WO1998013847A1 - Schaltungsanordnung zur energieversorgung eines schaltgerät-magnetantriebs - Google Patents

Schaltungsanordnung zur energieversorgung eines schaltgerät-magnetantriebs Download PDF

Info

Publication number
WO1998013847A1
WO1998013847A1 PCT/DE1997/002217 DE9702217W WO9813847A1 WO 1998013847 A1 WO1998013847 A1 WO 1998013847A1 DE 9702217 W DE9702217 W DE 9702217W WO 9813847 A1 WO9813847 A1 WO 9813847A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
voltage
measuring
resistor
circuit
Prior art date
Application number
PCT/DE1997/002217
Other languages
English (en)
French (fr)
Inventor
Wolfgang Röhl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1998013847A1 publication Critical patent/WO1998013847A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator

Definitions

  • the invention relates to a circuit arrangement for supplying energy to a switching device magnetic drive from a direct voltage supply device by means of an electronic switching device, which is released intermittently by control signals provided by a control circuit according to the principle of a pulse width modulator, the duration and / or the frequency of the control signals being determined by a measuring voltage are changeable, which drops at a measuring resistor unit lying in series with the magnetic drive.
  • a circuit arrangement of the type defined at the outset is known from DE 94 09 759 UI.
  • Voltage pulses are generated on the measuring resistor unit in synchronism with the transmitted current pulses of the switching device magnetic drive, which, depending on the operating state of the circuit arrangement, can have a strongly fluctuating pulse duration and a variable frequency of the pulses.
  • These different pulse sequences can only be supplied as an input variable to an operational amplifier contained in the circuit arrangement if it is equipped with specially suitable components.
  • the operational amplifiers required for this purpose are so-called fast operational amplifiers, which place increased demands on the quality of their power supply.
  • the object on which the invention is based is to considerably simplify the internal voltage supply for such circuit arrangements, in which a switchover is made from starting currents to holding currents, and in particular also to reduce the material outlay for this type of voltage supply. According to the invention, this is due to the features
  • the voltage which can be tapped off at the measuring resistor unit can be supplied to a measuring voltage storage capacitor as measuring voltage by means of a second electronic switching device which can also be actuated in cycles,
  • the measuring voltage and a reference voltage generated by the DC voltage supply device via a reference voltage resistor can be supplied to an operational amplifier arranged in the control circuit
  • control circuit contains a pulse width modulator circuit with a high-resistance for controlling wide pulses, which is connected in parallel with a low-resistance in series with a Zener diode for controlling narrow pulses,
  • the pulse width modulator circuit is under the control of a needle pulse switching device
  • the reference voltage (RSP) can be controlled by a control generator device (SGE) in such a way that the switching device magnetic drive (SMA) can be actuated with an increased starting current compared to its holding current and the starting current can be periodically transmitted to the switching device magnetic drive (SMA) , reached .
  • SGE control generator device
  • the control signals are to be made available with a large duty cycle in the range of 1: 100.
  • the Control circuit according to the invention is equipped with the relatively low-resistance resistor in series with the Zener diode in the area of the pulse further unodulator circuit, to which the relatively high-resistance resistor is connected in parallel.
  • the generation of broad square-wave pulses is realized via the high-resistance resistor, while square-wave pulses of short duration are generated via the parallel circuit branch, the low-resistance resistor and the Zener diode in connection with the high-resistance resistor.
  • control generator device in conjunction with an electronic switching device actuates the switching device magnetic drive when switched on with a starting current which is considerably higher than the value of the holding current and thus ensures that the switching device magnetic drive functions reliably .
  • Interferences caused by mechanical vibrations, which can occur after switching from the pull-in current to the holding current and thereby bring the switching device magnetic drive into an undefined position, are avoided in that the pull-in current is repeated in certain time periods, for example in the range of eight seconds, and for short time, for example in the range of 150 milliseconds, is maintained. This ensures that the windings of the switching device magnetic drive can be designed as a permanent load not on the relatively large starting current but on the lower holding current. In addition to cost savings, unnecessary heat losses are avoided.
  • Undervoltage protection circuit that can be influenced in conjunction with the If the DC voltage drops below a certain limit value with an output signal, the first electronic switching device is blocked, 2.2 the output signal is fed to the input of the operational amplifier for the reference voltage, so that a forced shutdown of the switching device magnetic drive is ensured if the DC voltage supply is too low.
  • the measuring resistor unit is formed by a fixed resistor, before.
  • a very simple and inexpensive solution for tapping the measuring voltage is thus achieved.
