W00V0XV033V1V331L0V30XV0V03J10ID3WJLV0V3003V1L0
09 ΐ 100V3D1LV1V03333V3330DI3DV3131W0030DV303331L33V01V33V0I33V0
00 ΐ 3D00313330301L00W30011L0I39I30D333D1LV330033I00I00390031L00
££9£0/Z,6dr/X3J SS 6£:/86 OAV ACTTTACGCGCGAGCGGCTGGAGTTTACGCGGCTGTGGTCGCCATGGCCGGGACCGGTTG 15180 TGGGGCAGGGCGGCACGATGATCGTGGCTCCGGCTGAAATCGTGCGCCAGCGCGCGGTAC 15240 TGCGTGACGGCCAGGGCCGTCCG CAGCGAGGTGGTGGAAACCTATACCGACCAGACCC 15300 TCGCTmACGCCTCAGGGCCAGAGGTA GCmCCTCCAAA GCTTTAAAGAACGCT 15360 GCCrm GAAAAMGGCGGCACCCGGAAACnTOTTCTCTGTTCCCCTGCCGTTTGCA 15420 GCCTGGCGGCAGGAGGGCTACGCCGGAGCATGCGATCATGACCGGAGCCAGAACCCCCAT 15480 GACAGATTTGCGAGATCCCAACACCCCTGCCGAGACCGTGCGGCAGCTACTGGGCCTGCA 15540 ACCCCACCCCGAAGGCGGCAGCTACCGCGAACTATGGCGCGATACCCCGCCCGATGGCCC 15600 GCGTGGCGCGGTCTCGACCATCAGTTTCCTGCTGGCGGCAGGCGAGCGCTCGCACTGGCA 15660 CCGCGnGATGCAGCCGAGATCTGGTGCTGGCAGGGTGGCGGCCCGC GTGCTGGAAAT 15720 TGCCGCAAGGCAGGGTGCCGNGATCGAGCGGATCGTGCTTGGCCCGNTGCCAGCACGGGG 15780 ΟΟΑΟΟΤθπθΟΑΟΟΟΟΟΤΟΟΤΟΟΟΑΟΟΟΟΟΟΟΟΑΤΟΟΟΑΟΟΟΟΟΟΤΟΑΟΑΟΟΟΑΟΟΟΟΟΟ 15840 GTGGAGCCmTGGGCTGCCAGGTGGCCCCCGCCTOGTTTTCAGCCAGTTTGAACTGGC 15900 CCCGCCCGGCTGGACGCCACAAGGAGACAATGCATGACAACCCCGCAATGGCTCATCTGG 15960 GCCCGTGACCTGCAGGCGCTGGCCCAGAGCGGCCTGACCTATGCCGAAAGCCCGTTCGAC 16020 CGCGAACGTTATGAAAGCATAAGGCAGATCGCAGCCGATATGATGGCCGCGGGCAGTCAT 16080 GCCGACATGGAGCGCGTGCTCGACCTGnCACCAGTCAGGACGGCTATGCCACGCCCAAG 16140 CTGGTGGTGCGCGCCGCCGTGTTTGATGCGCAGGGCCGCATGCTGCTGGTGCGCGAGGTG 16200 CTGGACCATGACCGCTGGACCCTGCCGGGCGGCTGGGCGGATGTAAACCTGACCCCGGTG 16260
GAAAATACGGTAAAGGAAGTGCGCGAGGAAAGCGGCTTTAGCGTGCGCGTGACCAAGCTC 16320
GCCGCCGTGTGGGACCGCGACCGGCAGGGCCATCCGCCCGCACCCTTTTCATGCTGCACG 16380
CTTTGTTTCATCTGCGAACTGACCGGTGGGAGCGCCGAGACCAGTATCGAGACATCGGAG 16440
AnGGCTGGTTTGCAGCCGACAGCCTGCCTACCGACTTGTCGCTTGGGCGCGTGCTGCCC 16500
CATCAGCTGACCCGCATGTTAGAACATGCCGCCAACCCCGACCTGCCCAGGGATTTTGAT 16560
TAAAATCGTTTAAAGACMTGTAnGGTGAAAGCAGGAAAGGTTnTGGGTGTCGCCTTT 16620
TnCAAAAGGGTGGCATTTGGCCAGGCCGGTCAGCAAGCAGTCTCACCCTGCATGGOTG 16680
CGGGCGCTGTGCATGCAGGCCATTGAAAAACCGACCGGGATTTCCATATCCAATACAAAT 16740
TGTAACCTGATGCAGTGCAACAGACAGACTGGATAAGCCATGACCGAACAGACCACCACG 16800
ACCCCACCCGAAGCCACGGGCGAACAGCATGAAnC
配列番号: 2
MSEVQSPVPTESRLGR I SNK I LSLRGASY I VGALGLCAL I AATTVTLNNNEQL I VAAVCVV I FFVVGRGKSR VDDWPTVD I F I PTYDBQLS I VRLTVLGALG I DWPPDKVNVY I LDDGVRPEFEQFAKDCGALY I GRVDSAHAK
Figure imgf000036_0001
AAPLAVAAYALPHMFHS IATAAKVNKGWRYSFWSEVYETTMALFLVRVTIVTLLFPS G FNVTEKGGVLXE
YNHRVEAH I PVTVYDAPAEGQPHTYYNATHG TQDVS GGVAVHIPLPDVTTGPVKKR 1 HAVLDGEE I DIPA TMLRCTNGKAVFTWDNNDLDTERD IVRFVFGRADAWLQ NNYEDD PLRSLWSLLLS 1 ALFRKKG I ANS RPKKKPLALPVERREPTTIHSGQTQEGKISRAAS* sBiidNiScidvivaaHVOAdosvvMiDaA55iMiaAvamaaiiMDOHoav5avAVWvi VHvaNdsaQAoaN
VlHlVlSNHNSNAVVBAVV5HVaiai3dNHaiAViai31VMOd)10HONAiaVlVl)ldSlVadaVQlVdVlHaA VQVDaOH5NnaSBVASIOWHlQ9llDNQadnVNOVOS010a01dVnMVVVAdNSI)lWAaiVAS1MQadS ιαι iHisv i HivwavHAwaoHaainavAVAOHVoidadSsivaH i idAdNSAWsinsviaB iawaav i SM I
VdSAaVdSIOVIlD VaNOSOAlAl I OVDiiaQVlAclNVl I d5WAil9VaVAa00D5lV V1Nl HA daHdV m I SA HVSaSlDSVVV^IOSAa I aOA5SVA5dSAHSn9HVa lN05VWaAHV10mVl9NNd3HS 110aAa53VVVA80ISyQiaV1WlIVDlAQ0dDHV11V1)iD)IVaiAQHVV I iDilAVVAaOSAVWOVIVclHMa avi dav wvaaiiAHHvaviaooaNSAiowDOisa aHSMiOivsQiisBavvsiaovNi5QAOvDHViov¾a dd00ddH11HaHlVVaNdHVSl 5aW1dDiad Acn SllDMAS5lVVVVaAdV5S5ilSQia)nHn0aWMl SlNAnvQVilVlBvyANQdNSVAIDVIOVHVOa QlclAOVWlDAAaAVISadd OOHin QAOVAViDVNDOS
0VisHiDsiasasiVHasnasi SAVisvdVA55iHHiiavvvaiiN0Av bAa0aAaiAadvaciviHbVN5 lV5HVNaAD955lMdav55 ilQadVVVdSVVlSXAVlSV5QV¾VAdAVMAlW3SSV11VOS1SlVAHMNW
*靡 33δΊ3Η IDHVIAlQOGDi 5N)iM5V1lQAl N10D0a0Sn 1AlH0SV1clSa aAN A00niSaAaidVlS IVSNclQQinN AOS1 ISaiVMHlHOaSlDAVSNSnQSAaOSNVI SIAnNHaVAa AHaSSAAaAOSAdAMllVONdO^aiAVS Λ I WONdHHdlAAVSXSiaVAIIilddOVSVNilVlNdNbl I HASMSia I ISNda I ONHdlSdOd DOdaAlWVW ddVMilHA 1iXclHaH madSAHildAVlV0dVA0av5lVSadAia01HAdM ld IdSdVONVAHVOAa I dV
AawHNvidiissoHOiO SViiAeaMaMoxAimoNciasdNVAaMiidiosAvDaoivScnaavAOAAAVNO iDclIlSilAcldlAOMAaiElBOil SVlIOIV IAadaillB IAildlAnO QilddQdlHSlDHHddldlll 15iaSH3SASVMinONSdai0O>!SSSViISdNlHN0S I iid I dNiadSldOdlXHldadMXlO I d咖 11 XAV Siad5lSdSWV0SAA1HVSlAlDaVdI0il5l0QllVV05W)nVSDV0iaaiSAlHAlVAaS0VIVNHVNaAA VaVVSVVSVaVVdllVddVVSVVVddW9ddVVcnddiaSOVd5ciVclV)lSVAdVV5VOXVXAXlVnSAW)!W ε : ^m
Z£9£0IL6d£/LDd OAV RGYGHQVBLGAPVTGGSYSAEAASPDTSDQ LSSIAGQIHTLRENLAPSIDGGLGFRSRSGEHGMGRLTEAN IPIVGRLPLQAGASALTFSITPTMIWSGQLNTGSVYDVPRYGTFMATQAANQCAGHSSCGGLDFLSANHTQR IAAGAGEAGFAPDVQFGNSWVRADVCASPIGFPITNVLGGVEFSPRVGPVTFRVSABRRSITNSVLSYGGLR DPNYNSEVGRYARQVYGHDLTKQWGSEWGGVVTNHFHGQVEATLGNTILYGGGGYAIQTGKNVQRNSEREAG IGANTLVWHNAN LVRIGVSLTYFGYAHNEDFYTYGQGGYFSPQSYYAATVPVRYAGQHKRLDWDVTCSVGY QVFHEHAAPFFPTSSLLQSGANYVASNFVQNALPTDYLSQETVNSAYYPGDSIAGLTGGFNARVGYRFTRNV RLDLSGRYQKAGNWTESGAM I SAHYLIMDQ
配列番号: 5
MTTLNAKPDFSLFLQALSWEIDDQAGIEVRNDLLREVGRGMAGRFQPPLCNTIHQLQIELNALLAMI隨 GYV KLDLLAEEQAMRIVHEDLPQVGSAGEPAGTWLAPVLBGLYGRWITSQPGAFGDYVVTRD1DAEDLNSVPAQT VILYMRTRSAAT
§己列番号: 6
AVAGSFPMLSSGAEADDAIGINPQIAQQWAIFRDKYFHPNGRIIDTGNSGESHSEGQGYGMLFSAAAGDQA AFEV I WVWARTNLQHKDDALFSWRYLDGHKPPVADKNNATDGDLL lALALAWAGKRWKRADY IQDAMN I YGD VL LMTKSVGPYTVLLPGAVGFLTKDTVTLNLSYYVMPSLMQAFALTGDAKWTKVMGDGLQ1IA GRFGBWK LPPDWLS1NLHTNAFSIAKGWPPRFSYDAIRVPLYLSWAHMLTPELLADFSRFWNHYGASALPGWVDLTNGA RSPYNAPPGYLAVASCTGLASAGELPTLDHAPDYYSAALT LAY 1 ARNQGDGM*
配列番号: 7
LSR I FLLSAVACGMALAQAPAPARHAHDGGGDQADA
シヮ、、ナル S :l
RARQVLASMSLEDKMSLLFSVDGGGFNGSVAPPGGLGSAAYLRAPQGSGLPDLQISDAGLGVRNPAHIRRNG EAVSLPSGQSTASTWD D ARQAGVMIGREAWQSGFNILLGGGADLTRDPRGGRNFEYAGEDPLQTGRMVGS T I AGVQSQHV I STLKHYAMNDLETSRMTMSAD I DPVAMRESDLLGFE I ALETGHPGAVMCSYNRVNDLYACE NPYLLNKTLKQDWHYPGFVMSDWGATHSSARAALAGLDQESAGDHTDARPYFRTLLAADV AGRVPEARIND tsaoNxoaH mivamsd dAiHaxvHooiiNdAanidSNaxdVdHOvssaNdss aA)Il^llA>ISAd)ISAdHSAdVSDinHVVclVHaS0V0dilJ9cl0nMD0HQ59V)ldAdVMaaVVIdcllVSVS0
Figure imgf000039_0001
vaavvdVHavvvvsa osaaHHAadHddH b ddHAHdovss i DAoanwnaAaDD a i ADiovaMaaiSA
8 :
*d llH0H1HWllQ6Saai 0VSl AHiII0SdAS HaH>10ailHV11Hda IVODOcnOAAAQdAaAOVHlOl HANillVlABOHaaiA IOaiSdmn OAOddAlcDIilH Hail MAOAaSOaaAAiaDaiHilOWaHANaVlAOViadHVlQSavDddmiHOSdVA Oil navivdooosodd vaiAOVASS d^nAdaoi3 AAAiad VWAVinvavNaaiHwsdvawo3didDi
VAAAAAaVVMVV VSVISlOdaAlIHVOdVaVOW IdSSdilAAdaOd a OclO VaOOIdaADSSOOO
€£9£0/Z,6df/13d SS^6£/86 OAV

Claims

請 求 の 範 囲
1. ァセ 卜パクター ' キシリナ厶 ■サブスピーシーズ ' シュクロファー メンタンス由来のセルロース合成酵素複合体を構成する夕ンパク質をコ 一ドする遺伝子。
2. 以下の ( a ) 又は (b ) のタンパク質をコー ドする遺伝子。
( a ) 配列番号: 2〜配列番号 : 5のいずれか一つに示されたアミノ酸 配列から成るタンパク質。
( b) アミノ酸配列 ( a ) において 1若しくは数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列から成り、 且つセルロース合成 酵素活性を有するタンパク質。
3. 以下の ( a ) 又は (b ) の D N Aから成る遺伝子。
( a ) 配列番号: 1 に於いて b c s A、 b c s B、 b c s C又は b c s
Dで示された塩基配列から成る D N A。
( b ) ( a ) の塩基配列から成る D N Aとス ト リ ンジ: i:ン 卜な条件下で ハイブリダィズし、 且つ、 セルロース合成酵素活性を有するタン パク質をコードする D N A。
4. ァセ トバク夕一■ キシリナム · サブスピーシーズ . シュクロファー メ ン夕ンス由来のセルラーゼをコ一ドする遺伝子。
5. 以下の ( a ) 又は (b ) のタンパク質をコー ドする遺伝子。
( a ) 配列番号: 6に示されたアミノ酸配列から成るタンパク質。
( b ) アミノ酸配列 ( a ) において 1若しくは数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列から成り、 且つセルラーゼ活性 を有する夕ンパク質。
6. 以下の ( a ) 又は (b) の D N Aから成る遺伝子。
( a ) 配列番号: 1 に於いて C M C a s eで示された塩基配列から成る D N A。
( b) ( a ) の塩基配列から成る D N Aとス トリ ンジ Iン卜な条件下で ハイブリダィズし、 且つ、 セルラーゼ活性を有するタンパク質を コ一ドする D N A。
7. ァセ トバクター属に属する微生物由来の 一グルコシダーゼをコ一 ドする遺伝子。
8. 以下の ( a ) 又は ( b) のタンパク質をコー ドする遺伝子。
( a ) 配列番号: 7に示されたアミノ酸配列から成るタンパク質。
( b) アミノ酸配列 ( a ) において 1若しくは数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列から成り、 且つ ーグルコシダ ーゼ活性を有するタンパク質。
9. 以下の ( a ) 又は ( b ) の D N Aから成る遺伝子。
( a ) 配列番号: 1 に於いて 3—glucosidase で示された塩基配列から 成る D N A。
( b) ( a ) の塩基配列から成る D N Aとス ト リ ンジ I ン 卜な条件下で ハイブリダィズし、 且つ、 —グルコシダーゼ活性を有するタン パク質をコ一ドする D N A。
1 0. 請求項 1 、 2又は 3に記載の遺伝子、 及びその下流 ( 3 ' 末端側 ) に位置する請求項 7、 8又は 9に記載の遺伝子を含む遺伝子群。
1 1 . 請求項 1 、 2又は 3に記載の遺伝子の上流に請求項 4、 5又は 6 に記載の遺伝子及びノ又はグルカナーゼ遺伝子を含む請求項 1 0記載の 這伝子群。
1 2. ァセ 卜パクター属に属する微生物由来の ーグルコシダーゼ。
1 3. 以下の ( a ) 又は ( b) のタンパク質である ーグルコシダーゼ
( a ) 配列番号: 7に示されたアミノ酸配列から成るタンパク質。 ( b) アミノ酸配列 ( a ) において 1 若しく は数個のアミノ酸が欠失、 置換又は付加されたアミノ酸配列から成り、 且つ —グルコシダ ーゼ活性を有するタンパク質。
PCT/JP1997/003633 1997-03-04 1997-10-09 NOVEL GENE, GROUP OF GENES, AND NOVEL β-GLUCLOSIDASE WO1998039455A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/147,236 US6316251B1 (en) 1997-03-04 1997-10-09 Gene, group of genes, and novel β-gluclosidase
KR1019980708516A KR20000064999A (ko) 1997-03-04 1997-10-09 신규한 유전자 및 유전자군 및 신규한 β-글루코시다제
JP53834998A JP3921692B2 (ja) 1997-03-04 1997-10-09 新規な遺伝子及び遺伝子群並びに新規なβ−グルコシダーゼ
EP97943167A EP0916731A4 (en) 1997-03-04 1997-10-09 NEW GENE, GROUP OF GENES AND NEW BETA-GLUCOSIDASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6392797 1997-03-04
JP9/63927 1997-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/522,474 Division US6573076B1 (en) 1997-03-04 2000-03-09 Gene, group of genes, and novel β-glucosidase

Publications (1)

Publication Number Publication Date
WO1998039455A1 true WO1998039455A1 (en) 1998-09-11

Family

ID=13243478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003633 WO1998039455A1 (en) 1997-03-04 1997-10-09 NOVEL GENE, GROUP OF GENES, AND NOVEL β-GLUCLOSIDASE

Country Status (5)

Country Link
US (2) US6316251B1 (ja)
EP (1) EP0916731A4 (ja)
JP (1) JP3921692B2 (ja)
KR (1) KR20000064999A (ja)
WO (1) WO1998039455A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335640C (zh) * 2005-10-28 2007-09-05 南开大学 一种嗜热碱性β-葡萄糖苷酶及其编码基因
USRE45660E1 (en) * 2006-02-14 2015-09-01 Bp Corporation North America Inc. Xylanases, nucleic acids encoding them and methods for making and using them
CN108060112B (zh) * 2017-11-28 2019-09-10 南京工业大学 一株细菌纤维素生产菌株及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222688A (ja) * 1989-02-27 1990-09-05 Shinenerugii Sogo Kaihatsu Kiko セルラーゼをコードするdna鎖
JPH04503456A (ja) * 1989-04-12 1992-06-25 モンサント カンパニー セルロースシンターゼオペロンの表現のための方法及び核酸配列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268274A (en) * 1989-04-12 1993-12-07 Cetus Corporation Methods and nucleic acid sequences for the expression of the cellulose synthase operon
WO1990012098A2 (en) 1989-04-12 1990-10-18 Cetus Corporation Methods and nucleic acid sequences for the expression of the cellulose synthase operon
WO1994020626A1 (en) 1993-03-08 1994-09-15 Bio-Polymer Research Co., Ltd. Acetobacter, plasmid originating therein, and shuttle vector constructed from said plasmid
US5792630A (en) 1994-05-19 1998-08-11 Bio-Polymer Research Co., Ltd. Cellulose-producing microorganism transformed with a gene for an enzyme involved in sucrose metabolism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222688A (ja) * 1989-02-27 1990-09-05 Shinenerugii Sogo Kaihatsu Kiko セルラーゼをコードするdna鎖
JPH04503456A (ja) * 1989-04-12 1992-06-25 モンサント カンパニー セルロースシンターゼオペロンの表現のための方法及び核酸配列

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MATSUOKA MASANOBU ET AL: "A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans.", BIOSCIENCE BIOTECHNOLOGY BIOCHEMISTRY., JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, TOKYO, JAPAN, vol. 60, no. 4, 1 April 1996 (1996-04-01), TOKYO, JAPAN, pages 575 - 579, XP002164603, ISSN: 0916-8451 *
OKAMOTO T., ET AL.: "CLONING OF THE ACETOBACTER XYLINUM CELLULASE GENE AND ITS EXPRESSION IN ESCHERICHIA COLI AND ZYMOMONAS MOBILIS.", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, DE, vol. 42., no. 04., 1 January 1994 (1994-01-01), DE, pages 563 - 568., XP000611737, ISSN: 0175-7598, DOI: 10.1007/s002530050294 *
See also references of EP0916731A4 *
WONG H C, ET AL.: "GENETIC ORGANIZATION OF THE CELLULOSE SYNTHASE OPERON IN ACETOBACTER XYLINUM", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 87, 1 October 1990 (1990-10-01), US, pages 8130 - 8134, XP002907329, ISSN: 0027-8424, DOI: 10.1073/pnas.87.20.8130 *

Also Published As

Publication number Publication date
KR20000064999A (ko) 2000-11-06
US6316251B1 (en) 2001-11-13
EP0916731A4 (en) 2001-10-31
EP0916731A1 (en) 1999-05-19
US6573076B1 (en) 2003-06-03
JP3921692B2 (ja) 2007-05-30

Similar Documents

Publication Publication Date Title
Hidalgo et al. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae
KR20150058478A (ko) 글루칸 중합체의 생성을 위한 글루코실트랜스퍼라제 효소
JP4248900B2 (ja) 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
Shrestha et al. Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
Galli et al. Characterization of the surfactin synthetase multi-enzyme complex
CN113234699A (zh) α-1,2-岩藻糖基转移酶及其应用
JP2017038618A (ja) 改良型β−フルクトフラノシダーゼ
AU3798900A (en) Novel proteins related to gaba metabolism
JP2005080553A (ja) 新規トランスポータタンパク質
WO1998039455A1 (en) NOVEL GENE, GROUP OF GENES, AND NOVEL β-GLUCLOSIDASE
Sasaki et al. Respiratory isozyme, two types of rusticyanin of Acidithiobacillus ferrooxidans
CN112375725B (zh) 一种生产维生素b6的代谢工程菌株及其构建方法与应用
EP1543026B1 (en) Transcriptional activator gene for genes involved in cobalamin biosynthesis
CN103602646B (zh) 一种最适反应温度提高的β-葡萄糖苷酶突变体及其应用
CN102277327B (zh) 过表达RimL的大肠杆菌及其在制备N-乙酰化胸腺素α中的应用
JP3429569B2 (ja) 環状イソマルトオリゴ糖合成酵素遺伝子を含有するdna、組み換え体dna、及び環状イソマルトオリゴ糖合成酵素の製造法
JP2003093069A (ja) リゾビトキシン生産遺伝子rtxC
CN114990097B (zh) L-天冬氨酸-α-脱羧酶突变体及其应用
JP3330670B2 (ja) アルケンモノオキシゲナーゼ、これをコードする遺伝子及び形質転換微生物並びにアルケンのエポキシ化方法
Mokhonova et al. Forceful large-scale expression of “problematic” membrane proteins
EP0448969A2 (en) Structural gene of membrane-bound alcohol dehydrogenase complex,plasmid containing the same and transformed acetic acid bacteria
JP3060019B2 (ja) マルトテトラオース生成酵素遺伝子を含有するプラスミド及び該プラスミドを有する微生物並びに該微生物を用いるマルトテトラオース生成酵素の製造法
JPH11127869A (ja) ヘキシュロースリン酸イソメラーゼ遺伝子
JPH09505989A (ja) 菌類からのα‐1,4‐グルカンリアーゼ、その精製、遺伝子クローニングおよび微生物での発現

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): ID JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019980708516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997943167

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09147236

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997943167

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980708516

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997943167

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980708516

Country of ref document: KR