WO1998035030A1 - Cycle c4 de type pck - Google Patents

Cycle c4 de type pck Download PDF

Info

Publication number
WO1998035030A1
WO1998035030A1 PCT/JP1998/000537 JP9800537W WO9835030A1 WO 1998035030 A1 WO1998035030 A1 WO 1998035030A1 JP 9800537 W JP9800537 W JP 9800537W WO 9835030 A1 WO9835030 A1 WO 9835030A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plant
plants
rice
photosynthetic
Prior art date
Application number
PCT/JP1998/000537
Other languages
English (en)
French (fr)
Inventor
Masao Arai
Shoichi Suzuki
Nobuhiko Murai
Shigehiro Yamada
Shozo Ohta
James N. Burnell
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to EP98901570A priority Critical patent/EP0916725B1/en
Priority to DE69837588T priority patent/DE69837588T2/de
Priority to CA002250827A priority patent/CA2250827C/en
Priority to AU57817/98A priority patent/AU729520B2/en
Priority to JP53414598A priority patent/JP3501814B2/ja
Priority to US09/155,989 priority patent/US6610913B1/en
Priority to KR1019980708043A priority patent/KR100769755B1/ko
Publication of WO1998035030A1 publication Critical patent/WO1998035030A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis

Definitions

  • the present invention relates to a method for transforming a C3 plant that imparts the C4 cycle by introducing a plurality of enzymes that contribute to the C4 photosynthetic cycle into the C3 plant.
  • C4 The leaf tissue of a plant that photosynthesizes C4 (C4 plant) is composed of mesophyll cells and vascular sheath cells around the vascular bundle, and has a special leaf tissue structure called crunch-type leaf structure.
  • C4 plants fix atmospheric carbon dioxide in the form of C4 compounds using phosphoenolpyruvate carboxylase (hereinafter sometimes referred to as PEPC) localized in the cytoplasm of mesophyll cells.
  • PEPC phosphoenolpyruvate carboxylase
  • the two types of cells in the green leaf of the C4 plant are functionally differentiated, the mesophyll cells generate the C4 compound and regenerate the substrate of PEP C by the initial carbon fixation, and the vascular sheath cells the C4 compound. And real carbon fixation by the Calvin-Benson circuit.
  • C4 photosynthesis circuit The three processes of carbon fixation by PEP C, release of carbon dioxide in the vicinity of Ru bisco by decarboxylase, and regeneration of ATP-consuming PEP C substrate form a circuit reaction called the C4 photosynthesis circuit.
  • This circuit reaction involves the normal photosynthesis (C3-type photosynthesis) of the C4 plant, which functions as a carbonic acid concentrating function, avoiding a decrease in the efficiency of the photochemical system due to overproduction of ATP under strong light conditions (avoiding light damage), and a water stress tolerance function. (C 3 plants) do not have the apparent light respiration observed in C 3 plants. The decrease in photosynthetic capacity under strong light conditions and high temperature conditions is small. Therefore, it can be said that C4 plants have better photosynthetic ability than C3 plants.
  • Hudspeth et al. Hudspeth et. Al., Plant Physiol., (1992) 98: 458-4 64.
  • the PEP C gene is located downstream of the tobacco chlorophyll a / b binding protein promoter (cab promoter, ichimoichi). It has been reported that PEP C activity of green leaves increased twice and malic acid content of leaves increased, and that Kogami et al. (Kogami et al., Transgenic Research (1994) 3: 287-296) reported that when PEPC gene was ligated downstream of the cariplasmic mosaic virus 35S promoter and introduced into evening bamboo, the leaf PEPC activity was doubled.
  • PCK phosphoenolpyruvate carboxykinase
  • An object of the present invention is to provide a C3 plant with a C4 photosynthetic circuit by introducing a plurality of enzymes contributing to the C4 photosynthetic circuit in order to improve the photosynthetic ability of the C3 plant. It is to provide a method for transforming three plants.
  • Another object of the present invention is to provide a transformed plant to which a C4 circuit has been imparted by this transformation method.
  • Still another object of the present invention is to provide a vector for this transformation.
  • FIG. 1 is a schematic diagram showing a PCK type C4 photosynthesis circuit.
  • FIG. 2 is a schematic diagram showing the constructed genes used for transformation.
  • FIG. 3 is a graph showing the change over time of the labeled carbon compound.
  • FIG. 4 is a graph showing the photosynthetic activity of the transformed rice.
  • the present inventors have conducted intensive studies and found that, by introducing a gene encoding PEPC and a gene encoding PCK to which a gene encoding transit peptide is linked into a C3 plant, It is a solution to the problem.
  • the present inventors express the gene involved in C4 photosynthesis alone in the cytoplasm in the prior art, so it is possible to impart the activity of the introduced enzyme to C3 plants, but the C4 photosynthetic circuit We thought that the improvement of rotation and photosynthetic capacity could not be achieved.
  • the intracellular localization of the enzyme to be introduced is limited, the cytoplasm is regarded as a mesophyll cell of a C4 plant, and the chloroplast is regarded as a vascular sheath cell of a C4 plant.
  • the cytoplasm is regarded as a mesophyll cell of a C4 plant
  • the chloroplast is regarded as a vascular sheath cell of a C4 plant.
  • it rotates a circuit reaction similar to the C4 photosynthetic cycle of the C4 plant in the mesophyll cells of the C3 plant, thereby causing the chloroplasts to emit carbon dioxide.
  • a function of increasing the carbon concentration and a function of avoiding light damage by consuming ATP can be provided. Plants to which these abilities have been imparted have improved photosynthetic ability to improve dry matter productivity, drought tolerance, high temperature tolerance, strong light tolerance, and low carbon dioxide conditions. It is expected that the photosynthetic capacity
  • PEPC which is the first carbonic anhydrase of C4 plants
  • cytoplasm in the mesophyll cells of the green leaves of C3 plants (rice) to remove C4 compounds.
  • Carbonic acid acts in the chloroplast, and an enzyme for regenerating PEP is simultaneously expressed either in the cytoplasm or in the chloroplast.
  • PCK is used as a decarboxylase for this purpose. Is haccho? Since PCK is used as an enzyme to decarboxylate oxalate and decarbonate acetic acid, PCK can be used as a decarboxylase to perform decarboxylation, ATP consumption, and PEP regeneration with one enzyme. In order for this decarboxylase to exert its action in chloroplasts, a gene encoding this enzyme is used in connection with a gene encoding a transit peptide. Transit peptides convert decarboxylase expressed in the cytoplasm into chloroplasts And allows decarboxylase to work in the chloroplast.
  • the cytoplasm is regarded as the mesophyll cell of the C4 plant
  • the chloroplast is regarded as the vascular sheath cell of the C4 plant.
  • the target C 4 photosynthetic circuit is formed only by PEPC, decarboxylase, and the enzyme that regenerates PEP.
  • PEPC in order to supply bicarbonate, a direct substrate of PEPC, to the cytoplasm, Alternatively, CA may be simultaneously expressed in the cytoplasm to make the flow of the C4 photosynthesis circuit smoother.
  • PEPC, PC In addition to CA, in order to increase the supply of PEP, a substrate for PEPC, P PDK, an enzyme that generates PEP from pyruvate, is simultaneously expressed to further smooth the flow of the C4 photosynthesis circuit. It is also possible to use
  • the present invention provides a C3 plant with a C4 photosynthesis circuit by introducing a gene encoding PEPC and a gene encoding PCK to which a gene encoding a transit peptide is linked into a C3 plant. This is a method for transforming three plants.
  • PEPC used in the present invention
  • bacteria derived from bacteria include those derived from coryneform / glutamic acid producing bacteria (Japanese Patent Publication No. 7-83714).
  • preferred PEPCs are derived from plants, for example, those derived from corn (Japanese Patent Publication No. 6-30587) and those derived from amaranth (Rydzik, E. and Berry, J.0., Plant Physiol.
  • the PCK-encoding gene used in the present invention is preferably derived from plants and bacteria encoding ATP-dependent PCK
  • the plant-derived gene is, for example, one derived from Perochloa panicoides ( JP-A-8-80197), those derived from cucumber (Kim, D.-J. and Smith, SM, Plant Mol.Biol., (1994) 26: 423-434), and the like, and those derived from bacteria. Escherichia coli (Medi na, V. et al., J. Bacteriol., (1990) 172: 7151-7156), and those derived from Rhizopium family bacteria (Osteras, M. et al., J. Bacteriol., (1995) 177: 1452-1460), but those derived from plants are preferred, and those derived from Peroclor'panicoides are particularly preferred.
  • PCK needs to exert its action in chloroplasts as described above. Therefore, it is necessary to use a transit sequence in conjunction with the gene sequence encoding PCK.
  • the transit sequence to be linked has been reported to be derived from a chloroplast-localized protein of many plants (Keegstra, K. et al., Annu. Rev. Plant Mol. Biol., (1989) 40: 471-501), but in the present invention, a rice-derived sequence is preferable, and particularly preferably, the rice rubisco small subunit represented by SEQ ID NO: 2 obtained by the method of Examples described later.
  • a rice-derived sequence is preferable, and particularly preferably, the rice rubisco small subunit represented by SEQ ID NO: 2 obtained by the method of Examples described later.
  • Is an array of The transit sequence links the open reading frame to the PCK gene upstream of the gene encoding the PCK.
  • the transit sequence is directly ligated upstream of the PCK structural gene.
  • a CA-encoding gene may be introduced into C3 plants in order to supply carbonate ions, which are direct substrates of PEPC, to the cytoplasm.
  • genes encoding CA used here are derived from animals and plants. However, the similarity of the nucleotide sequence between the gene encoding CA derived from higher plants and that derived from other organisms is low. Enzymatic activity of CA in higher plants is controlled by inorganic phosphate (Sultemeyer, D. et al., Physiol. Plant., (1993) 88: 179-19 0). Therefore, the genes to be used are preferably those derived from higher plants, and those derived from higher plants include those derived from spinach (Burnell et al., Plant Phy siol. (1990) 92: 37-40) and those derived from endu. (Roeske, CA and Ogren, WL, Nuc.
  • Examples of the PPDK-encoding gene used in the present invention include maize C4-type PPDK gene (Matsuoka, M. et al., J. Biol. Chem., (1988) 263: 110 80-11083), and rice-derived genes. (Japanese Patent Application Laid-Open No. 7-184657), derived from Flaverian pudding gray (Rosche, E. et al., Plant Mol. Biol., (1994) 26: 763-769), Mesembriantemum 'Chris And Talinum-derived (Fisslthaler. B. et al., Planta, (1995) 196: 492-500). In the present invention, the maize C4 type PPDK gene is preferred.
  • the PPDK gene may be expressed in chloroplasts or in the cytoplasm.
  • a sequence encoding a transit peptide is linked to the PPDK gene and used.
  • the promoter sequence used in the gene encoding each of the above-mentioned enzymes is not particularly limited, but is preferably a photosynthetic organ-specific promoter sequence.
  • the photosynthetic organ-specific promoter sequence include, for example, maize C4 type PPDK promoter sequence (Glackin et al., (1990) Proc. Natl. Acad. Sci. USA 87: 3004-3008), maize C4 type PEPC Promoter sequence (Hudspeth, RL and Grula, JW, Plant Mol. Biol., (1989) 12: 579-589), Rice Rubisco small subunit promoter sequence (Kyozuka, J.
  • the genes encoding the enzymes involved in the C4 circuit may be separately introduced and transformed into C3 plants as construction genes for gene transfer, but preferably, each gene is the same gene. It is preferable that the gene be ligated to the transgene and then transfected and transformed into a C3 plant. There are no special restrictions on the order of the genes.
  • the above-described construct gene is inserted into the selected C3 plant cell according to a conventional method.
  • the method of introduction include conventional methods such as an electoral poration method, an electoral injection method, a method using a chemical treatment such as PEG, and a method using a gene gun.
  • each gene is obtained using the agrobacterium method. It is preferable to introduce and transform into a C3 plant.
  • the agrobacterium method is well known in the art, and is used for dicotyledonous plants (for example, Japanese Patent Application Laid-Open No. 4-330234) and monocotyledonous plants (W ⁇ 94 / 0997). 7) can also be used for transformation. Plants that have been successfully transformed can be selected by the method described below.
  • the genetic traits of the transformed plants can be fixed by common breeding methods and the introduced genes can be transmitted to progeny plants.
  • this technique can be applied to any C3 plant, but in particular, the photosynthetic ability of rice, wheat, corn, soybean, potato, tobacco, rape, etc. is improved. This is useful for crops that are expected to improve dry matter productivity.
  • it is preferably applied to monocotyledonous plants, particularly preferably to rice.
  • the C4 photosynthetic circuit in the present invention includes, as described above, three processes of carbonic acid fixation by PEPC, release of carbon dioxide near Rubisco by decarboxylase, and regeneration of the substrate of PEPC consuming ATP. Is formed.
  • the DNA fragment of the maize C type 4 PDK promoter promoter region is prepared based on the known nucleotide sequence (Glackin, CA and Grula, JW (1990) Proc. Natl. Acad. Sci. USA 87: 3004-3008) Synthetic primers
  • Corn C type 4 cDNA of PEP C is a synthetic oligonucleotide prepared based on a known base sequence (Hudspeth, R.L. and Grula, J.W. (1989) Plant Mol. Biol. 12: 579-589).
  • the cDNA of Perlochlore panicoides PCK used was a construct gene to which a region encoding the transit peptide portion of rice Rubisco small subunit was added. That is, APCK170204 and APCKIOOIOI were connected at the Kpn I site present in each of the inserts, and the obtained DNA fragment was used as a type II synthetic primer PCK-f2
  • PCR was again performed using TP-rl and TP-rl. Then, the PCR fragment amplified by PCR was converted to a DNA fragment of about 2 kbp obtained by partial digestion of XbaI and SphI, and the transit peptide sequence DNA fragment amplified by PCR for the second time was converted to Nc A fragment of about 150 bp (sequence is shown in SEQ ID NO: 2) obtained by digestion with oI and XbaI was ligated, and the obtained DNA fragment of about 2.2 kbp was used for gene construction.
  • One terminator is BI121 (Jefferson, RA (1987) Plant Mol. Biol. Rep. tr.5: 387-405), a DNA fragment of the NOS terminator region obtained by digestion with Sa1I and EcoRI, pGL2 (Bilang, R. et al. (1991) Gene 100: 247-250). Was digested with SphI and EcoRI, and a DNA fragment of a 35S terminator region obtained from the digestion was used.
  • the obtained promoter DNA, cDNA, and DNA DNA fragment were ligated together in the following combination, and the plasmid was inserted into the HindIII-EcoRI site of pBluescriptllSK- (Stratagene, USA).
  • a plasmid for single gene transfer was constructed.
  • Plant J. (1996) 10: 165-174) was inserted into the site digested with Xbal and HindiII to construct super binary intermediate plasmids pSPK and pSCPK.
  • Each of these vectors was introduced into E. coli LE392 strain, and introduced into Agrobacterium and homologous recombination ( Komari, T. et al.) By three-way cross between Agrobacterium LB A4404 / pSB4 and E. coli HB101 / PRK2013. Plant J. (1996) 10: 165-174) to construct SB4PK and PSB4CPK.
  • Maize C type 4 P PDK cDNA was isolated using a known base sequence (Matsuoka, M., Ozeki, Y., Yamamoto,., Hirano, ⁇ ., Ano-Murakami, ⁇ . And Tanaka, ⁇ .: Pr. imary structure of maize pyruvate, orthophosphate dikinase as deduced fra cDNA sequence.J. Biol. Chem. 263: 11080-11083 (1990))
  • 5'-TAGCTCGATGGGTTGCACGATCATATGGAGCAAGG-3 '(SEQ ID NO: 13) was used as a probe and prepared by a conventional method (Sambrook, J. et al., Supra) using ⁇ ZAP vector-1 (Stratagene, USA). The cDNA library was screened and isolated. Furthermore, a synthetic primer prepared based on a known sequence (Sheen, L: Molecular mechanisms underlying the differential expression of Maize Pyruvate, Orthophospate dikinase genes. Plant Cell 3: 225-245 (1991))
  • the above-mentioned maize PPDK c DNA was used for type III by the PCR method using 5'-GTACTCCTCCACCCACTGCA-3 '(3' side) (SEQ ID NO: 15) (Mcpherson, ⁇ ⁇ J. Et al., Supra). Amplification yielded a DNA fragment of about 250 bp. This cut The piece was digested with NdeI and SacII, and replaced between the NdeI and SacII sites of the above-mentioned PPDK cDNA. This was digested with NdeI and C1aI, and a DNA fragment of about 2.9 kbp obtained as a PPDK cDNA was used for gene construction.
  • the evening miner region is located in the plasmid PPGA643A (Gynheung AN, Paul R. Ebert, Amitava Mittra and Sam B. HA: binary vectors, Plant Molecular Biology Manua 1 A3: gene 19 (1988)).
  • I used 7 min. 1 min. 1 min. g en e 7 miner was obtained by digesting PPGA643 (Gynheung AN et al., supra) with ClaI and KpnI.
  • a plasmid was inserted between the Cpal and KpnI sites of pBluescriptllSK- (Stratagene, USA), digested with KpnI, blunt-ended, and inserted with an XbaI linker. And DNA fragments obtained by digestion with XbaI were used for gene construction.
  • a plasmid pSK containing the PEPCK gene was inserted between the NcoI and XbaI sites of pSK-Di2 by inserting a DNA fragment of about 2.4 kbp obtained by digesting pDKS with NcoI and XbaI. -Created DiKS.
  • a DNA fragment of about lkbp obtained by digesting pDCS described above with NcoI and XbaI was inserted between the Nc0I and Xbal sites of pSK-Di2, and the plasmid pSK- containing the CA gene was inserted. DiCS was created.
  • the resulting plasmid was inserted into the plasmid pSK-CiPi.
  • the XbaI site of pSK-DiDT was removed, an XbaI linker was inserted into the XhoI site, and a 4.8 kbp DNA fragment obtained by digesting this with XbaI and NotI was obtained.
  • the plasmid was inserted between the XbaI and NotI sites of pSK-CiPi to prepare a plasmid pSK-CiPiDi.
  • Nl 4 at X ho I site of pSK_CiPiDi An otI linker was inserted, and a DNA fragment of about 12 kbp obtained by digestion with NotI was obtained.
  • pSBll Komari ⁇ ⁇ et al., Plant J. 10: 165-174 (1996) was digested with Hind III and EcoRI, blunt-ended, and a Not I linker was inserted into the Not I site.
  • the above-mentioned DNA fragment of about 12 kbp was inserted into the plasmid to prepare a plasmid pSBmCiPiDi.
  • a DNA fragment of about 3.3 kbp obtained by digesting with XbaI was inserted into the XbaI site of pSBmCiPiDi, and the plasmid pSBmCiPiKiDi was inserted. Created.
  • transgenic rice into which PSB4P, pSB4CPK, and pSB4CiPiDiKi were introduced was performed by the agrobacterium method according to the previous report (Hiei, Y. et al. (1994) Plant J. 6: 271-282).
  • the resulting transformed individuals were grown in an air-conditioned greenhouse (16 hours daylength, day: 28 ° C, night: 23 ° C).
  • the triturated solution was centrifuged at 15000 at 4 for 20 minutes, and the resulting supernatant was previously subjected to column buffer (50 mM HEPES-KOH pH 7.0, 10 mM magnesium chloride) at room temperature. Desalting through NAP 5 (trade name) column (Pharmacia, Sweden) equilibrated with Nesium, 2 mM manganese chloride, ImM EDTA, 0.1% 2-mercaptoethanol, 20% glycerol) and crude extraction A liquid was obtained. The quantification of chlorophyll in the trituration solution was performed according to a previous report (Wintermans and deMots (1965) Biochem. Biophys. Acta 109: 448-453), and the quantification of the protein in the crude extract was performed using the Protein Assay Kit (trade name, Bio-Rad, USA). ).
  • the obtained crude extract was subjected to SDS-PAGE so that the protein amount would be equal, and the protein in the gel was transferred to a nitrocellulose membrane. (Schleicher and Schuel, Germany), and electrotransferred to maize PEP C protein or perchlora panicoides PCK protein or spinach CA protein or maize P PDK protein.
  • Each of the introduced enzyme proteins was detected using Ze-labeled goat anti-Egret IgG (U.S.A., Organon Technichiro Kappel product) and AP color kit (trade name, BioRad, U.S.A.).
  • PEPC activity was measured at 25 mM HEPES-KOH H8.0, 5 mM magnesium sulfate, 4 mM dithiothreitol, 5 mM potassium bicarbonate, 0.25 mM
  • PCK activity was measured using 25 mM HEPES-KOH pH 8.0, 4 mM dithiothreitol, 0.2 mM oxalate acetic acid, 1 unit pyruvate kinase (Beilinger Mannheim, Germany), 0.2 mM ATP, crude extract 501 This was performed by determining the rate of decrease in the absorption of oxaline acetic acid at 280 nm using the reaction solution containing lm1.
  • PPDK activity was measured at 25 mM HEPES-KOH pH 8.0, 10 mM dithiothreitol, 10 mM potassium hydrogen carbonate, 8 mM magnesium sulfate, 5 mM ammonium chloride, 2.5 mM monopotassium hydrogen phosphate, ImM ATP, lm glucose-6-phosphate.
  • the leaves were frozen in liquid nitrogen to stop bioactivity, and the leaves were left in 80% hot ethanol for about 30 minutes to elute soluble material.
  • the atmosphere was taken into the system, and after 10, 30, and 90 seconds, the leaves were taken out of the assimilation box, immersed in liquid nitrogen to stop the biological activity, and soluble substances were removed with 80% hot ethanol. Eluted.
  • the obtained extract was concentrated on an evaporator and used for two-dimensional thin-layer chromatography using Funacel SF cellulose thin-layer plate (trade name, 20 cm ⁇ 20 cm, Funakoshi).
  • phenol-water-glacial acetic acid-0.5M EDTA (474: 84: 5.5: 1.14: V / V) is used as a one-dimensional developing solvent, and Solution A (n-butanol: water; A mixture of equal volumes of 74: 5; V / V) and solution B (propionic acid: water; 9:11; V / V) was used.
  • the development is performed at room temperature. After the development is completed, the plate is dried, and the amount of the autoradiography and each spot is quantified using a Bio-Image Analyzer-BasslOO System (Fuji Photo Industry), and labeled with radioisotopes. The percentage of the identified substances was investigated.
  • Example 5 Tracer experiment using [ 14 C] malic acid
  • Leaves of the transformed rice and control rice (moonlight) grown in an air-conditioned greenhouse were drained and exposed to 27,000 lux for 1 hour in 10 mM phosphate buffer pH 6.4. The leaves were then plugged into a solution of 100 Ci buffer plus 1 Ci of [ 14 C] malic acid (5 wl) (Amersham, UK). After a certain period of time, the leaf pieces were taken out, the part immersed in the buffer solution was excised, and immersed in 80% boiling ethanol to stop the biological reaction, and placed in a boiling state for 30 minutes to elute soluble substances.
  • the eluate is concentrated on an evaporator, subjected to two-dimensional thin-layer chromatography to separate radiolabeled substances, and subjected to autoradiography and quantification of each spot using a bioimage analyzer BaslOOO system.
  • the proportion of substances labeled with radioisotopes was investigated.
  • Transgenic rice and control rice (moonlight) grown in an air-conditioned greenhouse are grown for at least one day in an artificial weather device (12 hours daylength, illuminance of about 35,000 lux, 25 ° C) to acclimate to the environment.
  • the photosynthetic activity of fully developed leaves before senescence had been measured using a photosynthetic transpiration analyzer (LI-6200, Leica, USA).
  • transgenic rice into which the constructed gene pDPN was introduced (PEPC-introduced transformant)
  • expression of the PEPC protein was confirmed in 15 individuals.
  • Expression of PCK protein was confirmed in 20 of 31 transgenic rice (PCK-introduced transformants) into which the constructed gene pDKS was introduced.
  • transgenic rice (CA-transformed transformants) transfected with PDCS construct gene relatively high expression of CA protein was confirmed in 3 individuals.
  • Expression of two types of proteins, PEPC and PCK was confirmed in 12 out of 21 transgenic rice plants transfected with the constructed gene pSB4M (2 transgenic transformants).
  • the construction gene for PCK introduction used in this example is a chimeric gene to which a region encoding the transit peptide portion of the rice Ru bisco small subunit has been added, as described previously (Japanese Patent Application Laid-Open No. 8-80197).
  • the PCK protein is localized in the chloroplast by the action of the transit peptide.
  • Transgenic rice 8.1.1.9 (2) transgenic rice, (3) transgenic rice, (4) transgenic rice, and It followed the subsequent behavior of (Tsukinohikari) and 5 seconds off leaves toe sorghum '4 C0 2 labeled C 4 compound after given time. Labeled C4 compounds in transformed rice showed a decreasing force over time, similar to C4 plant maize.Controlled rice showed little change in labeled C4 compounds. (See Figure 3). This indicates that in transformed rice, C4 compounds produced by carbon fixation of the introduced PEPC are immediately metabolized to other substances, similar to the changes seen in the green leaf tissue of C4 plants. Indicates that it is changing.
  • the photosynthetic activity of the R1 generation of the transgenic rice transformed with the transgenic rice and the control rice was measured by changing the concentration of carbon dioxide that gives leaves, and the photosynthetic activity-intracellular carbon dioxide concentration curve ( Figure 4)
  • the cell-to-cell carbon dioxide concentration (the straight-line X-axis intercept in the figure) assuming that the apparent photosynthetic activity was lost was lower in the transformed rice than in the control rice.
  • This C_ ⁇ z compensation point of transformed rice have shown that lower than the control rice.
  • the COz compensation point of C4 plants tends to be lower than that of C3 plants.
  • the transformed rice plants have photosynthetic characteristics closer to those of C4 plants than control rice plants.
  • a circuit reaction similar to the C4 photosynthetic circuit of a C4 plant is rotated in mesophyll cells of a C3 plant, the function of increasing the carbon dioxide concentration in the chloroplast, and the light damage due to ATP consumption are reduced. It is possible to provide a function of avoiding.
  • plants to which these abilities have been imparted are improved in dry matter productivity and drought tolerance by improving photosynthetic ability. It can be expected to improve the sexual ability, the ability to withstand high temperature, the ability to withstand strong light, and the ability to photosynthesize under low carbon dioxide conditions.
  • Sequence type nucleic acid
  • Organism name Mace (Zea mays)
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Organism name Spinacia oleracea
  • AAA AAT CCA GCA TTG TAT GGT GAG CTT TCT AAG GGC CAA GCT CCC AAG 143 Lys Asn Pro Ala Leu Tyr Gly Glu Leu Ser Lys Gly Gin Ala Pro Lys
  • GCT GAA CAA TGC ACC CAT TGT GAA AAG GAA GCT GTG AAT GTA TCT CTT 527 Ala Glu Gin Cys Thr His Cys Glu Lys Glu Ala Val Asn Val Ser Leu 160 165 170 175
  • Sequence type nucleic acid Number of chains: single strand
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明細書
PCK型 C4回路 発明の属する分野
本発明は、 C 4光合成回路に寄与する複数の酵素を C 3植物に導入することに より C 4回路を付与する C 3植物の形質転換法に関するものである。
従来の技術
高等植物の光合成経路には C 3型、 C 4型及び CAM型の 3つのタイプが存在 する。 C 4型光合成をする植物 (C4植物) の葉組織は、 葉肉細胞と維管束周辺 の維管束鞘細胞から構成されており、 クランッ型葉構造と呼ばれる特殊な葉組織 構造をしている。 C4植物は、 葉肉細胞の細胞質に局在するホスホェノールピル ビン酸カルボキシラ一ゼ (以下、 PEP Cとする場合がある。 ) により大気中の 二酸化炭素を C 4化合物の形で固定し、 維管束鞘細胞で脱炭酸酵素の作用により 二酸化炭素を放出して真の炭酸固定酵素であるリブロース- 1, 5-ニリン酸カルボ キシラーゼノォキシゲナーゼ (以下、 Rub i s c oとする場合がある。 ) 近傍 の二酸化炭素濃度を高めている。 また、 維管束鞘細胞内で脱炭酸された代謝産物 は葉肉細胞に輸送され、 そこに局在するピルビン酸リン酸ジキナーゼ (以下、 P PDKとする場合がある。 ) の作用により AT Pを消費して PEP Cの基質であ るホスホエノ一ルビルビン酸 (以下、 PEPとする場合がある。 ) に変換される 。 したがって、 C 4植物緑葉の 2種類の細胞は機能的に分化しており、 葉肉細胞 は最初の炭酸固定による C 4化合物の生成と PEP Cの基質の再生、 維管束鞘細 胞は C 4化合物からの脱炭酸とカルビン一ベンソン回路による真の炭酸固定を行 つている。
これらの PEP Cによる炭酸固定、 脱炭酸酵素による Ru b i s c o近傍での 二酸化炭素の放出、 ATPを消費した PEP Cの基質の再生の 3つの過程は、 C 4光合成回路と呼ばれる回路反応を形成している。 この回路反応は、 C4植物に 炭酸濃縮機能、 強光条件下における A T P過剰生産による光化学系の効率低下の 回避 (光傷害回避) 機能、 水ストレス耐性機能という通常の光合成 (C 3型光合 成) を行う植物 (C 3植物) にはない機能をもたらしており、 そのために C 4植 物では C 3植物において観察される見かけの光呼吸が見られず、 C 3植物に比べ 乾燥条件、 強光条件、 高温条件における光合成能力の低下量が少ない。 したがつ て、 C 4植物は C 3植物よりも光合成能力が優れているといえる。
C 3植物に C 4光合成回路を付与する試みとして、 交配育種による導入が考え られるが、 C 4光合成回路と通常の C 3光合成回路を持つ種は、 現在の交雑技術 では交配の困難な属科のレベルで分類されるものがほとんどである。 同じ属内の C 3植物と C 4植物を交配して C 4光合成の形質を導入する試みがハマァカザ属 植物を用いて行われたが、 C 4光合成回路の形質を導入するには至らなかった ( 大杉 立農業技術(1995) 50巻 pp.30-36 ) 。
一方、 Hudspeth等の文献(Hudspeth et aに Plant Physiol. , (1992) 98:458-4 64.)には、 タバコクロロフィル a/b 結合タンパク質プロモーター (cab プロモ一 夕一) の下流に PEP C遺伝子をつないでタバコに導入し、 緑葉の PEP C活性 が 2倍に上昇し、 葉のリンゴ酸含量が増加した点が報告されており、 また Kogami 等の文献(Kogami et al. , Transgenic Research (1994) 3:287- 296)には、 カリフ ラヮ一モザイクウィルス 35S プロモーターの下流に P E P C遺伝子をつないで夕 バコに導入した場合、 葉の P E P C活性が 2倍に上昇した旨が報告されている。 いずれの文献も PEP Cを単独で C 3植物であるタバコに導入し、 C4化合物 であるリンゴ酸の蓄積を確認しているが、 光合成能力の変化は観察されていない 。 また、 C 3植物は、 C 4化合物を植物体内で脱炭酸してカルビン回路へ供給す る能力を欠いている。 したがって、 C 3植物に PEP C遺伝子を単独で導入した だけでは、 C 4光合成回路にみられる炭酸濃縮機能、 光傷害回避機能等を再現す ることはできず、 C 3植物の光合成能力の向上とはならない。
また、 特開平 8- 80197 号公報においては、 葉緑体への移行に必要なトランジッ トペプチドを付加したホスホエノ一ルビルビン酸カルポキシキナーゼ (以下、 P CKという場合がある) 遺伝子をつないで C 3植物であるイネに導入し、 緑葉粗 抽出液中の酵素活性の検出と PC Kタンパク質の葉緑体への移行を確認している 。 このことから、 PCK活性を葉緑体内に局在させることが可能であることが示 唆される。 しかしながら、 形質転換植物における C 4光合成回路の回転、 光合成 活性の変化に関しては言及していない。
さらに、 市川等の文献 (日本作物学会記事 63巻、 別 2号 (1994) p.247. ) に おいては、 PPDKを C 3植物であるァラビドプシス及びトマトに導入し、 本酵 素タンパク質が蓄積することを確認しているが、 形質転換植物における C 4光合 成回路の回転、 光合成活性の変化については言及していない。 また、 特公平 6-12 990 号公報において、 カーボニックアンヒドラーゼ (以下、 C Aとする場合があ る。 ) タンパク質を取り込ませたリコペリシコン エスクレンタム(Lycopersico II esculentum) の子葉プロトプラストの光合成効率の変化が報告されているが、 Majeau等の文献(Plant Mol.Biol. (1994) 25:337-385.) には、 遺伝子導入により 実際の植物体中で C Aを過剰発現させても光合成活性に何ら変化が見られなかつ たという報告もある。
このように、 C 4光合成回路に関与する酵素の遺伝子を遺伝子工学的手法によ り C 3植物に導入する試みは、 CA、 PEPC、 PCK, PPDKを単独で導入 した例があり、 いずれの場合も導入した遺伝子の発現、 もしくは酵素の活性が確 認されているが、 形質転換植物における C 4光合成回路の回転、 光合成活性の顕 著な変化は報告されていない。
発明の概要
本発明の目的は、 C 3植物の光合成能力を向上させるために、 C 3植物に C 4 光合成回路に寄与する複数の酵素を導入することにより、 C 3植物に C 4光合成 回路を付与する C 3植物の形質転換法を提供することである。
また、 本発明は、 この形質転換法により C 4回路が付与された形質転換植物を 提供することも目的とする。
さらにまた、 本発明は、 この形質転換のためのベクターを提供することも目的 とするものである。
図面の簡単な説明
図 1は PCK型 C 4光合成回路を示す模式図である。
図 2は形質転換に用いた構築遺伝子を示す模式図である。
図 3は標識された炭素化合物の経時変化を示すグラフである。 図 4は形質転換ィネの光合成活性を示すグラフである。
発明の詳細な説明
本発明者等は、 鋭意研究の結果、 P E P Cをコードする遺伝子と、 トランジッ トぺプチドをコ一ドする遺伝子が連結された P C Kをコ一ドする遺伝子とを C 3 植物に導入することにより上記課題を解決したものである。
本発明者等は、 従来技術では C 4光合成に関与する遺伝子を細胞質内で単独で 発現させているので、 導入した酵素の活性を C 3植物に付与することは可能だが 、 C 4光合成回路の回転、 光合成能力の向上が達成できないのではないかと考え た。
そこで、 本発明では導入する酵素の細胞内局在を限定し、 細胞質を C 4植物の 葉肉細胞に見立て、 そして、 葉緑体を C 4植物の維管束鞘細胞に見立てて、 C 4 光合成回路に必要な複数の酵素を緑葉葉肉細胞で同時に発現させるようにした。 そうすることにより、 C 3植物に単なる酵素活性を付与するのではなく、 C 3植 物の葉肉細胞中で C 4植物の C 4光合成回路に類似した回路反応を回転させ、 葉 緑体内の二酸化炭素濃度を高める機能、 AT P消費により光傷害を回避する機能 を付与させることができる。 またこれらの能力が付与された植物は、 光合成能力 が向上されることにより、 乾物生産性の向上、 乾燥耐性能力の向上、 高温耐性能 力の向上、 強光耐性能力の向上、 低二酸化炭素条件下での光合成能力の向上が期 待できる。
本発明の光合成回路の付与方法においては、 C 3植物 (イネ) の緑葉の葉肉細 胞内において、 C 4植物の最初の炭酸固定酵素である P E P Cを細胞質で作用さ せ、 C 4化合物の脱炭酸酵素を葉緑体内で作用させ、 さらに P E Pを再生するた めの酵素を細胞質または葉緑体内のいずれかで同時に発現させる。
この目的で用いる脱炭酸酵素としては、 P C Kがある。 じ は八丁?を消費 してォキザ口酢酸を脱炭酸し、 P E Pを生成する酵素なので、 P C Kを脱炭酸酵 素として用いた場合には、 脱炭酸、 A T P消費、 P E P再生が 1つの酵素で行え る。 この脱炭酸酵素が葉緑体内でその作用を発揮するようにするためには、 この 酵素をコードする遺伝子を、 トランジットペプチドをコードする遺伝子と連結し て使用する。 トランジットペプチドは、 細胞質内で発現した脱炭酸酵素を葉緑体 内に運搬し、 脱炭酸酵素が葉緑体内で作用することを可能にする。
このような形質転換により、 C 3植物の緑葉葉肉細胞において、 細胞質を C 4 植物の葉肉細胞に、 葉緑体を C 4植物の維管束鞘細胞に見立てて、 C 4植物の組 織分化と類似した形態の炭酸固定経路を作り出す (図 1) 。 このことにより C 3 植物に炭酸濃縮機能と光傷害回避機能を付与する。
PEPCと脱炭酸酵素及び P E Pを再生する酵素のみで目的とする C 4光合成 回路は形成されるが、 これに加えて、 PEPCの直接の基質である炭酸水素ィォ ンを細胞質に供給するために、 C Aを細胞質で同時に発現させ、 C 4光合成回路 の流れをより円滑にしてもよい。 PEPC、 PC :、 CAに加えて、 PEPCの 基質である P E Pの供給量を増やすために、 ピルビン酸から P E Pを生成する酵 素の P PDKを同時に発現させ、 C 4光合成回路の流れをさらに円滑にすること も可能である。
以下、 本発明を詳しく説明する。
本発明は、 PEPCをコードする遺伝子と、 トランジットペプチドをコードす る遺伝子が連結された PCKをコードする遺伝子とを C 3植物に導入することに より C 3植物に C 4光合成回路を付与する C 3植物の形質転換法である。
この発明に用いられる PEPCをコードする遺伝子は細菌、 原生動物、 植物に 由来するものが知られている。 例えば、 細菌由来のものとしては、 コリネホルム •グルタミン酸生産菌由来のもの (特公平 7— 8 37 14) 等が挙げられる。 しかし、 好ましい PEPCは植物由来のものであり、 例えば、 トウモロコシ由 来のもの (特公平 6— 30 587号公報) 、 アマランサス由来のもの (Rydzik,E . and Berry, J.0. , Plant Physiol. , (1995) 110:713) 、 フラベリア ' トリネル ビア由来のもの (Poetsch, W. , et al. , FEBS Lett. , (1991) 292:133-136) 、 タ バコ由来のもの (Koizumi, N. et a Plant Mol. Biol. , (1991) 17:535-539 ) 、 ダイズ由来のもの (特開平 6— 3 1 9 56 7号公報) 、 アブラナ由来のもの ( 特開平 6— 90 7 66号公報) 、 ジャガイモ由来のもの (Merkelbach, S. et al. , Plant Mol. Biol. , (1993) 23:881-888 ) 、 アルフアルファ由来のもの (Pathar i ana, S. M. et al. , Plant Mol. Biol., (1992) 20:437-450) 、 メセムブリアンテ ムム ·クリスタリヌム由来のもの (Cushman, L C. and Bohnart, H. J. , Nuc. Acid Res. , (1989) 6743-6744) 等を用いることができ、 中でもトウモロコシ由来のも のが特に好ましい。
また、 本発明に用いられる PCKをコ一ドする遺伝子としては AT P依存性の P CKをコードする植物及び細菌由来のものが好ましく、 植物由来のものとして は、 例えばゥロクロア ·パニコイデス由来のもの (特開平 8— 80 1 97号公報 ) 、 キユウリ由来のもの (Kim, D. -J. and Smith, S. M. , Plant Mol.Biol., (1994 ) 26:423-434) 等が挙げられ、 細菌由来のものとしては大腸菌由来のもの (Medi na, V. et al. , J. Bacteriol. , (1990) 172:7151-7156) 、 リゾピウム族菌由来の もの (Osteras, M. et al. , J. Bacteriol. , (1995) 177:1452-1460 ) 等が挙げら れるが、 植物由来のものが好ましく、 特に好ましくは、 ゥロクロア 'パニコイデ ス由来のものである。
また、 PCKは、 上述したように葉緑体内でその作用を発揮させる必要がある 。 したがって、 この PCKをコードする遺伝子配列には、 トランジット配列を連 結して用いることが必要である。
ここで、 連結するトランジット配列としては、 数多くの植物の葉緑体局在型タ ンパク質由来のものが報告されている (Keegstra, K. et al. , Annu. Rev. Plant Mol.Biol., (1989)40:471-501 ) が、 本発明においては、 イネ由来の配列が好ま しく、 特に好ましくは、 後述する実施例の方法により得られる配列番号 2に表さ れるイネのルビスコ小サブユニットの配列である。 トランジット配列は、 PCK をコードする遺伝子の上流に、 オープンリーディングフレームを PC K遺伝子と —致させて連結させる。 好ましくは、 トランジット配列は PCKの構造遺伝子の 上流に直接連結させる。
本発明においては、 さらに上述したように P E P Cの直接の基質である炭酸水 素イオンを細胞質に供給するために、 CAをコードする遺伝子を C 3植物に導入 してもよい。
ここで用いられる C Aをコードする遺伝子は動物及び植物由来のものが数多く 知られているが、 高等植物由来の C Aをコードする遺伝子と他の生物由来のもの とでは塩基配列の類似性が低い。 また、 高等植物の C Aは無機リン酸により酵素 活性が制御される (Sultemeyer, D. et al. , Physiol. Plant. , (1993) 88:179-19 0 ) 。 したがって、 用いる遺伝子としては高等植物由来のものが好ましく、 高等 植物由来のものとしては、 ホウレンソゥ由来のもの(Burnell et al. , Plant Phy siol. (1990) 92:37-40) 、 エンドゥ由来のもの (Roeske, C. A. and Ogren, W. L. , Nuc. Acid Res. , (1990) 18:3413) 、 シロイヌナズナ由来のもの (Raines, C. A. et al. , Plant ol.Biol. , (1992) 20:1143-1148 ) 、 イネ由来のもの (WO 9 5 ノ 1 1 979) 、 トウモロコシ由来のもの (WO 9 5/ 1 1 9 7 9) 等力挙げ られるが、 好ましくはホウレンソゥ由来のものである。 ホウレンソゥ C Aは葉緑 体に局在する酵素であるので、 本酵素をコードする遺伝子にはトランジットぺプ チド配列が付加されている。 そこで、 遺伝子構築には、 後述する実施例 1で述べ るように部分突然変異導入によりトランジットペプチドをコードする領域を除去 した配列番号 3に記した遺伝子を用いる。
また、 本発明に用いられる PPDKをコードする遺伝子としては、 トウモロコ シ C4型 PPDK遺伝子 (Matsuoka, M. et al. , J. Biol. Chem. , (1988) 263:110 80-11083) 、 イネ由来のもの (特開平 7— 1 846 57) 、 フラベリア ·プリン グレイ由来のもの (Rosche, E. et al. , Plant Mol.Biol., (1994) 26:763-769) 、 メセムブリアンテムム 'クリスタリヌム由来のもの (Fisslthaler.B. et al. , Planta, (1995) 196:492-500 ) 等が挙げられ、 本発明においては、 トウモロコ シ C4型 PPDK遺伝子が好ましい。
本発明において、 PPDK遺伝子は葉緑体内で発現させても、 細胞質内で発現 させてもよい。 葉緑体内で発現させることが望まれる場合は、 PPDK遺伝子に トランジットペプチドをコードする配列を連結して用いる。
上述した各酵素をコードする遺伝子に用いられるプロモータ配列としては、 特 に限定されるものではないが、 光合成器官特異的プロモーター配列が好ましい。 光合成器官特異的プロモー夕一配列としては、 例えばトウモロコシ C 4型 P P D Kプロモータ一配列(Glackin et al. , (1990) Proc. Natl. Acad. Sci. USA 87: 3004-3008)、 トウモロコシ C 4型 P E P Cプロモータ一配列 (Hudspeth, R. L. an d Grula, J. W. , Plant Mol.Biol., (1989) 12:579-589) 、 イネ Rubisco 小サブュ ニットプロモ一夕一配列 (Kyozuka, J. et al. , Plant Physiol. , (1993) 102:99 1-1000) 、 イネ集光クロロフィル aZb結合タンパク質プロモーター配列 (Saka mo to, M. e t aに P l ant Ce l l Phys i o l. , (1991) 32 : 385-393) 等が挙げらる。 本 発明においては、 トウモロコシ C 4型 P P D Kプロモータ一配列が好ましい。 後 述する実施例においては、 配列番号 1に表される配列を用いている。
本発明においては、 上記 C 4回路に関与する各酵素をコードする遺伝子を別個 に遺伝子導入用構築遺伝子として C 3植物に導入、 形質転換してもよいが、 好ま しくは各遺伝子を同一の遺伝子導入用構築遺伝子上に連結し、 これを C 3植物に 導入、 形質転換することが好ましい。 その際、 遺伝子の順番には特別の制限はな い。
必要な遺伝子を別個に又は一緒に連結して含む遺伝子導入用構築遺伝子で、 C 3植物細胞を形質転換するには、 選択された C 3植物細胞から常法にしたがって その細胞内に上記構築遺伝子を導入すればよい。 導入の方法としては、 エレクト 口ポレーシヨン法、 エレクト口インジェクション法、 P E Gなどの化学的な処理 による方法、 遺伝子銃を用いる方法等の常法が挙げられるが、 中でもァグロパク テリゥム法を用いて各遺伝子を C 3植物に導入、 形質転換することが好ましい。 このァグロパクテリゥム法は、 この分野において周知であり、 これにより双子葉 植物 (例えば特開平 4— 3 3 0 2 3 4号公報) でも単子葉植物 (W〇 9 4 / 0 0 9 7 7 ) でも形質転換することができる。 形質転換に成功した植物は、 後に記 載する方法により選別することができる。
形質転換された植物の遺伝形質は、 一般的育種方法で固定して、 導入された遺 伝子を子孫植物に伝達することが可能である。
本発明において形質転換される C 3植物としては、 この技術はあらゆる C 3植 物に適応が可能であるが、 特にイネ、 コムギ、 ォォムギ、 ダイズ、 バレイショ、 タバコ、 アブラナ等の光合成能力が向上することにより乾物生産性の向上が期待 される作物にとって有用である。 本発明においては、 単子葉植物に適用すること が好ましく、 特に好ましくはイネに適用することである。
なお、 本発明でいう C 4光合成回路とは、 上述したように P E P Cによる炭酸 固定、 脱炭酸酵素による R u b i s c o近傍での二酸化炭素の放出、 A T Pを消 費した P E P Cの基質の再生の 3つの過程により形成されている。
この C 4光合成回路が形質転換された C 3植物内で機能しているか否かの判断 方法は、 後述する実施例で詳述するが、 要約すると以下の方法である。
① 作出した形質転換体及び対照の切り葉に放射性同位元素で標識した二酸化 炭素 (Mco2)を短時間取り込ませ、 標識される炭素化合物の割合を比較し、 形 質転換植物体内で P E P Cが機能して C 4光合成回路の初期炭酸固定産物である C 4化合物が生成されるかの調査。 また、 標識された炭素化合物の経時的変化を 比較し、 導入した C 4光合成経路が形質転換植物体内で機能しているかの調査。
② 作出した形質転換体及び対照の切り葉に放射性同位元素で標識したリンゴ 酸 ([14 C] リンゴ酸) を取り込ませ、 一定時間後に標識されるショ糖の割合を 比較し、 形質転換植物体内で P CKが機能して C 4化合物の脱炭酸が行われてい るかの調査。
③ 作出した形質転換体の光合成活性を測定し、 光合成能力に変化が見られる かの調査。
実施例
以下、 本発明を実施例に基づきより具体的に説明するが、 本発明は下記実施例 に限定されるものではない。
A. PCK型 C4光合成回路
実施例 1 導入遺伝子の構築
(1) プロモーター配列
トウモロコシ C 4型 P PDKプロモー夕一領域の DN A断片は既知の塩基配列 (Glackin, C. A. and Grula, J. W. (1990) Proc. Natl. Acad. Sci. USA 87:3004-3008 ) をもとに作製した合成プライマー
5' -CTAAAGACATGGAGGTGGAAG-3' (5'側) (配列番号 4)
5' -GTAGCTCGATGGGTGCACG-3' (3'側) (配列番号 5 )
と、 トウモロコシ インブレッド B 7 3緑葉より SDS—フエノール法により全 核酸を抽出し、 塩化セシウム一ェチジゥムブ口マイド超遠心法により精製したト ゥモロコシゲノム DNAを铸型に用いた P CR法 (Mcpherson, M. J. , Quirke, P. and Taylor, GR. ed.: PCR. A practical approach. Oxford Express Press, Oxf ord NY (1991) ) により得た。 この DNA断片をプラスミドベクタ一 PCR1000 ( アメリカ国、 インビトロゲン社) のクローニングサイトに挿入した。 得られたプ ラスミドを S a c Iで消化し、 末端を平滑化した後 Nc o Iリンカ一を付加し、 H i n d i I Iで消化して得られた約 950bp の P P DKプロモー夕一領域 DN A 断片を遺伝子構築に用いた。 用いた DNA配列を配列番号 1に示す。
(2) PEPC遺伝子
トウモロコシ C 4型 PEP Cの c DNAは既知の塩基配列 (Hudspeth, R. L and Grula, J. W. (1989) Plant Mol.Biol. 12:579- 589 ) をもとにして作製した合成 オリゴヌクレオチド
5' -GCCATGGCGCGGCGGGAAGCTAAGCACGGAAGCGA-3' (配列番号 6 )
をプローブに用いて常法 (Sambrook, J. , Fritsch, E. F. and Maui at is, Τ· ed. : M olecular Cloning: A Laboratory Manual, 2nd ed. , Cold Spring Horbor Labor atory Press, Cold Spring Horbor NY (1989) ) により、 トウモロコシ ハイブ リッド品種ハーべストクィーンの発芽後約 2週間の芽生え緑葉よりグァニジン— 塩酸法により調製した mRNAと λ ZAPベクタ一 (アメリカ国、 ストラタジ一 ン社) を用いて添付の説明書にしたがって作成した cDN Aライブラリ一より 2 万個のクローンをスクリーニングして単離した。 得られたクローンを Xh o Iで 消化した後 Nc o Iで部分消化して得られた約 3 kbp の DNA断片を遺伝子構築 に用いた。
(3) PCK遺伝子
ゥロクロア 'パニコイデス PCKの c DNAは、 既報 (特開平 8— 80 1 97 ) で述べたように、 イネ Ru b i s c o小サブュニットのトランジットぺプチド 部分をコードする領域を付加した構築遺伝子を用いた。 すなわち、 APCK170204 および APCKIOOIOI をそれぞれの揷入物中に存在する Kp n I部位で接続し、 得 られた DNA断片を铸型として合成プライマ一 PCK-f2
5' -GCTCTAGATCTCTGGCACGTGAATATGGCCCCAACCTCG-3' (配列番号 7 ) と、 PCK-r2
5' -CAGTGCATGCCGCCGAACAGGCATACAGATTTACACCAG-3' (配列番号 8 ) を用いて PC Rを行った。
これとは別に、 イネの Rubisco 小サブユニットの配列(Matsuoka et al. , Plan t Cell Physiol. 29:1015-1022 (1988)) をもとに合成したプライマ一 TP - Π
5' -GGAATTCCATGGTGCATCTCAAGAAGTAC-3' (配列番号 9 )
と TP - rl
5' -GCTCTAGACTGCATGCACCTGATCC-3' (配列番号 10 )
を用い、 日本稲品種日本晴の緑葉より SDS—フエノール法で抽出したイネゲノ ム DNAを铸型として P CR法によりイネ Rubisco 小サブュニットのトランジッ トペプチドをコードする DN A断片を単離した。
この DNA断片を铸型に用い、 合成プライマ一 TP-f2
5' -GGAATTCCATGGCCCCCTCCGTGATGG-3' (配列番号 1 1 )
と TP-rl を用いて再度 P CRを行った。 そして、 P CRで増幅した P CKc DN A断片を Xb a Iと S ph Iの部分消化で得られた約 2 kbp の DNA断片と 2度 目の PC Rで増幅したトランジットペプチド配列 DNA断片を Nc o Iと Xb a Iで消化して得られた約 150bp の断片 (配列を配列番号 2に示す。 ) を接続し、 得られた約 2.2kbpの D N A断片を遺伝子構築に用いた。
(4) CA遺伝子
既報 (Burnell, J. N.ら(1990) Plant Physiol.92:33-40 ) で述べられている λ ファージクロ一ン( λΙΧΑ48)を H i n dill と K p n Iで消化して得られたホウ レンソゥ CAc DNA領域を含む 1.8kbpの断片を pBluescriptSK- (米国、 ストラ テジ一ン社) の H i ndlll /K p n I部位に挿入した。 CA c DNAから葉 緑体への移行に関与するトランジットペプチドをコードする領域を除去するため に、 トランジットペプチド領域の最後のアミノ酸をセリンからメチォニンに改変 し Nc o I認識部位を導入する部分突然変異を合成オリゴヌクレオチド
5' -GGTGGCACAGATAACCATGGATCCAGTTAGCCGACGGTGGC-3' (配列番号 12 ) と Mu t an-K (商品名、 宝酒造) を用いて行った。 得られた変異導入プラス ミドを Nc 0 Iで消化してトランジットペプチドをコードする領域を除去した。 このプラスミドを Nc o Iと S p h Iで消化して得られた約 700bp の DNA断片 を遺伝子構築に用いた。 用いた配列を配列番号 3に示す。
(5) 夕一ミネ一夕一配列
ターミネータ一領域は、 BI121 (Jefferson, R.A. (1987) Plant Mol. Biol. Rep tr. 5:387-405 ) を S a 1 Iと E c o R Iで消化して得られた N O Sターミネ一 ター領域の DNA断片、 pGL2 (Bilang, R. ら (1991) Gene 100:247-250) を S p h Iと E c o R Iで消化して得られた 35Sターミネータ一領域の DNA断片を用 いた。
(6) 導入用プラスミドの構築
入手したプロモー夕一、 cDNA、 夕一ミネ一夕一の DNA断片を以下の組合 せで連結し、 pBluescriptllSK- (アメリカ国、 ストラタジーン社) の H i n d I I I一 E c o R I部位に挿入したプラスミド (単独遺伝子導入用プラスミド、 図 2参照) を構築した。
• PPDKプロモー夕一:: PEPCcDNA::N〇Sターミネ一ター (pDPN)
• PPDKプロモ一夕一:: CAcDNA::35Sターミネ一夕一 (pDCS)
• PPDKプロモ一夕一:: PCKcDNA::35Sターミネ一ター (pDKS)
さらに、 pDKSを C 1 a Iで消化した後末端を平滑化し、 Xb a Iで消化して得 た DNA断片を、 pDPNを Sma Iと Xb a Iで消化した部位に揷入して P E P C と PCKの 2遺伝子を保持したプラスミド pPKを構築した (図 2参照) 。 次いで 、 pDCSを Sma Iで消化した後 H i n d I I Iリンカ一を付加し、 H i nd i I Iで消化して得た DNA断片を pDPNの H i n d I I I部位に挿入しプラスミド p CPを構築した。 さらに、 pDKSを C 1 a Iで消化した後末端を平滑化し、 Xb a I で消化して得た DNA断片を、 pCP を Sma Iと Xb a Iで消化した部位に挿入 して CA、 PEPC、 PCKの 3遺伝子を保持したプラスミド pCM を構築した
(図 2参照) 。 次に、 pPK を Xb a Iで消化した後、 H i nd i I Iで部分消化 して得た約 7.5kbpの DNA断片、 及び pCPKを Xb a Iで消化した後、 H i nd i I Iで部分消化して得た約 9.5kbpの DNA断片をそれぞれ pSBll (Komari, T. ら
Plant J. (1996) 10:165-174) を Xb a lと H i nd i I Iで消化した部位に揷 入し、 スーパ一バイナリー中間プラスミド pSPK及び pSCPK を構築した。
これらのベクターをそれぞれ大腸菌 LE392 株に導入し、 ァグロパクテリゥム LB A4404/pSB4と大腸菌 HB101/PRK2013 との 3系交雑によりァグロバクテリゥムへの 導入と相同組換え (Komari, T. ら Plant J. (1996) 10:165-174) を行い、 SB4PK 及び PSB4CPK を構築した。 (7) CA、 PEPC、 PCK、 PPDKの 4遺伝子を保持したベクターの構築 先に述べた、 PCR法により得られた PPDKプロモー夕一領域を持つプラスミド ベクター PCR1000 (アメリカ国、 インビトロゲン社) を H i nd i I Iおよび E c oR Iで消化し、 S a c I部位を除去した pBluescriptllSK- (アメリカ国、 ス トラ夕ジーン社) の H i n d i I I、 E c oR I部位間に挿入した。 これを S a c Iで消化、 平滑末端化後、 lG221 (Ohtaら: Construction and expression in tobacco oi a beta - glucuronidase (GUS) reporter gene containing an intro n within the coding sequence. Plant Cell Physiol. 31 :805-813 (1990))を B amH Iおよび S a l Iで消化、 平滑末端化して得られるヒマカ夕ラーゼの第 1 イントロンを含む約 200bpの断片を挿入し、 PPDK (c a t I) プロモー夕一 を含むプラスミド pSK- Diを作成した。 また、 このプラスミドを Nd e Iで消化、 平滑末端化し、 Nc 0 Iリンカ一を挿入したプラスミド pSK-Di2を作成した。
トウモロコシ C 4型 P PDK c DNAの単離は、 既知の塩基配列(Matsuoka, M. , Ozeki, Y. , Yamamoto, . , Hirano, Η. , ano-Murakami, Υ. and Tanaka, Υ.: Pr imary structure of maize pyruvate, orthophosphate dikinase as deduced f r om cDNA sequence. J.Biol. Chem.263:11080-11083 (1990)) をもとに作成した合 成オリゴヌクレオチド
5' -TAGCTCGATGGGTTGCACGATCATATGGAGCAAGG-3' (配列番号 1 3 ) をプローブに用いて、 常法(Sambrook, J.ら、 上掲)によって λ Z A Pベクタ一 ( アメリカ国、 ストラタジーン社) を使用して作成した c DNAライブラリ一をス クリーニングして単離した。 さらに、 既知の配列(Sheen, L: Molecular mechani sms underlying the differential expression of Maize Pyruvate, Orthophosp hate dikinase genes. Plant Cell 3:225-245 (1991)) をもとに作成した合成プ ライマー
5' -TTTCATATGGCGCCCGTTCAATGTGCGCGTTCGCAGAGGGTGTTCCACTTCGGCAA-3' (5'側)
(配列番号 14)
5' -GTACTCCTCCACCCACTGCA-3' (3'側) (配列番号 1 5 ) を用いた P CR法 (Mcpherson, Μ· J.ら、 上掲)により上記のトウモロコシ P P D K c DN Aを铸型に用いて増幅し、 約 2 50 b pの DNA断片を得た。 この断 片を Nd e I、 S a c I Iで消化し、 上記の P PDK c DNAの Nd e I、 S a c I I部位間と置換した。 これを、 Nd e Iおよび C 1 a Iで消化して得られ る約 2.9kbpの DNA断片を P PDK c DNAとして遺伝子構築に用いた。
夕一ミネ一ター領域は、 プラスミド PPGA643A (Gynheung AN, Paul R. Ebert, Am i tava Mi tra and Sam B. HA: binary vectors, Plant Molecular Biology Manua 1 A3:卜 19 (1988))に存在する g e n e 7夕一ミネ一夕一を用いた。 g e n e 7夕 一ミネ一ターは、 PPGA643 (Gynheung ANら、 上掲)を C 1 a Iおよび Kpn Iで 消化して得られた。 これを pBluescriptllSK- (アメリカ国、 ストラタジーン社) の C l a l、 Kp n I部位間に挿入したプラスミドを作成し、 Kpn Iで消化、 平滑末端化し、 Xb a Iリンカーを挿入後、 C 1 a Iおよび Xb a Iで消化して 得られた D N A断片を遺伝子構築に用いた。
pSK- Diの Nd e l、 Xb a I部位間に、 PPDK c DNAおよび g e n e 7 ターミネータ一を挿入し、 PPDK遺伝子を含むプラスミド pSK- DiDTを作成した pSK- Di2の N c o I、 Xb a I部位間に、 先に述べた pDPNを X b a Iで消化後 、 Nc o Iで部分消化して得られる約 3.4kbpの DNA断片を挿入し、 PEPC遺 伝子を含むプラスミド pSK-DiPNを作成した。
pSK- Di2の N c o I、 Xb a I部位間に、 先に述べた pDKSを N c o Iおよび X b a Iで消化して得られる約 2.4kbpの DNA断片を挿入し、 PEPCK遺伝子を 含むプラスミド pSK-DiKSを作成した。
pSK-Di2の Nc 0 I、 Xb a l部位間に、 先に述べた pDCSを N c o Iおよび X b a Iで消化して得られる約 lkbpの DNA断片を挿入し、 C A遺伝子を含むブラ スミド pSK- DiCSを作成した。
pSK- DiPNを Xho I部位に Sma Iリンカ一を挿入し、 Sma Iで消化して得 られた約 4.5kbpの DNA断片を、 pSK- DiCSを P s t Iで消化、 平滑末端化した部 位に挿入し、 プラスミド pSK-CiPiを作成した。 pSK-DiDTの Xb a I部位を除去し 、 Xh o I部位に Xb a I リンカ一を挿入し、 これを Xb a Iおよび N o t Iで 消化して得られた約 4.8kbpの DNA断片を、 pSK- CiPiの X b a I、 No t I部位 間に挿入し、 プラスミド pSK-CiPiDiを作成した。 pSK_CiPiDiの X h o I部位に N l 4 o t Iリンカーを揷入し、 No t Iで消化して得られた約 12kbpの DNA断片を 得た。 pSBll (Komari Τ·ら, Plant J. 10:165-174 (1996)) を H i n d I I Iお よび Ec oR Iで消化、 平滑末端化後、 No t Iリンカ一を挿入し、 この No t I部位に上記の約 12kbpの DNA断片を挿入し、 プラスミド pSBmCiPiDiを作成し た。 pSK- DiKSの Xh 0 I部位に Xb a Iリンカ一を挿入後、 Xb a Iで消化して 得られた約 3.3kbpの DNA断片を、 pSBmCiPiDiの X b a I部位に挿入し、 プラス ミド pSBmCiPiKiDiを作成した。
プラスミド pSBmCiPiKiDiを保有する大腸菌 DH 5 α株と、 pSB4を保有するァグ ロバクテリウム LBA4404株、 PRK2013を保有する大腸菌 HB101株との 3系交雑に より、 ァグロパクテリゥムへの導入と相同組換え(Komari T.ら、 上掲)を行い、 pSB4Ci KiDiを作成した。
実施例 2 形質転換体の作出
イネの形質転換にはすべて日本稲品種 「月の光」 を用いた。
pDPN, pDKS、 pDCSを導入した形質転換イネの作出は既報 (特開平 8- 80197 号公 報) に準じてエレクト口ポーレーシヨン法により行った。
PSB4P , pSB4CPK, pSB4CiPiDiKiを導入した形質転換イネの作出は既報 (Hiei , Y. ら (1994) Plant J. 6:271-282) に準じてァグロパクテリゥム法により行つ た。
得られた形質転換個体は空調温室 (16時間日長、 昼: 28°C、 夜: 23°C) にて育 成した。
実施例 3 酵素タンパク質の検出と酵素活性の測定
形質転換ィネ及び対照ィネ (月の光) の葉約 0.1 gを 1 m 1の氷冷した抽出緩 衝液 (50mM HEPES— KOH H7.0 、 10mM塩化マグネシウム、 2m M塩化マンガン、 ImMピルピン酸ナトリウム、 ImMリン酸、 1 mM EDT A、 0.1 % 2- メルカプトエタノール、 20%グリセロール、 ImMフッ化フエ 二ルメチルスルホニル、 ImMベンズアミジン、 ΙφΜ 6- ァミノ- η- 力プロ ン酸、 0.2 % (W/V ) イソァスコルビン酸、 2% (W/V ) ポリクラール AT) で 磨砕した。 磨砕液を 15000 で4で、 20分間遠心分離し、 得られた上清を予め 室温でカラム緩衝液 (50mM HEPES— KOH pH7.0 、 10mM塩化マグ ネシゥム、 2mM塩化マンガン、 ImM EDTA, 0.1 % 2- メルカプトェ 夕ノール、 20%グリセロール) で平衡化しておいた NAP 5 (商品名) カラム ( スウェーデン国、 フアルマシア社) に通して脱塩し、 粗抽出液を得た。 磨砕液の クロロフィルの定量は既報 (Wintermans and deMots (1965) Biochem. Biophys. A cta 109:448-453 ) にしたがって行い、 粗抽出液のタンパク質の定量はプロティ ンアツセィキット (商品名、 アメリカ国、 バイオラド社) を用いて行った。
形質転換体において発現している導入酵素の発現をウエスタンプロッティング で検出するために、 得られた粗抽出液をタンパク質量が等しくなるように SDS — PAGEに供し、 ゲル中のタンパク質をニトロセルロース膜 (ドイツ国、 シュ ライヒャ一 アンド シユエル社) に電気的に転写し、 トウモロコシ PEP C夕 ンパク質もしくはゥロクロア ·パニコイデス P CKタンパク質もしくはホウレン ソゥ C Aタンパク質もしくはトウモロコシ P PDKタンパク質に対するゥサギ抗 血清、 アルカリフォスファタ一ゼ標識ャギ抗ゥサギ I gG (アメリカ国、 オルガ ノン ·テク二力社 カッペルプロダクト) 、 A P発色キット (商品名、 アメリカ 国、 バイオラド社) を用いてそれぞれの導入した酵素タンパク質を検出した。
PEPC活性の測定は、 25mM HEPES-KOH H8.0 、 5mM硫酸 マグネシウム、 4mMジチオスレイト一ル、 5mM炭酸水素カリウム、 0.25mM
NADH、 ImMグルコース- 6- リン酸、 5 mMホスホエノ一ルビルビン酸 、 1ユニットリンゴ酸脱水素酵素 (ドイツ国、 ベ一リンガーマンハイム社) 、 粗 抽出液 25 1を含む lm 1の反応液により 340 nmの N ADHの吸収の減少速 度を求めることにより行った。
PCK活性の測定は、 25mM HEPES-KOH pH8.0 、 4mMジチォ スレイトール、 0.2 mMォキザ口酢酸、 1ユニットピルビン酸キナーゼ (ドイツ 国、 ベ一リンガーマンハイム社) 、 0.2 mM ATP、 粗抽出液 50 1を含む lm 1の反応液により 280 nmのォキザ口酢酸の吸収の減少速度を求めることに より行った。
C A活性の測定は、 プロモチモールブルーで着色した 0.3 m 1の 50mM HE PES—KOH緩衝液 pH8.0 、 粗抽出液 10 1に氷冷した 0.5 m 1の飽和炭 酸ガス溶液を加え、 氷温下での反応液の呈色が消えるまで時間を求めることによ り行った。 活性の計算は既報 (Burnelt, J.N. and Hatch, M. D. (1988) Plant Phy siol. 86:1252-1256) にしたがって行った。
PPDK活性の測定は、 25mM HEPES- KOH pH8.0、 lOmMジチオスレイト一ル、 lOmM炭 酸水素カリウム、 8mM硫酸マグネシウム、 5mM塩化アンモニゥム、 2.5mM リン酸 水素一カリウム、 ImM ATP、 lm グルコース- 6-リン酸、 5mM ピルビン酸ナトリ ゥム、 0.2mM NADH、 2ユニットリンゴ酸脱水素酵素、 2ユニット PEPC (和光純薬 工業) 、 粗抽出液 200 iを含む lmlの反応液により 340nmの NADHの吸収の減少 速度を求めることにより行った。
実施例 4 1 C02 を用いたトレーサー実験
空調温室で育成した形質転換イネ及び対照イネ (月の光) の葉の先端部約 5 c mを水切りし、 切り口に水をしみこませた脱脂綿を巻き、 自作の同化箱 (容積約 120 mlもしくは約 50ml) にセットした。 約 27000 ルクスの光照射下で外気を 約 5 1 /m i nの流量で 30分間通気させた後、 100〜130 1の 60%過塩素酸と 50〜70 C iの NaH14C03 溶液 (イギリス国、 アマシャム社) をガス夕イト シリンジ内で混合して発生させた放射性二酸化炭素ガスを閉鎖系内に注入した。 5秒間のパルスの後、 葉を液体窒素で凍結して生物活性を停止させ、 葉を 80%熱 エタノール中に約 30分間放置して可溶性物質を溶出した。 また、 5秒間のパルス の後、 大気を系内に取り込んで 10、 30、 90秒後に各々同化箱から葉を取り出して 液体窒素に浸けて生物活性を停止させ、 80%熱エタノールで可溶性物質を溶出し た。 得られた抽出液はエバポレー夕一で濃縮し、 フナセル S Fセルロース薄層プ レート (商品名、 20cmX20cm、 フナコシ社) を用いた二次元薄層クロマトグ ラフィ一に供した。
展開には、 一次元展開溶媒としてフエノール-水-氷酢酸- 0.5M EDTA ( 474 : 84 : 5.5 : 1.14: V/V ) を、 二次元展開溶媒として A液 (n- ブタノ一ル :水; 74: 5; V/V) と B液 (プロピオン酸:水; 9 : 11 ; V/V ) を等容量混合し たものを用いた。 展開は室温で行い、 展開終了後プレートを乾燥して、 バイオイ メ一ジアナライザ一 BaslOOO システム (フジ写真工業) を用いてオートラジオグ ラフィ一及び各スポッ卜の定量を行ない、 放射性同位元素で標識された物質の割 合を調査した。 実施例 5 [14 C] リンゴ酸を用いたトレ一サ一実験
空調温室で育成した形質転換イネ及び対照イネ (月の光) の葉を水切りし、 10 mMリン酸緩衝液 pH6.4 に差して 1時間 27000 ルクスの光照射をした。 次いで 、 100 1の緩衝液に 1 C iの [14C] リンゴ酸 (5 w l ) (イギリス国、 アマ シャム社) を添加した溶液に葉を差した。 一定時間後に葉片を取り出して緩衝液 に浸かっていた部分を切除して 80%沸縢エタノール中に浸けて生物反応を停止さ せ、 30分間沸縢状態に置き可溶性物質を溶出した。 溶出液はエバポレー夕一で濃 縮し、 二次元薄層クロマトグラフィーに供して放射性同位元素で標識された物質 を分離し、 バイオイメージアナライザー BaslOOO システムを用いてオートラジオ グラフィー及び各スポットの定量を行ない、 放射性同位元素で標識された物質の 割合を調査した。
実施例 6 光合成活性の測定
空調温室で育成した 3遺伝子導入形質転換イネ及び対照イネ (月の光) を 1日 以上人工気象器 (12時間日長、 照度約 35000 ルクス、 25°C) で育成して環境に馴 化させ、 老化が始まっていない完全展開葉の光合成活性を光合成蒸散測定装置 ( LI - 6200 、 アメリカ国、 ライカ一社) を用いて測定した。
実施例 7 P C K型 C 4イネの作出および測定結果
各構築遺伝子について複数の形質転換個体を作出し、 ウェスタンプロッティン グによって導入遺伝子の発現を調査した。 構築遺伝子 pDPNが導入された形質転換 イネ (PE PC導入形質転換体) 19個体のうち、 15個体において PEP Cタンパ ク質の発現が確認された。 構築遺伝子 pDKSが導入された形質転換イネ (PCK導 入形質転換体) 31個体のうち、 20個体において PC Kタンパク質の発現が確認さ れた。 構築遺伝子 PDCSが導入された形質転換イネ (CA導入形質転換体) 41個体 のうち、 3個体において比較的高い CAタンパク質の発現が確認された。 構築遺 伝子 pSB4Mを導入した形質転換イネ (2遺伝子導入形質転換体) 21個体のうち、 12個体において P E P Cと P CKの 2種類のタンパク質の発現が確認された。 構 築遺伝子 PSB4CPK を導入した形質転換イネ ( 3遺伝子導入形質転換体) 40個体の うち、 15個体において CA、 PEPC、 PCKの 3種類のタンパク質の発現が確 認された。 構築遺伝子 pSB4CiPiKiDiを導入した形質転換イネ (4遺伝子導入形質 転換体) 72個体のうち、 22個体において CA、 P EP C、 P CK P PDKの 4 種類のタンパク質の発現が確認された。
これらの形質転換イネのうち、 比較的導入酵素発現量の高いものに関して、 R 1世代の植物体を作出し、 緑葉粗抽出液中のそれぞれの酵素の活性を調査したと ころ、 表 1に示すような結果を得た。 この結果から明らかなように、 形質転換ィ ネの粗抽出液において導入した酵素の活性が対照イネ (月の光) のそれよりも高 い値で検出された。 このことは、 形質転換イネにおいて発現している導入酵素は 酵素活性を有していることを示している。 本実施例で用いた P C K導入用構築遺 伝子は既報 (特開平 8- 80197 号公報) と同じイネ Ru b i s c o小サブュニット の卜ランジットペプチド部分をコードする領域を付加したキメラ遺伝子であるの で、 P CKタンパク質は、 トランジットペプチドの作用により葉緑体内に局在す る。 表 1 形質転換イネにおける導入酵素の活性 酵素活性 (un i t s/mgクロロフィル)
CA PEPC PCK PPD
CA導入形質転換体 18760 0.458 0 nd
PEPC導入形質転換体 2250 1.880 0 nd
PCK導入形質転換体 1364 0.474 7.744 nd
2遺伝子導入形質転換体 2143 1.171 5.780 nd
3遺伝子導入形質転換体 9269 1.071 3.001 nd
4遺伝子導入形質転換体 9450 1. 90 3.170 0.37
対照イネ (月の光) 2171 0.332 0 0.29 nd:測定を行っていない
2遺伝子導入した形質転換イネと 3遺伝子導入した形質転換イネの R 1世代及 び対照イネ (月の光) の切り葉に14 C〇z を与え、 5秒後に組織の生物反応を停 止して標識される C 4化合物の割合を調査したところ、 対照ィネに比べ形質転換 イネに含まれる標識されたリンゴ酸の割合は約 10倍、 標識されたァスパラギン酸 の割合は約 2倍高かった (表 2参照) 。 このことは、 形質転換イネの緑葉組織中 において導入した P E P Cが機能し、 C 4光合成回路の最初の炭酸固定の過程が 行われていることを示している。
表 2 1 4 C 02を用いたトレーサー実験
1 4 Cの取り込みの割合 (%)
リンゴ酸
対照イネ (月の光) 0 . 7 0 . 9
2遺伝子導入形質転換イネ 9 . 8 2 . 0
3遺伝子導入形質転換イネ 8 . 1 1 . 9 また、 2遺伝子導入した形質転換イネ、 3遺伝子導入した形質転換イネ、 4遺 伝子導入した形質転換ィネのそれぞれの R 1世代、 対照ィネ (月の光) 及びトゥ モロコシの切り葉に 5秒間 ' 4C02を与えた後の標識された C 4化合物のその後の 挙動を経時的に追った。 形質転換イネにおいて標識された C 4化合物は、 C 4植 物であるトウモロコシと同じように、 経時的に減少していく力 対照イネにおい ては標識された C 4化合物の変化は殆ど見られなかった (図 3参照) 。 このこと は、 形質転換イネにおいて、 導入した PEPCが炭酸固定することによって生成され た C 4化合物は、 C 4植物の緑葉組織で見られる変化と同じように、 直ちに代謝 されて他の物質へと変化していることを示している。
2遺伝子導入した形質転換イネと 3遺伝子導入した形質転換イネのそれぞれの
R 1世代及び対照イネ (月の光) の切り葉に [ 1 4 C] リンゴ酸を与え、 15分後に 組織の生物反応を停止して標識される物質の割合を調査したところ、 形質転換ィ ネに含まれる標識されたショ糖の割合は対照ィネに比べ約 3倍高かった (表 3参 照) 。 このことは、 形質転換イネの緑葉組織中において、 導入した P C Kが機能 し、 C 4光合成回路における C 4化合物からカルビン—ベンソン回路への二酸化 炭素の授受が行われていることを示している。 表 3 [' 4 C]リンゴ酸を用いたトレ一サ一実験 ショ糖に取り込まれる1 4 Cの割合 (%)
対照イネ (月の光) 6 . 2
2遺伝子導入形質転換ィネ 1 5 . 7
3遺伝子導入形質転換ィネ 2 2 . 5
3遺伝子導入した形質転換ィネの R 1世代及び対照ィネ (月の光) の光合成活 性を葉に与える二酸化炭素濃度を変えて計測し、 光合成活性—細胞内二酸化炭素 濃度曲線 (図 4参照) を求めたところ、 見かけの光合成活性が無くなると仮定し た際の細胞間二酸化炭素濃度 (図中の直線の X軸切片) は形質転換イネの値のほ うが対照イネよりも低かった。 このことは、 形質転換イネの C〇z 補償点は対照 イネよりも低いことを示している。 一般的に C 4植物の C O z 補償点は C 3植物 よりも低い傾向にあることから、 作出した形質転換ィネは対照ィネよりも C 4植 物に近い光合成の特質を持つといえる。
以上の結果は、 2遺伝子導入した形質転換ィネ及び 3遺伝子導入した形質転換 イネにおいて、 導入した遺伝子の発現産物である C 4光合成関連酵素が酵素活性 を有したかたちで存在し、 しかも、 C 4光合成回路が機能し、 光合成能力に変化 が生じていることを示唆している。 よって、 本発明により C 3植物細胞内で P C K型 C 4光合成回路を機能させ光合成能力を改変させることが可能となつた。 発明の効果
本発明によれば、 C 3植物の葉肉細胞中で C 4植物の C 4光合成回路に類似し た回路反応を回転させ、 葉緑体内の二酸化炭素濃度を高める機能、 A T P消費に より光傷害を回避する機能を付与させることができる。 またこれらの能力が付与 された植物は、 光合成能力が向上されることにより、 乾物生産性の向上、 乾燥耐 性能力の向上、 高温耐性能力の向上、 強光耐性能力の向上、 低二酸化炭素条件下 での光合成能力の向上が期待できる。
配列表
配列番号: 1
配列の長さ : 9 3 0
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類:ゲノム D NA
起源:
生物名: メイス(Zea mays)
品種名:インブレツド B 7 3
配列の特徴
性質 C 4型 P P D K遺伝子プロモー夕一領域の一部
配列
CTAAAGACAT GGAGGTGGAA GGCCTGACGT AGATAGAGAA GATGCTCTTA GCTTTCATTG 60 TCTTTCTTTT GTAGTCATCT GATTTACCTC TCTCGTTTAT ACAACTGGTT TTTTAAACAC 120 TCCTTAACTT TTCAAATTGT CTCTTTCTTT ACCCTAGACT AGATAATTTT AATGGTGATT 180 TTGCTAATGT GGCGCCATGT TAGATAGAGG TAAAATGAAC TAGTTAAAAG CTCAGAGTGA 240 TAAATCAGGC TCTCAAAAAT TCATAAACTG TTTTTTAAAT ATCCAAATAT TTTTACATGG 300 AAAATAATAA AATTTAGTTT AGTATTAAAA AATTCAGTTG AATATAGTTT TGTCTTCAAA 360 AATTATGAAA CTGATCTTAA TTATTTTTCC TTAAAACCGT GCTCTATCTT TGATGTCTAG 420 TTTGAGACGA TTATATAATT TTTTTTGTGC TTACTACGAC GAGCTGAAGT ACGTAGAAAT 480 ACTAGTGGAG TCGTGCCGCG TGTGCCTGTA GCCACTCGTA CGCTACAGCC CAAGCGCTAG 540 AGCCCAAGAG GCCGGAGTGG AAGGCGTCGC GGCACTATAG CCACTCGCCG CAAGAGCCCA 600 AGAGACCGGA GCTGGAAGGA TGAGGGTCTG GGTGTTCACG AATTGCCTGG AGGCAGGAGG 660 CTCGTCGTCC GGAGCACAGG CGTGGAGAAC GTCCGGGATA AGGTGAGCAG CCGCTGCGAT 720 AGGCGCGTGT GAACCCCGTC GCGCCCCACG GATGGTATAA GAATAAAGGC ATTCCGCGTG 780 CAGGATTCAC CCGTTCGCCT CTCACCTTTT CGCTGTACTC ACTCGCCACA CACACCCCCT 840 CTCCAGCTCC GTTGGAGCTC CGGACAGCAG CAGGCGCGGG GCGGTCACGT AGTAAGCAGC 900 TCTCGGCTCC CTCTCCCCTT GCTCCATATG 930 配列番号: 2
配列の長さ: 153
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA to mRNA 生物名 オリザ サティバ(Oryza sativa)
ロロ ¾ 日本晴
配列の特徴
性質 ルビスコ小サブュニットトランジッ卜配列領域
配列
ATG GCC CCC TCC GTG ATG GCG TCG TCG GCC ACC ACC GTC GCT CCC TTC 48 Met Ala Pro Ser Val Met Ala Ser Ser Ala Thr Thr Val Ala Pro Phe
1 5 10 15
CAG GGG CTC AAG TCC ACC GCC GGC ATG CCC GTC GCC CGC CGC TCC GGC 96 Gin Gly Leu Lys Ser Thr Ala Gly Met Pro Val Ala Arg Arg Ser Gly
20 25 30
AAC TCC AGC TTC GGC AAC GTC AGC AAT GGC GGC AGG ATC AGG TGC ATG 144 Asn Ser Ser Phe Gly Asn Val Ser Asn Gly Gly Arg lie Arg Cys Met
35 40 45
CAG TCT AGA 153 Gin Ser Arg
50 配列番号: 3 配列の長さ: 697
配列の型:核酸
鎖の数:二本鎖
トポロジー:直鎖状
配列の種類: cDNA to mRNA
起源:
生物名 スヒナテア ォレラセァ (Spinacia oleracea)
配列の特徴
性質 トランジットペプチドをコードする領域を除去したカーボニックァ ンヒドラーゼの mRNA
配列
CC ATG GAG TTA GCC GAC GGT GGC ACA CCA TCC GCC AGT TAC CCG GTT 47 Met Glu Leu Ala Asp Gly Gly Thr Pro Ser Ala Ser Tyr Pro Val
5 10 15
CAG AGA ATT AAG GAA GGG TTT ATC AAA TTC AAG AAG GAG AAA TAC GAG 95 Gin Arg lie Lys Glu Gly Phe lie Lys Phe Lys Lys Glu Lys Tyr Glu
20 25 30
AAA AAT CCA GCA TTG TAT GGT GAG CTT TCT AAG GGC CAA GCT CCC AAG 143 Lys Asn Pro Ala Leu Tyr Gly Glu Leu Ser Lys Gly Gin Ala Pro Lys
35 40 45
TTT ATG GTG TTT GCG TGC TCA GAC TCC CGT GTG TGT CCC TCG CAC GTA 191 Phe Met Val Phe Ala Cys Ser Asp Ser Arg Val Cys Pro Ser His Val
50 55 60
CTA GAT TTC CAG CCC GGT GAG GCT TTC ATG GTT CGC AAC ATC GCC AAC 239 Leu Asp Phe Gin Pro Gly Glu Ala Phe Met Val Arg Asn lie Ala Asn
65 70 75
ATG GTG CCA GTG TTT GAC AAG GAC AAA TAC GCT GGA GTC GGA GCA GCC 287 Met Val Pro Val Phe Asp Lys Asp Lys Tyr Ala Gly Val Gly Ala Ala 80 85 90 95 ATT GAA TAC GCA GTG TTG CAC CTT AAG GTG GAG AAC ATT GTC GTG ATT 335 lie Glu Tyr Ala Val Leu His Leu Lys Val Glu Asn lie Val Val He
100 105 110
GGA CAC AGT GCT TGT GGT GGA ATC AAG GGG CTT ATG TCT TCT CCA GAT 383 Gly His Ser Ala Cys Gly Gly lie Lys Gly Leu Met Ser Ser Pro Asp
115 120 125
GCA GGA CCA ACC ACA ACT GAT TTT ATT GAG GAT TGG GTC AAA ATC TGC 431 Ala Gly Pro Thr Thr Thr Asp Phe lie Glu Asp Trp Val Lys lie Cys
130 135 140
TTG CCT GCC AAG CAC AAG GTG TTA GCC GAG CAT GGT AAT GCA ACT TTC 479 Leu Pro Ala Lys His Lys Val Leu Ala Glu His Gly Asn Ala Thr Phe
145 150 155
GCT GAA CAA TGC ACC CAT TGT GAA AAG GAA GCT GTG AAT GTA TCT CTT 527 Ala Glu Gin Cys Thr His Cys Glu Lys Glu Ala Val Asn Val Ser Leu 160 165 170 175
GGA AAC TTG TTG ACT TAC CCA TTT GTA AGA GAT GGT TTG GTG AAG AAG 575 Gly Asn Leu Leu Thr Tyr Pro Phe Val Arg Asp Gly Leu Val Lys Lys
180 185 190
ACT CTA GCT TTG CAG GGT GGT TAC TAC GAT TTT GTC AAT GGA TCA TTC 623 Thr Leu Ala Leu Gin Gly Gly Tyr Tyr Asp Phe Val Asn Gly Ser Phe
195 200 205
GAG CTA TGG GGA CTC GAA TTC GGC CTC TCT CCT TCC CAA TCT GTA 668 Glu Leu Trp Gly Leu Glu Phe Gly Leu Ser Pro Ser Gin Ser Val
210 215 220
TGAACCAACA CAACCATTTG ACTGCATGC 697 配列番号: 4
配列の長さ: 21
配列の型:核酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
CTAAAGACAT GGAGGTGGAA G 21 配列番号: 5
配列の長さ: 1 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
GTAGCTCGAT GGGTGCACG 19 配列番号: 6
配列の長さ: 3 5
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
GCCATGGCGC GGCGGGAAGC TAAGCACGGA AGCGA 35 配列番号: 7
配列の長さ : 3 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状 配列の種類:合成 DNA
配列
GCTCTAGATC TCTGGCACGT GAATATGGCC CCAACCTCG 39 配列番号: 8
配列の長さ: 3 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
CAGTGCATGC CGCCGAACAG GCATACAGAT TTACACCAG 39 配列番号: 9
配列の長さ: 2 9
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
GGAATTCCAT GGTGCATCTC AAGAAGTAC 29 配列番号: 1 0
配列の長さ: 2 5
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列 GCTCTAGACT GCATGCACCT GATCC 25 配列番号: 1 1
配列の長さ: 2 7
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
GGAATTCCAT GGCCCCCTCC GTGATGG 27 配列番号: 1 2
配列の長さ: 4 1
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
GGTGGCACAG ATAACCATGG ATCCAGTTAG CCGACGGTGG C 41 配列番号: 1 3
配列の長さ: 3 5
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
TAGCTCGATG GGTTGCACGA TCATATGGAG CAAGG 35 配列番号: 1 4
配列の長さ: 5 6
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 DNA
配列
TTTCATATGG CGCCCGTTCA ATGTGCGCGT TCGCAGAGGG TGTTCCACTT CGGCAA 56 配列番号: 1 5
配列の長さ: 2 0
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:合成 MA
配列
GTACTCCTCC ACCCACTGCA 20

Claims

請求の範囲
1. ホスホエノ一ルビルビン酸カルボキシラーゼ (PEPC) をコードする遺 伝子と、 トランジットペプチドをコードする遺伝子が連結されたホスホェノール ピルビン酸カルポキシキナーゼ (PCK) をコードする遺伝子とを C 3植物に導 入することにより C 3植物に C 4光合成回路を付与する C 3植物の形質転換法。
2. カーボニックアンヒドラーゼ (CA) をコードする遺伝子をさらに導入す ることを特徴とする請求項 1記載の形質転換法。
3. ピルビン酸リン酸ジキナーゼ (PPDK) をコードする遺伝子をさらに導 入することを特徴とする請求項 1記載の形質転換法。
4. プロモータ一配列が光合成器官特異的プロモーター配列である請求項 1な いし 3のいずれか 1項に記載の形質転換法。
5. 前記遺伝子の二つ以上または全部を同一の遺伝子導入用構築遺伝子上に連 結し、 これを C 3植物に導入することを特徴とする請求項 1から 3までのいずれ かに記載の形質転換法。
6. ホスホエノ一ルピルビン酸カルポキシラーゼ (PEPC) をコードする遺 伝子と、 トランジットペプチドをコードする遺伝子が連結されたホスホェノール ピルビン酸カルポキシキナーゼ (PCK) をコードする遺伝子とが連結されたキ メラ遺伝子。
7. 請求項 1から 5までのいずれかの請求項に記載された形質転換法により形 質転換され、 C 4光合成回路が付与された形質転換植物。
PCT/JP1998/000537 1997-02-10 1998-02-10 Cycle c4 de type pck WO1998035030A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP98901570A EP0916725B1 (en) 1997-02-10 1998-02-10 C4 cycle of pck type
DE69837588T DE69837588T2 (de) 1997-02-10 1998-02-10 C4 zyklus des pck types
CA002250827A CA2250827C (en) 1997-02-10 1998-02-10 Transforming a c3 plant with c4 photosynthetic pathway using phosphoenolpyruvate carboxykinase
AU57817/98A AU729520B2 (en) 1997-02-10 1998-02-10 PCK-Type C4 cycle
JP53414598A JP3501814B2 (ja) 1997-02-10 1998-02-10 Pck型c4回路
US09/155,989 US6610913B1 (en) 1997-02-10 1998-02-10 Rice plants transformed to provide a PCK-type C4 cycle and methods of making
KR1019980708043A KR100769755B1 (ko) 1997-02-10 1998-02-10 Pck형c4회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2665897 1997-02-10
JP9/26658 1997-02-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/155,989 A-371-Of-International US6610913B1 (en) 1997-02-10 1998-02-10 Rice plants transformed to provide a PCK-type C4 cycle and methods of making
US10/368,396 Continuation US20030221219A1 (en) 1997-02-10 2003-02-20 PCK-type C4 cycle

Publications (1)

Publication Number Publication Date
WO1998035030A1 true WO1998035030A1 (fr) 1998-08-13

Family

ID=12199531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000537 WO1998035030A1 (fr) 1997-02-10 1998-02-10 Cycle c4 de type pck

Country Status (14)

Country Link
US (2) US6610913B1 (ja)
EP (1) EP0916725B1 (ja)
JP (1) JP3501814B2 (ja)
KR (1) KR100769755B1 (ja)
CN (1) CN1107723C (ja)
AR (1) AR011652A1 (ja)
AT (1) ATE360064T1 (ja)
AU (1) AU729520B2 (ja)
CA (1) CA2250827C (ja)
DE (1) DE69837588T2 (ja)
ID (1) ID21006A (ja)
NZ (1) NZ332271A (ja)
RU (1) RU2159813C2 (ja)
WO (1) WO1998035030A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208318B2 (en) 2002-05-27 2007-04-24 Bayer Cropscience Ag Method for producing plants with suppressed photorespiration and improved CO2 fixation
JP2012518995A (ja) * 2009-02-27 2012-08-23 アドヴァンスト・テクノロジーズ(ケンブリッジ)リミテッド ホスホエノールピルビン酸カルボキシキナーゼおよび/またはピルビン酸正リン酸ジキナーゼをコードする構築物を含む形質転換植物

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823064B1 (fr) * 2001-04-04 2004-05-28 Biogemma Fr Procede d'obtention de plantes c4 a metabolisme carbone modifie
US7642347B2 (en) * 2006-06-23 2010-01-05 Monsanto Technology Llc Chimeric regulatory elements for gene expression in leaf mesophyll and bundle sheath cells
BRPI0718977A2 (pt) 2006-11-24 2014-02-04 Cropdesign Nv Método para aumentar rendimento de sementes em plantas em relação às plantas de controle, construção, uso da mesma, planta, parte de planta ou célula de planta, método para a produção de uma planta transgênica tendo redimento aumentado de sementes em relação às plantas de controle, planta transgênica, partes colhíveis de uma planta, produtos, e, uso de um ácido nucleico
EP2503000A1 (en) * 2007-07-31 2012-09-26 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
DE202008005083U1 (de) * 2008-01-22 2008-06-26 Wezag Gmbh Werkzeugfabrik Presszange
US20140298544A1 (en) * 2011-10-28 2014-10-02 Pioneer Hi Bred International Inc Engineered PEP carboxylase variants for improved plant productivity
EA201591294A1 (ru) * 2013-02-22 2016-01-29 Технише Университет Делфт Рекомбинантный микроорганизм для применения в способе с повышенным выходом продукта
WO2014201156A1 (en) * 2013-06-11 2014-12-18 Florida State University Research Foundation, Inc. Materials and methods for controlling bundle sheath cell fate and function in plants
CN103805616A (zh) * 2014-02-25 2014-05-21 河南省农业科学院小麦研究所 玉米c4型磷酸丙酮酸双激酶(ppdk)基因及其在小麦中的应用
CN108440672B (zh) * 2018-03-13 2020-12-04 华南农业大学 一条光呼吸代谢改造支路及其在c3植物中的应用
KR102381872B1 (ko) 2020-10-19 2022-04-12 주식회사 수앤그린테크 벼 재배용 화분장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001895A1 (fr) * 1994-07-09 1996-01-25 Japan Tobacco Inc. Adn codant pour la phosphoenolpyvurate-carboxykinase, vecteur recombine le contenant et plantes transgeniques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783714B2 (ja) 1983-08-29 1995-09-13 味の素株式会社 発酵法によるl―アミノ酸の製造法
JPH0612990B2 (ja) 1984-08-09 1994-02-23 株式会社アドバンス 生細胞のco2固定能力を増大する方法
JPH0630587B2 (ja) 1985-08-23 1994-04-27 住友化学工業株式会社 クロ−ン化されたトウモロコシのppc遺伝子
JPH04222527A (ja) 1990-12-19 1992-08-12 Japan Tobacco Inc トマトの形質転換方法
JP3002735B2 (ja) 1991-09-27 2000-01-24 農林水産省食品総合研究所長 大豆のホスホエノールピルビン酸カルボキシラーゼ遺伝子
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
JPH0690766A (ja) 1992-09-09 1994-04-05 Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk アブラナのホスホエノールピルビン酸 カルボキシラーゼ遺伝子
CA2148499C (en) 1993-09-03 2006-07-11 Hideaki Saito Method for transforming monocotyledons using scutella of immature embryos
AU8003494A (en) 1993-10-29 1995-05-22 Japan Tobacco Inc. Dna coding for carbonic anhydrase
EP0690128A4 (en) 1993-12-03 2004-03-03 Japan Tobacco Inc POLYPEPTIDE HAVING COLD RESISTANCE INDUCING PYRUVATE-PHOSPHATE-DIKINASE ACTIVITY, DNA ENCODING THE POLYPEPTIDE, AND RECOMBINANT VECTOR AND TRANSFORMED PLANT CONTAINING BOTH OF THE SAME
JPH07184657A (ja) 1993-12-28 1995-07-25 Japan Turf Glass:Kk イネにおけるc4光合成関連遺伝子およびそのプロモーター

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001895A1 (fr) * 1994-07-09 1996-01-25 Japan Tobacco Inc. Adn codant pour la phosphoenolpyvurate-carboxykinase, vecteur recombine le contenant et plantes transgeniques

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUDSPETH R. L., ET AL.: "EXPRESSION OF MAIZE PHOSPHOENOLPYRUVATE CARBOXYLASE IN TRANSGENIC TOBACCO.", PLANT PHYSIOLOGY., AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD., US, vol. 98., 1 January 1992 (1992-01-01), US, pages 458 - 464., XP002916977, ISSN: 0032-0889 *
ICHIKAWA H., ET AL.: "PRODUCTION AND ANALYSIS OF PPDK TRANSGENIC ARABIDOPSIS AND TOMATO.", PROCEEDINGS OF THE CROP SCIENCE SOCIETY OF JAPAN, XX, XX, vol. 63., no. 02., 1 January 1994 (1994-01-01), XX, pages 247/248., XP002916979 *
KOGAMI H., ET AL.: "MOLECULAR AND PHYSIOLOGICAL EVALUATION OF TRANSGENIC TOBACCO PLANTSEXPRESSING A MAIZE PHOSPHOENOLPYRUVATE CARBOXYLASE GENE UNDER THE CONTROL OF THE CAULIFLOWER MOSAIC VIRUS 35S PROMOTER.", TRANSGENIC RESEARCH, SPRINGER NETHERLANDS, NL, vol. 03., 1 January 1994 (1994-01-01), NL, pages 287 - 296., XP002916978, ISSN: 0962-8819, DOI: 10.1007/BF01973588 *
SINHA N. R., KELLOGG E. A.: "PARALLELISM AND DIVERSITY IN MULTIPLE ORIGINS OF C4 PHOTOSYNTHESIS IN THE GRASS FAMILY.", AMERICAN JOURNAL OF BOTANY., BOTANICAL SOCIETY OF AMERICA., XX, vol. 83., no. 11., 1 January 1996 (1996-01-01), XX, pages 1458 - 1470., XP002916980, ISSN: 0002-9122 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208318B2 (en) 2002-05-27 2007-04-24 Bayer Cropscience Ag Method for producing plants with suppressed photorespiration and improved CO2 fixation
JP2012518995A (ja) * 2009-02-27 2012-08-23 アドヴァンスト・テクノロジーズ(ケンブリッジ)リミテッド ホスホエノールピルビン酸カルボキシキナーゼおよび/またはピルビン酸正リン酸ジキナーゼをコードする構築物を含む形質転換植物
US9260720B2 (en) 2009-02-27 2016-02-16 British American Tobacco (Investments) Limited Transgenic plants comprising constructs encoding phosphoenolpyruvate carboxykinase and/or pyruvate orthophosphate dikinase

Also Published As

Publication number Publication date
AR011652A1 (es) 2000-08-30
DE69837588D1 (de) 2007-05-31
US6610913B1 (en) 2003-08-26
KR100769755B1 (ko) 2008-01-22
ATE360064T1 (de) 2007-05-15
RU2159813C2 (ru) 2000-11-27
NZ332271A (en) 2000-04-28
DE69837588T2 (de) 2008-01-03
JP3501814B2 (ja) 2004-03-02
CN1220698A (zh) 1999-06-23
EP0916725B1 (en) 2007-04-18
CA2250827C (en) 2005-10-18
CA2250827A1 (en) 1998-08-13
AU5781798A (en) 1998-08-26
AU729520B2 (en) 2001-02-01
CN1107723C (zh) 2003-05-07
EP0916725A1 (en) 1999-05-19
EP0916725A4 (en) 2004-06-09
ID21006A (id) 1999-04-08
US20030221219A1 (en) 2003-11-27
KR20000064878A (ko) 2000-11-06

Similar Documents

Publication Publication Date Title
Jeanneau et al. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4–PEPC
CA2471517C (en) Selective plant growth using d-amino acids
CA2892551A1 (en) Synthetic pathway for biological carbon dioxide sequestration
JP6117837B2 (ja) 植物性グルタミンフェニルピルビン酸トランスアミナーゼ遺伝子、およびそれを運搬するトランスジェニック植物
WO1998035030A1 (fr) Cycle c4 de type pck
CN102482681B (zh) 胁迫耐受植物
AU2009287446B2 (en) Transgenic plants with enhanced growth characteristics
AU716812B2 (en) Constructs and methods for enhancing protein levels in photosynthetic organisms
JP5273624B2 (ja) シネコシスティス(Synechocystis)から単離されたSyFBP/SBPase遺伝子を過発現させることによって植物の耐塩性を向上させる方法及びその方法によって製造された植物
WO2011106734A1 (en) Transgenic soybean and rice plants with enhanced growth characteristics
US20140082761A1 (en) Methods to increase plant productivity
AU2012245969B2 (en) An expression construct and process for enhancing the carbon, nitrogen, biomass and yield of plants
US20100263090A1 (en) Plant Glutamine Phenylpyruvate Transaminase Gene and Transgenic Plants Carrying Same
JPH11341928A (ja) リンゴ酸酵素を用いたc3植物へのc4光合成回路の付与
US8581041B2 (en) Methods of producing GABA
US8581040B2 (en) Methods of producing GABA
AU2003291289A1 (en) Tps plant gene constructs and transformants
MXPA98008409A (en) C4 cycle of pck type
NZ716717B2 (en) An expression construct and process for enhancing the carbon, nitrogen, biomass and yield of plants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800345.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID JP KR MX NZ RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2250827

Country of ref document: CA

Ref document number: 2250827

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1199800847

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1998901570

Country of ref document: EP

Ref document number: 57817/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/008409

Country of ref document: MX

Ref document number: 332271

Country of ref document: NZ

Ref document number: 1019980708043

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09155989

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998901570

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980708043

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 57817/98

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1019980708043

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998901570

Country of ref document: EP