WO1998023665A1 - Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere - Google Patents

Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere Download PDF

Info

Publication number
WO1998023665A1
WO1998023665A1 PCT/EP1997/006432 EP9706432W WO9823665A1 WO 1998023665 A1 WO1998023665 A1 WO 1998023665A1 EP 9706432 W EP9706432 W EP 9706432W WO 9823665 A1 WO9823665 A1 WO 9823665A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
carbon monoxide
group
periodic table
olefinic
Prior art date
Application number
PCT/EP1997/006432
Other languages
English (en)
French (fr)
Inventor
Bernhard Rieger
Adnan S. Abu-Surrah
Roland Wursche
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP97951229A priority Critical patent/EP0941270A1/de
Priority to US09/297,919 priority patent/US6251518B1/en
Publication of WO1998023665A1 publication Critical patent/WO1998023665A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to linear, thermoplastic, elastomeric copolymers of carbon monoxide and at least one olefinic C 7 to C 0 monomer which have an average molecular weight M w greater than 15000 g / mol and a T g value less than -20 ° C. .
  • the invention further relates to linear, thermoplastic, elastomeric copolymers of carbon monoxide, at least one olefinic C to C monomer and at least one olefinic C 6 to C 2 monomers which have an average molecular weight M w greater than 40,000 g / mol and have a T g value of less than 20 ° C.
  • the present invention relates to processes for the production of such copolymers, the use of the copolymers for the production of fibers, films, moldings and coatings and also fibers, films, moldings and coatings obtainable from the copolymers.
  • Propylene terpolymers have recently been of interest as engineering plastics for the manufacture of articles with a relatively high melting point, such as gears.
  • carbon monoxide copolymers with ethylene as a comonomer are very hard and brittle and have little or no impact resistance, so that they are out of the question for many fields of application in which these properties are desirable.
  • No. 5,352,767 describes alternating, elastomeric copolymers of carbon monoxide and ⁇ -olefins which are produced with the aid of a catalyst system which contains cationic metal complexes from group VIIIB of the periodic table of the elements and activators based on primary and secondary alcohols.
  • the object of the present invention was therefore to provide copolymers of carbon monoxide and olefinic monomers which do not have the disadvantages mentioned or have them only to a minor extent and which can be economically produced on an industrial scale.
  • linear, thermoplastic, elastomeric copolymers of carbon monoxide and at least one olefinic C 7 to C 0 monomer which have an average molecular weight M w greater than 15000 g / mol and a Tg value less than -20 ° C., have been found.
  • linear, thermoplastic, elastomeric copolymers made of carbon monoxide, at least one olefinic C 2 to C monomer and at least one olefinic C 6 to C o monomer, which have an average molecular weight M w greater than 40,000 g / mol and a T g value less than 20 ° C found.
  • copolymers according to the invention are composed of units which are based on the monomers carbon monoxide and one or more olefinically unsaturated compounds, ethylene, propylene, 1-butene, 1-pentene and 1-hexene being excluded in binary copolymers.
  • the different monomer units are generally in strict alternation.
  • the sequence of carbon monoxide and olefin component is generally also strictly alternating, with the longer-chain C 6 to C 20 alkene monomers being those which are suitable Olefine insertion positions are essentially incorporated into the linear copolymer chain in a statistical distribution.
  • binary carbon monoxide copolymers are C 7 -C 2 -alkenes, in particular -alk-1-enes, for example 1-heptene, 1-octene, 1-nonen, 1-decene, 1-dodecene, 1-hexadecene, 1- Octadecen, 1-eicosen included. Particularly preferred are C 8 - to C 2 o "A lk-l -ene used.
  • the average molecular weights M w of the binary carbon monoxide copolymers according to the invention are usually in the range from 15,000 to 50,000 g / mol, but copolymers with molecular weights up to 70,000, 100,000 and even 300,000 g / mol can also be obtained.
  • the binary copolymers according to the invention have T g values achieved less than -20 ° C.
  • the binary copolymers preferably have T g values of less than -30 ° C.
  • T g values are usually in the range from -7 to 45 ° C.
  • Copolymers of carbon monoxide and longer-chain olefinic monomers according to the invention such as 1-octadecene and 1-eicosen, have two melting points, which indicates semi-crystalline segments in the region of the nonpolar side chains along the linear copolymer chain.
  • the incorporation of 13 CO into binary copolymers with, for example, 1-eicosen as the olefin component has shown that the copolymer chains according to the invention are present in more than 50% regioselectively linked head-tail form.
  • Monomers for non-binary copolymers, in particular ternary copolymers, of carbon monoxide, an olefinic C to C 4 monomer and an olefinic C 6 to C 2 o monomer for the latter are in particular -alk-1-ene, for example 1- Hexen, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene or 1-eicosen.
  • 1-Octene, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene and 1-eicosen are preferably used.
  • 1-Octadecene and 1-eicosen are particularly preferred.
  • Propylene and but-1-ene, in particular propylene are preferably used as olefinic C 4 -C 4 monomers.
  • conjugated or isolated C 6 -C 20 -dienes for example 1,4-hexadiene and 1,5-hexadiene, are suitable as olefinically unsaturated compounds.
  • Carbon monoxide / propylene / C 6 -C 20 -alk-1-ene are preferred
  • Terpolymers such as carbon monoxide / propylene / 1-decene, carbon monoxide / propylene / 1-dodecene, carbon monoxide / propylene / 1-hexadecene, carbon monoxide / propylene / 1-octadecene and carbon monoxide / propylene / 1-eicosen terpolymers .
  • the receding propylene content of structural units in the carbon monoxide / propylene / C ö - to C 2 o-ter- polymer is generally in the range of 0.1 to 70 mol%, preferably in the range of 5 to 60 mol%, and in particular in the range from 10 to 50 mol, based on the terpolymer.
  • Particularly suitable terpolymers with these propylene contents are carbon monoxide / propylene / 1-octadecene and carbon monoxide / propylene / 1-eicose terpolymers.
  • the terpolymers according to the invention generally have an average molecular weight M w greater than 40,000 g / mol and a T g value less than 20 ° C., preferably less than -10 ° C. Terpolymers with an average molecular weight M w in the range up to 70,000, 170,000, 300,000 and even 500,000 g / mol are also accessible.
  • the binary carbon monoxide copolymers according to the invention and the carbon monoxide / propylene terpolymers are e.g. readily soluble in tetrahydrofuran, toluene, dichloromethane and chloroform.
  • the molar ratio of carbon monoxide to the sum of the structural units attributable to the olefinically unsaturated monomers in the binary and higher carbon monoxide copolymers according to the invention is generally 1: 1.
  • copolymers according to the invention are notable for their thermoplastic, elastomeric properties.
  • the molecular weight distribution M w / M n (weight average / number average) of the copolymers according to the invention, measured using the gel permeation chromatography (GPC) method analogous to the previous description, is generally from 1.2 to 3.5, but preferably takes a value less than 2 , 5 on.
  • Materials with hydrophobic surface behavior can also be made accessible from the carbon monoxide / propylene terpolymers according to the invention.
  • the degree of hydrophobic surface behavior between the limit values for can be determined via the proportion of long-chain olefins in the terpolymer
  • the polymer materials according to the invention Due to their impact modifying properties and their biocompatible behavior, the polymer materials according to the invention have a variety of possible uses, e.g. in the field of "polymer blend technology or medical technology.
  • carbon monoxide can be copolymerized with olefinically unsaturated compounds in a virtually alcohol-free or water-free polymerization medium in the presence of a catalyst whose active composition is formed from
  • M is a metal from Group VIIIB of the Periodic Table of the Elements
  • E 1 , E 2 an element from group VA of the periodic table of the elements
  • a bridging structural unit consisting of one, two, three or four substructural units from elements of group IVA, VA, VIA of the periodic table of the elements,
  • R 1 to R 4 substituents selected from the group consisting of -C ⁇ to C 20 -organic carbon and C 3 - to C 3 o-organosilicon radicals, the radicals being one or more elements from group IVA, VA, VIA and VIIA des Periodic table of the elements can contain
  • a further process for the preparation of the linear, thermoplastic, elastomeric copolymers according to the invention is the copolymerization of carbon monoxide with olefinically unsaturated compounds in a practically alcohol-free or water-free one Polymerization medium in the presence of a catalyst in question, the active mass is formed from
  • E 1 , E 2 an element from group VA of the periodic table of the elements
  • Z is a bridging structural unit made up of one, two, three or four substructural units from elements of group IVA, VA, VIA of the periodic table of the elements,
  • R 1 to R 4 substituents selected from the group of
  • radicals can contain one or more elements from groups IVA, VA, VIA and VIIA of the Periodic Table of the Elements,
  • the polymerizations for the preparation of the carbon monoxide copolymers according to the invention can be carried out batchwise or continuously in the presence of a polymerization catalyst comprising A), or a), b), c) and optionally B) or d).
  • Possible polymerization catalysts are metal compounds of the eighth subgroup of the Periodic Table of the Elements (VIIIB), which are present as defined metal complexes (I) or in situ from a metal salt a) of the metals of Group VIIIB of the Periodic Table of the Elements, protonic and / or Lewis acids b ) and a chelate compound c) of the formula (II) are formed can.
  • activators B) or d) can be added to the metal compounds.
  • Suitable metals M are the metals from group VIIIB of the periodic table of the elements, that is, in addition to iron, cobalt and nickel, primarily the platinum metals such as ruthenium, rhodium, osmium, iridium and platinum and very particularly palladium.
  • the metals nickel, palladium and platinum are generally formally charged twice positively, the metals cobalt, rhodium and iridium are generally formally singly charged and the metals iron, ruthenium and osmium are generally formally uncharged in the complexes.
  • the elements of V come as elements E 1 and E 2 of the chelate ligand, also referred to below as chelate compound (II).
  • Main group of the Periodic Table of the Elements i.e. nitrogen, phosphorus, arsenic, antimony or bismuth. Nitrogen or phosphorus, in particular phosphorus, are particularly suitable.
  • the chelating ligand or the chelating compound (II) can contain different elements E 1 and E 2 , for example nitrogen and phosphorus, but preferably he / she contains the same elements E 1 and E 2 and in particular E 1 and E 2 are phosphorus.
  • the bridging structural unit Z is an atomic grouping that connects the two elements E 1 and E 2 to one another.
  • Substructural units consisting of one atom or a plurality of interconnected atoms from group IVA, VA or VIA of the periodic table of the elements usually form the bridge between E 1 and E 2 .
  • Possible free valences of these bridge atoms can be saturated in a variety of ways, for example by substitution with hydrogen or with elements from the group IVA, VA, VIA or VIIA of the periodic table of the elements. These substituents can form ring structures with one another or with the bridge atom.
  • group IVA of the Periodic Table of the Elements such as methylene (-CH 2 -), 1,2-ethylene (-CH 2 -CH 2 -), 1, 3-propylene (-CH 2 -
  • 1,2-Ethylene, 1,3-propylene and 1,4-butylene may be mentioned as particularly suitable bridging structural units.
  • Suitable carbon-organic radicals R 1 to R 4 are aliphatic and cycloaliphatic and aromatic radicals having 1 to 20 carbon atoms, for example the methyl, ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl and 1-octyl groups and their structural analogues.
  • Linear arylalkyl groups with 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical are also suitable, such as benzyl.
  • Aryl radicals may be mentioned as further radicals R 1 to R 4 , for example tolyl, anisyl, preferably ortho-anisyl, xylyl and other substituted phenyl groups, in particular phenyl.
  • Suitable cycloaliphatic radicals are C - to C ⁇ o ⁇ m onocyclische systems such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl into consideration, particularly preferably cyclohexyl.
  • branched aliphatic radicals are C 3 - to C 2 o ⁇ , preferably C - to -C 2 alkyl, such as the i-propyl, i-butyl, s-butyl, neopentyl and t-butyl group.
  • Particularly suitable branched aliphatic radicals are the t-butyl group, the i-propyl group and the s-butyl group.
  • Alkyl groups with branching located further outside are also suitable as substituents R 1 to R 4 , such as the i-butyl, the 3-methyl-but-2-yl and 4-methylpentyl group.
  • the substituents R 1 to R 4 can also, independently of one another, contain atoms from the group IVA, VA, VIA or VIIA of the Periodic Table of the Elements, for example halogen, oxygen, sulfur, nitrogen, silicon, here for example the bis (trimethylsilyl ) methyl group.
  • Functional groups which are inert under the polymerization conditions can also be considered in this context.
  • Preferred hetero substituents R 1 to R 4 are C 3 - to
  • C o-organosilicon residues that is to say tetravalent silicon atoms which are bonded to E 1 or E 2 on the one hand and whose remaining valences are saturated with three carbon-organic residues, the sum of the carbon atoms of these three silicon-bonded residues in the range from three to thirty lies.
  • Examples include the trimethylsilyl, t-butyldimethylsilyl or triphenylsilyl group, in particular the trimethylsilyl group.
  • the preferred chelate ligands or chelate compound (II) used are 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane.
  • Very particularly preferred compounds as chelate ligand or chelate compound (II) are 1,3-bis (diphenylphosphino) propane and 1,4-bis (diphenylphosphino) butane.
  • Lewis bases are generally suitable as formally uncharged ligands L 1 , L 2 , that is to say compounds, preferably organic compounds or water, having at least one lone pair of electrons, alkanols or phenols generally not being suitable.
  • Lewis bases whose free electron pair or whose free electron pairs are located on a nitrogen or oxygen atom, ie nitriles, R-CN, ketones, ethers or preferably water, are particularly suitable.
  • Suitable Lewis bases are C 1 ⁇ to Cio-nitriles such as
  • Acetonitrile, propionitrile, benzonitrile or C 3 - to C 10 ketones such as acetone, acetylacetone or C 2 - to C ⁇ ether, such as dimethyl ether, diethyl ether or tetrahydrofuran.
  • ligands L 1 , L 2 in (I) are those of the formula (III)
  • T means hydrogen or a Ci to Cis carbon organic radical provided with a Lewis basic group.
  • Ci to Cis carbon organic radicals T are, for example, linear or also cyclic CH 2 -> - n - units, in which n is 1 to 10 means methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, 1,7-heptylene, 1,8-octylene, 1, 9-nonylene or 1, 10-decylene.
  • R ' is Ci to Cio-alkyl or C 3 - to Cio-cycloalkyl, for example methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclopentyl, Cyclohexyl.
  • R 'can also be C 6 - to Cio-aryl, such as phenyl, naphthyl.
  • the ligands T-OH, apart from water, are bound to the metal M in (I) via the Lewis base group already defined.
  • Suitable anions X in (I) are, for example, perchlorate, sulfate, phosphate, nitrate and carboxylates, such as, for example, acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, and conjugated anions of organosulfonic acids, for example methylsulfonate, trifluoromethylsulfonate and p Toluenesulfonate, furthermore tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyDborat, hexafluorophosphate, hexafluoro- arsenate or hexafluoroantimonate.
  • perchlorate, trifluoroacetate, sulfonates such as methylsulfonate, trifluoromethylchlorofluorosulfonate, trifluoromethylchlorofluorosulfonate, trifluoromethylchlorofluoronate, trifluoromethylchlorofluoronate, trifluoromethylchlorofluorophenate, trifluoromethylchlorofluorophenate, Toluene sulfonate as anion X.
  • the metal complexes of the general formula (I) are generally prepared by processes known from the literature, such as in Makromol. Chem. 1993, 194, p. 2579. Tetrakis-ligand-metal complexes, such as tetrakis -acetonitrile-palladium-bistrafluoroborate, can usually be reacted with the chelate compounds (II) and the ligands L 1 , L 2 or TOH to give the metal complexes (I).
  • a preferred method for the production of aquo complexes (I) is the reaction of the chelate phosphane acetonitrile - metal complexes with water.
  • the reaction is generally carried out in a solvent, for example dichloromethane, acetonitrile, water, at temperatures in the range from -78 to 40.degree.
  • a solvent for example dichloromethane, acetonitrile, water
  • the metals M are usually used in the form of their salts and brought into contact with the chelate compound c) of the general formula (II) and the acids b). This can be done before the catalytically active composition thus obtainable comes into contact with the monomer and optionally further activator d), generally outside the polymerization reactor.
  • the reaction of the individual components metal salt a), chelate compound c) of the general formula (II), acid b) and optionally activator component d) can also be carried out in the polymerization reactor in the presence of the monomers.
  • Suitable salts of usually divalent metals M are halides, sulfates, phosphates, nitrates and carboxylates, such as acetates, propionates, oxalates, citrates, benzoates, and sulfonic acid salts such as, for example, methyl sulfonates, trifluoromethyl sulfonate and p-toluenesulfonate. Carboxylates, sulfonic acid derivatives and in particular acetates are preferably used.
  • catalyst components a) are palladium dicarboxylates, preferably palladium diacetate, palladium dipropionate, palladium bis (trifluoroacetate) and palladium oxalate, and also palladium sulfonates, preferably palladium bis (trifluoromethanesulfonate), palladium bis (methanesulfonate), palladium bis (p-toluene), in particular used Palladium diacetate.
  • palladium dicarboxylates preferably palladium diacetate, palladium dipropionate, palladium bis (trifluoroacetate) and palladium oxalate
  • palladium sulfonates preferably palladium bis (trifluoromethanesulfonate), palladium bis (methanesulfonate), palladium bis (p-toluene
  • Lewis and protonic acids and mixtures thereof can be used as catalyst components b).
  • Suitable protonic acids b) are strong mineral acids, preferably with a pKa value less than 3, such as sulfuric acid and perchloric acid, and strong organic acids, for example trichloro and trifluoroacetic acid, and the sulfonic acids methanesulfonic acid, p-toluenesulfonic acid and benzenesulfonic acid.
  • acidic salts of strong acids with weak bases such as ammonium salts of the aforementioned acids, are suitable.
  • Suitable Lewis acids are halides of the elements of group IIIA of the periodic table of the elements, for example boron trifluoride, boron trichloride, aluminum trifluoride, aluminum trichloride, halides of the elements of group VA of the periodic table of the elements, such as phosphorus pentafluoride, antimony pentafluoride, and halides of the metals subgroup IVB of the Periodic Table of the Elements, such as titanium tetrachloride or zirconium tetrachloride.
  • Other suitable Lewis acids are organically substituted Lewis acids, for example tris (pentafluorophenyl) borane.
  • the Lewis acids used are preferably boron trifluoride, antimony pentafluoride or tris (pentafluorophenyl) borane.
  • Particularly preferred components b) are those which have a weakly coordinating conjugated anion, i.e. an anion which forms only a weak bond to the central metal of the complex, such as tetrafluoroborate, hexafluorophosphate, perchlorate, trifluoroacetate, trifluoromethylsulfonate, p-tosylate and borates, such as pyrocatecholate borate and tetraarylborate, with 2, 2, 5-dimethylphenyl in particular being the aryl group Ditrifluoromethylphenyl - or Pentafluorphenyl- come into question.
  • a weakly coordinating conjugated anion i.e. an anion which forms only a weak bond to the central metal of the complex
  • a weakly coordinating conjugated anion i.e. an anion which forms only a weak bond to the central metal of the complex
  • a weakly coordinating conjugated anion i.e. an anion which forms
  • suitable catalyst components a) and b) are those which are generally known from EP-A 501 576 and 516 238 for systems with bisphosphines.
  • the catalyst systems contain a chelate compound R 1 R 2 E 1 -Z-ER 3 R 4 (II), which was already described in the discussion of the metal complexes (I).
  • the ratio of the catalyst constituents a), b) and c) to one another is generally chosen so that the molar ratio of the metal compound a) to the acid b) is 0.01: 1 to 100: 1, preferably 0.1: 1 to 1: 1 and the molar ratio of the metal compound a) to component c) is 0.01: 1 to 10: 1, preferably 0.1: 1 to 2: 1.
  • the activator component B) or d) is generally a chemical compound which contains at least one hydroxyl group in the molecule. These mainly include C ⁇ to C ⁇ ⁇ A1 ⁇ ° hole, such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t-butanol, n-hexanol, n-octanol , n-decanol, cyclohexanol, phenol or water. Methanol and / or water is preferably used as activator component B) or d).
  • the molar ratio of activator component B) or d) to metal M is in the range from 0 to 500, preferably in the range from 0 to 300. It has proven to be advantageous not to exceed the maximum ratio in the polymerization reaction, since otherwise the middle one Molecular weights Mw of the carbon monoxide copolymers formed may be too low.
  • the addition of the activator B) or d) is only superfluous if the catalyst contains as Lewis base ligands L 1 , L 2 those which contain a hydroxyl group in the molecule and which are previously more precise using the general formula T-OH (III) have been defined.
  • the polymerization reactions can be carried out in the gas phase in a fluidized bed or stirred, in suspension, in liquid and in supercritical monomers and in solvents which are inert under the polymerization conditions.
  • the polymerization reactions can be carried out in a virtually alcohol-free or water-free polymerization medium. This means that no further amount of alcohol or water has been or will be added to the reaction mixture of monomers, catalyst and, if appropriate, inert solvent or suspending agent, apart from, where appropriate, activator component B) or d).
  • Suitable inert solvents and suspending agents are those which do not contain a hydroxyl group in the molecule, i.e. ethers such as diethyl ether, tetrahydrofuran, aromatic solvents such as benzene, toluene, ethylbenzene, chlorobenzene, aliphatic hydrocarbons such as i-butane or chlorinated aliphatic hydrocarbons such as dichloromethane, 1 , 1, 1-trichloromethane or mixtures of the compounds mentioned.
  • ethers such as diethyl ether, tetrahydrofuran
  • aromatic solvents such as benzene, toluene, ethylbenzene, chlorobenzene
  • aliphatic hydrocarbons such as i-butane or chlorinated aliphatic hydrocarbons such as dichloromethane, 1 , 1, 1-trichloromethane or mixtures of the compounds mentioned.
  • a well-suited polymerization process has been the introduction of the catalyst in the inert solvent, optionally subsequent addition of activator component B) or d) and the subsequent addition of the monomers and polymerization at a temperature in the range from 20 to 100 ° C. and a pressure in the range from Exposed 1000 to 10000 kPa. No spiroketal formation is observed under the polymerization conditions described.
  • the carbon monoxide copolymers according to the invention can be processed by means of injection molding, blow molding, spinning, rotary molding, extrusion or spin coating.
  • metallic, ceramic and other surfaces can be coated, for example those made of plastic materials.
  • the carbon monoxide copolymers according to the invention are suitable for the production of fibers, films, moldings and coatings, in particular those which are said to be impact-resistant. Furthermore, they can be used as a mixing component in plastics, in particular in those 5 which are to be impact-resistant.
  • the temperature and the partial pressures of the monomers were kept constant throughout the reaction.
  • the polymerization was stopped by reducing the pressure to ambient pressure
  • the molecular weights M w and the molecular weight distributions M w / M n were determined by gel permeation chromatography (GPC), based on a polystyrene standard.
  • the DSC data were determined using the Perkin-Elmer DSC-7 device at a heating rate of 10 ° C./min.
  • the melting points were also determined using a polarizing microscope. The heating rate was set at 10 ° C / min.
  • the copolymer films were produced from solution (1.0 w / w%, CH 2 C1 2 ) by evaporating the solvent on a rotating glass plate ("spin-casting") at 15 to 25 ° C (ethylene copolymers were used for carbon monoxide) a 0.5 w / w% solution in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol). Residual solvents were removed by evacuation for one hour.
  • the tangent method was used at a temperature of 20 ° C (cf. RJ Good, RR Shomberg, "Surface and Colloid Science", Vol. 11, Experimental Methods, Plenum Press, New York, 1979).
  • the contact angle was determined on a drop with a measuring frequency of 1 Hz for 5 seconds.
  • the values described represent mean values from 15 individual measurements on a total of three drops. The measurement accuracy was in the range of ⁇ 2.0 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyethers (AREA)

Abstract

Lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid und mindestens einem olefinischen C7- bis C20-Monomeren, die ein mittleres Molekulargewicht Mw größer als 15000 g/mol und einen Tg-Wert kleiner als -20 °C aufweisen, sowie aus Kohlenmonoxid, mindestens einem olefinischen C2- bis C4-Monomeren und mindestens einem olefinischen C6- bis C20-Monomeren, die ein mittleres Molekulargewicht Mw größer als 40000 g/mol und einen Tg-Wert kleiner als 20 °C aufweisen.

Description

Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
Beschreibung
Die vorliegende Erfindung betrifft lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid und mindestens einem olefinischen C7 - bis C 0 -Monomeren, die ein mittleres Molekulargewicht Mw größer als 15000 g/mol und einen Tg-Wert kleiner als -20°C aufweisen.
Des weiteren betrifft die Erfindung lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid, mindestens einem olefinischen C - bis C -Monomeren und mindestens einem olefinischen C6- bis C2o"Monomeren, die ein mittleres Molekulargewicht Mw größer als 40000 g/mol und einen Tg-Wert kleiner als 20°C aufweisen.
Außerdem betrifft die vorliegende Erfindung Verfahren zur Her- Stellung derartiger Copolymere, die Verwendung der Copolymeren zur Herstellung von Fasern, Folien, Formkörpern und Beschichtungen sowie aus den Copolymeren erhältliche Fasern, Folien, Formkörper und Beschichtungen.
Kohlenmonoxid/Ethylencopolymere und Kohlenmonoxid/Ethylen/
Propylenterpolymere finden in jüngster Zeit Interesse als technische Kunststoffe zur Herstellung von Artikeln mit relativ hohem Schmelzpunkt, wie beispielsweise Zahnrädern. In der Regel sind Kohlenmonoxid-Copolymere mit Ethylen als Comonomer sehr hart und spröde und wenig oder überhaupt nicht schlagzäh, sodaß sie für viele Anwendungsgebiete, in denen diese Eigenschaften wünschenswert sind, nicht in Frage kommen.
In der US 5,352,767 werden alternierende, elastomere Copolymeri- säte aus Kohlenmonoxid und α-Olefinen beschrieben, die mit Hilfe eines Katalysatorsystems, welches kationische Metallkomplexe der Gruppe VIIIB des Periodensystems der Elemente und Aktivatoren auf der Basis von primären und sekundären Alkoholen enthält, hergestellt werden.
Die in der genannten US- Patentschrift beschriebenen Kohlenmon- oxid/Propylen-, -/n-Buten- oder -/n-Hexencopolymere zeigen aber selbst bei mittleren Molekulargewichten Mw bis zu 50000 keine thermoplastisch elastomeren Eigenschaften und sind daher für Werkstoffanwendungen nicht geeignet. Gemäß der deutschen Patentanmeldung 196 10 358.4 ist bekannt, daß mit steigendem Molekulargewicht die Elastomereigenschaften der genannten Copolymere zunehmen. Diese Copolymere sind im allgemeinen erst bei mittleren Molekulargewichten Mw im Bereich von 80000 g/mol und darüber technisch sinnvoll einsetzbar. Allerdings wäre es wünschenswert, Materialeigenschaften, die eine breite technische Anwendung ermöglichen, bereits bei geringeren Molekulargewichten verwirklichen zu können, ohne dabei z.B. Nachteile in bezug auf die Verarbeitbarkeit in Kauf nehmen zu müssen.
Aufgabe der vorliegenden Erfindung war es daher, Copolymere aus Kohlenmonoxid und olefinischen Monomeren zur Verfügung zu stellen, die die genannten Nachteile nicht oder nur in untergeordnetem Maße aufweisen und die in technischem Maßstab wirt- schaftlich herstellbar sind.
Demgemäß wurden lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid und mindestens einem olefinischen C7 - bis C 0 -Monomeren, die ein mittleres Molekulargewicht Mw größer als 15000 g/mol und einen Tg-Wert kleiner als -20°C aufweisen, gefunden.
Weiterhin wurden lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid, mindestens einem olefinischen C2- bis C -Mono- meren und mindestens einem olefinischen C6- bis C o -Monomeren, die ein mittleres Molekulargewicht Mw größer als 40000 g/mol und einen Tg-Wert kleiner als 20°C aufweisen, gefunden.
Außerdem wurden Verfahren zur Herstellung von linearen, thermo- plastischen, elastomeren Copolymeren aus Kohlenmonoxid und olefinischen Monomeren sowie die Verwendung der Copolymeren zur Herstellung von Fasern, Folien, Formkörpern und Beschichtungen und die hierbei erhältlichen Fasern, Folien, Formkörper und Beschichtungen gefunden.
Die erfindungsgemäßen Copolymere sind aus Einheiten aufgebaut, die auf die Monomeren Kohlenmonoxid und eine oder mehrere olefinisch ungesättigte Verbindungen zurückgehen, wobei in binären Copolymerisaten Ethylen, Propylen, 1 -Buten, 1-Penten und 1 -Hexen ausgeschlossen sind.
In den erfindungsgemäßen binären Copolymeren liegen die unterschiedlichen Monomereinheiten in der Regel streng alternierend vor. Bei den ternären und höheren Copolymersystemen ist die Abfolge von Kohlenmonoxid und Olefinkomponente in der Regel ebenfalls streng alternierend, wobei die längerkettigen C6- bis C20 -Alkenmonomeren in bezug auf die in Betracht kommenden Olefineinbaupositionen im wesentlichen in statistischer Verteilung in die lineare Copolymerkette eingebaut werden.
Als olefinisch ungesättigte Verbindungen kommen grundsätzlich alle Monomere dieser Verbindungsklasse in Betracht.
Bevorzugt sind in binären Kohlenmonoxidcopolymeren C7- bis C2o~Alkene, insbesondere -Alk-1-ene, beispielsweise 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Dodecen, 1-Hexadecen, 1-Octadecen, 1-Eicosen enthalten. Besonders bevorzugt werden C8- bis C2o"Alk-l -ene eingesetzt.
Die mittleren Molekulargewichte Mw der erfindungsgemäßen binären Kohlenmonoxidcopolymere liegen üblicherweise im Bereich von 15000 bis 50000 g/mol, es können aber auch Copolymere mit Molekulargewichten bis 70000, 100000 und sogar 300000 g/mol erhalten werden.
Bei mittleren Molekulargewichten Mw (gemessen mit der Methode der Gelpermeationschromatographie (GPC) bei 25°C mit Microstyragel (Waters) als Säulenmaterial und Chloroform als Lösungsmittel gegen Polystyrol -Standard) größer 15000 g/mol werden mit den erfindungsgemäßen binären Copolymeren Tg -Werte kleiner -20°C erzielt. Bevorzugt weisen die binären Copolymere Tg-Werte kleiner -30°C auf. In Abhängigkeit von der Wahl des olefinischen Comono- meren werden sogar Tg-Werte, die im Bereich von -60°C liegen, erhalten. Die Schmelzpunkte dieser Copolymere liegen üblicherweise im Bereich von -7 bis 45°C. Erfindungsgemäße Copolymere aus Kohlenmonoxid und längerkettigen olefinischen Monomeren, wie 1-Octadecen und 1-Eicosen, weisen zwei Schmelzpunkte auf, was auf teilkristalline Segmente im Bereich der unpolaren Seitenketten entlang der linearen Copolymerkette hindeutet. Über den Einbau von 13CO in binäre Copolymere mit z.B. 1-Eicosen als Olefinkompo- nente wurde festgestellt, daß die erfindungsgemäßen Copolymerket- ten zu über 50 % regioselektiv Kopf -Schwanz verknüpft vorliegen.
Als Monomere für nicht -binäre Copolymere, insbesondere ternäre Copolymere, aus Kohlenmonoxid, einem olefinischen C - bis C4 -Monomer und einem olefinischen C6- bis C2o -Monomer kommen für letztere insbesondere -Alk-1-ene, beispielsweise 1 -Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Dodecen, 1-Hexadecen, 1-Octadecen oder 1-Eicosen in Frage. Bevorzugt werden 1-Octen, 1-Decen, 1-Dodecen, 1-Hexadecen, 1-Octadecen und 1-Eicosen eingesetzt. Besonders bevorzugt sind 1-Octadecen und 1-Eicosen. Als olefinische C - bis C4 -Monomere werden bevorzugt Propylen und But-l-en, insbesondere Propylen, eingesetzt. Außer den bereits genannten Alkenen eignen sich als olefinisch ungesättigte Verbindungen konjugierte oder isolierte C6 - bis C20-Diene, beispielsweise 1,4-Hexadien und 1 , 5 -Hexadien.
Bevorzugt sind Kohlenmonoxid/Propylen/C6 - bis C20-Alk-l-en-
Terpolymere, wie Kohlenmonoxid/Propylen/1-Decen- , Kohlenmonoxid/ Propylen/1 -Dodecen- , Kohlenmonoxid/Propylen/1 -Hexadecen- , Kohlen- monoxid/Propylen/1 -Octadecen- und Kohlenmonoxid/Propylen/ 1-Eicosen-Terpolymere. Der auf Propylen zurückgehende Gehalt an Struktureinheiten in den Kohlenmonoxid/Propylen/Cö - bis C2o-Ter- polymeren liegt im allgemeinen im Bereich von 0,1 bis 70 mol-%, vorzugsweise im Bereich von 5 bis 60 mol-% und insbesondere im Bereich von 10 bis 50 mol- , bezogen auf das Terpolymer. Besonders gut geeignete Terpolymere mit diesen Propylengehalten sind Kohlenmonoxid/Propylen/1 -Octadecen- und Kohlenmonoxid/Propylen/ 1 -Eicosen-Terpolymere .
Die erfindungsgemäßen Terpolymere weisen in der Regel ein mittleres Molekulargewicht Mw größer 40000 g/mol und einen Tg-Wert kleiner als 20°C, bevorzugt kleiner als -10°C auf. Ebenfalls zugänglich sind Terpolymere mit einem mittleren Molekulargewicht Mw im Bereich bis 70000, 170000, 300000 und sogar 500000 g/mol.
Die erfindungsgemäßen binären Kohlenmonoxidcopolymere sowie die Kohlenmonoxid/Propylen -Terpolymere sind z.B. gut löslich in Tetrahydrofuran, Toluol, Dichlormethan und Chloroform.
Das molare Verhältnis von Kohlenmonoxid zur Summe der auf die olefinisch ungesättigten Monomeren zurückzuführenden Struktureinheiten in den erfindungsgemäßen binären und höheren Kohlen- monoxidcopolymeren liegt im allgemeinen bei 1:1.
Die erfindungsgemäßen Copolymeren zeichnen sich durch ihre thermoplastisch elastomeren Eigenschaften aus.
Die Molekulargewichtsverteilung Mw/Mn (Gewichtsmittelwert/Zahlenmittelwert) der erfindungsgemäßen Copolymere, gemessen mit der Methode der Gelpermeationschromatographie (GPC) analog voran- gegangener Beschreibung, beträgt im allgemeinen 1,2 bis 3,5, nimmt jedoch bevorzugt einen Wert kleiner als 2,5 an.
Der Einbau längerkettiger 1 -Olefinmonomerbausteine in beispielsweise binäre und ternare Kohlenmonoxid-Copolymere beeinflußt ebenfalls die Polarität von aus diesen Copolymeren erhältlichen Folien, Fasern, Formkorpern und Beschichtungen. Diese Materialien zeichnen sich gegenüber herkömmlichen Kohlenmonoxid/Ethylen- bzw. Kohlenmonoxid/Propylen -Copolymeren durch eine verringerte Oberflächenspannung aus. Mit den erfindungsgemäßen binären Kohlen- monoxid/Cβ" bis C o-Alkenen können demgemäß hydrophobe Material- Oberflächen erhalten werden. Diese Eigenschaft ist z.B. mit Hilfe 5 der "sessile drop technique" , beschrieben in R.J. Good, R.R. Shomberg, "Surface and Colloid Science", Vol. 11, Experimental Methods, Plenum, Press, New York, 1979, bestimmbar. Für einen auf einem Film aus erfindungsgemäßen Kohlenmonoxid/1-Octen- Copoly eren aufgebrachten Wassertropfen wurde beispielsweise
10 ein Θ-Wert von 110,27° erhalten. Auch aus den erfindungsgemäßen Kohlenmonoxid/Propylen -Terpolymeren können Materialien mit hydrophobem Oberflächenverhalten zugänglich gemacht werden. Über den Anteil langkettiger Olefine im Terpolymer läßt sich der Grad an hydrophobem Oberflächenverhalten zwischen den Grenzwerten für
15 reine Kohlenmonoxid/Propylen- und reine Kohlenmonoxid/länger - kettiges Olefin-Copolymere einstellen. Bei der Terpolymerisation von Kohlenmonoxid und Propylen mit 1-Octadecen erhältliche Polymerfilmmaterialien mit einem Anteil von 13 Gew. - 1-Octadecen liefern bei der Kontaktwinkelmessung einen Θ-Wert von 91,3°.
20 Dieser Wert ist beträchtlich höher als der für Kohlenmonoxid/ Propylen-Copolymere (Θ = 83,03°), jedoch niedriger als derjenige für Kohlenmonoxid/Octadecen-Copolymere (Θ = 107,14°). Die Alkyl- seitenketten können sich rohrartig um das polare Kohlenmonoxid- kettengerüst anordnen und so den Wechsel von hydrophilem zu
^ hydrophobem Verhalten bewirken. Durch die Wahl des langkettigen olefinischen Monomeren sowie über den in das Copolymere eingebauten Anteil an längerkettigen olefinischen Monomeren kann somit die Oberflächenpolarität der erhaltenen Fasern, Folien, Formkörper und Beschichtungen in Abhängigkeit von den spezifi-
™ sehen Anwendungserfordernissen eingestellt werden.
Die erfindungsgemäßen Polymermaterialien besitzen aufgrund ihrer schlagzähmodifizierenden Eigenschaften und ihres biokompatiblen Verhaltens vielfältige Anwendungsmöglichkeiten z.B. im Bereich " der Polymerblend-Technologie oder der Medizintechnik.
Zur Herstellung der erfindungsgemäßen linearen, thermoplastischen, elastomeren Copolymere kann Kohlenmonoxid mit olefinisch ungesättigten Verbindungen in einem praktisch alkohol- oder '^ wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators copolymerisiert werden, dessen aktive Masse gebildet wird aus
45 A) einem Metallkomplex der allgemeinen Formel (I)
R1. R2
El l
M m r£ (I),
E2 L2
R3 R4 in der die Substituenten und Indizes folgende Bedeutung haben:
M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
R1 bis R4 Substituenten, ausgewählt aus der Gruppe bestehend aus Cι~ bis C20-kohlenstofforganischen und C3- bis C3o-siliciumorganischen Resten, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente ent- halten können,
l, L2 formal ungeladene Lewis -Basenliganden
ein- oder zweiwertige Anionen
m, n 1 oder 2
wobei m x n = 2
B) einer Aktivatorkomponente, welche eine Hydroxylgruppe im Molekül enthält, die bezogen auf M in (I), in einer Menge von 0 bis 500 Moläquivalente eingesetzt wird.
Als ein weiteres Verfahren zur Herstellung der erfindungsgemäßen linearen, thermoplastischen, elastomeren Copolymere kommt die Copolymerisation von Kohlenmonoxid mit olefinisch ungesättigten Verbindungen in einem praktisch alkohol- oder wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators in Frage, dessen aktive Masse gebildet wird aus
a) einem Salz eines Metalls M der Gruppe VIIIB des Perioden- Systems der Elemente,
b) einer Verbindung oder mehreren Verbindungen ausgewählt aus der Gruppe der Protonensäuren und Lewissäuren,
c) einer Chelatverbindung der allgemeinen Formel (II)
R1R2E1-Z-E2R3R4 (II) ,
in der die Substituenten und Indizes folgende Bedeutung haben:
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
Z eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
R1 bis R4 Substituenten ausgewählt aus der Gruppe der
Cx- bis C20-kohlenstofforganischen und C3- bis C3o-siliciumorganischen Reste, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente enthalten können,
d) einer Aktivatorkomponente B) , welche eine Hydroxylgruppe im Molekül enthält, die, bezogen auf M in (I) , in einer Menge von 0 bis 500 Moläquivalenten eingesetzt wird.
Die Polymerisationen zur Herstellung der erfindungsgemäßen Kohlenmonoxid-Copolymeren können sowohl absatzweise als auch kontinuierlich in Gegenwart eines Polymerisationskatalysators aus A) , bzw. a) , b) , c) und fakultativ B) bzw. d) durchgeführt werden.
Als Polymerisationskatalysatoren kommen Metallverbindungen der achten Nebengruppe des Periodensystems der Elemente (VIIIB) in Frage, die als definierte Metallkomplexe (I) vorliegen oder in situ aus einem Metallsalz a) der Metalle der Gruppe VIIIB des Periodensystems der Elemente, Protonen- und/oder Lewissäuren b) und einer Chelatverbindung c) der Formel (II) gebildet werden können. Gegebenenfalls können den Metallverbindungen Aktivatoren B) bzw. d) zugesetzt werden.
Als Metalle M eignen sich die Metalle der Gruppe VIIIB des Periodensystems der Elemente, also neben Eisen, Cobalt und Nickel vornehmlich die Platinmetalle wie Ruthenium, Rhodium, Osmium, Iridium und Platin sowie ganz besonders Palladium. Die Metalle Nickel, Palladium und Platin liegen im allgemeinen formal zweifach positiv geladen, die Metalle Cobalt, Rhodium und Iridium im allgemeinen formal einfach positiv geladen und die Metalle Eisen, Ruthenium und Osmium im allgemeinen formal ungeladen in den Komplexen vor.
Als Elemente E1 und E2 des Chelatliganden, im folgenden auch Chelatverbindung (II) genannt, kommen die Elemente der V.
Hauptgruppe des Periodensystems der Elemente (Gruppe VA) , also Stickstoff, Phosphor, Arsen, Antimon oder Bismut in Betracht. Besonders geeignet sind Stickstoff oder Phosphor, insbesondere Phosphor. Der Chelatligand oder die Chelatverbindung (II) kann unterschiedliche Elemente E1 und E2 enthalten, so zum Beispiel Stickstoff und Phosphor, vorzugsweise enthält er/sie jedoch gleiche Elemente E1 und E2 und insbesondere sind E1 und E2 Phosphor .
Die verbrückende Struktureinheit Z ist eine Atomgruppierung, die die beiden Elemente E1 und E2 miteinander verbindet. SubStruktur- einheiten aus einem Atom oder mehreren miteinander verbundenen Atomen aus der Gruppe IVA, VA oder VIA des Periodensystems der Elemente bilden üblicherweise die Brücke zwischen E1 und E2. Mögliche freie Valenzen dieser Brückenatome können mannigfaltig abgesättigt sein, so zum Beispiel durch Substitution mit Wasserstoff oder mit Elementen aus der Gruppe IVA, VA, VIA oder VIIA des Periodensystems der Elemente. Diese Substituenten können untereinander oder mit dem Brückenatom Ringstrukturen bilden.
Gut geeignete verbrückende Struktureinheiten Z sind solche mit einem, zwei, drei oder vier Elementen aus der Gruppe IVA des Periodensystems der Elemente wie Methylen (-CH2-) , 1,2-Ethylen (-CH2-CH2-), 1,3-Propylen (-CH2-CH2-CH2-) , 1,4-Butylen, 1,3-Di- silapropylen ( -R5R6Si-CH2 -SiR5R6- , worin R5, R6 Ci- bis Cι0-Alkyl, C6- bis Cio-Aryl bedeuten), Ethyliden (CH3(H)C=), 2-Propyliden ((CH3) C=), Diphenylmethylen ((C6H5)2C=) oder ortho-Phenylen.
Als besonders geeignete verbrückende Struktureinheiten seien 1,2-Ethylen, 1,3 -Propylen und 1,4-Butylen genannt. Als kohlenstofforganische Reste R1 bis R4 kommen, unabhängig voneinander, aliphatische sowie cycloaliphatische und aromatische mit 1 bis 20 C-Atomen in Betracht, beispielsweise die Methyl-, Ethyl-, 1-Propyl-, 1-Butyl-, 1-Pentyl, 1-Hexyl- und 1-Octylgruppe sowie deren Strukturanaloga. Ferner sind lineare Arylalkylgruppen mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest geeignet, wie Benzyl . Als weitere Reste R1 bis R4 seien Arylreste genannt, zum Beispiel Tolyl, Anisyl, vorzugsweise ortho-Anisyl, Xylyl und andere substituierte Phenylgruppen, ins- besondere Phenyl .
Als cycloaliphatische Reste kommen C - bis Cιo~monocyclische Systeme wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl in Betracht, besonders bevorzugt ist Cyclohexyl.
Als verzweigte aliphatische Reste eignen sich C3- bis C2o~, vorzugsweise C - bis Cι2-Alkylreste, wie die i-Propyl-, i-Butyl-, s-Butyl-, Neopentyl- und t-Butylgruppe.
Besonders geeignete verzweigte aliphatische Reste sind die t-Butylgruppe, die i-Propylgruppe und die s-Butylgruppe.
Auch Alkylgruppen mit weiter außen liegender Verzweigung sind als Substituenten R1 bis R4 gut geeignet, wie die i-Butyl-, die 3-Methyl-but-2-yl- und 4-Methylpentylgruppe.
Die Substituenten R1 bis R4 können auch, unabhängig voneinander, Atome aus der Gruppe IVA, VA, VIA oder VIIA des Periodensystems der Elemente enthalten, zum Beispiel Halogen, Sauerstoff, Schwefel, Stickstoff, Silicium, hier beispielsweise die Bis(tri- methylsilyl) methylgruppe. Auch funktionelle Gruppen, die sich unter den Polymerisationsbedingungen inert verhalten, kommen in diesem Zusammenhang in Betracht.
Bevorzugte Heterosubstituenten R1 bis R4 sind C3- bis
C o-siliciumorganische Reste, das heißt tetravalente Silicium- atome, die einerseits an E1 oder E2 gebunden sind und deren übrige Valenzen mit drei kohlenstofforganischen Resten abgesättigt sind, wobei die Summe der Kohlenstoffatome dieser drei an Silicium ge- bundenen Reste im Bereich von drei bis dreißig liegt. Beispielsweise seien genannt die Trimethylsilyl-, t-Butyldimethylsilyl- oder Triphenylsilylgruppe, insbesondere die Trimethylsilylgruppe.
Vorzugsweise verwendet man als Chelatliganden oder Chelatver- bindung (II), 1, 2 -Bis (diphenylphosphino) ethan, 1, 3 -Bis (diphenylphosphino) propan, 1, 4 -Bis (diphenylphosphino) butan. Ganz besonders bevorzugte Verbindungen als Chelatligand oder Chelatverbindung (II) sind 1, 3 -Bis (diphenylphosphino) propan und 1, 4 -Bis (diphenylphosphino) butan.
Als formal ungeladene Liganden L1, L2 sind generell Lewisbasen geeignet, also Verbindungen, vorzugsweise organische Verbindungen oder Wasser, mit mindestens einem freien Elektronenpaar, wobei Alkanole oder Phenole im allgemeinen nicht geeignet sind.
Gut geeignet sind Lewisbasen, deren freies Elektronenpaar oder deren freie Elektronenpaare sich an einem Stickstoff- oder Sauerstoffatom befinden, also Nitrile, R-CN, Ketone, Ether oder vorzugsweise Wasser.
Als geeignete Lewisbasen seien genannt Cι~ bis Cio-Nitrile wie
Acetonitril, Propionitril, Benzonitril oder C3- bis C10-Ketone wie Aceton, Acetylaceton oder aber C2- bis Cιo~Ether, wie Dimethyl- ether, Diethylether oder Tetrahydrofuran.
Insbesondere für Katalysatoren, die keines Aktivators B) bzw. d) bedürfen sind als Liganden L1, L2 in (I) solche der Formel (III)
T-OH (III)
geeignet. Hierin bedeutet T Wasserstoff oder ein mit einer lewis - basischen Gruppe versehener Ci- bis Cis-kohlenstofforganischer Rest. Gut geeignete Ci- bis Cis-kohlenstofforganische Reste T sind beispielsweise lineare oder auch cyclische CH2->-n- Einheiten, worin n 1 bis 10 bedeutet, also Methylen, 1,2-Ethylen, 1 , 3 -Propylen, 1,4-Butylen, 1, 5-Pentylen, 1,6-Hexylen, 1, 7-Heptylen, 1,8-Octylen, 1,9-Nonylen oder 1, 10-Decylen.
Als lewisbasische Gruppe kommen Ether, Ester, Keton, Amin, Phosphan und insbesondere Nitril (-C=N) oder tertiäres Amin in Frage.
Gut geeignete Verbindungen T-OH sind zum Beispiel Wasser oder α-ω-Hydroxynitrile wie NC 4CH -nOH mit n=l bis 10 oder (2 -Hydroxymethyl) tetrahydrofuran, sowie (2 -Hydroxymethyl) (N-organo)pyrrolidine (lila) oder (2 -Hydroxymethyl) (N-organo) - piperidine (Illb)
Figure imgf000012_0001
R' R'
(lila) (Illb) worin R' Ci- bis Cio-Alkyl oder C3 - bis Cio-Cycloalkyl bedeutet, beispielsweise Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclopentyl, Cyclohexyl. Weiterhin kann R' auch C6 - bis Cio-Aryl, wie Phenyl, Naphthyl bedeuten.
Im allgemeinen sind die Liganden T-OH, außer Wasser, über die bereits definierte lewisbasische Gruppe an das Metall M in (I) gebunden .
Geeignete Anionen X in (I) sind beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie beispielsweise Acetat, Trifluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfon- säuren, zum Beispiel Methylsulfonat, Trifluormethylsulfonat und p-Toluolsulfonat , weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis (pentafluorophenyDborat, Hexafluorophosphat, Hexafluoro- arsenat oder Hexafluoroantimonat . Vorzugsweise verwendet man Perchlorat, Trifluoracetat , Sulfonate wie Methylsulfonat, Tri- fluormethylsulfonat, p-Toluolsulfonat, Tetrafluoroborat oder Hexafluorophosphat und insbesondere Trifluoracetat, Perchlorat oder p-Toluolsulfonat als Anion X.
Als besonders gut geeignete Metallkomplexe (I) seien genannt (Bis-1 , 3 (diphenylphosphino) propan-palladium-bis-aceto- nitriDbis (tetrafluoroborat) (≤ [Pd(dppp) (NCCH3) 2] (BF4) 2, dppp = 1, 3 (Diphenylphosphino) propan) , (Bis-1, 3 (diphenylphosphino) -propan-palladium-bis-aquo)bis (tetrafluoroborat) , 1, 3 (Diphenylphosphino) -propan-palladiu -bis (3 -hydroxypropio- nitriDbis (tetrafluoroborat) , (Bis- 1, 4 (diphenylphosphino) - butan-palladium-bis-acetonitril)bis (tetrafluoroborat) ,
(Bis-1,4- (diphenylphosphino) -butan-palladium-bis-aquo)bis- (tetrafluoroborat) .
Die Herstellung der Metallkomplexe der allgemeinen Formel (I) erfolgt im allgemeinen nach literaturbekannten Verfahren, wie in Makromol. Chem. 1993, 194, S. 2579 beschrieben. Üblicherweise können Tetrakis-Ligand-Metallkomplexe, wie Tetrakis -Acetonitril- palladiumbistetrafluoroborat, mit den Chelatverbindungen (II) und den Liganden L1, L2 oder TOH zu den Metallkomplexen (I) umge- setzt werden. Ein bevorzugtes Verfahren zur Herstellung von Aquo- komplexen (I) ist die Umsetzung der Chelatphosphan-Acetonitril - Metallkomplexe mit Wasser. Die Reaktion wird im allgemeinen in einem Lösungsmittel, beispielsweise Dichlormethan, Acetonitril, Wasser, bei Temperaturen im Bereich von -78 bis 40°C durchgeführt. Bei der in si tu Generierung der Polymerisationskatalysatoren setzt man die Metalle M üblicherweise zweiwertig in Form ihrer Salze ein und bringt sie mit der Chelatverbindung c) der allgemeinen Formel (II) und den Säuren b) in Berührung. Dies kann vor dem Kontakt der so erhältlichen katalytisch aktiven Masse mit dem Monomeren und gegebenenfalls weiterem Aktivator d) geschehen, im allgemeinen außerhalb des Polymerisationsreaktors . Die Umsetzung der Einzelkomponenten Metallsalz a) , Chelatverbindung c) der allgemeinen Formel (II) , Säure b) und gegebenenfalls Aktivator - komponente d) kann aber auch im Polymerisationsreaktor, in Gegenwart der Monomeren, durchgeführt werden.
Als Salze von blicherweise zweiwertigen Metallen M sind Halogenide, Sulfate, Phosphate, Nitrate und Carboxylate, wie Acetate, Propionate, Oxalate, Citrate, Benzoate, sowie Sulfon- säuresalze wie zum Beispiel Methylsulfonate, Trif luormethyl - sulfonat und p-Toluolsulfonat geeignet. Vorzugsweise verwendet man Carboxylate, Sulfonsaurederivate und insbesondere Acetate.
Besonders geeignete Katalysatorkomponenten a) sind Palladium- dicarboxylate, vorzugsweise Palladiumdiacetat, Palladiumdi- propionat, Palladiumbis (trifluoracetat) und Palladiumoxalat, sowie Palladiumsulfonate, vorzugsweise Palladiumbis (trifluor- methansulfonat) , Palladiumbis (methansulfonat) , Palladiumbis (p- Toluolsulfonat) , insbesondere verwendet man Palladiumdiacetat.
Als Katalysatorbestandteile b) können Lewis- und Protonensäuren und deren Mischungen eingesetzt werden.
Geeignete Protonensäuren b) sind starke Mineralsäuren, vorzugsweise mit einem pKa-Wert kleiner als 3, wie Schwefelsäure und Perchlorsäure sowie starke organische Säuren, beispielsweise Trichlor- und Trifluoressigsaure sowie die Sulfonsäuren Methansulfonsäure, p-Toluolsulfonsäure und Benzolsulfonsäure.
Weiterhin sind die sauer wirkenden Salze starker Säuren mit schwachen Basen, wie beispielsweise Ammoniumsalze der vorher genannten Säuren geeignet.
Beispiele für geeignete Lewissäuren sind Halogenide der Elemente der Gruppe IIIA des Periodensystems der Elemente, zum Beispiel Bortrifluorid, Bortrichlorid, Aluminiumtrifluorid, Aluminium- trichlorid, Halogenide der Elemente der Gruppe VA des Periodensystems der Elemente, wie Phosphorpentafluorid, Antimonpenta- fluorid, sowie Halogenide der Metalle der Nebengruppe IVB des Periodensystems der Elemente, wie beispielsweise Titantetrachlorid oder Zirconiumtetrachlorid. Weitere geeignete Lewissauren sind organisch substituierte Lewissäuren, zum Beispiel Tris (pentafluorphenyl) boran.
Vorzugsweise verwendet man als Lewis-Säuren Bortrif luorid, Antimonpentafluorid oder Tris (pentafluorphenyl) boran.
Besonders bevorzugte Komponenten b) sind solche, welche ein schwach koordinierendes konjugiertes Anion besitzen, d.h. ein Anion welches nur eine schwache Bindung zum Zentralmetall des Komplexes ausbildet, wie Tetrafluoroborat , Hexafluorophosphat, Perchlorat, Trifluoracetat, Trifluormethylsulfonat, p-Tosylat und Borate, wie Brenzkatechinatoborat und Tetraarylborat , wobei als Arylgruppe insbesondere 2 , 5-Dimethylphenyl- , 2 , 5 -Ditrifluor- methylphenyl - oder Pentafluorphenyl- in Frage kommen.
Im übrigen eignen sich als Katalysatorkomponenten a) und b) diejenigen, wie sie allgemein für Systeme mit Bisphosphinen aus den EP-A 501 576 und 516 238 bekannt sind.
Als Komponente c) enthalten die Katalysatorsysteme eine Chelatverbindung R1R2E1-Z-ER3R4 (II), die bereits bei der Abhandlung der Metallkomplexe (I) beschrieben wurde.
Das Verhältnis der Katalysatorbestandteile a) , b) und c) zueinan- der wird im allgemeinen so gewählt, daß das molare Verhältnis der Metallverbindung a) zur Säure b) 0,01 : 1 bis 100 : 1, bevorzugt 0,1 : 1 bis 1 : 1 und das molare Verhältnis der MetallVerbindung a) zur Komponente c) 0,01 : 1 bis 10 : 1, bevorzugt 0,1 : 1 bis 2 : 1 beträgt.
Die Aktivatorkomponente B) bzw. d) ist in der Regel eine chemische Verbindung, die mindestens eine Hydroxylgruppe im Molekül enthält. Hierunter fallen vor allem Cι~ bis Cιo~A1^°hole, wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, i-Butanol, s-Butanol, t-Butanol, n-Hexanol, n-Octanol, n-Decanol, Cyclo- hexanol, Phenol oder Wasser. Vorzugsweise verwendet man Methanol und/oder Wasser als Aktivatorkomponente B) bzw. d) .
Das molare Verhältnis von Aktivatorkomponente B) bzw. d) zu Metall M liegt im Bereich von 0 bis 500, vorzugsweise im Bereich von 0 bis 300. Es hat sich als vorteilhaft herausgestellt, das Maximalverhältnis bei der Polymerisationsreaktion nicht zu überschreiten, da sonst die mittleren Molekulargewichte Mw der gebildeten Kohlenmonoxid-Copolymeren zu gering sein können. Die Zugabe des Aktivators B) bzw. d) erübrigt sich nur dann, wenn der Katalysator als Lewisbasen-Liganden L1, L2 solche enthält, die eine Hydroxylgruppe im Molekül enthalten und die vorher mit der allgemeinen Formel T-OH (III) genauer definiert worden sind.
Als geeignete Reaktionsparameter zur Herstellung der linearen, thermoplastischen, elastomeren Copolymeren aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen haben sich Drücke von 100 bis 500000 kPa, vorzugsweise 500 bis 350000 kPa und insbesondere 1000 bis 10000 kPa, Temperaturen von -50 bis 400°C, bevorzugt
10 bis 250°C und insbesondere 20 bis 100°C als geeignet erwiesen.
Die Polymerisationsreaktionen lassen sich in der Gasphase in Wirbelschicht oder gerührt, in Suspension, in flüssigen und in überkritischen Monomeren und in unter den Polymerisations - bedingungen inerten Lösungsmitteln durchführen.
Die Polymerisationsreaktionen können im praktisch alkohol- oder wasserfreien Polymerisationsmedium durchgeführt werden. Das bedeutet, daß dem Reaktionsgemisch aus Monomeren, Katalysator und gegebenenfalls inertem Lösungs- oder Suspensionsmittel, außer gegebenenfalls der Aktivatorkomponente B) bzw. d) , keine weitere Alkohol- oder Wassermenge zugesetzt wurde oder wird.
Geeignete inerte Lösungs- und Suspensionsmittel sind solche, die keine Hydroxylgruppe im Molekül enthalten, also Ether wie Diethylether, Tetrahydrofuran, aromatische Lösungsmittel wie Benzol, Toluol, Ethylbenzol, Chlorbenzol, aliphatische Kohlenwasserstoffe wie i -Butan oder chlorierte aliphatische Kohlen- Wasserstoffe wie Dichlormethan, 1, 1, 1-Trichlormethan oder Gemische der genannten Verbindungen.
Als gut geeignetes Polymerisationsverfahren hat sich die Vorlage des Katalysators im inerten Lösungsmittel, gegebenenfalls anschließende Zugabe der Aktivatorkomponente B) bzw. d) und die anschließende Zugabe der Monomeren und Polymerisation bei einer Temperatur im Bereich von 20 bis 100°C und einem Druck im Bereich von 1000 bis 10000 kPa herausgestellt. Unter den beschriebenen Polymerisationsbedingungen wird Spiroketalbildung nicht beobachtet.
Die erfindungsgemäßen Kohlenmonoxid-Copolymeren lassen sich mittels Spritzguß, Blasformen, Verspinnen, Rotationsformen, Extrusion oder Spincoating verarbeiten. Außerdem gelingt die Beschichtung metallischer, keramischer und anderer Oberflächen, z.B. solchen aus Kunststoffmaterialien. Die erfindungsgemäßen Kohlenmonoxid -Copolymeren eignen sich zur Herstellung von Fasern, Folien, Formkörpern und Beschichtungen, insbesondere solchen, die schlagzäh sein sollen. Weiterhin sind sie als Mischkomponente in Kunststoffen, insbesondere in solchen, 5 welche schlagzäh sein sollen, verwendbar. Zudem eröffnen insbesondere die beschriebenen Kohlenmonoxid/Propylen-Terpolymere einen kostengünstigen Zugang zu Formmassen mit thermoplastisch elastomerem Eigenschaftsprofil.
10 Beispiele
AI lgemeine Polymerisationsbedingungen
I. Binäre Kohlenmonoxid -Copolymere
15
In einem 0, 3 -1-Stahlautoklaven wurden 100 ml Dichlormethan und 35 mg (0,045 mmol) der Palladiumverbindung [Pd(dppp) (NCCH3)21 (BF4)2, sowie 0,25 ml (6,2 mmol) Methanol vorgelegt. Danach wurde bei 25°C ein Gemisch aus Olefin (20 g)
20 und Kohlenmonoxid (82,0xl05 Pa) 72 h polymerisiert .
Die Temperatur und die Partialdrücke der Monomeren wurden während der gesamten Reaktionsdauer konstant gehalten. Die Polymerisation wurde durch Druckverminderung auf Umgebungsdruck abgebrochen, das
25 Reaktionsgemisch mit Methanol versetzt, filtriert, vom Filtrat das Lösungsmittel entfernt und das Polymere isoliert. Zur weiteren Aufreinigung wurde das Produkt in Dichlormethan (100 ml) gelöst und über eine kurze Kieselgelsäule filtriert. Die Versuchsparameter und die Polymereigenschaften sind der Tabelle 1
30 zu entnehmen.
Kohlenmonoxid/Hep -1 -en-Copolvmer (Hp-CO) (Beispiel 1) iH-NMR (CDC13): 6 = 0,85 (t-, -CH3, 3H) ; 1,10-1,70 (breit, -(CH2)4, OH), 2,30-2,65 (breit, -CH, 1H) ; 2,70-3,20 (breit, -CH2, 2H) . 35 13C-NMR: δ = 13,8; 22,2-23,4; 26,1-26,5; 28,7-31,7; 43,0-44,5; 45,0-46,0; 207-209; 211-213; 214-215.
(C840)n (126,19)n: Calc. C, 76,14; H, 11,2. Gef . C, 76,93; H, 11,65.
40 Kohlenmonoxid/Oct-1-en-Copolymer (Oc-CO) (Beispiel 2 )
!H- MR (CDC13) : δ = 0,85 (t, -CH3, 3H) , 1,17-1,70 (breit, -(CH2)5, 10H) , 2,39-2,60 (breit, -CH, 1H) , 2,80-3,10 (breit, -CH2, 2H) . 13C-NMR: δ = 13,9, 22,4, 26,9, 29,2, 30,0-3,15, 42,0-43,6, 44,2-45,5, 207,1-208,4, 211,6-212,9, 213,5-214,8. (C960)n
45 (140,22)n: Calc. C, 77,09; H, 11,50. Gef. C, 77,40; H, 11,68. Kohlenmonoxid/Dodec- 1-en-CoPOlvmer (Dd-CO) (Beispiel 3) !H-NMR (CDC13) : δ = 0,80 (t, -CH3, 3H) , 1,20-2,00 (breit, - (CH2)ιo, 10H) , 2,20-2,60 (breit, -CH, 1H) , 2,80-3,10 (breit, -CH2, 2H) . 13C-NMR: δ = 14,0, 22,6, 26,3-27,9, 28,3-29,5, 31,8, 42,0-43,5, 44,0-45,5, 207,0-209,0, 211,5-212,5. 213-215.
(C13H2 0)n (196,33)n: Calc. C, 79,53; H, 12,32. Gef. C, 78,62; H, 12.60.
Kohlenmonoxid/Hexadec- 1 -en-Copolvmer (Hd-CO) (Beispiel 4) !H-NMR (CDCI3) : δ = 0,90 (breit, -CH3, 3H) , 1,10-2,00 (breit, - (CH2)13, 26H) , 2,15-2,60 (breit, -CH, 1H) , 2,81-3,22 (breit, -CH2, 2H) . 13C-NMR: δ = 12,0, 20,0, 22,7, 27,1-31,4, 42,0-44,0, 45,0-46,0, 207,0 (breit) , 212,0 (breit) , 215,8 (breit) (Cι7 H 320)n (252,44)n: Cal. C, 80,89; H, 12,78. Gef. C, 81,23; H, 13,39.
Kohlen onoxid/Octadec- 1 -en-Copolvmer (Od-CO) (Beispiel 5) iH-NMR (CDCI3) : δ = 0,85 (t, 3H, -CH3) , 1,22-1,80 (breit, (CH )ι5, 30H) , 2,20-2,60 (breit, -CH, 1H) , 2,80-3,20 (breit, -CH2, 2H) . i3C-NMR: δ = 14,1, 22,7, 27,1, 28,9-31,4, 31,9, 33,8, 41,2-42,5, 43,5-44,6, 207,0 (breit), 212,0 (breit) , 214,8 (breit) . (Cι9H360)n (280,49)n: Calc. C, 81,36; H, 12,94. Gef. C, 81,75; H, 12,92.
Kohlenmonoxid/Eicos-l-en-Copolvmer (Ei-CO) (Beispiel 6)
XH-NMR (CDCI3) : δ = 0,85 (t, 3H, -CH3) , 1,22-1,80 (breit, (CH25, 30H) , 2,20-2,60 (breit, -CH, 1H) , 2,80-3,20 (breit, -CH2, 2H) . 13C-NMR: δ = 14,1, 22,7, 27,1 28,9-31,4, 31,9, 33,8, 42,0-43,6, 44,2-45,6, 207,5-208,5, 211,4, 213,0, 214,0-215,2. (C21H40O)n (308,55) n: Calc. C, 81,22; H, 13,63. Gef . C, 82,15; H, 13,65.
Copolvmeriπation vom 13CO mit Eicos-1-en:
Hergestellt nach dem gleichen Verfahren, wie vorhergehend be- schrieben, mit konstantem 13CO-Partialdruck und einer Reaktionszeit von 24 h. 13C-NMR (CDCI3) : Carbonyl -Bereich δ = 209,0-210,9, 211,7-212,6, 213,8-215,2 ppm. Mw = 6,9 x 103 g/mol, MW/MN = 1,44.
II. Ternäre Kohlenmonoxid-Copolymere
In einem 0, 3 -1 -Stahlautoklaven wurden 100 ml Dichlormethan, 0,25 ml Methanol und 35 mg (0,045 mmol) [Pd (dppp) (NCCH3) 2] (BF4)2 sowie 10 g an 1 -Octadecen oder 1-Eicosen vorgelegt. Es wurden 40 g Propylen bzw. Ethylen (10,5xl05 Pa) und Kohlenmonoxid (82,0xl05 Pa) eingespeist und unter mechanischem Rühren für 48 h bei 25°C polymerisiert . Die Temperatur und die Partialdrücke der Monomeren wurden während der gesamten Reaktionsdauer konstant gehalten. Die Polymerisation wurde durch Druckverminderung auf Umgebungsdruck und durch Versetzen mit einem Überschuß an Methanol abgebrochen. Das Reaktionsgemisch wurde filtriert, vom Filtrat das Lösungsmittel entfernt und das Polymere isoliert, mit Methanol (200 ml) gewaschen, filtriert und im Vakuum getrocknet. Die weiteren Versuchsparameter und die Polymereigenschaften sind der Tabelle 2 zu entnehmen.
Kohlenmonoxid/Pronylen/Octadec-1-en-Terpolvmer 1 (ODPCO 1) (Bei- spiel 7) iH-NMR (CDC13): δ = 0,80 (t, -CH3 (Od-CO) ) , 1,00 (breit, -CH3, (P-CO)), 1,12-1,99 (breit), 2,29-2,50 (breit), 2,89-3,15 (breit). l3C-NMR: δ = 14,1, 16,9, 22,4, 22,7, 28,9-29,9, 31,7, 33,7, 40,1 (breit), 44,5 (breit), 207,0 (breit), 211,8 (breit), 214,8 (breit).
Kohlenmonoxid/Propylen/Octadec-1-en-Terpolvmer 2 (ODPCO 2 ) (Beispiel 8)
!H-NMR (CDC13): δ = 0,77 (t, -CH3 (Od-CO)), 1,00 (breit, -CH3 (P-CO)), 1,10-2,0 (breit), 2,30-2,40 (breit), 2,80-3,15 (breit). 13C-NMR: δ = 13,9, 16,3, 22,4, 22,7, 28,9-29,9, 31,8, 33,7, 41,2 (breit), 44,6 (breit), 207,4 (breit), 211,9 (breit), 215,4 (breit) .
Kohlenmonoxid/Propylen/Eicos-1-en-Terpolvmer (EiPCO) (Beispiele 9 und 10) iH-NMR (CDC13): δ = 0,77 (-CH3), PCO) , 1,00 (breit, 3H, Od-CO-H3), 1,12-1,99 (breit), 2,29-2,50 (breit), 2,89-3,15 (breit).
Die Molekulargewichte Mw und die Molekulargewichtsverteilungen Mw/Mn wurden durch Gelpermeationschromatographie (GPC) , bezogen auf einen Polystyrolstandard, ermittelt.
XH-NMR und 13C-NMR-Messungen wurden mit den Spektrometern Bruker AMX 500 oder AC 200 durchgeführt.
IR-Messungen wurden an dem Spektrometer Bruker IFS66V durchgeführt.
Die DSC-Daten wurden bestimmt mit dem Gerät Perkin-Elmer DSC-7 bei einer Aufheizgeschwindigkeit von 10°C/min.
Die Schmelzpunkte wurden ebenfalls mit Hilfe eines Polarisationsmikroskops bestimmt. Die Aufheizgeschwindigkeit wurde auf 10°C/min eingestellt. Die Kontaktwinkelmessungen an auf Filmen aus Copolymermaterial aufgebrachten Wassertropfen (bidestilliert, YN = 72 mN/m) wurden nach der "sessile drop technique" mit einem Goniometer G 40 der Firma Krüss, Hamburg, das mit einem Videosystem, einem Bild- Prozessor (G 1041) und der Software PDA 10 ausgestattet war, durchgeführt .
Die Copolymerfilme wurden aus Lösung (1,0 w/w-%ig, CH2C12) durch Verdunsten des Lösungsmittels auf einer rotierenden Glasplatte ("spin-casting") bei 15 bis 25°C hergestellt (für Kohlenmonoxid Ethylen-Copolymere wurde eine 0,5 w/w-%ige Lösung in 1, 1, 1, 3 , 3 , 3 -Hexafluor-2 -propanol eingesetzt) . Lösungsmittelreste wurden durch einstündiges Evakuieren entfernt. Zur Kontaktwinkel - messung wurde die Tangentenmethode bei einer Temperatur von 20°C eingesetzt (vgl. R.J. Good, R.R. Shomberg, "Surface and Colloid Science", Vol. 11, Experimental Methods, Plenum Press, New York, 1979). Der Kontaktwinkel wurde an einem Tropfen mit einer Meßfrequenz von 1 Hz über 5 sec bestimmt. Die beschriebenen Werte stellen Mittelwerte aus 15 Einzelmessungen an insgesamt drei Tropfen dar. Die Meßgenauigkeit lag im Bereich von ± 2,0°.
Tabelle 1: Copolymerisation von Kohlenmonoxid mit 1-Alkenen a)
Figure imgf000021_0001
a) Polymerisationsbedingungen: Lösungsmittel: Dichlormethan (100 ml); Aktivator (Methanol) /Pd-Mol -
SO Verhältnis: 140/1; Polymerisationstemperatur: 25°C; Kohlenmonoxidpartialdruck: 82,0xl05Pa; 1-Alken: 20 g; Reaktionszeit: 72 h. b) bestimmt mittels GPC (mit Polystyrol als Referenzstandard) . c) bestätigt durch weitere Analysensysteme (Differentialrefraktometer, Water Modell 510; Differentialviskosimeter, Viscothek Modell H 502, GPL Win-Sof tware) : Od-CO: Mw (Mw/Mn) = 6,9xl04 (1,88); Ei-CO: Mw (Mw/Mn) = 5,7xl04 (1,97). ) Glasübergangstemperatur (Tg) , Schmelzpunkt (Tm) , Schmelzenthalpie (ΔHt) (bestimmt aus dem zweiten Lauf mit Hilfe der Tangentenmethode) . nicht bestimmt, ermittelt durch Polarisationsmikroskopie (Bsp. 1: Aufheizgeschwindigkeit 30oc/min) .
Tabelle 2 : Terpolymerisationsbeispiele a)
Figure imgf000022_0001
a) Polymerisationsbedingungen: Lösungsmittel: Dichlormethan (100 ml); Aktivator (Methanol) /Pd-Mol -
Verhältnis: 140/1; Polymerisationstemperatur: 25°C; Kohlenmonoxidpartialdruck: 82,0xl05Pa;
1 -Alken: 40 g; Ethylenpartialdruck 10,5xl05pa; Reaktionszeit: 48 h. t o b) bestimmt mittels GPC (mit Polystyrol als Referenzstandard) . c) Das Polymer ist nicht löslich. d) Glasübergangstemperatur (Tg) , Schmelzpunkt (Tm) , Schmelzenthalpie (ΔHf) (bestimmt aus dem zweiten
Lauf mit Hilfe der Tangentenmethode) . e) nicht bestimmt. f) berechnet auf der Grundlage von !H-NMR Spektren.

Claims

Patentansprüche
Lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid und mindestens einem olefinischen C7- bis C2o -Monomeren, die ein mittleres Molekulargewicht Mw größer als 15000 g/mol und einen Tg-Wert kleiner als -20°C aufweisen.
Lineare, thermoplastische, elastomere Copolymere aus Kohlenmonoxid, mindestens einem olefinischen C - bis C4 -Monomeren und mindestens einem olefinischen C6 - bis C o -Monomeren, die ein mittleres Molekulargewicht Mw größer als 40000 g/mol und einen Tg-Wert kleiner als 20°C aufweisen.
3. Verfahren zur Herstellung von Copolymeren gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Copolymerisation von Kohlenmonoxid mit olefinischen Monomeren in einem praktisch alkohol- oder wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators durch- geführt wird, dessen aktive Masse gebildet wird aus
A) einem Metallkomplex der allgemeinen Formel (I)
Figure imgf000023_0001
in der die Substituenten und Indizes folgende Bedeutung haben:
M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
Z eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
Ri bis R4 Substituenten, ausgewählt aus der Gruppe bestehend aus Ci- bis C20-kohlenstofforganischen und C3- bis C3o-siliciumorganischen Resten, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente enthalten können,
L1, L2 formal ungeladene Lewis -Basenliganden
X ein- oder zweiwertige Anionen
m, n 1 oder 2
wobei m x n = 2
B) einer Aktivatorkomponente, welche eine Hydroxylgruppe im Molekül enthält, die, bezogen auf M in (I) , in einer Menge von 0 bis 500 Moläquivalenten eingesetzt wird.
4. Verfahren zur Herstellung von Copolymeren gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Copolymerisation von Kohlenmonoxid mit olefinischen Monomeren in einem praktisch alkohol- oder wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators durchgeführt wird, dessen aktive Masse gebildet wird aus
a) einem Salz eines Metalls M der Gruppe VIIIB des Periodensystems der Elemente,
b) einer Verbindung oder mehreren Verbindungen ausgewählt aus der Gruppe der Protonensäuren und Lewissäuren,
c) einer Chelatverbindung der allgemeinen Formel (II)
RlR2Ex-Z-E2R3R4 (II),
in der die Substituenten und Indizes folgende Bedeutung haben:
Ei, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
Z eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
Ri bis R4 Substituenten ausgewählt aus der Gruppe der
Ci- bis C20-kohlenstofforganischen und C3- bis C3o-siliciumorganischen Reste, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente enthalten können,
d) einer Aktivatorkomponente B) , welche eine Hydroxylgruppe im Molekül enthält, die, bezogen auf M in (I) , in einer Menge von 0 bis 500 Moläquivalenten eingesetzt wird.
5. Verwendung der linearen, thermoplastischen, elastomeren Copolymeren gemäß den Ansprüchen 1 und 2 zur Herstellung von Fasern, Folien, Formkörpern und Beschichtungen.
6. Fasern, Folien, Formkörper und Beschichtungen aus den linearen, thermoplastischen, elastomeren Copolymeren gemäß den Ansprüchen 1 und 2.
PCT/EP1997/006432 1996-11-28 1997-11-18 Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere WO1998023665A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97951229A EP0941270A1 (de) 1996-11-28 1997-11-18 Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere
US09/297,919 US6251518B1 (en) 1996-11-28 1997-11-18 Thermoplastic elastomer carbon monoxide/olefin copolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19649072A DE19649072A1 (de) 1996-11-28 1996-11-28 Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
DE19649072.3 1996-11-28

Publications (1)

Publication Number Publication Date
WO1998023665A1 true WO1998023665A1 (de) 1998-06-04

Family

ID=7812890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006432 WO1998023665A1 (de) 1996-11-28 1997-11-18 Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere

Country Status (4)

Country Link
US (1) US6251518B1 (de)
EP (1) EP0941270A1 (de)
DE (1) DE19649072A1 (de)
WO (1) WO1998023665A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003803A1 (en) * 1998-07-17 2000-01-27 Bp Chemicals Limited Catalyst composition
WO2000006299A1 (en) * 1998-07-29 2000-02-10 Bp Chemicals Limited Catalyst composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714031A1 (de) * 1997-04-04 1998-10-08 Basf Ag Lineare alternierende funktionalisierte alpha-Olefin/CO-Copolymere und deren Verwendung für die Herstellung von ionenselektiven Membranen
WO2000069867A1 (en) * 1999-05-13 2000-11-23 E.I. Du Pont De Nemours And Company Manufacture of olefin/carbon monoxide polymers
EP2778188A1 (de) * 2013-03-12 2014-09-17 Bayer MaterialScience AG Verfahren zur Herstellung von Olefin-CO-Terpolymeren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468594A1 (de) * 1990-07-25 1992-01-29 Shell Internationale Researchmaatschappij B.V. Kohlenwasserstoffölzusammensetzungen
EP0516238A1 (de) * 1991-05-31 1992-12-02 Shell Internationale Researchmaatschappij B.V. Katalysatorzusammensetzungen und Verfahren zur Herstellung von Polymeren aus Kohlenmonoxyd und olefinisch ungesättigten Verbindungen
WO1994011416A1 (en) * 1992-11-17 1994-05-26 Shell Internationale Research Maatschappij B.V. Preparation of copolymers of carbon monoxide and olefinically unsaturated compounds
GB2289895A (en) * 1994-05-31 1995-12-06 Shell Int Research Preparation of copolymers of carbon monoxide and an alpha-olefin having more than 10 carbon atoms
WO1996001690A1 (en) * 1994-07-12 1996-01-25 The Dow Chemical Company Catalyst for the preparation of linear carbon monoxide/alpha-olefin copolymers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352767A (en) 1992-01-08 1994-10-04 University Of Massachusetts - Amherst Alpha-olefin/carbon monoxide attenuating copolymers and improved catalyst and method for copolymerizing the same
DE19610358A1 (de) 1996-03-15 1997-09-18 Basf Ag Thermoplastische elastomere Kohlenmonoxid/Olefin-Copolymere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468594A1 (de) * 1990-07-25 1992-01-29 Shell Internationale Researchmaatschappij B.V. Kohlenwasserstoffölzusammensetzungen
EP0516238A1 (de) * 1991-05-31 1992-12-02 Shell Internationale Researchmaatschappij B.V. Katalysatorzusammensetzungen und Verfahren zur Herstellung von Polymeren aus Kohlenmonoxyd und olefinisch ungesättigten Verbindungen
WO1994011416A1 (en) * 1992-11-17 1994-05-26 Shell Internationale Research Maatschappij B.V. Preparation of copolymers of carbon monoxide and olefinically unsaturated compounds
GB2289895A (en) * 1994-05-31 1995-12-06 Shell Int Research Preparation of copolymers of carbon monoxide and an alpha-olefin having more than 10 carbon atoms
WO1996001690A1 (en) * 1994-07-12 1996-01-25 The Dow Chemical Company Catalyst for the preparation of linear carbon monoxide/alpha-olefin copolymers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. S. ABU-SURRAH ET AL.: "CONTROL OF MOLECULAR WEIGHT IN ALPHA-OLEFIN-CARBON MONOXIDE ALTERNATING COPOLYMERIZATION. A WAY TO HIGH MOLECULAR WEIGHT PROPENE-CARBON MONOXIDE THERMOPLASTIC ELASTOMERS", MACROMOLECULES, vol. 29, no. 13, 17 June 1996 (1996-06-17), pages 4806 - 4807, XP000589989 *
A. S. ABU-SURRAH ET AL.: "POLYKETONE MATERIALS: CONTROL OF GLASS TRANSITION TEMPERATURE AND SURFACE POLARITY BY CO- AND TERPOLYMERIZATION OF CARBON MONOXIDE WITH HIGHER 1-OLEFINS", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 198, no. 4, April 1997 (1997-04-01), pages 1197 - 1208, XP000677496 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003803A1 (en) * 1998-07-17 2000-01-27 Bp Chemicals Limited Catalyst composition
WO2000006299A1 (en) * 1998-07-29 2000-02-10 Bp Chemicals Limited Catalyst composition

Also Published As

Publication number Publication date
US6251518B1 (en) 2001-06-26
EP0941270A1 (de) 1999-09-15
DE19649072A1 (de) 1998-06-04

Similar Documents

Publication Publication Date Title
DD250713A5 (de) Neue katalysator-zusammensetzung und verfahren zur polymerisation von ethen und kohlenmonoxid
EP0827516B1 (de) Verfahren zur herstellung von polymeren aus olefinisch ungesättigten monomeren
EP0991696A1 (de) Funktionalisierte kohlenmonoxidcopolymere
EP0827515B1 (de) Verfahren zur herstellung von polymeren aus olefinisch ungesättigten monomeren
DE2149584B2 (de) Verfahren zur Herstellung von Polyanhydriden mit niedrigem Molekulargewicht
EP0941270A1 (de) Thermoplastische, elastomere kohlenmonoxid/olefin-copolymere
EP0886662B1 (de) Thermoplastische elastomere kohlenmonoxid/olefin-copolymere
DE2348923C3 (de) Verfahren zur Herstellung von Blockcopolymeren
EP0971971A1 (de) LINEARE ALTERNIERENDE FUNKTIONALISIERTE $g(a)-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN
EP1071689B1 (de) Cis-verbrückte metallkomplexe und diese enthaltende katalysatorsysteme
DE2320652C2 (de) Verfahren zur Polymerisation von Oxiranderivaten
EP0973813A1 (de) Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten
DE19518737A1 (de) Kohlenmonoxid/Olefin-Copolymere
DE875721C (de) Verfahren zur Nachbehandlung von hochmolekularen Natur- und Kunststoffen
EP0710260B1 (de) Verfahren zur herstellung von polyketonen
EP0944666A1 (de) Katalysatorsysteme für die herstellung von copolymerisaten aus kohlenmonoxid und olefinisch ungesättigten verbindungen
DE1645490A1 (de) Verfahren zur Herstellung linearer Mischpolymerer
DE19846053A1 (de) Verfahren zur Herstellung von linearen, alternierenden Kohlenmonoxidcopolymeren
WO1999060056A1 (de) Flammgeschützte, schmelzestabile kohlenmonoxidcopolymerisate
DE2361055B2 (de) Verfahren zur herstellung von wasserhellen kohlenwasserstoffharzen
DE1544722A1 (de) Verfahren zur Herstellung von vulkanisierfaehigen Kutschuk-Mischungen mit verbesserter Verarbeitbarkeit
WO1999058607A1 (de) POLYMERMISCHUNGEN, ENTHALTEND KOHLENMONOXID/α-OLEFIN-COPOLYMERE UND COPOLYMERE AUS VINYLAROMATISCHEN VERBINDUNGEN UND VINYLCYANIDEN
DE2046091A1 (de) Antistatisch ausgerüstete Acrylnitrilpolymerisate
MXPA98007077A (en) Copolymers of carbon monoxide / elastomeric olefin, termoplasti
EP0827520A1 (de) Einatomig verbrückte chelat-metallkomplexe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997951229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09297919

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997951229

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997951229

Country of ref document: EP