  • the measuring resistor unit is formed by a series connection of a first and a second resistor with different resistance values
  • the measuring resistor unit can be controlled by a measuring switching device such that when the first switching position thereof is below the value of the switching voltage of the diode, the series connection of the first and second resistors and in a second switching position thereof the second resistor is activated, 4.4 the measuring switching device (MUE) can be controlled by the control generator device (SGE).
  • SGE control generator device
  • FIG. 1 showing the circuit arrangement according to the invention in a simplified basic circuit diagram
  • FIG. 2 shows a further developed embodiment of the measuring resistance unit.
  • FIG. 1 shows the switching device magnetic drive SMA, which is arranged in the load circuit together with the measuring resistor unit MWE and is supplied with switching energy by the DC voltage supply device SVE in connection with the first electronic switching device ESI.
  • the switching device magnetic drive SMA is fed indirectly via the first electronic switching device ESI, which is under the control influence of the control circuit STS with the pulse width modulator circuit PWM, through defined switching pulses, where a corresponding voltage drop occurs at the measuring resistor unit MWE.
  • This voltage drop is transmitted via the second periodically controlled electronic switching device ES2 to the measuring voltage storage capacitor CMS, at which the measuring voltage MSP is finally set.
  • a high-resistance discharge resistor REL is connected in parallel.
  • This measuring voltage MSP is fed directly to one input of the operational amplifier OPV, the further input of which is connected to the reference voltage RSP present at the first and second reference voltage resistors RS1, RS2. Furthermore, it can be seen that the operational amplifier OPV of the control circuit STS in the area of the pulse width modulator circuit PWM is followed by the high-resistance resistor Rh which, in turn, forms a parallel circuit with the low-resistance resistor Rn and the series-connected Zener diode ZD and whose common connection is simultaneously connected via the comparator circuit KS to the control input of the first electronic switching device ESI. To operate the pulse width odulator circuit PWM, corresponding needle pulses are charged to the same control input of the first electronic switching device ESI via a diode (not designated) of the needle pulse switching device NIS, which accordingly charge the charging capacitor CL.
  • the DC voltage supply device SVE is also connected to the undervoltage protection circuit USS, whose output signal, which is not specified, acts on the operational amplifier OPV of the control circuit STS in such a way that the first electronic switching device ESI is blocked when the voltage drops below a certain mains voltage.
  • the circuit of the switching device magnetic drive SMA is interrupted. This ensures that the switchgear solenoid actuator SMA is switched off from the mains when the voltage falls below a certain mains voltage.
  • the second reference voltage resistor RS2 with the third electronic switching device ES3 acts through the control generator device SGE in a certain clock sequence on the control input of the operational amplifier OPV.
  • the clockwise parallel connection of the reference voltage resistors RI, R2 is used to actuate the SMA switching device magnetic drive with a high starting current compared to its holding current.
  • This switching measure ensures a safe switching even in the event of stronger mechanical loads, such as can occur in particular in the event of a short circuit. Process, namely a reliable triggering of the SMA switching device magnetic drive in the event of a short circuit in the network.
  • FIG. 2 shows a special embodiment of the measuring resistance unit MWE, in the form of a special resistor-diode combination.
  • two different sized resistors the first and the second resistor RI and R2 are connected in series and in addition the higher resistance first resistor RI the diode DI is connected in parallel.
  • the measurement switching device MUE which is then a replacement for the third electronic switching device ES3 under the control influence of the control generator device SGE, regulates the load current for the switching device magnetic drive SMA to a high value, that is to say the starting current, the diode DI forms for the high-tube first resistor RI shunts and relieves this accordingly.
  • the control range of the so-called economy circuit for actuating the switching device magnetic drive SMA can be selected within wide limits.

Abstract

Die Erfindung betrifft eine Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs aus einer Gleichspannungsversorgungseinrichtung mittels einer elektronischen Schalteinrichtung, die durch von einer Steuerschaltung bereitgestellten Steuersignale nach dem Prinzip eines Pulsweitenmodulators taktweise freigegeben ist, wobei die Dauer und/oder die Frequenz der Steuersignale durch eine Meßspannung veränderbar sind, die an einer mit dem Schaltgerät-Magnetantrieb in Reihe liegenden Meßwiderstandseinheit abfällt. Die Steuerschaltung (STS) ist mit einer Pulsweitenmodulatorschaltung (PWM) zur Steuerung des Schaltgerät-Magnetantriebs (SMA) ausgestattet, wobei die Steuergröße von einer im Lastkreis angeordneten Meßwiderstandseinheit (MWE) hergeleitet und zusammen mit einer Referenzspannung (RSP) dem Operationsverstärker (OPV) der Steuerschaltung (STS) zur taktweisen Umschaltung zwischen Anzugsstrom und Haltestrom zugeführt ist.

Description

Beschreibung
Schaltungsanordnung zur Energieversorgung eines Schaltgerät- Magnetantriebs
Die Erfindung betrifft eine Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs aus einer Gleichspannungsversorgungseinrichtung mittels einer elektronischen Schalteinrichtung, die durch von einer Steuerschaltung be- reitgestellten Steuersignale nach dem Prinzip eines Pulsweitenmodulators taktweise freigeben ist, wobei die Dauer und/oder die Frequenz der Steuersignale durch eine Meßspannung veränderbar sind, die an einer mit dem Magnetantrieb in Reihe liegenden Meßwiderstandseinheit abfällt.
Eine Schaltungsanordnung der eingangs definierten Art ist durch das DE 94 09 759 UI bekannt. An der Meßwiderstandseinheit entstehen dabei synchron mit den übertragenen Stromimpulsen des Schaltgerät-Magnetantriebs Spannungsimpulse, die je nach Betriebszustand der Schaltungsanordnung eine stark schwankende Impulsdauer und eine veränderbare Frequenz der Impulse aufweisen können. Diese unterschiedlichen Impulsfolgen können nur dann als Eingangsgröße einem in der Schaltungsanordnung enthaltenen Operationsverstärker zugeführt werden, wenn dieser mit speziell geeigneten Bauelementen Ausgestattet ist. Bei den für diesen Zweck benötigten Operationsverstärkern handelt es sich um sogenannte schnelle Operationsverstärker, die erhöhte Anforderungen an die Güte ihrer Stromversorgung stellen. Da andererseits die Gleichspannungs- Versorgungseinrichtungen stärkeren Spannungsschwankungen ausgesetzt sind und außerdem die Magnetantriebe der Schaltgeräte wegen ihrer breit gefächerten unterschiedlichen Einsatzgebiete schwankende Spannungsabfälle an der Meßwiderstandseinheit hervorrufen, sind besondere Spannungsversorgungen für die Operationsverstärker, beispielsweise Schaltnetzteile, erfor- derlich.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, die interne Spannungsversorgung für derartige Schaltungsanordnungen, bei denen von Anzugsströme auf Halteströme umgeschaltet wird, erheblich zu vereinfachen und insbesondere auch den materiellen Aufwand für diese Art der Spannungsversorgung zu reduzieren. Erfindungsgemäß wird dies durch die Merkmale
1.1 die an der Meßwiderstandseinheit abgreifbare Spannung ist mittels einer gleichfalls taktweise betätigbaren zweiten elektronischen Schalteinrichtung einem Meßspannungsspei- cherkondensator als Meßspannung zuführbar,
1.2 die Meßspannung und eine von der Gleichspannunnungsver- sorgungseinrichtung über einen Referenzspannungswiderstand erzeugte Referenzspannung ist einem in der Steuer- Schaltung angeordneten Operationsverstärker zuführbar,
1.3 die Steuerschaltung enthält eine Pulsweitenmodulator- schaltung mit einem hochoh igen Widerstand zur Steuerung von breiten Impulsen, dem ein niederohmiger Widerstand in Reihe mit einer Zenerdiode zur Steuerung von schmalen Im- pulsen parallelgeschaltet ist,
1.4 die Pulsweitenmodulatorschaltung steht unter dem Steuereinfluß einer Nadelimpulsschalteinrichtung,
1.5 die Referenzspannung (RSP) ist durch eine Steuergeneratoreinrichtung (SGE) derart steuerbar, dass der Schaltge- rät-Magnetantrieb (SMA) im Einschaltvorgang mit einem gegenüber seinem Haltestrom erhöhten Anzugsstrom ansteuerbar und der Anzugsstrom periodisch wiederkehrend zum Schaltgerät-Magnetantrieb (SMA) übertragbar ist, erreicht .
Mit der erfindungsgemäßen Schaltungsanordnung, die :.n einem großen Bereich von Meßspannungen betrieben wird, sind die Steuersignale mit einem großen Tastverhältnis im Bereich von 1:100 zur Verfügung zu stellen. Um unter diesen Gegebenheiten die Steuersignale mit guter Rechteckform zu erzeugen, ist die Steuerschaltung erfindungsgemäß mit dem relativ niederohmigen Widerstand in Reihe mit der Zenerdiode im Bereich der Puls- weiterunodulatorschaltung ausgestattet, dem der relativ hochohmige Widerstand parallelgeschaltet ist. Über den hochohmigen Widerstand ist die Erzeugung breiter Rechteckimpuls realisiert, während über den parallelen Schaltungszweig, dem niederohmigen Widerstand und der Zenerdiode in Verbindung mit dem hochohmigen Widerstand, Rechteckimpulse von kurzer Dauer erzeugt sind. Als wesentlich für die Erfindung ist außerdem anzusehen, daß mit der Steuergeneratoreinrichtung in Verbindung mit einer elektronischen Schalteinrichtung der Schaltgerät- Magnetantrieb beim Einschalten mit einem Anzugsstrom betätigt wird, der erheblich über den Wert des Haltestromes liegt und damit ein sicheres Funktionieren des Schaltgerät- Magnetantriebs gewährleistet ist. Störbeeinflussungen durch mechanische Erschütterungen, die nach dem Umschalten von dem Anzugsstrom auf den Haltestrom auftreten können und den Schaltgerä -Magnetantrieb dadurch in eine Undefinierte Lage bringen, sind dadurch vermieden, daß der Anzugsstrom in bestimmten Zeitabschnitten, beispielsweise im Bereich von acht Sekunden, wiederholt und für geringe Zeit, beispielsweise im Bereich von 150 Millisekunden, aufrechterhalten bleibt. Damit ist erreicht, daß die Wicklungen des Schaltgerät- Magnetantriebs als Dauerlast nicht auf den relativ großen Anzugstrom sondern auf den geringeren Haltestrom ausgelegt sein kann. Damit sind neben Kosteneinsparungen auch unnötige Wärmeverluste vermieden.
Eine vorteilhafte Ausgestaltung der Erfindung sieht die Merkmale 2.1 die Steuerschaltung steht derart mit einer von der
Gleichspannungsversorgungseinrichtung beeinflußbaren Un- terspannungsschutzschaltung in Verbindung, daß mit dem Absinken der Gleichspannung unter einen bestimmten Grenzwert mit einem Ausgangssignal die erste elektronische Schalteinrichtung gesperrt ist, 2.2 das Ausgangssignal ist an den Eingang des Operationsver- stärkers für die Referenzspannung geführt, vor, sodaß eine Zwangsabschaltung des Schaltgerät- Magnetantriebs bei zu geringer Gleichspannungsversorgung gewährleistet ist .
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht das Merkmal
3.1 die Meßwiderstandseinheit ist durch einen Festwiderstand gebildet, vor. Damit ist eine sehr einfache und kostengünstige Lösung für den Abgriff der Meßspannung erreicht.
Eine weitergehende vorteilhafte Ausgestaltung der Erfindung sieht die Merkmale
4.1 die Meßwiderstandseinheit ist durch eine Reihenschaltung von einem ersten und einem zweiten Widerstand mit unterschiedlichem Widerstandswert gebildet,
4.2 dem hόherohmigen ersten Widerstand ist eine Diode als Nebenschluß parallelgeschaltet,
4.3 die Meßwiderstandseinheit ist durch eine Meßumschalteein- richtung derart steuerbar, daß bei einer ersten Schaltstellung derselben unterhalb des Wertes der Durchschalte- spannung der Diode die Reihenschaltung des ersten und zweiten Widerstands und in einer zweiten Schaltstellung derselben der zweite Widerstand wirksam geschaltet ist, 4.4 die Meßumschalteeinrichtung (MUE) ist von der Steuergeneratoreinrichtung (SGE) steuerbar, vor.
Bei erhöhtem Spulenstrom des Schaltgerät-Magnetantriebs bildet die Diode zum hochohmigen Widerstand einen Nebenschluß und entlastet diesen dadurch. Durch das Widerstandsverhältnis der beiden in Reihe geschalteten Widerstände kann der Regelbeich dieser als sogenannte Sparschaltung betriebenen Schaltungsanordnung in weiten Grenzen gewählt werden.
Die Erfindung wird durch ein in zwei Figuren dargestelltes Ausführungsbeispiel näher erläutert, wobei die Figur 1 die erfindungsgemäße Schaltungsanordnung in einem vereinfachten Prinzipschaltbild zeigt, während die Figur zwei eine weitergebildete Ausgestaltung der Meßwiderstandseinheit erkennen läßt.
In der Figur 1 ist der Schaltgerät-Magnetantrieb SMA dargestellt, der im Laststromkreis gemeinsam mit der Meßwiderstandseinheit MWE angeordnet ist und in Verbindung mit der ersten elektronischen Schalteinrichtung ESI von der Gleichspannungsversorgungseinrichtung SVE mit Schaltenergie versorgt wird. Der Schaltgerät-Magnetantrieb SMA wird indirekt über die erste elektronische Schalteinrichtung ESI, die unter dem Steuereinfluß der Steuerschaltung STS mit der Pulsweiten- modulatorschaltung PWM steht, durch definierte Schaltimpulse gespeist, wo durch an der Meßwiderstandseinheit MWE ein entsprechender Spannungsabfall entsteht. Dieser Spannungsabfall wird über die zweite periodisch gesteuerte elektronische Schalteinrichtung ES2 an den Meßspannungsspeicherkondensator CMS übertragen, an dem sich schließlich die Meßspannung MSP einstellt. Zur gelegentlichen Regenerierung des Meßspannungs- speicherkondensators CMS ist diesem ein hochohmige Entladewiderstand REL parallel geschaltet.
Diese Meßspannung MSP wird direkt dem einen Eingang des Ope- rationsverstärkers OPV zugeführt, deren weiterer Eingang, mit der am ersten und zweiten Refererenzspannungswiderstand RS1, RS2 anstehenden Referenzspannung RSP verbunden ist. Des weiteren ist erkennbar, daß dem Operationsverstärker OPV der Steuerschaltung STS im Bereich der Pulsweitenmodulator- Schaltung PWM der hochohmigen Widerstand Rh nachgeschaltet ist, der seinerseits mit dem niederohmigen Widerstand Rn und der in Reihe liegenden Zenerdiode ZD eine Parallelschaltung zu diesem bildet und deren gemeinsame Verbindung gleichzeitig über die Komparatorschaltung KS mit dem Steuereingang der er- sten elektronischen Schalteinrichtung ESI verbunden ist. Zum Betrieb der Pulsweiten odulatorschaltung PWM werden auf den gleichen Steuereingang der ersten elektronischen Schalteinrichtung ESI über eine nicht bezeichnete Diode der Nadelim- pulsschalteinrichtung NIS entsprechend Nadelimpulse eingekop- pelt, die den Ladekondensator CL entsprechend aufladen.
Zur Überwachung der Netzspannung steht die Gleichspannungs- versorgungseinrichtung SVE zusätzlich mit der Unterspannungsschutzschaltung USS in Verbindung, deren nicht bezeichnetes Ausgangssignal derart auf den Operationsverstärker OPV der Steuerschaltung STS einwirkt, daß beim Unterschreiten einer bestimmten Netzspannung die erste elektronische Schalteinrichtung ESI gesperrt ist. Mit der Sperrung der ersten elektronischen Schalteinrichtung ESI wird der Stromkreis des Schaltgerät-Magnetantriebs SMA unterbrochen. Damit ist si- chergestell , daß der Schaltgerät-Magnetantrieb SMA bei Unterschreitung einer bestimmten Netzspannung durch die entsprechende Auslösung vom Netz abgeschaltet wird. Weiterhin ist erkennbar, daß der zweite Referenzspannungswiderstand RS2 mit der dritten elektronischen Schalteinrichtung ES3 durch die Steuergeneratoreinrichtung SGE in einer bestimmten Taktfolge auf den Steuereingang des Operationsverstärkers OPV einwirkt. Mit der Taktfolge, die beispielsweise für 150 Millisekunden wirksam geschaltet ist und sich anschließend nach jeweils 8 Sekunden wiederholt, wird mit der taktweisen Parallelschaltung der Referenzspannungswiderstände RI, R2 beim Einschaltvorgang der Schaltgerät-Magnetantrieb SMA mit einem gegenüber seinem Haltestrom entsprechend hohen Anzugsstrom betätigt. Diese Schaltmaßnahme sichert auch bei stärkeren mechanischen Beanspruchungen, wie sie insbesondere in Kurzschlußfällen auftreten können, einen sicheren Schalt- Vorgang, nämlich ein sicheres Auslösen des Schaltgerät- Magnetantriebs SMA beim Netzkurzschluß.
Die Figur 2 zeigt eine besondere Ausführungεform der Meßwi- derstandseinheit MWE, in Form einer besonderen Widerstands- Dioden-Kombination. Hier sind zwei unterschiedlich große Widerstände, der erste und der zweite Widerstand RI und R2, in Reihe geschaltet und zusätzlich dem höherohmigen ersten Widerstand RI die Diode DI parallel geschaltet. Regelt die Me- ßumschalteeinrichtung MUE, die dann als Ersatz für die dritte elektronische Schalteinrichtung ES3 unter dem Steuereinfluß der Steuergeneratoreinrichtung SGE steht, den Laststrom für den Schaltgerät-Magnetantrieb SMA auf einen hohen Wert, also auf den Anzugsstrom, so bildet die Diode DI für den höhe- rohmigen ersten Widerstand RI einen Nebenschluß und entlastet diesen entsprechend. Durch die Auswahl des Widerstandsverhältnisses der beiden in Reihe geschalteten Widerstände, erster Widerstand RI und zweiter Widerstand R2, ist der Regelbereich der sogenannten Sparschaltung zur Betätigung des Schaltgerät-Magnetantriebs SMA in weiten Grenzen wählbar.

Claims

Patentansprüche
1. Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs aus einer Gleichspannungsversorgungsein- richtung mittels einer elektronischen Schalteinrichtung, die durch von einer Steuerschaltung bereitgestellten Steuersignale nach dem Prinzip eines Pulsweitenmodulators taktweise freigeben ist, wobei die Dauer und/oder die Frequenz der Steuersignale durch eine Meßspannung veränderbar sind, die an einer mit dem Magnetantrieb in Reihe liegenden Meßwiderstandseinheit abfällt, g e k e n n z e i c h n e t d u r c h die Merkmale
1.1 die an der Meßwiderstandseinheit (MWE) abgreifbare Spannung ist mittels einer gleichfalls taktweise betätigbaren zweiten elektronischen Schalteinrichtung (ES2) einem Meß- spannungsspeicherkondensator (CMS) als Meßspannung (MSP) zufύhrbar,
1.2 die Meßspannung (MSP) und eine von der Gleichspan - nunnungsversorgungseinrichtung (SVE) über einen ersten und einen zweiten Referenzspannungswiderstand (RS1, RS2) erzeugte Referenzspannung (RSP) ist einem in der Steuerschaltung (STS) angeordneten Operationsverstärker (OPV) zuführbar,
1.3 die Steuerschaltung (STS) enthält eine Pul s weit enmodula- torschal tung (PWM) mit einem hochohmigen Widerstand (Rh) zur Steuerung von breiten Impulsen, dem ein niederohmiger Widerstand (Rn) in Reihe mit einer Zenerdiode (ZD) zur Steuerung von schmalen Impulsen parallelgeschaltet ist,
1.4 die Pulsweitenmodulatorschaltung (PWM) steht unter dem Steuereinfluß einer Nadeli pulsschalteinrichtung (NIS) ,
1.5 die Referenzspannung (RSP) ist durch eine Steuergeneratoreinrichtung (SGE) derart steuerbar, dass der Schaltgerät-Magnetantrieb (SMA) im Einschaltvorgang mit einem gegenüber seinem Haltestrom erhöhten Anzugsstrom ansteuer- bar und der Anzugsstrom periodisch wiederkehrend zum Schaltgerät -Magnetantrieb (SMA) übertragbar ist.
2. Schaltungsanordnung zur Energieversorgung eines Schaltge- rät-Magnetantriebs nach Anspruch 1, g e k e n n z e i c h n e t d u r c h die Merkmale
2.1 die Steuerschaltung (STS) steht derart mit einer von der Gleichspannungsversorgungseinrichtung (SVE) beeinflußbaren Unterspannungsschutzschaltung (USS) in Verbindung, daß mit dem Absinken der Gleichspannung unter einen bestimmten Grenzwert mit einem Ausgangssignal die erste elektronische Schalteinrichtung (ESI) gesperrt ist,
2.2 das Ausgangssignal ist an den Eingang des Operationsverstärkers (OVP) für die Referenzspannung (RSP) geführt.
3. Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs nach Anspruch 1 und den Ansprüchen 1 und 2, g e k e n n z e i c h n e t d u r c h das Merkmal 3.1 die Meßwiderstandseinheit (MWE) ist durch einen Festwiderstand gebildet .
4. Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs nach Anspruch 1 und den Ansprüchen 1 und 2, g e k e n n z e i c h n e t d u r c h die Merkmale
4.1 die Meßwiderstandseinheit (MWE) ist durch eine Reihenschaltung von einem ersten und einem zweiten Widerstand (RI und R2) mit unterschiedlichem Widerstandswert gebil- det,
4.2 dem hόherohmigen ersten Widerstand (RI) ist eine Diode (DI) als Nebenschluß parallelgeschaltet,
4.3 die Meßwiderstandseinheit (MWE) ist durch eine Meßumschalteeinrichtung (MUE) derart steuerbar, daß bei einer ersten Schaltstellung derselben unterhalb des Wertes der Durchschaltespannung der Diode (DI) die Reihenschaltung des ersten und zweiten Widerstands (RI, R2) und in einer zweiten Schaltstellung derselben der zweite Widerstand (R2) wirksam geschaltet ist, 4.4 die Meßumschalteeinrichtung (MUE) ist von der Steuergeneratoreinrichtung (SGE) steuerbar.
PCT/DE1997/002217 1996-09-24 1997-09-24 Schaltungsanordnung zur energieversorgung eines schaltgerät-magnetantriebs WO1998013847A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19641188.2 1996-09-24
DE1996141188 DE19641188C1 (de) 1996-09-24 1996-09-24 Schaltungsanordnung zur Energieversorgung eines Schaltgerät-Magnetantriebs

Publications (1)

Publication Number Publication Date
WO1998013847A1 true WO1998013847A1 (de) 1998-04-02

Family

ID=7808002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002217 WO1998013847A1 (de) 1996-09-24 1997-09-24 Schaltungsanordnung zur energieversorgung eines schaltgerät-magnetantriebs

Country Status (2)

Country Link
DE (1) DE19641188C1 (de)
WO (1) WO1998013847A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064837A2 (en) * 2005-11-30 2007-06-07 Electric Power Research Institute, Inc. A multifunction hybrid solid-state switchgear

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935043B4 (de) * 1999-07-26 2005-12-01 Moeller Gmbh Schaltungsanordnung zur elektronischen Steuerung einer Antriebsspule
DE10130335C1 (de) * 2001-06-26 2003-02-13 Zf Lemfoerder Metallwaren Ag Ver- und Entriegelungsmechanismus mit Elektromagnet
DE10134346B4 (de) * 2001-07-14 2010-07-15 K.A. Schmersal Gmbh & Co Vorrichtung zur Ansteuerung eines Elektromagneten
JP4692813B2 (ja) 2005-05-13 2011-06-01 Smc株式会社 電磁弁駆動制御装置
DE102007046634B3 (de) * 2007-09-27 2009-05-28 Moeller Gmbh Spannungsversorgung für ein spannungs- oder stromauslösendes Schaltgerät sowie deren Verwendung in einem solchen Schaltgerät und Verfahren zur Spannungsversorgung für ein solches Schaltgerät
DE102008018260A1 (de) * 2008-03-31 2009-10-08 Siemens Aktiengesellschaft Steuergerät für einen elektromechanischen Antrieb und Verfahren zum Betreiben eines elektromechanischen Antriebs
CN113611572B (zh) * 2021-10-08 2022-02-01 南京全宁电器有限公司 一种接触器的节能控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344662A1 (de) * 1983-12-09 1985-06-13 Mannesmann Rexroth GmbH, 8770 Lohr Schaltungsanordnung zur ansteuerung eines magnetventils, insbesondere fuer kraftstoffeinspritzventile
WO1986001332A1 (fr) * 1984-08-03 1986-02-27 La Telemecanique Electrique Dispositif de commande d'une bobine d'electroaimant et appareil electrique de communication equipe d'un tel dispositif
EP0351451A2 (de) * 1988-07-20 1990-01-24 VDO Adolf Schindling AG Schaltungsanordnung zur Regelung eines pulsierenden Stroms
DE9409759U1 (de) * 1993-06-25 1994-10-27 Siemens Ag Schaltungsanordnung zur Realisierung eines konstanten Schütz-Haltestroms
DE4329917A1 (de) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Schaltungsanordnung zur getakteten Versorgung eines elektromagnetischen Verbrauchers
GB2295060A (en) * 1994-11-02 1996-05-15 Perkins Ltd PLL control of pulse width modulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29503146U1 (de) * 1995-02-24 1995-04-13 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Schützes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344662A1 (de) * 1983-12-09 1985-06-13 Mannesmann Rexroth GmbH, 8770 Lohr Schaltungsanordnung zur ansteuerung eines magnetventils, insbesondere fuer kraftstoffeinspritzventile
WO1986001332A1 (fr) * 1984-08-03 1986-02-27 La Telemecanique Electrique Dispositif de commande d'une bobine d'electroaimant et appareil electrique de communication equipe d'un tel dispositif
EP0351451A2 (de) * 1988-07-20 1990-01-24 VDO Adolf Schindling AG Schaltungsanordnung zur Regelung eines pulsierenden Stroms
DE9409759U1 (de) * 1993-06-25 1994-10-27 Siemens Ag Schaltungsanordnung zur Realisierung eines konstanten Schütz-Haltestroms
DE4329917A1 (de) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Schaltungsanordnung zur getakteten Versorgung eines elektromagnetischen Verbrauchers
GB2295060A (en) * 1994-11-02 1996-05-15 Perkins Ltd PLL control of pulse width modulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064837A2 (en) * 2005-11-30 2007-06-07 Electric Power Research Institute, Inc. A multifunction hybrid solid-state switchgear
WO2007064837A3 (en) * 2005-11-30 2008-01-10 Electric Power Res Inst A multifunction hybrid solid-state switchgear
US7405910B2 (en) * 2005-11-30 2008-07-29 Electric Power Research Institute, Inc. Multifunction hybrid solid-state switchgear

Also Published As

Publication number Publication date
DE19641188C1 (de) 1998-01-08

Similar Documents

Publication Publication Date Title
EP0006843B2 (de) Magnetventil mit elektronischer Steuerung
EP0220408B1 (de) Selbstüberwachender Fehlerstromschutzschalter
EP0705482B1 (de) Schaltungsanordnung zur ansteuerung eines schützes
DE4210216C3 (de) Überwachungsschaltung für computergesteuerte Sicherheitsgeräte
WO1998013847A1 (de) Schaltungsanordnung zur energieversorgung eines schaltgerät-magnetantriebs
DE2505661C2 (de) Vorrichtung zum Überprüfen der einwandfreien Funktion eines elektromagnetischen Stellgliedes mit Spule
EP0471891A2 (de) Schaltungsanordnung zur Ansteuerung einer Gruppe von Relais
DE19522582C2 (de) Schaltungsanordnung zum Betrieb eines Elektromagneten
DE2065765C3 (de) Anordnung zur Steuerung der Drehzahl und der Drehrichtung eines Gleichstrommotors
EP1341202A1 (de) Vorrichtung zur Ansteuerung eines elektromagnetischen Stellgliedes
EP2663090A2 (de) Verfahren zum Übertragen von Zusatzinformationen des Akkupacks
EP0989784B1 (de) Schaltung sowie Kalibrierungs- und Betriebsverfahren eines PWM-Schaltnetzteils für Niedervoltlampen
DE3331678C2 (de)
DE102015009662B3 (de) Vorrichtung und Verfahren zum Betreiben eines elektronischen Geräts mit wenigstens einem elektrischen Verbraucher
DE3738493C2 (de) Fehlerortungseinrichtung
WO2010066270A1 (de) Elektrowerkzeuggerät für den betrieb mit wechselstrom
EP1206788A1 (de) Schaltungsanordnung zum betrieb eines relais
DE102018215756A1 (de) Motorvorrichtung für einen Schalterantrieb eines elektrischen Schalters und Verfahren zu dessen Betrieb
EP1028866A1 (de) Linearantriebssystem
DE4419958C1 (de) Schaltungsanordnung zur redundanten Stromversorgung
AT506138B1 (de) Verfahren zur erkennung der betätigung eines bedienelements einer bedienfront und bedienfront mit zumindest einem bedienelement
EP0345624B1 (de) Schaltungsanordnung zur Entnahme von im wesentlichen rein sinusförmigem, netzfrequentem Strom aus Wechselspannungsnetzen und zur Überführung der entnommenen elektrischen Energie in galvanisch verbundene Gleichspannungssysteme
EP1051786B1 (de) Schutzschaltungsanordnung
DE3919996A1 (de) Verfahren zur steuerung einer zentralverriegelungsanlage in einem kraftfahrzeug und zentralverriegelungsanlage
DE3511967A1 (de) Einrichtung zur kontrolle von elektrischen verbrauchern in kraftfahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998515170

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase