WO1998034762A1 - Dispositif de commande non interactif pour robots - Google Patents

Dispositif de commande non interactif pour robots Download PDF

Info

Publication number
WO1998034762A1
WO1998034762A1 PCT/JP1998/000494 JP9800494W WO9834762A1 WO 1998034762 A1 WO1998034762 A1 WO 1998034762A1 JP 9800494 W JP9800494 W JP 9800494W WO 9834762 A1 WO9834762 A1 WO 9834762A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
decoupling
robot
axis
torque
Prior art date
Application number
PCT/JP1998/000494
Other languages
English (en)
Japanese (ja)
Inventor
Hidenori Tomisaki
Masao Ojima
Jun Hagihara
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO1998034762A1 publication Critical patent/WO1998034762A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses

Definitions

  • the present invention relates to a robot having a structure in which at least two or more arms are serially connected via an articulation portion, and effectively reduces the deterioration of trajectory accuracy due to inter-axis interference torque. It relates to a control device for decoupling a robot. 0 Background technology
  • a general industrial robot has a structure in which an electric motor 1-01 is used for the factory and an arm 103 is connected to its rotating shaft via a reduction mechanism 102. have.
  • the reduction mechanism 102 has a large reduction ratio and a panel 5 characteristic due to the reduction mechanism so that the influence of disturbance including the inertia of the arm 103 and the inter-axis interference torque can be reduced.
  • FIG. 4 is a block diagram showing the structure and control structure of the robot arm shown in Fig. 3.
  • -It is.
  • the inter-axis interference torque 54 is applied to the arm 103, which becomes the arm angular velocity 55, and generates a torsional angular velocity 52 with the angular velocity 51 of the electric motor 101.
  • the torsion to the reducer 102 results in a drive torque 53 to the arm 103, which, as shown in FIG. 4, simultaneously results in a disturbance torque 50 to the motor 101. 5
  • the disturbance represented by the inter-axis interference torque on the arm is transmitted to the motor once it is converted into a torsional torque between the motor and the arm due to the panel characteristics of the deceleration mechanism of the industrial robot. Become.
  • the decoupling torque compensation value becomes the torsional torque between the motor and the arm once, and needs to be offset by the inter-axis interference torque to the arm.
  • the overall structure of the industrial robot has a structure in which at least two or more arms are serially connected via joints as shown in Fig. 5, which causes interference between axes.
  • the value of the inter-axis interference torque changes depending on the value of the joint angle of the other axis.
  • the inter-axis interference torque value required for compensation is generally obtained from the torque command of the axis that generates the interference torque as in the conventional example, or obtained using the state estimation observer. If the difference is used to calculate the differential value of the inter-assembly torque or the two-minute sub-fraction, the ripple will be large due to the effect of the sampling time due to the motor position, the resolution of the speed detector, and the inter-interference compensation calculation time. However, it cannot be used for compensation of interference torque between shafts 25.
  • An object of the present invention is to provide a robot decoupling control-device which eliminates such problems of the conventional example. Disclosure of the invention
  • a multi-axis robot control device that controls a robot having a structure in which at least two or more arms are serially connected via a joint, an angle of each arm is provided. And an inertia matrix calculation mechanism that creates an inertia matrix from the dynamic parameters such as the mass and length of each arm, and an arithmetic mechanism that calculates the state variables for decoupling including the acceleration of each arm.
  • a filter section is provided to remove harmonic ripples from the interference torque command.
  • the operation mechanism of the state variable for decoupling including the acceleration of each arm uses a joint angle command value to each axis arm, and the filter processing unit of the decoupling torque command includes a secondary filter.
  • the amount of calculation is reduced without being affected by the position of the motor or the resolution of the speed detector.
  • the operation mechanism of the state variable for decoupling including the acceleration of each arm uses a state estimation observer, so that the integration means, the first differentiation means, and the second differentiation means of the arm acceleration are once differentiated means. Only so that ripple and computational complexity can be reduced.
  • the inter-axis interference torque compensating means monitors the state of interference between the axes of the robot, considers the panel characteristics of the robot reduction mechanism, and determines the ripple of the compensation torque signal of the inter-axis interference torque. By reducing the number, it is possible to obtain a robot decoupling control device that can obtain stable trajectory accuracy.
  • FIG. 1 is a block diagram showing an embodiment of a robot control device including the decoupling control device according to claim 3 of the present invention.
  • FIG. 2 is a block diagram showing an embodiment of a robot control device including the decoupling control device according to claim 4 of the present invention.
  • Figure 3 is a schematic diagram showing the structure of one arm with an industrial robot.
  • Figure 4 is a block diagram of the control system including one arm with an industrial robot.
  • Fig. 5 is a joint configuration diagram of a 6-axis industrial robot.
  • Fig. 6 is a joint configuration diagram of a three-axis robot. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a decoupling control device according to claim 3 of the present invention.
  • the symbols used in the figures and text are as follows.
  • n axis of the axis
  • the joint angle of each axis-command value 2 2 is transferred to the lower controller 2b of the controller, and the decoupling control device 3 • is connected to the digital control device 2 that performs feedback control of the position and speed of each axis.
  • the inertia matrix calculation mechanism 3 1 uses the inertia matrix calculation mechanism 3 1 from the dynamics data 25 3 which stores the arm angle of each axis obtained from the joint angle command value 22 of each axis and the dynamic parameters of the arm.
  • a matrix is created, and a gain matrix K ijk for each joint is obtained by the decoupling gain operation mechanism 32 based on the inertia matrix element M> j 4-1 and the control gain data 24.
  • the subscripts i and j indicate between the robot i and j axes, and k indicates a state variable for non-interference.
  • a decoupling state variable X ik which will be described later, is determined by a decoupling state variable calculation mechanism 33 based on the joint angle command value 22, and the obtained gain K uk and a multiplier 3 4 , And the result is added by an adder 35 for each axis.
  • the calculated decoupling torque command T c ri is processed by the secondary filter 3-6, and the resulting decoupling torque correction value T c i is digitally controlled.
  • Robot interference non-interference control 25 is realized by adding to the lower 2b torque command of the controller 2.
  • equation (1) becomes only a term due to inertia, and becomes equation (2).
  • the inertia matrix for the three-axis robot in Fig. 6 is as shown in equation (3), and ⁇ 23, ⁇ 13, and ⁇ 12, which are 0 other than the diagonal terms, are called interference inertia here. Is shown. -However, the inertia around the center of gravity of each axis is ignored.
  • M13 m3-LI ⁇ L3-sin (62+ ⁇ 3) + M23
  • M12 m3L2L2 + L1 cos ( ⁇ 3) L3 sin (03) + M13-Inertia matrix calculation mechanism 31 1 is calculated from joint angle command value 22 in Fig. 6.
  • Vref Kp ( ⁇ - ⁇ m)- ⁇ m
  • Tref TrefO- (l + K p + l) Td _ K ⁇ _ Td
  • the decoupling gain calculation mechanism 32 calculates the interference inertia 41 obtained from the inertia matrix calculation mechanism 31 and the Kp, Kv, and Kp shown in the equation (6) stored in the control gain data 24.
  • K i, K, and J m a decoupling gain matrix Ki jk from the j-th axis to the i-th axis is obtained.
  • equation (8) The suffix attached to () of the gain matrix element in Eq. (8) indicates the axis subject to decoupling and indicates that the control gain of that axis is used.
  • K21k M2l ⁇ (1) 2 ( ⁇ ) 2 () 2 () 2
  • Ki 2 k is multiplied by the state variable X 2 k for decoupling of the second axis to provide a gain for calculating the compensation torque of the interference torque from the second axis to the first axis.
  • the compensation torque of the interference torque from the 25th axis to the 1st axis is expressed by the following equation (9).
  • the negotiation torque command Tcr is obtained by multiplying j k and Xik by a multiplier and adding the result to 5 by an adder. That is,
  • the state variable X ik 43 including the arm angular acceleration obtained by the decoupling state variable operation mechanism 33 in FIG. 1 uses the value obtained by differentiating each joint angle command value, It has the advantage that it is not affected by the position of the motive or the resolution of the speed detector. However, if it is used as it is, the effect of decoupling will be reduced due to the delay due to the position / speed loop.
  • the transfer function at arm acceleration 5-6 up to 5 which is an interference torque from the other axis to the other axis with a filter 36 approximated by a second-order transfer function, the delay problem can be solved with a small amount of calculation. I have. In the embodiment of FIG.
  • FIG. 2 shows another embodiment of the present invention.
  • a state estimation observer is used for the state variable operation mechanism 33 for decoupling.
  • the effect of the resolution of the position detector appears in the decoupling torque command. I will. That is, the difference is used to obtain the differential value and the second differential value of the arm angular acceleration in equation (10).
  • the estimated state variables of the state estimation observer are skillfully selected and utilized. By doing so, only one means for integrating, one time differentiating means and one time differentiating means for the arm acceleration is used, and the ripple and the amount of calculation can be reduced.
  • the second derivative of the arm acceleration is obtained by subtracting the result of the one-time subdivision of the arm angular acceleration obtained by Eq. (13). Since the integration of the arm angular acceleration is the arm angular velocity, the estimated value of the arm angular velocity 0) L # is used.
  • the use of the state estimation observer makes it possible to reduce the ripple and the amount of calculation by using only the one-time differentiating means for the integrating means, the one-time differentiating means and the two-time differentiating means for the arm acceleration. You can see that it is.
  • the signal is multiplied by the gain obtained from the decoupling gain operation mechanism and added to obtain a decoupling torque command Tcri .
  • the filter of the decoupling torque command is only for the purpose of reducing ripples by one-time differentiation, and the time constant may be set to 0 if there is no problem.
  • the present invention can be used in the field of multi-axis robot control for controlling a robot having a structure in which at least two or more arms are serially connected via joints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un dispositif de commande non interactif pour robots travaillant dans plusieurs axes, permettant d'obtenir une précision de trajectoire stable. Ce dispositif de commande, qui est adapté pour commander un robot présentant une structure dans laquelle au moins deux bras sont montés en série par l'intermédiaire d'articulations, comporte un mécanisme de calcul de matrice inertielle (31) conçu pour former une matrice inertielle sur la base d'un angle de chaque bras et de paramètres dynamiques, tels que la masse et la longueur de chaque bras, un mécanisme (33) conçu pour calculer une variable de condition non interagissante, comprenant l'accélération de chaque bras, un mécanisme (32) conçu pour calculer un gain non interagissant à multiplier par ces variables de condition, un multiplicateur (34) et un additionneur (35) conçus pour, respectivement, multiplier ou additionner les variables de condition non interagissantes et le gain non interagissant, et un processeur de filtration (36) utilisé pour éliminer les ondulations harmoniques supérieures d'une instruction de couple non interagissante obtenue par ces calculs.
PCT/JP1998/000494 1997-02-07 1998-02-05 Dispositif de commande non interactif pour robots WO1998034762A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2551497A JPH10217173A (ja) 1997-02-07 1997-02-07 ロボットの非干渉化制御装置
JP9/25514 1997-02-07

Publications (1)

Publication Number Publication Date
WO1998034762A1 true WO1998034762A1 (fr) 1998-08-13

Family

ID=12168179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000494 WO1998034762A1 (fr) 1997-02-07 1998-02-05 Dispositif de commande non interactif pour robots

Country Status (2)

Country Link
JP (1) JPH10217173A (fr)
WO (1) WO1998034762A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2631783C1 (ru) * 2016-06-22 2017-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Самонастраивающийся электропривод манипулятора
RU2631784C1 (ru) * 2016-06-22 2017-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Самонастраивающийся электропривод манипулятора
RU2705739C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2705734C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2705737C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2706079C1 (ru) * 2018-09-14 2019-11-13 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374613B2 (ja) * 2012-05-30 2013-12-25 株式会社神戸製鋼所 多関節ロボットの弾性変形補償制御装置および制御方法
JP5868266B2 (ja) * 2012-05-30 2016-02-24 株式会社神戸製鋼所 多関節ロボットの弾性変形補償制御装置および制御方法
JP5409844B2 (ja) 2012-05-30 2014-02-05 株式会社神戸製鋼所 多関節ロボットの軌跡制御装置および制御方法
JP5642214B2 (ja) 2013-02-15 2014-12-17 株式会社神戸製鋼所 多関節ロボットの弾性変形補償制御装置
CN108803350B (zh) * 2018-08-16 2020-06-23 居鹤华 基于轴不变量的动基座多轴机器人动力学建模与解算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273611A (ja) * 1985-05-30 1986-12-03 Matsushita Electric Ind Co Ltd 産業用ロボツト
JPS63314606A (ja) * 1987-06-18 1988-12-22 Fanuc Ltd 多関節ロボットの制御装置
JPH0863213A (ja) * 1994-08-18 1996-03-08 Fanuc Ltd 干渉トルクの計算処理方法
JPH08106312A (ja) * 1994-10-05 1996-04-23 Fanuc Ltd 干渉トルクの計算処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273611A (ja) * 1985-05-30 1986-12-03 Matsushita Electric Ind Co Ltd 産業用ロボツト
JPS63314606A (ja) * 1987-06-18 1988-12-22 Fanuc Ltd 多関節ロボットの制御装置
JPH0863213A (ja) * 1994-08-18 1996-03-08 Fanuc Ltd 干渉トルクの計算処理方法
JPH08106312A (ja) * 1994-10-05 1996-04-23 Fanuc Ltd 干渉トルクの計算処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2631783C1 (ru) * 2016-06-22 2017-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Самонастраивающийся электропривод манипулятора
RU2631784C1 (ru) * 2016-06-22 2017-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Самонастраивающийся электропривод манипулятора
RU2705739C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2705734C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2705737C1 (ru) * 2018-06-29 2019-11-11 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора
RU2706079C1 (ru) * 2018-09-14 2019-11-13 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Самонастраивающийся электропривод манипулятора

Also Published As

Publication number Publication date
JPH10217173A (ja) 1998-08-18

Similar Documents

Publication Publication Date Title
JP3324298B2 (ja) マニピュレータの制御装置
US4943759A (en) Multiple-articulated robot control apparatus
JP3883544B2 (ja) ロボット制御装置およびロボットの制御方法
JP2645004B2 (ja) 多自由度マニピユレータの制御装置
CN106004989B (zh) 电动动力转向装置及其增益设定方法
WO1998034762A1 (fr) Dispositif de commande non interactif pour robots
JP3981773B2 (ja) ロボット制御装置
EP3956112B1 (fr) Procédé de commande d'un bras de robot sur la base d'un frottement adaptatif
JP3081518B2 (ja) ロボットの剛性同定方法及びその装置
WO2005063455A1 (fr) Controleur de robot
JPS61201304A (ja) ロボツトの位置制御法
JPH09212203A (ja) ロボット制御装置
JPH09222910A (ja) 多軸ロボットの制御装置
JP6496167B2 (ja) タンデム位置制御装置
KR101053205B1 (ko) 백래쉬 보상 기능을 갖는 모터 제어 장치
JPH106261A (ja) ロボット制御装置
JP3972151B2 (ja) 負荷トルクのオブザーバ
JPH07120212B2 (ja) 産業用ロボットの制御装置
Carignan et al. Achieving impedance objectives in robot teleoperation
JPH077307B2 (ja) ロボットの非干渉化制御方法
JPS63314607A (ja) 多関節ロボットの制御装置
JP2824926B2 (ja) 電動式パワー・ステアリング装置
JPH117303A (ja) サーボ系の駆動制御装置
JP2773325B2 (ja) 電動式パワー・ステアリング装置
JPH08323670A (ja) マニピュレータの制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase