WO1998015404A1 - Kunststoff-formteil und konstruktionsstruktur - Google Patents

Kunststoff-formteil und konstruktionsstruktur Download PDF

Info

Publication number
WO1998015404A1
WO1998015404A1 PCT/CH1997/000379 CH9700379W WO9815404A1 WO 1998015404 A1 WO1998015404 A1 WO 1998015404A1 CH 9700379 W CH9700379 W CH 9700379W WO 9815404 A1 WO9815404 A1 WO 9815404A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural elements
polymer
polymer mass
supporting structure
elements
Prior art date
Application number
PCT/CH1997/000379
Other languages
English (en)
French (fr)
Inventor
Ivan Tomka
Original Assignee
Rcc Regional Compact Car Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4233972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998015404(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rcc Regional Compact Car Ag filed Critical Rcc Regional Compact Car Ag
Priority to US09/269,496 priority Critical patent/US6299246B1/en
Priority to AT97941779T priority patent/ATE273118T1/de
Priority to DE59711849T priority patent/DE59711849D1/de
Priority to EP97941779A priority patent/EP0944472B1/de
Priority to JP10517044A priority patent/JP2001501714A/ja
Publication of WO1998015404A1 publication Critical patent/WO1998015404A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/041Understructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5224Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces
    • B29C66/52241Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces with two right angles, e.g. for making T-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5225Joining tubular articles for forming cross-shaped connections, e.g. for making X-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • B29C66/5244Joining profiled elements for forming fork-shaped connections, e.g. for making window frames or Y-shaped pieces
    • B29C66/52441Joining profiled elements for forming fork-shaped connections, e.g. for making window frames or Y-shaped pieces with two right angles, e.g. for making T-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • B29C66/5245Joining profiled elements for forming cross-shaped connections, e.g. for making window frames or X-shaped pieces
    • B29C66/52451Joining profiled elements for forming cross-shaped connections, e.g. for making window frames or X-shaped pieces with four right angles, e.g. for making +-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/526Joining bars
    • B29C66/5265Joining bars for forming cross-shaped connections, e.g. for making X-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • B29C70/742Forming a hollow body around the preformed part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D23/00Combined superstructure and frame, i.e. monocoque constructions
    • B62D23/005Combined superstructure and frame, i.e. monocoque constructions with integrated chassis in the whole shell, e.g. meshwork, tubes, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/526Joining bars
    • B29C66/5268Joining bars characterised by their solid cross sections being non-circular, e.g. being elliptical, square or rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2012/00Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans

Definitions

  • the present invention relates to a molded plastic part and structural structure ge ass preamble of claim 1, such as a container, a housing, a gas or liquid tank, a pipeline, a vehicle cell, a cabin, a body or the like, and a method for producing a such molded plastic part and structural structure for the production of car bodies, transport containers, cable car cabins, fuel tanks and the like, ie So of molded parts that simultaneously form a load-bearing construction structure.
  • So-called winding processes are used, for example, for containers, plastic tanks for fuels, pipelines, vehicle cells etc., where, for example, so-called rovings, threads made of glass or plastic fibers, fabric tapes, etc., are wrapped around a core in a mold and cured there.
  • the shaping is only possible to a very limited extent, and on the other hand, the shaped bodies produced in this way are hardly reworkable. Nor do they have a smooth surface, and around one To achieve sufficient strength, relatively large wall thicknesses must be selected.
  • endless reinforcing fibers, textile fiber structures such as fiber mats, sheets and semi-finished fiber products and the like are loosely inserted into large injection molds, but this means that only a very limited load-bearing function can be achieved.
  • mats or plates produced using fiber-reinforced thermosets are brought into the required shape by means of deep-drawing processes, whereupon the final curing takes place, for example, in a press mold or by post-annealing.
  • this allows only a very limited shape and only limited support functions.
  • These parts also do not have an acceptable surface finish and, in addition, the reaction time during curing is usually too long.
  • the object is achieved by means of a plastic molded part and construction structure according to claim 1 and a method according to claim 16.
  • the plastic molded part and structural structure is formed from simple individual high-strength fiber-reinforced structural elements which are assembled to form a supporting structure and are connected to one another and which is at least partially encased in this supporting structure by a polymer composition forming the molded part.
  • Structural elements and construction structures of any shape are produced in a simple manner from relatively inexpensive yard goods, and the desired shape and surface are produced in a simple manner by casting or injection molding the polymer mass. In addition, short cycle times can be achieved.
  • any surface shapes and load-bearing functions of the integrated load-bearing structure can be created.
  • Completely encapsulating or encapsulating the load-bearing structure with the polymer mass results in a completely protected, smooth surface. For example, for large space lattice structures, only partial areas, especially at connection points of the structural elements, can be encapsulated by the polymer mass.
  • Continuous fiber reinforcements made of glass fibers, carbon, polypropylene, polyethylene, aramid or other high-strength polymer fibers are particularly suitable as reinforcing fibers for these structural elements forming the supporting structure.
  • a matrix for the reinforcement fibers are preferably suitable thermoplastics such as polyamide (PA), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), polyimide (PI), polyacrylates, polyphenylene sulfide (PPS), polyether ether ketone (PEEK).
  • PA polyamide
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • PES polyacrylates
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • thermoset materials such as, for example, polyurethane (PUR), unsaturated polyester resins, epoxy resins, phenolic resins, aminoplasts or, if appropriate, novolac resins, are also at least partially suitable.
  • PUR polyurethane
  • unsaturated polyester resins epoxy resins
  • phenolic resins phenolic resins
  • aminoplasts aminoplasts
  • novolac resins are also at least partially suitable.
  • These structural elements forming the load-bearing structure can be, for example, longitudinally oriented structures such as rods, pipes, longitudinal profiles such as T-profiles, links and flat structures such as plates, mats, honeycombs, grids and the like.
  • These structural elements can generally be produced by means of manufacturing methods customary in plastics technology, preferably by means of pultrusion, extrusion, continuous casting, extrusion or calendering. These structural elements are preferably produced by cutting, reworking and assembling "endless" material.
  • the individual structural elements are connected to one another by plugging, screwing, gluing, welding and the like, it being possible for corresponding coupling or connecting elements to be arranged in the connection area.
  • the individual structural elements can be built up in multiple layers, with at least one high-strength core and an outermost layer, which is preferably compatible with the polymer material immediately surrounding the element or which outermost layer adheres well to the polymer material directly surrounding the element or combines well with it or can mix.
  • Quality Adhesion between structural elements and thermoplastic polymer mass is achieved by compatible polymer materials that diffuse into each other and thereby bond microscopically, or by chemical bonds.
  • the outermost layer of the individual structural elements or their surface is at least almost identical to the polymer material directly surrounding the element.
  • Polymer blends can also be used.
  • the polymer mass forming the molded part or the structural structure comprises at least partially a thermoplastic polymer such as polyamide (PA), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), polyimide (PI), polyacrylates, polyphenylene sulfide ( PPS), polyether ether ketone (PEEK).
  • a thermoplastic polymer such as polyamide (PA), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC), polyimide (PI), polyacrylates, polyphenylene sulfide ( PPS), polyether ether ketone (PEEK).
  • PA polyamide
  • PP polypropylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • PPS polyacrylates
  • PPS polyphenylene
  • the decreasing stiffness and strength from the structural element to the outer surface of the polymer mass is then important in order to guarantee the highest possible energy absorption in the event of damage or deformation of the molded part and the structural structure.
  • Fig. 1 stress / strain diagrams of various materials used
  • FIG. 4 shows a container with a box-shaped supporting structure
  • Figure 5 shows a cylindrical supporting structure, e.g. as a round pool
  • the curve K 1 shows a stress / strain diagram, on the basis of which the above facts are to be explained.
  • the curve K 1 shows the stress / strain behavior S (D) of a high-strength and highly rigid material, a structural element, such as, for example, a matrix material reinforced with continuous fibers, for example an epoxy resin reinforced with 50% carbon fibers.
  • Curve K2 shows a thermoplastic material reinforced with short fibers.
  • Curve K3 shows the S (D) behavior of the unreinforced thermoplastic material and curve K4 shows the stress / elongation behavior of a so-called structural foam, such as a polycarbonate foam.
  • the energy absorption of the individual materials until breakage is represented by the shaded area below the curve. It is therefore important that the area under the individual curves is as large as possible, which is the case if the stress / strain ratio is graduated as far as possible from the core of the individual structural elements (e.g. curve K1) to the outer surface of the molded part (e.g. curve K3, K4 ) is selected. In other words, it is advantageous if the stiffness of the selected materials decreases from the core of the individual structural elements towards the surface of the molded part.
  • the individual materials selected are compatible with one another so that there is no detachment or breakage at the interfaces when absorbing energy.
  • the manufacture of the individual structural elements is initially assumed. For example, pultrusion or endless extrusion of tubes, rods, profiles and the like is assumed, which endless materials are then divided into the desired length.
  • Thermoplastic continuous fiber-reinforced structural elements are manufactured, for example, by pultrusion.
  • continuous fiber-reinforced thermoset materials are extruded, which are either by corresponding additives harden quickly or which are hardened by post-treatment such as post-annealing, UV treatment and the like. It is also possible to produce these continuous materials by coextrusion, in that, as described above, the structural elements have a multi-layer structure.
  • the inner core can consist, for example, of the fiber-reinforced thermoset material, while the outermost layer is at least partially made of a thermoplastic material, such as polypropylene, polycarbonate and the like. It is of course important that the individual layers of material adhere well to one another or are compatible.
  • Good adhesion can be achieved on the one hand by adhesion to the boundary layer or interface or by diffusion of the molecules into one another on both sides of the boundary layer.
  • the latter can be achieved, for example, by the fact that thermosets on the surface are not yet fully cured or by thermoplastic materials that can be melted on the surface.
  • good adhesion is also achieved by a chemical reaction taking place at the boundary layer between the two polymers forming the boundary layer or between the molecules of the polymers.
  • an adhesion-promoting connecting layer (9 in FIG. 3c) between the two polymers.
  • these elements are put together to form the supporting structure.
  • This can be done, for example, by plugging together using connecting elements, which connecting elements can have plug-in parts, screw-in parts, snap-in parts and the like.
  • These connecting elements can either be rigid or can also be articulated, so that the load-bearing structure produced is either rigid or else over a certain one Flexibility.
  • the assembly is also possible directly by gluing, welding, screwing, etc. the individual structural elements together. In any case, it is important that at least some of the structural elements of the supporting structure are connected to one another.
  • the supporting structure After the supporting structure has been produced, it is placed in an injection mold or a casting mold, whereupon the preferably thermoplastic polymer material is injected or cast. It is now essential that the polymer melt to be injected or poured in is compatible with the outermost layer of the respective structural elements of the supporting structure or that the surface of the supporting structure connects well with the polymer melt. Since it is now possible to form the polymer mass for the formation of the molded part or the constructional structure again in multilayer, after the injected or cast-in polymer material has hardened, either the now encased supporting structure can be inserted into another injection mold or casting mold, or else The volume of the present injection mold or casting mold can be increased by providing slide elements in the walls. These are so-called multiple tools, which allow the injection or pouring in of several polymer materials to form a multi-layer molded part.
  • the polymer mass is at least partially foamed.
  • so-called structural foams made of polycarbonate, polyurethane or polyester such as PBT or Topas are suitable, which have excellent weight, strength and hardness ratios, i.e. which have a relatively high surface strength with low weight.
  • a scaffold or the supporting structure is manufactured from so-called yard goods or that the individual structural elements of this scaffold can be produced in a simple and inexpensive manner, whereupon the elements are assembled, for example, by means of robots.
  • the structural elements according to the invention are assembled in the simplest way to form the supporting structure as a scaffold, which scaffold, however, guarantees a substantially higher strength and dimensional stability of the final molded part.
  • the structural elements according to the present invention it is also possible according to the present invention to use flat structural elements such as mat or honeycomb structures, but it is essential that these mat or honeycomb structures are connected to one another and to other structural elements.
  • FIG. 2 shows a liquid tank 11 as an example of a plastic molded part and construction structure according to the invention, the walls being shown transparently so that the supporting structure 3 is visible.
  • This load-bearing structure 3 consists of a space frame 13 with diagonal bars 17 and longitudinal bars 19 and cross bars 21 as structural elements 5, which serve to strengthen or brace the individual walls.
  • the individual structural elements or rods are in the respective corners 23 of the liquid tank 11 connected, which can be done, for example, by means of a plug connection part 25 as connection element 7, as shown in FIG. 3a.
  • the longitudinal rods 17, 19 and 21 can be, for example, polyurethane resin rods reinforced with carbon fibers, which are surface-coated or surface-treated in order to ensure better adhesion of the polymer material surrounding the individual rods.
  • These structural elements 3 can also have other profile shapes, for example in the form of tubes.
  • the spaces 24 and 26 are then also filled as walls between the bars, for example by means of injection molding, by means of the polymer material 8 mentioned.
  • FIG. 3a shows as the connecting element 7 a plug connection part 25 with which e.g. the rods 17, 19, 21 of Fig. 2 are connected by inserting and gluing.
  • Fig. 3b shows in supervision a connection of two crossing longitudinal profiles, e.g. in the form of rectangular tubes as structural elements 5, which are glued to a plate as a flat connecting element 7 and the whole e.g. is surrounded and held together by a fiber-reinforced polymer mass 8 as a partial area molded part.
  • This molded part here forms a connection area 6.
  • 3c illustrates in cross section a connection of a square tubular profile as a longitudinally oriented structural element 5.1, which is glued or welded onto a plate as a flat structural element 5.2.
  • a wall area which, for example can consist of polymer mass 8 with foamed partial areas 8.0 or which can also contain further flat structural elements 5.2, such as grids or honeycombs.
  • the surrounding shape-forming polymer mass 8 also forms a reinforcing connection region 6.
  • the polymer mass can also consist of two or more layers, 8.1, 8.2.
  • a connection layer 9 is provided here for imparting a very strong connection between the structural elements and polymer mass on the structural elements 5.1 and 5.2, for example forming the outermost layer thereof.
  • the overmolded polymer mass consists, for example, of a stronger fiber-reinforced layer 8.1, onto which a further unreinforced polymer layer 8.2 is then sprayed.
  • the walls of a container can also be made, for example, with lath-shaped, i.e. flat structural elements can be supported as struts, as is shown, for example, in the box-shaped container of FIG. 4. It is essential here that the individual structural elements which form the supporting structure can be produced “endlessly”, for example by means of pultrusion or extrusion, from endless fiber-reinforced thermoplastic or thermoset material. In the event that particularly high-strength, stiff and very high module structural elements are required, a particularly high proportion of the continuous fiber reinforcement of e.g. 50 - 60 vol% can be used. It may also be advantageous to at least partially use so-called novolaks, which result in a higher crosslinking density than the commercially available duromers.
  • the continuous fiber reinforcements can be all of the fibers mentioned at the outset, these preferably being incorporated into the matrix polymer must be substructed so that its surface is easily wettable by the polymer enclosing these fibers.
  • this is an already well-known technique, since the reinforcement of thermoplastics and thermosets, for example with glass, carbon fibers, aramid fibers and the like, is well known in the prior art.
  • honeycomb structures in the intermediate spaces 24, 26 in addition to the strut elements. It is essential that these honeycomb structures are connected to the other structural elements 17, 19, 21 (in FIG. 2).
  • FIG. 5 A further example of such a supporting structure 3 is shown in FIG. 5 with curved, longitudinally oriented profiles or tubes as structural elements 5 and with connecting elements 7, 25, for example for the formation of a wall of a basin, a tube wall, a tube with a very large diameter, a pressure tank etc.
  • FIG. 6 in turn shows a cable car cabin 31, the load-bearing basic structure of which is formed from a supporting structure 3 defined according to the invention.
  • the strength of the floor and the roof structure to which a support arm 32 is attached are subject to increased requirements, which is why, for example, structural elements are arranged in the roof 33 as reinforcing elements 35, which are more solidly dimensioned than, for example, reinforcing elements in the side walls.
  • reinforcing elements 35 which are more solidly dimensioned than, for example, reinforcing elements in the side walls.
  • FIG. 7 shows, as a further example, a vehicle cell 41 of an automobile with a high-strength supporting structure.
  • This consists of strong, longitudinally oriented structural elements 5.1 connected to flat parts 5.2, partial areas of the supporting structure with the surrounding polymer mass 8 being able to form body parts.
  • a self-supporting plastic body can also be produced in this way.
  • FIGS. 2 to 7 are, of course, only examples which can be modified, modified or supplemented in any way.
  • the reinforcement elements or structural elements 5 shown for forming the load-bearing structures 3 according to the invention are only selected in order to explain the present invention in more detail. It is of course possible to use other reinforcing elements, such as T-profiles, U-profiles, L-angles, etc., instead of tubes or bars, side profiles, nets and slats, as shown in FIGS. 2 to 7 or laminates, mats, honeycombs and the like as flat structural elements.
  • a supporting structure is first of all is formed, which is then encased or enveloped at least in partial areas with the polymeric material forming the molded part and constructional structure.
  • Both the individual structural elements that form the load-bearing structure and the polymer mass that ultimately forms the molded part can have one or more layers or consist of several components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Sewage (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

Das Kunststoff-Formteil und Konstruktionsstruktur weist eine tragende Struktur (3) auf, welche teilweise oder ganz von einer das Formteil bildenden Polymermasse (8) umgeben ist. Die tragende Struktur (3) besteht dabei aus mehreren miteinander verbundenen hochfesten, endlosfaserverstärkten Strukturelementen (5). Damit können auf einfache und kostengünstige Art Gebilde verschiedenster Formgebung wie Behälter, Tanks, Fahrzeugzellen usw. hergestellt werden.

Description

Kunststoff-Foπnteil und Konstruktionsstruktur
Die vorliegende Erfindung betrifft ein Kunststoff-Formteil und Konstruktionsstruktur ge ass Oberbegriff von Anspruch 1, wie ein Behälter, ein Gehäuse, ein Gas- oder Flüssigkeitstank, eine Rohrleitung, eine Fahrzeugzelle, eine Kabine, eine Karosserie oder dergleichen, sowie ein Verfahren zur Herstellung eines derartigen Kunststoff- Formteils und Konstruktionsstruktur für die Herstellung von Autokarosserien, Transportbehältern, Seilbahnkabinen, Brennstofftanks und ähnlichem, d.h. also von Formteilen welche gleichzeitig eine lasttragende Konstruktionsstruktur bilden.
Die Herstellung von Gehäusen, Kabinen, Karosserien, grösseren Behältnissen, Brennstofftanks und dergleichen erfolgt in der Regel immer noch meist mit metallischen Werkstoffen, wie beispielsweise Metallblechen, Stahlkonstruktionen etc. Infolge des grossen Gewichtes, der Korrosionsanfälligkeit, den relativ teuren Herstellverfahren und des umständlichen Handlings wird aber mehr und mehr versucht, auf leichtere und einfacher verarbeitbare Werkstoffe, wie Kunststoffe bzw. generell Polymere, bzw. auf Kunststoffkonstruktionen, auszuweichen.
So werden beispielsweise für Behälter, Kunststofftanks für Brennstoffe, Rohrleitungen, Fahrzeugzellen etc. sogenannte Wickelverfahren verwendet, wo beispielsweise mit flüssigem Harz getränkte, sogenannte Rovings, Fäden aus Glas oder Kunststofffasern, Gewebebänder usw. um einen Kern in eine Form gewickelt und dort ausgehärtet werden. Einerseits ist die Formgebung nur sehr beschränkt möglich, und anderseits sind die so hergestellten Formkörper kaum nachbearbeitbar. Auch weisen sie keine glatte Oberfläche auf, und um eine ausreichende Festigkeit zu erzielen, müssen relativ grosse Wandstärken gewählt werden.
Gem ss einem weiteren bekannten Verfahren werden in grosse Spritzgussformen Endlosverstärkungsfasern, textile Fasergebilde wie Fasermatten, Platten und Faserhalbzeug und dergleichen lose eingelegt, womit jedoch nur eine sehr beschränkte tragende Funktion erreichbar ist. Oder aber es erfolgt eine Ganzkörper-Faserverstärkung durch Einarbeiten von Kurzfasern in den zu verarbeitenden thermoplastischen Kunststoff. Entweder sind diese Herstellverfahren sehr kompliziert und aufwendig, oder aber die lediglich kurzfaserverstärkten Kunststoffe ergeben bei weitem nicht die erforderliche Festigkeit der herzustellenden Konstruktionsstruktur.
Wieder gemass einer weiteren Variante werden mittels faserverstärkten Duromeren hergestellte Matten oder Platten mittels Tiefziehverfahren in die erforderliche Form gebracht, worauf die endgültige Aushärtung beispielsweise in einer Pressform oder durch Nachtempern erfolgt. Dies erlaubt jedoch nur eine sehr eingeschränkte Formgebung und nur beschränkte Tragfunktionen. Auch weisen diese Teile keinen akzeptablen Oberflächenfinish auf, und zudem ist in der Regel die Reaktionszeit beim Aushärten zu lange.
Es ist daher eine Aufgabe der vorliegenden Erfindung, die Nachteile der bekannten Methoden zu überwinden und ein Kunststoff-Formteil und Tragstruktur zu schaffen sowie ein Verfahren zu dessen Herstellung anzugeben, welche auf einfache und kostengünstige Art und Weise unter Verwendung von möglichst leichten Polymerwerkstoffen herstellbar ist und mit welchen ein weiter Bereich von Formgebungen und lasttragenden Funktionen erfüllbar ist. Erfindungsgemäss wird die gestellte Aufgabe mittels eines Kunststoff-Formteils und Konstruktionsstruktur nach Anspruch 1 und einem Verfahren nach Anspruch 16 gelöst.
Das Kunststoff-Formteil und Konstruktionsstruktur wird gebildet aus einfachen einzelnen hochfesten faserverstärkten Strukturelementen, welche zu einer tragenden Struktur zusammengesetzt und miteinander verbunden sind und welche eine mindestens in Teilen dieser tragenden Struktur von einer das Formteil bildenden Polymermasse umgössen ist. Damit werden auf einfache Art aus relativ kostengünstiger Meterware Strukturelemente und Konstruktionsstrukturen in beliebiger Form erzeugt und wobei die gewünschte Formgebung und Oberfläche auf einfache Art durch Giessen oder Spritzen der Polymermasse erzeugt wird. Zudem sind damit kurze Taktzeiten erreichbar. Im Prinzip können damit weitgehende beliebige Flächenformen und lasttragende Funktionen der integrierten tragenden Struktur erzeugt werden. Vollständiges Umgiessen bzw. Umspritzen der tragenden Struktur mit der Polymermasse ergibt eine vollständig geschützte, glatte Oberfläche. Beispielsweise für grosse Raumgitter-Strukturen können aber auch nur Teilbereiche, vor allem an Verbindungsstellen der Strukturelemente, von der Polymermasse umgössen sein.
Die abhängigen Patentansprüche betreffen vorteilhafte Weiterbildungen der Erfindung bezüglich Materialien, Materialkombinationen, Verbindungen und Aufbau von tragenden Strukturen und Formteilen mit besonders günstigen Eigenschaften.
Als Verstärkungsfasern für diese, die tragende Struktur bildenden Strukturelemente eignen sich insbesondere Endlosfaserverstärkungen aus Glasfasern, Kohlenstoff-, Polypropylen-, Polyethylen- , Aramid- oder anderen hochfesten Polymerfasern. Als Matrix für die Verstärkungs- fasern eignen sich vorzugsweise Thermoplaste wie Polyamid (PA), Polypropylen (PP), Polyethylentherephthalat (PET), Polybutylentherephthalat (PBT), Polycarbonat (PC), Polyimid (PI), Polyacrylate, Polyphenylensulfid (PPS), Polyetheretherketon (PEEK) .
Daneben eignen sich aber mindestens teilweise auch Duromermaterialien, wie beispielsweise Polyurethan (PUR), ungesättigte Polyesterharze, Epoxidharze, Phenolharze, Aminoplaste oder aber gegebenenfalls Novolackharze.
Bei diesen, die tragende Struktur bildenden Strukturelementen kann es sich beispielsweise um längsorientierte Gebilde wie Stangen, Rohre, Längsprofile, wie T-Profile, L- inkel und um flächige Gebilde wie Platten, Matten, Waben, Gitter und dergleichen handeln. Diese Strukturelemente können generell mittels in der Kunststofftechnik üblichen Herstellmethoden produziert werden, vorzugsweise mittels Pultrusion, Extrusion, Stranggiessen, Strangpressen oder Kalandrieren. Bevorzugt werden diese Strukturelemente durch Zuschneiden, Nachbearbeiten und Konfektionieren von "endlos" -Material hergestellt.
Zur Herstellung der tragenden Struktur werden die einzelnen Strukturelemente durch Stecken, Schrauben, Kleben, Schweissen und dergleichen miteinander verbunden, wobei jeweils im Verbindungsbereich entsprechende Kupplungs- oder Verbindungselemente angeordnet werden können .
Die einzelnen Strukturelernente können mehrschichtig aufgebaut werden, mit mindestens einem hochfesten Kern und einer äussersten Schicht, welche vorzugsweise kompatibel ist mit dem das Element unmittelbar umgebenden Polymermaterial bzw. welche äusserste Schicht auf dem das Element unmittelbar umgebenden Polymermaterial gut haftet bzw. sich mit diesem gut verbinden oder vermischen lässt. Gute Haftung zwischen Strukturelementen und thermoplastischer Polymermasse wird erreicht durch kompatible Polymermaterialien, welche ineinander diffundieren und sich dadurch mikroskopisch verbinden, oder durch chemische Bindungen.
Ge ss einer bevorzugten Ausführungsvariante ist die äusserste Schicht der einzelnen Strukturelemente bzw. deren Oberfläche wenigstens nahezu identisch mit dem unmittelbar das Element umgebenden Polymermaterial. Dabei sind auch Polymerblends einsetzbar.
Die das Formteil oder die Konstruktionsstruktur bildende Polymermasse umfasst mindestens teilweise ein thermoplastisches Polymer, wie Polyamid (PA), Polypropylen (PP) , Polyethylentherephthalat (PET) , Polybutylentherephthalat (PBT), Polycarbonat (PC), Polyimid (PI), Polyacrylate, Polyphenylensulfid (PPS) , Polyetheretherketon (PEEK). Im Prinzip werden möglichst gleiche Polymere wie für die thermoplastische Matrix oder die Beschichtung der Strukturelemente eingesetzt. Dabei kann die Polymermasse mehrschichtig ausgebildet sein mit vom Element zur Oberfläche des Formteils oder der Konstruktionsstruktur hin abnehmender Steifigkeit und Festigkeit. Dabei ist es auch möglich, dass die Polymermasse wenigstens bereichsweise geschäumt oder eingefärbt ist.
Die abnehmende Steifigkeit und Festigkeit vom Strukturelement zur äusseren Oberfläche der Polymermasse ist dann wichtig, um bei auftretenden Beschädigungen bzw. auftretender Deformation von Formteil und Konstruktionsstruktur eine möglichst hohe Energieaufnahme zu garantieren. Insbesondere bei der Herstellung von Fahrzeugzellen, Automobilkarosserien, Kabinen und dergleichen, ist es wichtig, dass die, die Karosserie bildenden Formteile und Konstruktionsstruktur bei sogenannten "crash" -Tests eine möglichst grosse Energie- aufnähme ergibt, um beispielsweise einer in einem Automobil oder einer Kabine befindlichen Person grösst- möglichen Schutz bieten zu können.
Die Erfindung wird nun anschliessend anhand von Aus- führungsbeispielen unter Bezug auf die beigefügten Figuren näher erläutert .
Dabei zeigen:
Fig. 1 Spannungs/Dehnungsdiagramme von verschiedenen eingesetzten Materialien;
Fig. 2, 2a einen Flüssigkeitstank als Beispiel eines erfindungsgemässen Kunststoff-Formteils und Konstruktionsstruktur;
Fig. 3a-c Beispiele von Verbindungen, Verbindungselementen und -bereichen der tragenden Struktur;
Fig. 4 einen Behälter mit kisten örmiger tragender Struktur;
Fig. 5 eine zylinderförmige tragende Struktur, z.B. als Rundbecken;
Fig. 6 eine Seilbahnkabine;
Fig. 7 eine Fahrzeugzelle mit
Karosserieteilbereichen.
In Fig. 1 ist ein Spannungs/Dehnungsdiagramm dargestellt, anhand welchem obiger Sachverhalt dargelegt werden soll. Die Kurve Kl zeigt das Spannungs/Dehnungsverhalten S(D) eines hochfesten und hochsteifen Materials, eines Strukturelements, wie beispielsweise eines mit Endlosfasern verstärkten Matrix-Materials, beispielsweise ein mit 50% Kohlenstofffasern verstärktes Epoxidharz. Kurve K2 zeigt ein mittels Kurzfasern verstärktes Thermoplastmaterial. Die Kurve K3 zeigt das S (D) Verhalten des unverstärkten Thermoplastmaterials und die Kurve K4 das Spannungs/Dehnungsverhalten eines sogenannten Strukturschaumes, wie beispielsweise eines Polycarbonatschaumes .
Die Energieaufnahme der einzelnen Materialien bis zum Bruch wird durch die unter der Kurve liegende, schraffiert dargestellte Fläche repräsentiert. Es ist also wichtig, dass die Fläche unter den einzelnen Kurven möglichst gross ist, was sich dann ergibt, wenn ein möglichst abgestuftes Spannungs/Dehnungsverhältnis vom Kern der einzelnen Strukturelemente (z.B. Kurve Kl) bis zur äusseren Oberfläche des Formteils (z.B. Kurve K3 , K4) gewählt wird. Mit anderen Worten ist es vorteilhaft, wenn die Steifigkeit der gewählten Materialien vom Kern der einzelnen Ξtruktur- elemente gegen die Oberfläche des Formteils hin abnimmt. Allerdings ist es natürlich auch wichtig, dass die einzelnen gewählten Materialien miteinander kompatibel sind, damit an den Grenzflächen bei der Energieaufnahme keine Ablösung stattfindet bzw. kein Bruch auftritt.
Für die Herstellung der Formteile und Konstruktionsstrukturen wird zunächst von der Herstellung der einzelnen Strukturelemente ausgegangen. Dabei wird beispielsweise von Pultrusion oder Endlosextrusion von Rohren, Stäben, Profilen und dergleichen ausgegangen, welche Endlosmaterialien anschliessend in die gewünschte Länge unterteilt werden. Thermoplastische endlosfaserverstärkte Strukturelemente werden z.B. durch Pultrusion hergestellt. Bei Extrusion werden beispielsweise endlosfaserverstärkte duromere Materialien extrudiert, welche entweder durch entsprechende Zusätze rasch aushärten oder welche durch Nachbehandeln, wie Nachtempern, UV-Behandlung und dergleichen, gehärtet werden. Es ist auch möglich, diese Endlosmaterialien durch Koextrusion herzustellen, indem, wie vorab beschrieben, die Strukturelemente mehrschichtig ausgebildet sind. Der innere Kern kann beispielsweise aus dem faserverstärkten duromeren Material bestehen, währenddem die äusserste Schicht mindestens teilweise aus einem thermoplastischen Material gefertigt ist, wie beispielsweise aus Polypropylen, Polycarbonat und dergleichen. Wichtig ist natürlich, dass die einzelnen Material- schichten untereinander gut haften bzw. kompatibel sind.
Gute Haftung kann einerseits erreicht werden durch Adhäsion an der Grenzschicht bzw. Grenzfläche oder durch Diffusion der Moleküle in den beiden Hälften beidseits der Grenzschicht ineinander. Letzteres kann beispielsweise erreicht werden, indem Duromere an der Oberfläche noch nicht vollständig ausgehärtet sind oder indem anschmelzbare Thermoplaste an der Oberfläche angeordnet werden. Gute Haftung wird aber auch erzielt, indem an der Grenzschicht eine chemische Reaktion zwischen den beiden die Grenzschicht bildenden Polymeren erfolgt bzw. zwischen den Molekülen der Polymere. Schlussendlich möglich ist es auch, zwischen den beiden Polymeren eine haftvermittelnde Verbindungsschicht (9 in Fig. 3c) anzuordnen.
Nach Herstellen der einzelnen Strukturelemente, wie beispielsweise Stäbe, Platten, Rohre, T-Profile usw. , werden diese Elemente zur tragenden Struktur zusammengesetzt. Dies kann beispielsweise durch Zusammenstecken mittels Verbindungselementen geschehen, welche Verbindungselemente Steckpartien, Schraubpartien, Einrastpartien und dergleichen aufweisen können. Diese Verbindungselemente können entweder starr sein oder aber auch gelenkig ausgebildet sein, so dass die erzeugte tragende Struktur entweder steif ist oder aber über eine gewisse Gelenkigkeit verfügen kann. Das Zusammenfügen ist aber auch direkt möglich, indem die einzelnen Strukturelemente miteinander verklebt, verschweisst , verschraubt usw. werden. Wichtig ist in jedem Fall, dass mindestens ein Teil der Strukturelemente der tragenden Struktur miteinander verbunden ist.
Nach dem Herstellen der tragenden Struktur wird diese in eine Spritzgussform bzw. eine Giessform eingelegt, worauf das vorzugsweise thermoplastische Polymermaterial eingespritzt bzw. eingegossen wird. Dabei ist es nun wesentlich, dass die einzuspritzende bzw. einzugiessende Polymerschmelze kompatibel ist mit der äussersten Schicht der jeweiligen Strukturelemente der tragenden Struktur bzw. dass die Oberfläche der tragenden Struktur sich gut mit der Polymerschmelze verbindet. Da es nun möglich ist, die Polymermasse für das Bilden des Formteils bzw. der Konstruktionsstruktur wiederum mehrschichtig auszubilden, kann nach erfolgtem Aushärten des eingespritzten bzw. eingegossenen Polymermaterials entweder die nun ummantelte tragende Struktur in eine weitere Spritzgussform bzw. Giessform eingegeben werden, oder aber das Volumen der vorliegenden Spritzgussform bzw. Giessform kann dadurch vergrössert werden, indem in den Wandungen Schieberelemente vorgesehen sind. Es handelt sich dabei um sogenannte Mehrfach-Werkzeuge, welche das Einspritzen bzw. Eingiessen von mehreren Polymermaterialien zulassen zur Bildung eines mehrschichtigen Formteils.
Auf diese Art und Weise wird es auch möglich, die oben beschriebene Veränderung der Steifigkeit von innen nach aussen zu bewerkstelligen, indem beispielsweise gegen aussen hin Polymermaterialien, wie beispielsweise Polyethylen-Polypropylen Copolymere, Polyester wie PBT oder Topas ( (polymerisierte zyklische Vinylmonomere) eingespritzt werden können, welche eine relativ niedrige Steifigkeit aufweisen und zudem einen sehr guten Oberflächenfinish ergeben, damit das schliesslich hergestellte Formteil bzw. die Konstruktionsstruktur nicht nachgearbeitet werden muss. Dadurch wird es auch möglich, die äusserste Schicht einzufärben, damit die Notwendigkeit der Lackierung des schlussendlich hergestellten Formteils bzw. der Konstruktionsstruktur entfällt.
Um ein möglichst leichtes Formteil und Konstruktionsstruktur zu erhalten, ist es vorteilhaft, die Polymermasse wenigstens teilweise geschäumt auszubilden. Geeignet sind beispielsweise sogenannte Strukturschäume beispielsweise aus Polycarbonat , Poyurethan oder Polyester wie PBT oder Topas, welche hervorragende Gewichts-, Festigkeits- und Härteverhältnisse aufweisen, d.h. welche bei geringem Gewicht eine relativ hohe Oberflächenfestigkeit aufweisen.
Der grosse Vorteil bei der Verwendung von polymeren Materialien gemass der vorliegenden Erfindung liegt darin, dass, wie bereits oben erwähnt, die Oberfläche des hergestellten Formteils und Konstruktionsstruktur nicht nachbearbeitet werden muss. Auch können spezielle Oberflächeneffekte erzielt werden, wie beispielsweise das Polymer einzufärben, womit die Lackierung entfällt. Auch kann der sogenannte "Acryllack-touch"- imitiert werden, oder aber es können Oberflächenstrukturen beim Spritz- giessen bzw. Eingiessen eingeformt werden.
Aber auch später ergeben sich weitere grosse Vorteile, indem derart hergestellte Formteile, wie beispielsweise Karosserien, nicht rosten bzw. korrodieren können. Auftretende Kratzer sind kaum sichtbar und führen nicht zum Rosten der Karosserie. Kratzer können auch nachgeschliffen werden, wodurch sie nicht mehr sichtbar sind.
Ein weiterer Vorteil liegt darin, dass derartige Formteile, wie beispielsweise Gehäuse, Tanks, Karosserien und dergleichen, leicht rezyklierbar sind, indem die Polymermasse mittels Schmelzen wieder granuliert werden kann, währenddem die faserverstärkten Strukturelemente erneut beispielsweise als Faserverstärkung Verwendung finden können.
Die Idee der vorliegenden Erfindung liegt darin, dass zunächst ein Gerüst bzw. die tragende Struktur aus sogenannter Meterware hergestellt wird bzw. dass die einzelnen Strukturelemente dieses Gerüstes auf einfache und billige Art und Weise herstellbar sind, worauf die Elemente beispielsweise mittels Robotern zusammengebaut werden.
Im Gegensatz zur bekannten üblichen Ganzkörper-Faser- verstärkung mit eingelegten Matten oder den eingangs erwähnten Wickelverfahren werden erfindungsgemäss die Strukturelemente auf einfachste Art und Weise zur tragenden Struktur als Gerüst zusammengebaut, welches Gerüst aber eine wesentlich höhere Festigkeit und Formbeständigkeit des schlussendlichen Formteils garantiert. Selbstverständlich ist es auch ge ass der vorliegenden Erfindung möglich, flächige Strukturelemente wie Matten- oder Wabenstrukturen zu verwenden, wesentlich aber ist, dass diese Matten- oder Wabenstrukturen untereinander und mit weiteren Strukturelementen verbunden werden.
Fig. 2 zeigt einen Flüssigkeitstank 11 als Beispiel eines erfindungsgemässen Kunststoff-Formteils und Konstruktionsstruktur, wobei die Wandungen transparent dargestellt sind, damit die tragende Struktur 3 sichtbar wird. Diese tragende Struktur 3 besteht aus einem Raumgitterrahmen 13 mit Diagonalstäben 17 sowie Langsstäben 19 und Querstäben 21 als Strukturelemente 5, welche zur Verfestigung bzw. Verstrebung der einzelnen Wandungen dienen. In den jeweiligen Ecken 23 des Flüssigkeitstankes 11 sind die einzelnen Strukturelemente bzw. Stäbe miteinander verbunden, was beispielsweise, mittels eines Steckverbin- dungsteils 25 als Verbindungselement 7 erfolgen kann, wie in Fig. 3a dargestellt ist. Bei den Längsstäben 17, 19 und 21 kann es sich beispielsweise um mittels Kohlenstofffasern verstärkte Polyurethanharzstäbe handeln, welche oberflächenbeschichtet bzw. oberflächenbehandelt sind, um eine bessere Haftung des die einzelnen Stäbe umgebenden Polymermaterials sicherzustellen. Diese Strukturelemente 3 können auch andere Profilformen aufweisen, z.B. als Rohre ausgebildet sein. Mittels des erwähnten Polymermaterials 8 werden dann auch die Zwischenräume 24 und 26 als Wandungen zwischen den Stäben, beispielsweise mittels Spritz- giessens, ausgefüllt.
Die Fig. 3a - 3c illustrieren Verbindungen, Verbindungselemente (7) und Verbindungsbereiche 6 von verschiedenartigen stabartigen, längsorientierten (5.1) und flächigen (5.2) Strukturelementen, welche in geeigneter Auswahl und Zusammenstellung die tragende Struktur 3 bilden.
Fig. 3a zeigt als Verbindungselement 7 ein Steckverbin- dungεteil 25 mit welchem z.B. die Stäbe 17, 19, 21 von Fig. 2 durch Einstecken und Einkleben verbunden werden.
Fig. 3b zeigt in Aufsicht eine Verbindung von zwei sich kreuzenden Längsprofilen, z.B. in Form von Rechteckrohren als Strukturelemente 5, welche auf eine Platte als flächiges Verbindungselement 7 aufgeklebt sind und wobei das Ganze z.B. durch eine faserverstärkte Polymermasse 8 als Teilbereichsformteil umgeben und zusammengehalten ist. Dieses Formteil bildet hier einen Verbindungsbereich 6.
Fig. 3c illustriert im Querschnitt eine Verbindung eines quadratischen Rohrprofils als längsorientiertes Strukturelement 5.1, welches auf eine Platte als flächiges Strukturelement 5.2 aufgeklebt oder aufgeschweisst ist. Daneben schliesst sich ein Wandbereich an, welcher z.B. aus Polymermasse 8 mit geschäumten Teilbereichen 8.0 bestehen kann oder welcher auch weitere flächige Strukturelemente 5.2, wie Gitter oder Waben, enthalten kann. Die umgebende formbildende Polymermasse 8 bildet auch hier einen verstärkenden Verbindungsbereich 6. Dabei kann die Polymermasse auch aus zwei oder mehr Schichten, 8.1, 8.2, bestehen. Zudem ist hier eine Verbindungsschicht 9 zur Vermittlung einer sehr starken Verbindung zwischen Strukturelementen und Polymermasse auf den Strukturelementen 5.1 und 5.2, z.B. deren äusserste Schicht bildend, vorgesehen. Die umspritzte Polymermasse besteht z.B. aus einer stärkeren faserverstärkten Schicht 8.1, auf welche anschliessend eine weitere unverstärkte Polymerschicht 8.2 aufgespritzt ist. Deren Spannungs/- Dehnungsverhalten entspricht dabei den Kurven von Fig. 1: 8.1 = K2, 8.2 = K3, sowie Polymerschaum 8.0 = K4.
Die Wandungen eines Behälters können beispielsweise auch mit lattenförmigen, d.h. flachen Strukturelementen als Verstrebungen gestützt sein, wie dies beispielsweise beim kistenförmigen Behälter von Fig. 4 dargestellt ist. Wesentlich dabei ist, dass die einzelnen Strukturelemente, welche die tragende Struktur bilden, beispielsweise mittels Pultrusion oder Extrusion "endlos" herstellbar sind, aus endlosfaserverstärktem thermoplastischem oder duromerem Material. Für den Fall, dass besonders hochfeste, steife und einen sehr hohen Modul aufweisende Strukturelemente erforderlich sind, kann ein besonders hoher Anteil der Endlosfaserverstärkung von z.B. 50 - 60 Vol% eingesetzt werden. Es auch vorteilhaft sein, wenigstens teilweise sogenannte Novolacke zu verwenden, welche eine höhere Vernetzungsdichte ergeben als die handelsüblichen Duromere.
Bei den Endlosfaserverstärkungenn kann es sich um sämtliche eingangs erwähnte Fasern handeln, wobei diese vorzugsweise vor dem Einarbeiten in das Matrixpolymer substruiert sein müssen, so dass deren Oberfläche gut benetzbar ist durch das diese Fasern einschliessende Polymer. Allerdings handelt es sich dabei um eine bereits bestens bekannte Technik, da an sich das Verstärken von Thermoplasten und Duromeren, beispielsweise mit Glas-, Kohlenstofffasern, Aramidfasern und dergleichen, im Stand der Technik bestens bekannt ist.
Schliesslich wäre es aber auch möglich, die einzelnen Wandungen zusätzlich zu den Verstrebungselementen mit Wabenstrukturen in den Zwischenräumen 24, 26 zu versehen, wesentlich dabei ist, dass diese Wabenstrukturen mit den anderen Strukturelementen 17, 19, 21 (in Fig. 2) verbunden sind.
Ein weiteres Beispiel einer derartigen tragenden Struktur 3 ist in Fig. 5 dargestellt mit gebogenen, längsorientierten Profilen oder Rohren als Strukturelemente 5 und mit Verbindungselementen 7, 25, beispielsweise für die Bildung einer Wandung eines Bassins, einer Rohrwandung, eines Rohres mit sehr grossem Durchmesser, eines Drucktanks usw.
In Fig. 6 wiederum ist eine Seilbahnkabine 31 dargestellt, deren lasttragendes Grundgerüst aus einer erfindungsgemäss definierten, tragenden Struktur 3 gebildet wird. Dabei sind insbesondere an die Festigkeit des Bodens und der Dachkonstruktion, an welcher ein Tragarm 32 befestigt ist, erhöhte Anforderungen gestellt, weshalb beispielsweise im Dach 33 Strukturelemente als Verstärkungselemente 35 angeordnet sind, welche massiver dimensioniert sind als beispielsweise Verstärkungselemente in den Seitenwandungen. So ist es beispielsweise auch möglich, als Verstärkungselement in den Seitenwandungen relativ leicht dimensionierte, gitterartige Strukturen 37 als weiteres Beispiel flächiger Strukturelemente 5.2 zu verwenden, welche in einem Rahmen 39 der tragenden Struktur 3 eingelassen befestigt sind.
In Fig. 7 ist als weiteres Beispiel eine Fahzeugzelle 41 eines Automobils, mit einer hochfesten tragenden Struktur dargestellt. Diese besteht aus starken längsorientierten Strukturelementen 5.1 verbunden mit flächigen Teilen 5.2, wobei Teilbereiche der tragenden Struktur mit der umgebenden Polymermaεse 8 Karosserieteile bilden können. In dieser Weise ist auch eine selbsttragende Kunststoffkarosserie herstellbar.
Bei den in den Fig. 2 bis 7 dargestellten möglichen Anwendungen der vorliegenden Erfindung handelt es sich selbstverständlich nur um Beispiele, welche auf x- beliebige Art und Weise abgeändert, modifiziert oder ergänzt werden können. Insbesondere sind die dargestellten Verstärkungselemente bzw. Strukturelemente 5 zur Bildung der erfindungsgemässen tragenden Strukturen 3 lediglich gewählt, um die vorliegende Erfindung näher zu erläutern. Es ist natürlich möglich, anstelle von Rohren bzw. Stäben, Seitenprofilen, Netzen und Latten, wie in den Fig. 2 bis 7 dargestellt, auch andere Verstärkungselemente, wie beispielsweise T-Profile, U-Profile, L-Winkel usw. , zu verwenden oder Laminate, Matten, Waben und dergleichen als flächige Strukturelemente.
Auch die dargestellten Anwendungsbeispiele dienen lediglich zur Erläuterung der Erfindung, selbstverständlich kann die erfinderische Idee auch für die Herstellung irgendwelcher anderer Gehäuse, Behälter, Kabinen, Container, Karosserien usw. verwendet werden, welche lasttragende Funktionen erfüllen müssen.
Wesentlich ist, dass für die Herstellung eines Formteils und Konstruktionsstruktur, im wesentlichen bestehend aus einem polymeren Material, zunächst eine tragende Struktur gebildet wird, welche anschliessend mit dem das Formteil und Konstruktionsstruktur bildenden polymeren Material mindestens in Teilbereichen ummantelt bzw. eingehüllt wird. Dabei können sowohl die einzelnen Strukturelemente, welche die tragende Struktur bilden, wie auch die Polymermasse, welche das Formteil schlussendlich bildet, ein- oder mehrschichtig sein bzw. aus mehreren Komponenten bestehen.

Claims

Patentansprüche
1. Kunststoff-Formteil und Konstruktionsstruktur, wie ein Behälter, Gehäuse, Fluidtank, Container, eine Rohrleitung, eine Fahrzeugzelle oder eine Karosserie, gekennzeichnet durch eine tragende Struktur (3), bestehend aus mehreren miteinander verbundenen hochfesten, faserverstärkten einzelnen Strukturelementen (5), welche tragende Struktur wenigstens teilweise von einer das Formteil bildenden Polymermasse (8) umgeben ist.
2. Formteil Anspruch 1, dadurch gekennzeichnet, dass die Strukturelemente (5) mit Endlosfasern aus Glas, Kohlenstoff, Ara id, LC-Polymer oder mit anderen hochfesten Polymerfasern verstärkt sind.
3. Formteil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Strukturelemente (5) als Matrixmaterial einen Thermoplasten aufweisen, wie Polyamid (PA) , Polypropylen (PP) , Polyethylen- therephthalat (PET) , Polybutylentherephthalat (PBT), Polycarbonat (PC) , Polyimid (PI) , Polyacrylate, Polyphenylensulfid (PPS), Polyetheretherketon (PEEK) .
4. Formteil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Strukturelemente (5) als Matrix ein duromeres Material aufweisen, wie Polyurethan PUR, ungesättigter Polyester, Epoxidharze, Phenolharze, ein Aminoplast oder ein Novolackharz .
5. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Strukturelemente (5) zur Bildung der tragenden Struktur (3) längsorien- tierte Gebilde wie Stangen, Rohre, Stäbe, Profile und flächige Gebilde wie Platten, Laminate, Waben, Gitter und dergleichen eingesetzt sind.
6. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturelemente zur Bildung der tragenden Struktur (3) mittels Verbindungselementen (7) miteinander verbunden sind.
7. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Strukturelemente (5) zur Herstellung der tragenden Struktur mittels Extrusion, Pultrusion, Stranggiessen oder anderen kontinuierlichen kunststoffverarbeitenden Verfahren hergestellt sind, wobei die einzelnen Elemente aus dem Endlosmaterial durch Schneiden, Stanzen, Fräsen, Sägen und anschliessendes Nachbearbeiten hergestellt sind.
8. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Strukturelemente zur Bildung der tragenden Struktur mehrschichtig aufgebaut sind mit einem hochfesten Kern und einer Verbindungsschicht als äusserster Schicht, welche kompatibel ist mit dem das Element unmittelbar umgebenden Polymer-Material (8), so dass Strukturelement und Polymermasse durch die Verbindungsschicht (9) fest haftend miteinander verbunden sind.
9. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die die Oberfläche des Strukturelementes (5) soweit kompatibel ist, dass eine Diffusion an der Kontaktfläche zur umgebenden Polymermasse (8) stattfindet.
10. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse (8) ein thermoplastisches Polymer aufweist, wie Polyamid (PA), Polypropylen (PP), Polyethylentherephthalat (PET) , Polybutylentherephthalat (PBT), Polycarbonat (PC), Polyimid (PI), Polyacrylate, Polyphenylensulfid (PPS), Polyetheretherketon (PEEK) .
11. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse (8) eine Kurz- oder Langfaserverstärkung aufweist.
12. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse (8) Verbindungsbereiche (6) an Verbindungsstellen der Strukturelemente (5) bildet.
13. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse mehrschichtig (8.1, 8.2) ausgebildet ist mit vom Strukturelement (5) zur Oberfläche hin abnehmender Festigkeit und Steifigkeit des Polymermaterials in den jeweiligen Schichten.
14. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse (8) wenigstens teilweise geschäumt ist (8.0).
15. Formteil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermasse (8) wenigstens teilweise eingefärbt ist.
16. Verfahren zur Herstellung eines Kunststoff-Formteils und Konstruktionsstruktur nach einem der Ansprüche 1 bis 15, gekennzeichnet durch die Schritte:
- Verwendung von Strukturelementen (5) aus einem endlosfaserverst rkten Polymer oder einem hochfesten Polymer; - Zuschneiden, Bearbeiten und Konfektionieren der Strukturelemente;
- Verbinden der Strukturelemente zu einer tragenden Struktur (3) ;
- Einlegen mindestens eines Teils der tragenden Struktur in eine Giessform;
- Einfüllen einer thermoplastischen Polymerschmelze (8) in die Form;
- Entformen des Formteils.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Bildung der Polymermasse (8) durch Spritz- giessen erfolgt.
18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass nach dem Entformen die wenigstens teilweise umhüllte tragende Struktur (3) in eine weitere Form eingegeben wird und in diese Form eine weitere plastische Polymerschmelze eingefüllt wird zur Bildung einer mehrschichtigen, die Struktur mindestens teilweise umgebende Polymermasse (8.1, 8.2).
19. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass nach dem Einfüllen der plastischen Polymerschmelze anschliessend das Volumen derselben Form durch verschiebbare Wandungen vergrössert wird und anschliessend eine weitere- Polymermasse in dieselbe Form eingefüllt wird zur Bildung einer mehrschichtigen, die Struktur umgebende Polymermasse.
20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass bei mehrschichtigen Strukturelementen bzw. Polymermasse eine gute Haftung an den Grenzflächen erzielt wird durch Adhäsion an der Grenzfläche, durch Diffusion der Moleküle beidseits der Grenzfläche ineinander, durch chemische Reaktion an der Grenzfläche, oder durch Anordnen einer haftvermittelnden Verbindungsschicht (9) zwischen Strukturelementen (5) und Polymermasse (8).
21. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die einzelnen Strukturelemente (5) zur Bildung der tragenden Struktur (3) durch formschlüssige Verbindungselemente (7) wie schraubbare, steckbare, einrastbare Verbindungselemente verbunden werden.
22. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die einzelnen Strukturelemente (5) durch Kleben, Verschweissen usw. kraftschlüssig miteinander verbunden werden.
23. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Verbindung der einzelnen Strukturelemente (5) zur Bildung der tragenden Struktur durch Umhüllen der einzelnen Strukturelemente mittels Netzen, Bändern und dergleichen erzielt wird.
24. Fahrzeugzelle mit einem Kunststoff-Formteil und Konstruktionsstruktur nach einem der Ansprüche 1 bis 15.
PCT/CH1997/000379 1996-10-08 1997-10-07 Kunststoff-formteil und konstruktionsstruktur WO1998015404A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/269,496 US6299246B1 (en) 1996-10-08 1997-10-07 Plastic molded part and construction structure
AT97941779T ATE273118T1 (de) 1996-10-08 1997-10-07 Kunststoff-formteil mit einer konstruktionsstruktur
DE59711849T DE59711849D1 (de) 1996-10-08 1997-10-07 Kunststoff-formteil mit einer konstruktionsstruktur
EP97941779A EP0944472B1 (de) 1996-10-08 1997-10-07 Kunststoff-formteil mit einer konstruktionsstruktur
JP10517044A JP2001501714A (ja) 1996-10-08 1997-10-07 プラスチック成形品およびデザイン構造部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2444/96 1996-10-08
CH244496 1996-10-08

Publications (1)

Publication Number Publication Date
WO1998015404A1 true WO1998015404A1 (de) 1998-04-16

Family

ID=4233972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1997/000379 WO1998015404A1 (de) 1996-10-08 1997-10-07 Kunststoff-formteil und konstruktionsstruktur

Country Status (7)

Country Link
US (1) US6299246B1 (de)
EP (1) EP0944472B1 (de)
JP (1) JP2001501714A (de)
CN (1) CN1093031C (de)
AT (1) ATE273118T1 (de)
DE (1) DE59711849D1 (de)
WO (1) WO1998015404A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775201A3 (de) * 2005-10-17 2007-05-30 ArvinMeritor GmbH Verbundbauteil, insbesondere Fahrzeugpaneel
WO2007075535A2 (en) * 2005-12-21 2007-07-05 Bayer Materialscience Llc Load-bearing composite panels
EP1849588A1 (de) * 2006-04-27 2007-10-31 AKsys GmbH Verbundwerkstoffteil und Verfahren zu seiner Herstellung.
WO2010135069A1 (en) 2009-05-18 2010-11-25 Apple Inc. Reinforced device housing
WO2012062391A1 (de) * 2010-11-09 2012-05-18 Daimler Ag Kraftfahrzeugstrukturbauteil aus mittels eines knotenelements verbundenen halbzeug-bauteilen und herstellungsverfahren
US8372495B2 (en) 2010-05-26 2013-02-12 Apple Inc. Electronic device enclosure using sandwich construction
US8408972B2 (en) 2010-01-25 2013-04-02 Apple Inc. Apparatus and method for intricate cuts
US8511498B2 (en) 2010-01-25 2013-08-20 Apple Inc. Method for manufacturing an electronic device enclosure
US9011623B2 (en) 2011-03-03 2015-04-21 Apple Inc. Composite enclosure
US9120272B2 (en) 2010-07-22 2015-09-01 Apple Inc. Smooth composite structure
DE102015007297A1 (de) 2015-06-10 2016-12-15 Audi Ag Verfahren zum Herstellen eines Hohlkörpers
US10207748B2 (en) 2014-07-03 2019-02-19 Bayerische Motoren Werke Aktiengesellschaft Longitudinal member arrangement of a body of a motor vehicle and body of a motor vehicle with a longitudinal member arrangement of this type
US10407955B2 (en) 2013-03-13 2019-09-10 Apple Inc. Stiff fabric
US10864686B2 (en) 2017-09-25 2020-12-15 Apple Inc. Continuous carbon fiber winding for thin structural ribs
US11518138B2 (en) 2013-12-20 2022-12-06 Apple Inc. Using woven fibers to increase tensile strength and for securing attachment mechanisms

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1204016C (zh) * 1999-10-20 2005-06-01 地方小型汽车公司 由纤维增强热塑性塑料制成的汽车外壳及其制造方法
BR0200820B8 (pt) * 2002-02-27 2013-02-19 tirante de ligaÇço em compàsito.
DE10229400B4 (de) * 2002-06-29 2006-05-24 Dr.Ing.H.C. F. Porsche Ag Aufbaustruktur für ein Fahrzeug, insbesondere einen Personenkraftwagen
CN100556674C (zh) * 2002-09-15 2009-11-04 地方小型汽车公司 由纤维增强热塑性材料制备结构件的方法、设备以及所制备的结构件
AU2003258443A1 (en) * 2002-09-15 2004-04-30 Rcc Regional Compact Car Ag Structural component consisting of fibre-reinforced thermoplastic
JP2004142584A (ja) * 2002-10-24 2004-05-20 Fuji Heavy Ind Ltd 自動車の車体後部構造
US7094299B2 (en) 2003-05-02 2006-08-22 Ford Global Technologies, Llc Method for robotically applying large volumes of structural foam within automotive applications
JP2007516866A (ja) * 2003-12-17 2007-06-28 アーマセル ピーティーワイ リミテッド 複数片構成部品の製作法
US20050281517A1 (en) * 2004-06-18 2005-12-22 Wessels Robert A Jr Multi-layered buffer tube for optical fiber cable
US7000978B1 (en) 2004-08-20 2006-02-21 Frank Messano Thin-skin ultralight recreational vehicle body system
US7251915B2 (en) * 2004-09-10 2007-08-07 Pullman Industries, Inc. Frame system for motor vehicle
WO2006091245A2 (en) 2004-10-22 2006-08-31 Dow Global Technologies Inc. Plastic composite articles and methods of making same
US7578534B2 (en) * 2005-11-03 2009-08-25 Martin Marietta Materials, Inc. Structural panel for a refrigerated trailer comprising an integrated bulkhead structure for promoting air flow
JP4759390B2 (ja) * 2006-01-12 2011-08-31 東邦テナックス株式会社 Frp製のコンテナ構成部材及びそれを用いた軽量コンテナ
US20070216197A1 (en) * 2006-03-14 2007-09-20 Martin Marietta Materials, Inc. Composite cargo floor structure having a reduced weight
US7575264B1 (en) 2006-03-14 2009-08-18 Martin Marietta Materials, Inc. Cargo bed structure comprising fiber reinforced polymer components
WO2008025133A1 (en) * 2006-08-29 2008-03-06 Magna International Inc. Water assist injection moulded structural members
TWI333519B (en) * 2006-09-13 2010-11-21 Ind Tech Res Inst Processing method of polymer product
US7874125B2 (en) * 2007-03-08 2011-01-25 Lrm Industries International, Inc Molded support beam
US8186747B2 (en) * 2008-07-22 2012-05-29 Martin Marietta Materials, Inc. Modular composite structural component and structures formed therewith
EP2445703B1 (de) * 2009-06-25 2019-02-27 Biofiba Innovations Pty Ltd Holzersatz
DE102009040901B4 (de) * 2009-09-11 2022-02-24 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Coburg Verfahren zum Herstellen von Tragstrukturen in Kraftfahrzeugen
JP2011098523A (ja) * 2009-11-06 2011-05-19 Ihi Corp ケースの製造方法、及びケース
DE102010014504A1 (de) * 2010-04-10 2011-10-13 Daimler Ag Karosserie für einen Personenkraftwagen
JP5494230B2 (ja) * 2010-05-24 2014-05-14 株式会社豊田中央研究所 車体構造
US8921692B2 (en) 2011-04-12 2014-12-30 Ticona Llc Umbilical for use in subsea applications
WO2012142096A1 (en) 2011-04-12 2012-10-18 Ticona Llc Composite core for electrical transmission cables
BR112013025217B8 (pt) 2011-04-12 2021-03-23 Ticona Llc haste compósita e método para a formação de uma haste compósita
JP6166964B2 (ja) * 2012-07-04 2017-07-19 有限会社野間口事務所 繊維で構成される有形体の製造方法
CN103029293B (zh) * 2012-12-25 2015-04-01 哈尔滨工业大学 树脂基碳纤维复合材料桁架杆件连接方法
DE102013209095A1 (de) * 2013-05-16 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Crashstruktur für ein Fahrzeug
GB201413637D0 (en) * 2014-07-31 2014-09-17 Mclaren Applied Technologies Ltd Manufacture of vehicle structures
DE102014222933B4 (de) * 2014-11-11 2021-09-09 Bayerische Motoren Werke Aktiengesellschaft Faserverbundwerkstoffbauteil sowie Verfahren zur Herstellung eines Faserverbundwerkstoffbauteils
CN104925010A (zh) * 2015-07-13 2015-09-23 苏州新区华士达工程塑胶有限公司 一种高强度塑料保险杠
JP2018531169A (ja) 2015-09-17 2018-10-25 ロベルト ベロッツィ ヘレス 耐力複合パネル、材料、製品、ならびに製造方法および使用方法
US9718498B1 (en) * 2016-04-08 2017-08-01 Ford Global Technologies, Llc Vehicular body structure
DE102016106688A1 (de) * 2016-04-12 2017-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridbauteil für ein Fahrzeug
CN108263496A (zh) * 2016-12-31 2018-07-10 郑州吉田专利运营有限公司 碳纤维织物复合材料整车骨架及其制备方法
DE102017203404A1 (de) 2017-03-02 2018-09-06 Bayerische Motoren Werke Aktiengesellschaft Faserbauteil mit zu einem Fachwerk verbundenen Faserstäben
US11401451B2 (en) 2017-11-20 2022-08-02 L&P Property Management Company Fiber reinforced flexible foams
DE102021115293B4 (de) 2021-06-14 2023-02-09 Bayerische Motoren Werke Aktiengesellschaft Schutzplatte für einen gepanzerten Personenkraftwagen
CN117341237B (zh) * 2023-12-06 2024-03-08 威驰腾(福建)汽车有限公司 碳纤维结构件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344536A (fr) * 1961-11-20 1963-11-29 Bombrini Parodi Delfino Spa Procédé pour la construction de caisses en résine de polyester renforcée pour véhicules de chemin de fer, et structure relative
DE2636557A1 (de) * 1976-08-13 1978-02-16 Buderus Eisenwerk Luftfracht-container
US4517136A (en) * 1981-09-18 1985-05-14 Allibert S.A. Preparing reinforced impervious articles
US4652171A (en) * 1983-01-05 1987-03-24 Deutsche Forschungs Connecting element for rod like members
EP0687546A2 (de) * 1994-06-15 1995-12-20 FILTERWERK MANN & HUMMEL GMBH Herstellverfahren für einen Hohlkörper mit einem innenliegenden Stützrahmen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045075A (en) * 1975-12-18 1977-08-30 Pulver Donald W Automobile body frame and envelope construction
US4491362A (en) * 1981-09-23 1985-01-01 Kennedy Thomas H Automotive fiberglass body
US4613177A (en) * 1984-06-25 1986-09-23 Michael Ladney, Jr. Vehicle bumper
JPS63189713U (de) * 1987-05-27 1988-12-06
US5041318A (en) * 1988-06-23 1991-08-20 Hulls John R Composite structural member with integral load bearing joint-forming structure
US4976490A (en) * 1988-10-05 1990-12-11 Ford Motor Company Reinforced composite structure
US5139297A (en) * 1991-09-12 1992-08-18 Ford Motor Company Internal stroking bumper beam
CN1085173A (zh) * 1992-09-26 1994-04-13 白清栋 自行车架及制法
US5403063A (en) * 1993-05-21 1995-04-04 Sjostedt; Robbie J. Modular integral floor construction for vehicle body
US5762395A (en) * 1996-06-25 1998-06-09 General Motors Corporation Molded cross car support structure
US5806919A (en) * 1996-11-04 1998-09-15 General Motors Corporation Low density-high density insert reinforced structural joints

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344536A (fr) * 1961-11-20 1963-11-29 Bombrini Parodi Delfino Spa Procédé pour la construction de caisses en résine de polyester renforcée pour véhicules de chemin de fer, et structure relative
DE2636557A1 (de) * 1976-08-13 1978-02-16 Buderus Eisenwerk Luftfracht-container
US4517136A (en) * 1981-09-18 1985-05-14 Allibert S.A. Preparing reinforced impervious articles
US4652171A (en) * 1983-01-05 1987-03-24 Deutsche Forschungs Connecting element for rod like members
EP0687546A2 (de) * 1994-06-15 1995-12-20 FILTERWERK MANN & HUMMEL GMBH Herstellverfahren für einen Hohlkörper mit einem innenliegenden Stützrahmen

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775201A3 (de) * 2005-10-17 2007-05-30 ArvinMeritor GmbH Verbundbauteil, insbesondere Fahrzeugpaneel
WO2007075535A2 (en) * 2005-12-21 2007-07-05 Bayer Materialscience Llc Load-bearing composite panels
WO2007075535A3 (en) * 2005-12-21 2007-08-30 Bayer Materialscience Llc Load-bearing composite panels
EP1849588A1 (de) * 2006-04-27 2007-10-31 AKsys GmbH Verbundwerkstoffteil und Verfahren zu seiner Herstellung.
WO2010135069A1 (en) 2009-05-18 2010-11-25 Apple Inc. Reinforced device housing
US8857128B2 (en) 2009-05-18 2014-10-14 Apple Inc. Reinforced device housing
US8511498B2 (en) 2010-01-25 2013-08-20 Apple Inc. Method for manufacturing an electronic device enclosure
US8408972B2 (en) 2010-01-25 2013-04-02 Apple Inc. Apparatus and method for intricate cuts
US8372495B2 (en) 2010-05-26 2013-02-12 Apple Inc. Electronic device enclosure using sandwich construction
US10398042B2 (en) 2010-05-26 2019-08-27 Apple Inc. Electronic device with an increased flexural rigidity
US9120272B2 (en) 2010-07-22 2015-09-01 Apple Inc. Smooth composite structure
WO2012062391A1 (de) * 2010-11-09 2012-05-18 Daimler Ag Kraftfahrzeugstrukturbauteil aus mittels eines knotenelements verbundenen halbzeug-bauteilen und herstellungsverfahren
US9011623B2 (en) 2011-03-03 2015-04-21 Apple Inc. Composite enclosure
US10407955B2 (en) 2013-03-13 2019-09-10 Apple Inc. Stiff fabric
US11518138B2 (en) 2013-12-20 2022-12-06 Apple Inc. Using woven fibers to increase tensile strength and for securing attachment mechanisms
US10207748B2 (en) 2014-07-03 2019-02-19 Bayerische Motoren Werke Aktiengesellschaft Longitudinal member arrangement of a body of a motor vehicle and body of a motor vehicle with a longitudinal member arrangement of this type
DE102015007297A1 (de) 2015-06-10 2016-12-15 Audi Ag Verfahren zum Herstellen eines Hohlkörpers
US10864686B2 (en) 2017-09-25 2020-12-15 Apple Inc. Continuous carbon fiber winding for thin structural ribs

Also Published As

Publication number Publication date
ATE273118T1 (de) 2004-08-15
US6299246B1 (en) 2001-10-09
JP2001501714A (ja) 2001-02-06
EP0944472A1 (de) 1999-09-29
CN1232421A (zh) 1999-10-20
CN1093031C (zh) 2002-10-23
EP0944472B1 (de) 2004-08-11
DE59711849D1 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP0944472B1 (de) Kunststoff-formteil mit einer konstruktionsstruktur
DE102009040901B4 (de) Verfahren zum Herstellen von Tragstrukturen in Kraftfahrzeugen
EP2539210B1 (de) Strukturbauteil
EP2558269B1 (de) Karosserie für einen personenkraftwagen
DE3426158C1 (de) Druckbehaelter aus faserverstaerktem Kunststoff und Verfahren zu dessen Herstellung
EP1336470B1 (de) Konstruktionselement aus faserverstärktem Kunststoff
EP1058625B1 (de) Tür oder deckel für ein kraftfahrzeug und verfahren zur herstellung solcher
DE102013004929B4 (de) Betriebsflüssigkeitsbehälter
DE4120133C2 (de) Bauteil und Verfahren zur Herstellung eines solchen
EP2271418A1 (de) Modulare membrangehäuse, membrangehäuseelemente und verfahren zu deren herstellung
EP1268164B1 (de) Bauteil aus faserverstärktem kunststoff und verfahren zur herstellung desselben
DE102011111232A1 (de) Leichtbauteil, insbesondere Karosseriesäulenverstärkung und Verfahren zur Herstellung des Leichtbauteils
EP0836561B1 (de) Tank- oder silobehälter aus faserverstärkten kunststoffen
WO2004050409A1 (de) Instrumententafel sowie verfahren zu deren herstellung
EP1052164A1 (de) Wandgruppe für PKW
EP3057779A1 (de) Verfahren zum herstellen eines verstärkten faserverbundbauteils
DE102011121639B4 (de) Rotationssymmetrisches Strukturelement in Gitterkonstruktion und Verfahren zu dessen Herstellung
EP3079876B1 (de) Verfahren zur herstellung eines fahrzeug-karosserieelements sowie fahrzeug karosserieelement
DE102008023208A1 (de) Bauteil in Hybridbauweise
DE3843250A1 (de) Fertigformteil
DE3243519A1 (de) Verfahren zur herstellung von federstaeben aus faserverbundwerkstoffen
DE102005054764B3 (de) Tragwanne für einen Kraftwagen
EP2116406B1 (de) Behälter für Betriebsstoffe und Verfahren zu dessen Herstellung
EP3356109B1 (de) Rahmen für ein fahrzeug mit zumindest einem strukturteil aus schaumharz sowie herstellungsverfahren dafür
WO2004022320A1 (de) Halbzeug und herstellungsverfahren für ein bauelement eines fahrzeugs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198620.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN HU ID JP KR MX NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09269496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997941779

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 517044

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1997941779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997941779

Country of ref document: EP