EP0006843B2 - Magnetventil mit elektronischer Steuerung - Google Patents

Magnetventil mit elektronischer Steuerung Download PDF

Info

Publication number
EP0006843B2
EP0006843B2 EP78100313A EP78100313A EP0006843B2 EP 0006843 B2 EP0006843 B2 EP 0006843B2 EP 78100313 A EP78100313 A EP 78100313A EP 78100313 A EP78100313 A EP 78100313A EP 0006843 B2 EP0006843 B2 EP 0006843B2
Authority
EP
European Patent Office
Prior art keywords
voltage
magnetic valve
resistor
current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100313A
Other languages
English (en)
French (fr)
Other versions
EP0006843B1 (de
EP0006843A1 (de
Inventor
Heinrich Dipl. Ing. Dettmann
Wolfgang Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buerkert GmbH
Burkert GmbH
Original Assignee
Buerkert GmbH
Burkert GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8185903&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0006843(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Buerkert GmbH, Burkert GmbH filed Critical Buerkert GmbH
Priority to DE7878100313T priority Critical patent/DE2862229D1/de
Priority to EP78100313A priority patent/EP0006843B2/de
Priority to IT24137/79A priority patent/IT1162555B/it
Priority to US06/055,930 priority patent/US4291358A/en
Publication of EP0006843A1 publication Critical patent/EP0006843A1/de
Publication of EP0006843B1 publication Critical patent/EP0006843B1/de
Application granted granted Critical
Publication of EP0006843B2 publication Critical patent/EP0006843B2/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1838Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current by switching-in or -out impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/223Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil adapted to be supplied by AC

Definitions

  • the invention relates to a solenoid valve with an electronic control circuit, which generates a control signal by means of which an increased excitation current from a power supply source of the excitation coil in the starting phase via a closed transistor switch and in the holding phase via a series resistor which is connected in parallel with the transistor switch then opened, a holding current which is lower than the excitation current is supplied, and with a timer and a resistor containing a capacitor upstream of the control electrode of the transistor switch.
  • Solenoid valves of this type with electronic control are known from US Pat. No. 3,852,646. With these solenoid valves, an increased current is briefly passed through the excitation coil to increase the pulling force. To overcome the inertia of the moving parts of the solenoid valve and the spring force of the normally provided return spring, a much higher energy is required than to keep the valve in its switched-on state. The current requirement for fast and safe tightening of the solenoid valve is further increased by the fact that the induction of the excitation coil is substantially less in the rest position of the armature than in its working position.
  • the holding current can be selected to be substantially lower, so that the heating of the solenoid valve can be kept below the permissible maximum limit, which is often around 80 ° C., even with a long duty cycle.
  • Another advantage of this measure is that the switching behavior of the solenoid valves is improved as a result of the increase in the tightening force. In particular, shorter switching times can be achieved.
  • the series resistor is bridged by a transistor switch during the pull-in phase.
  • the transistor switch is driven by a time-delaying resistor-capacitor element, which supplies a drive signal to the control electrode of the transistor switch for the duration of its time constant, so that it switches through during the period determined by the time element and bridges the series resistor.
  • the timing element itself is supplied with a negative control signal via a switching transistor or with a positive control signal via a further switching transistor.
  • solenoid valves with electronic control for increasing the pulling power are known, in which a controllable rectifier is connected in series with the excitation coil.
  • the ignition timing of the controllable rectifier is changed by a phase control so that the ignition occurs earlier during the pull-in phase and later during the hold phase.
  • This solution which is known for example from DE-OS 25 11 564 or DE-OS 20 23 108, has the defect that an AC voltage or pulsating DC voltage or an additional clock generator is required as the operating voltage.
  • a delay circuit for driving a relay which has a timing element, which consists of a series connection of resistor and capacitor, which is between two Operating voltage lines is connected, which carry a stabilized voltage, which is obtained by a series resistor in the one operating voltage line and a Zener diode arrangement connected in parallel.
  • This known circuit arrangement is intended to delay the switching on of a relay.
  • the object of the invention is to provide a solenoid valve with an electronic control circuit for a brief increase in the starting power, which apart from the operating voltage does not require a separate control signal.
  • a solenoid valve with electronic control circuit of the type described in the introduction which is characterized according to the invention in that a voltage limiter element containing a voltage divider is connected to the lines supplying the operating voltage of the excitation coil, the voltage supply of which is connected to the tap when the control circuit is applied said control signal is removed that between the timing element and the control electrode of the transistor switch, a current amplification element designed as a Darlington transistor is connected, the base of which is connected to the connection point between the capacitor and resistor, the collector of which is connected to a control terminal of the switch and the emitter of which is connected directly to the circuit zero .
  • control voltage acting on the timing element is obtained from the operating voltage itself, a separate control signal and thus also a separate control line can be dispensed with.
  • a full-wave rectifier is connected upstream of the electronic control.
  • the solenoid valve can be operated not only with alternating current or with direct current, but also with any polarity of the direct voltage.
  • a smoothing device in the form of a smoothing capacitor can be assigned to the voltage limiter element.
  • the series resistor is designed as a resistance wire, which forms part of the excitation winding.
  • the series resistor thus contributes to the number of ampere turns of the excitation coil.
  • the size of the actual excitation coil can be reduced or the holding current and the holding power can be reduced if the size remains the same.
  • the measure results in less heating of the solenoid valve during the holding phase.
  • the electronic control of the solenoid valve shown in Figure 1 consists essentially of a full-wave rectifier G1, a voltage limiter circuit with a resistor R1 and a Zener diode D1, a timing element from a resistor R2 and a capacitor C2, a current amplification element T1, which acts as a Darlington transistor is formed, an electronic switch, which is formed from two transistors T2, T3 in a Darlington circuit, and a series resistor RV.
  • the operating voltage is supplied via the AC connections of the full-wave rectifier via lines 1 and 2.
  • the positive connection of the full-wave rectifier G1 is connected via a line 3 to a connection of the excitation coil AE, while the other connection of the excitation coil is connected to the interconnected collectors of the transistors T2, T3.
  • the emitter of the transistor T2 is connected via a line 4 to the negative terminal of the full-wave rectifier G1.
  • the collector-emitter path of the transistor T2 is bridged by a series resistor RV.
  • the excitation coil AE is therefore in series with the transistor T2 and the series resistor R4 connected in parallel with it.
  • the base of the transistor T3 is connected to the positive line 3 via a resistor R4. Furthermore, the base of the transistor T3 is connected to the common collector of the Darlington transistor T1, the. Emitter is connected to the negative line 4.
  • the base of the Darlington transistor T1 is connected via a resistor R3 to the connection point between the resistor R2 and the capacitor C2.
  • the electronic control for the solenoid valve operates as follows: To actuate the solenoid valve, an operating voltage is applied to lines 1, 2, which can be AC voltage or DC voltage with any polarity. This voltage reaches the full-wave rectifier G1 and the lines 3, 4 to the series connection of the excitation coil AE and the transistor T2 with the series resistor RV connected in parallel.
  • the base of transistor T3 receives a positive voltage via resistor R4, transistor T3 becomes conductive and also drives transistor T2 into its conductive state. Only a small voltage of a few tenths of a volt drops across the collector-emitter path of the transistor T2, so that the excitation coil AE is practically subjected to the full operating voltage.
  • the charging of the capacitor C2 begins via the resistor R2 to a voltage which is determined by the zener diode D1.
  • This voltage is smoothed by a capacitor C1 which is connected in parallel to the zener diode D1.
  • the voltage of the capacitor C2 passes through the resistor R3 to the base of the Darlington transistor T1.
  • this voltage reaches a certain value, namely the base-emitter voltage of the Darlington transistor T1
  • the Darlington transistor T1 is turned on and the voltage at the base of transistor C3 drops so much that transistor T3 is turned off, thereby also controlling transistor T2 to its non-conductive state.
  • the series resistor RV is fully effective for limiting the current flowing in the excitation winding AE.
  • a capacitor C3 which bridges the collector-base path. Furthermore, a series circuit comprising a freewheeling diode D2 and a zener diode D3 is provided in parallel with the excitation winding, the diodes having opposite polarity. These diodes are used to reduce the switch-off voltage peaks.
  • the diode D2 blocks the current flow during the switch-off process at a reverse voltage of approximately 0.8 volts, which results in a slowdown in the switch-off process of the magnet system.
  • Zener diode D3 raises this relatively low reverse voltage from 0.8 to, for example, 30 volts, which reduces the delay in decay of the magnet system.
  • the Zener diode D3 can also be omitted, but it is particularly useful when operating at relatively high supply voltages.
  • the control current to be applied by the timing element is reduced to a very low value.
  • the resistor R2 can therefore be selected to be relatively large, while the capacitor C2 can be selected to be relatively small. This enables a space-saving design which enables the electronic control circuit to be installed in a cavity of the solenoid valve.
  • the capacitor C2 can also be designed for low voltages and can thereby be further reduced. Because of the voltage limitation, a relatively inexpensive version can also be chosen for the Darlington transistor T1, since a low reverse voltage is sufficient.
  • the ratio of the pull-in current to the holding current or pull-in power to the holding power can be determined.
  • the solenoid valve shown in FIG. 2 contains a valve body 5 and an electromagnet 6 for actuating the valve via a plunger armature 7, which is connected via a rod 8 to the valve plate 9 of the solenoid valve.
  • the electromagnet 6 contains a cylindrical excitation coil 10, in which the armature 7 can dip. The armature 7 is pressed into its rest position by a return spring 11.
  • the winding of the excitation coil consists of two parts, a first part 10a and a second part 10b.
  • the first part 10a is the actual action, which consists for example of enamelled copper wire.
  • the second part 10b is formed by the series resistor RV, which is designed for this purpose as a resistance wire.
  • the series resistor RV thus contributes to the number of ampere turns. Therefore, the holding current can be reduced for a given volume of the electromagnet. This is particularly advantageous if the solenoid valve is operated with direct current. To drop the armature, a remanence force must be overcome, which is caused by the return spring 11.
  • the return spring must be chosen stronger in DC systems than in AC systems, so that an increased holding power is required. For this reason, winding the series resistor as a resistance wire has a particularly positive effect on the excitation winding in direct current solenoid valves.
  • the electronic control of the direct current valve according to the invention can be built up in an extremely space-saving manner. It can be accommodated, for example, in a cavity 12 of the solenoid valve and cast with potting compound, for example epoxy resin.
  • the inventive design of the overexcitation of the magnetic coil can be used not only with seat valves of the type shown in FIG. 2, but also with other, in particular also with hinged armature valves, with advantage.

Description

  • Die Erfindung betrifft ein Magnetventil mit elektronischer Steuerschaltung, die ein Steuersignal erzeugt, durch welches aus einer Stromversorgungsquelle der Erregungsspule in der Anzugsphase über einen geschlossenen Transistorschalter ein erhöhter Erregungsstrom und in der Haltephase über einen zu dem dann geöffneten Transistorschalter parallelgeschalteten Vorwiderstand ein gegenüber dem Erregungsstrom erniedrigter Haltestrom zugeführt wird, und mit einem einen Widerstand und einen Kondensator enthaltenden, der Steuerelektrode des Transistorschalters vorgeschalteten Zeitglied.
  • Derartige Magnetventile mit elektronischer Steuerung sind aus der US-PS 3 852 646 bekannt. Bei diesen Magnetventilen wird zur Steigerung der Anzugkraft kurzzeitig ein erhöhter Strom durch die Erregerspule geleitet. Zur Überwindung der Massenträgheit der bewegten Teile des Magnetventils und der Federkraft der normalerweise vorgesehenen Rückstellfeder ist eine wesentlich höhere Energie erforderlich als zumn Halten des Wentils in seinem eingeschalteten Zustand. Der Strombedarf zum schnellen und sicheren Anziehen des Magnetventils wird weiter dadurch erhöht, daß in der Ruhestellung des Ankers die Induktion der Erregerspule wesentlich geringer ist als in seiner Arbeitsstellung. Durch die kurzzeitige Steigerung des durch die Erregerspule geleiteten Stromes kann also der Haltestrom wesentlich niedriger gewählt werden, so daß die Erwärmung des Magnetventils auch bei langer Einschaltdauer unter der zuslässigen Höchstgrenze gehalten werden kann, die häufig bei etwa 80° C liegt. Ein weiterer Vorteil dieser Maßnahme besteht darin, daß durch die damit erreichte Anzugkrafterhöhung auch das Schaltverhalten der Magnetventile verbessert wird. Insbesondere können kürzere Schaltzeiten erreicht werden.
  • Bei dem Magnetventil nach der erwähnten US-PS 3 852 646 wird der Vorwiderstand während der Anzugphase durch einen Transistorschalter überbrückt. Der Transistorschalter wird über ein zeitverzögerndes Widerstands-Kondensator-Glied angesteuert, das für die Dauer seiner Zeitkonstante ein Ansteuersignal an die Steuerelektrode des Transistorschalters liefert, so daß dieser während der durch das Zeitglied bestimmten Zeitspanne durchschaltet und den Vorwiderstand überbrückt. Das Zeitglied selbst wird über einen Schalttransistor mit einem negativen oder über einen weiteren Schalttransistor mit einem positiven Ansteuersignal beaufschlagt. Für den Betrieb dieser bekannten Anordnung ist somit neben einer ständig angelegten Stromversorgungsspannung eine zusätzliche positive oder negative Ansteuerspannung erforderlich, und um die Betriebsspannung und das Ansteuersignal zuführen zu können ist eine mindestens dreiadrige Leitung erforderlich. Dadurch wird der Materialaufwand beträchtlich erhöht.
  • Ferner sind Magnetventile mit elektronischer Steuerung zur Steigerung der Anzugleistung bekannt, bei denen ein steuerbarer Gleichrichter in Reihe mit der Erregerspule liegt. Durch eine Phasenanschnittsteuerung wird der Zündzeitpunkt des steuerbaren Gleichrichters derart verändert, daß während der Anzugphase die Zündung früher und während der Haltephase später erfolgt. Diese Lösung, die beispielsweise aus der DE-OS 25 11 564 oder der DE-OS 20 23 108 bekannt ist, weist den Mangel auf, daß als Betriebsspannung eine Wechselspannung oder pulsierende Gleichspannung oder aber ein zusätzlicher Taktgenerator erforderlich ist.
  • Aus dem Standardschaltungsbuch "Schaltungen mit Halbleiterbauelementen", Bd. 2, 5. Auflage, 1965, Seiten 107 bis 109 ist eine Verzögerungsschaltung zum Ansteuern eines Relais bekannt, die ein Zeitglied aufweist, welches aus einer Reihenschaltung von Widerstand und Kondensator besteht, die zwischen zwei Betriebsspannungsleitungen geschaltet ist, welche eine stabilisierte Spannung führen, die durch einen Längswiderstand in der einen Betriebsspannungsleitung und eine parallel geschaltete Zenerdiodenanordnung gewonnen wird. Durch diese bekannte Schaltungsanordnung soll ein verzögertes Einschalten eines Relais erfolgen.
  • Aufgabe der Erfindung ist es, ein Magnetventil mit elektronischer Steuerschaltung zur kurzzeitigen Steigerung der Anzugsleistung zu schaffen, das außer der Betriebsspannung kein getrenntes Ansteuersignal benötigt.
  • Diese Aufgabe wird durch ein Magnetventil mit elektronischer Steuerschaltung der eingangs beschriebenen Art gelöst, die gemäß der Erfindung dadurch gekennzeichnet ist, daß an die die Betriebsspannung der Erregerspule zuführenden Leitungen ein ein Spannungsbegrenzerelement enthaltender Spannungsteiler geschaltet ist, an dessen Abgriff beim Anlegen der Steuerschaltung die Spannungsversorgung das genannte Steuersignal abgenommen wird, daß zwischen das Zeitglied und die Steuerelektrode des Transistorschalters ein als Darlington-Transistor ausgebildetes Stromverstärkungselement geschaltet ist, dessen Basis mit dem Verbindungspunkt zwischen Kondensator und Widerstand, dessen Kollektor mit einem Steueranschluß des Schalters und dessen Emitter unmittelbar mit dem Schaltungsnullpunkt verbunden ist.
  • Da bei der erfindungsgemäßen Anordnung die das Zeitglied beaufschlagende Ansteuerspannung aus der Betriebsspannung selbst gewonnen wird, kann ein getrenntes Ansteuersignal und somit auch eine getrennte Ansteuerleitung entfallen.
  • Für den Betrieb des Magnetventils an einer Wechselspannung ist gemäß einer zweckmäßigen Ausführungsform der Erfindung der elektronischen Steuerung ein Vollweg-Gleichrichter vorgeschaltet. Dadurch kann der Betrieb des Magnetventils nicht nur wahlweise mit Wechselstrom oder mit Gleichstrom, sondern auch mit beliebiger Polung der Gleichspannung erfolgen.
  • Dem Spannungsbegrenzerelement kann eine Glättungseinrichtung in Form eines Glättungskondensators zugeordnet sein.
  • Gemäß einer besonders vorteilhaften Ausführungsform der Erfindung ist der Vorwiderstand als Widerstandsdraht ausgebildet, der einen Teil der Erregerwicklung bildet. Der Vorwiderstand trägt auf diese Weise zu der Amperewindungszahl der Erregerspule bei. Dadurch kann die Größe der eigentlichen Erregerspule reduziert werden bzw. bei gleichbleibender Größe der Haltestrom und die Halteleistung reduziert werden. Ferner ergibt sich durch die Maßnahme eine geringere Erwärmung des Magnetventils während der Haltephase.
  • Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispieles anhand der Zeichnung. In der Zeichnung zeigen:
    • Figur 1 ein Schaltbild einer elektronischen Steuerung des Magnetventils; und
    • Figur 2 einen Querschnitt eines Magnetventils, das bei diesem Beispiel ein Sitzventil ist.
  • Die in Figur 1 gezeigte elektronische Steuerung des Magnetventils besteht im wesentlichen aus einem Vollweg-Gleichrichter G1, einer Spannungsbegrenzerschaltung mit einem Widerstand R1 und einer Zenerdiode D1, einem Zeitglied aus einem Widerstand R2 und einem Kondensator C2, einem Stromverstärkungselement T1, das als Darlington-Transistor ausgebildet ist, einem elektronischen Schalter, der aus zwei Transistoren T2, T3 in Darlington-Schaltung ausgebildet ist, und einem Vorwiderstand RV. Die Betriebsspannung wird über die Wechselstromanschlüsse des Vollweg-Gleichrichters über Leitungen 1 und 2 zugeführt. Der positive Anschluß des Vollweg-Gleichrichters G1 ist über eine Leitung 3 an einem Anschluß der Erregerspule AE geführt, während der andere Anschluß der Erregerspule mit den miteinander verbundenen Kollektoren der Transistoren T2, T3 verbunden ist. Der Emitter des Transistors T2 ist über eine Leitung 4 mit dem negativen Anschluß des Vollweg-Gleichrichters G1 verbunden. Die Kollektor-Emitter-Strecke des Transistors T2 ist durch einen Vorwiderstand RV überbrückt. Die Erregerspule AE liegt also in Reihe mit dem Transistor T2 und dem dazu parallelgeschalteten Vorwiderstand R4. Die Basis des Transistors T3 ist über einen Widerstand R4 mit der positiven Leitung 3 verbunden. Ferner ist mit der Basis des Transistors T3 der gemeinsame Kollektor des Darlington-Transistors T1 verbunden, dessen. Emitter mit der negativen Leitung 4 verbunden ist. Die Basis des Darlington-Transistors T1 ist über einen Widerstand R3 mit dem Verbindungspunkt zwischen dem Widerstand R2 und dem Kondensator C2 verbunden.
  • Die Arbeitsweise der beschriebenen elektronischen Steuerung für das erfindungsgemäße Magnetventil ist folgende: Zur Betätigung des Magnetventils wird an die Leitungen 1, 2 eine Betriebsspannung angelegt, bei der es sich um Wechselspannung oder Gleichspannung mit beliebiger Polung handeln kann. Diese Spannung gelangt über den Vollweg-Gleichrichter G1 und die Leitungen 3, 4 zu der Reihenschaltung aus der Erregerspule AE und dem Transistor T2 mit dem dazu parallelgeschalteten Vorwiderstand RV. Über den Widerstand R4 erhält die Basis des Transistors T3 eine positive Spannung, der Transistor T3 wird leitend und treibt den Transistor T2 ebenfalls in seinen leitenden Zustand. An der Kollektor-Emitter-Strecke des Transistors T2 fällt somit nur eine geringe Spannung von einigen Zehntel Volt ab, so daß die Eregerspule AE praktisch mit der vollen Betriebsspannung beaufschlagt wird. Gleichzeitig beginnt die Aufladung des Kondensators C2 über den Widerstand R2 auf eine Spannung, die durch die Zenerdiode D1 festgelegt wird. Diese Spannung wird durch einen Kondensator C1, der zu der Zenerdiode D1 parallelgeschaltet ist, geglättet. Die Spannung des Kondensators C2 gelangt über den Widerstand R3 zur Basis des Darlington-Transistors T1. Sobald diese Spannung einen bestimmten Wert erreicht, nämlich die Basis-Emitter-Spannung des Darlington-Transistors T1, wird dieser leitend. Dadurch erniedrigt sich die positive Spannung an der Basis des Transistors T3. Bei waiterer Zunahme der Spannung des Kondensators C2 wird der Darlington-Transistor T1 durchgeschaltet, und die Spannung an der Basis des Transistors C3 sinkt so weit ab, daß der Transistor T3 gesperrt wird, wodurch auch der Transistor T2 in seinen nichtleitenden Zustand gesteuert wird. Dadurch wird der Vorwiderstand RV zur Begrenzung des in der Erregerwicklung AE fließenden Stromes voll wirksam.
  • Zur Beeinflussung des Schaltverhaltens des Darlington-Transistors T1 ist ein Kondensator C3 vorgesehen, der die Kollektor-Basis-Strecke überbrückt. Ferner ist parallel zu der Erregerwicklung eine Reihenschaltung aus einer Freilaufdiode D2 und einer Zenerdiode D3 vorgesehen, wobei die Dioden entgegengesetzt gepolt sind. Diese Dioden dienen zur Reduzierung der Abschaltsspannungsspitzen.
  • Die Diode D2 sperrt den Stromlauf beim Abschaltvorgang bei einer Sperrspannung von etwa 0,8 Volt, wodurch sich eine Verlangsamung des Abschaltvorganges des Magnetsystems ergibt. Durch die Zenerdiode D3 wird diese relativ niedrige Sperrspannung von 0,8 auf beispielsweise 30 Volt angehoben, wodurch die Abfallverzögerung des Magnetsystems reduziert wird. Die Zenerdiode D3 kann auch entfallen, sie ist jedoch besonders beim Betrieb an relativ hohen Versorgungsspannungen zweckmäßig.
  • Zum Schutz des Magnetventils gegen überhöhte Temperaturen sind derner in die Leitung 2 zwei Thermoschalter Th1 und Th2 geschaltet, die den Stromkreis beim Erreichen einer definierten Temperatur unterbrechen.
  • Durch die Verwendung eines Stromverstärkungselements in Form eines Darlington-Transistors wird der von dem Zeitglied aufzubringende Steuerstrom auf einen sehr niedrigen Wert reduziert. Daher kann der Widerstand R2 relativ groß, der Kondensator C2 hingegen relativ klein gewählt werden. Dadurch wird eine platzsparende Bauweise ermöglicht, die den Einbau der elektronischen Steuerschaltung in einen Hohlraum des Magnetventils ermöglicht. Wegen der Spannungsbegrenzung durch die Zenerdiode D1 auf beispielsweise 6,8 Volt kann der Kondensator C2 ferner für niedrige Spannungen ausgelegt und dadurch weiter verkleinert werden. Wegen der Spannungsbegrenzung kann ferner für den Darlington-Transistor T1 eine relativ kostengünstige Ausführung gewählt werden, da eine niedrige Sperrspannung ausreicht.
  • Durch Bemessung des Verhäitnisses zwischen dem Widerstand der Erregerspule AE und dem Wert des Vorwiderstandes RV kann das Verhältnis vom Anzugstrom zu Haltestrom bzw. Anzugleistung zu Halteleistung bestimmt werden.
  • Das in Figur 2 gezeigte Magnetventil enthält einen Ventilkörper 5 und einen Elektromagneten 6 zur Betätigung des Ventils über einen Tauchanker 7, der über eine Stange 8 mit der Ventilplatte 9 des Magnetventils verbunden ist. Der Elektromagnet 6 enthält eine zylindrische Erregerspule 10, in die der Anker 7 eintauchen kann. Der Anker 7 wird durch eine Rückstellfeder 11 in seine Ruhestellung gedrückt.
  • Die Wicklung der Erregerspule besteht aus zwei Teilen, einem ersten Teil 10a und einem Zweiten Teil 10b. Der erste Teil 10a ist die eigentliche Wirklung, die beispielsweise aus lackisoliertem Kupferdraht besteht. Der zweite Teil 10b wird durch den Vorwiderstend RV gebildet, der zu diesem Zweck als Widerstandsdraht ausgeführt ist. Der Vorwiderstand RV trägt auf diese Weise zu der Amperewindungszahl bei. Daher kenn bei vorgegebenem Volumen des Elektromagneten der Haltestrom reduziert werden. Dies ist besonders vorteilhaft, wenn das Magnetventil mit Gleichstrom betrieben wird. Zum Abfallen des Ankers muß eine Remanenzkraft überwunden werden, was durch die Rückstellfeder 11 bewirkt wird. Die Ruckstellfeder muß bei Gleichstromsystemen stärker gewählt werden als bei Wechselstromsystemen, so daß eine erhöhte Halteleistung erforderlich ist. Aus diesem Grunde wirkt sich das Aufwickeln des Vorwiderstandes als Widerstandsdraht auf die Erregerwicklung besonders positiv bei Gleichstrom-Magnetventilen aus.
  • Die elektronische Steuerung des erfindungsgemäßen Gleichstromventils kann äußerst raumsparend audgebaut werden. Sie läßt sich beispielsweise in einem Hohlraum 12 des Magnetventils unterbringen und mit Vergußmasse, beispielsweise Epoxydharz, vergießen.
  • Die erfindungsgemäße Ausbildung der Übererregung der Magnetspule läßt sich nicht nur bei Sitzventilen der in Fig. 2 dargestellten Art, sondern auch bei anderen, insbesondere auch bei Klappanker-Ventilen mit Vorteil anwenden.

Claims (6)

1. Magnetventil mit elektronischer Steuerschaltung, die ein Steuersignal erzeugt, durch welches aus einer Stromversorgungsquelle der Erregungsspule in der Anzugsphase über einen geschlossenen Transistorschalter (T2, T3) ein erhöhter Erregungsstrom und in der Haltephase über einen zu dem dann geöffneten Transistorschalter (T2, T3) parallelgeschalteten Vorwiderstand (RV) ein gegenüber dem Erregungsstrom erniedrigter Haltestrom zugeführt wird, und mit einem einen Widerstand (R2) und einen Kondensator (C2) enthaltenden, der Steuerelektrode des Transistorschalters vorgeschalteten Zeitglied, dadurch gekennzeichnet, daß an die die Betriebsspannung der Erregerspule zuführenden Leitungen (3, 4) ein ein Spannungsbegrenzerelement (D1) enthaltender Spannungsteiler (R1, D1) geschaltet ist, an dessen Abgriff beim Anlegen der Steuerschaltung an die Spannungsversorgung das genannte Steuersignal abgenommen wird, daß zwischen das Zeitglied (R2, C2) und die Steuerelektrode des Transistorschalters (T2, T3) ein als Darlington-Transistor ausgebildetes Stromverstärkungselement (T1) geschaltet ist, dessen Basis mit dem Verbindungspunkt zwischen Kondensator (C2) und Widerstand (R2), dessen Kollektor mit einem Steueranschluß des Schalters (T2, T3) und dessen Emitter unmittelbar mit dem Schaltungsnullpunkt verbunden ist.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der elektronischen Steuerschaltung ein Vollweg-Gleichrichter (G1) vorgeschaltet ist, dessen Wechselspannungsanschlüsse mit der Betriebsspannungsquelle verbunden sind und dessen Gleichspannungsanschlüsse mit den die Betriebsspannung führenden Leitungen (3, 4) verbunden sind.
3. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß dem Spannungsbegrenzerelement (D1) eine Siebeinrichtung (C1) zur Glättung der begrenzten Spannung zugeordnet ist.
4. Magnetventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Vorwiderstand (RV) als Widerstandsdraht ausgebildet ist, der einen Teil der Erregerspule (AE) bildet.
5. Magnetventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zu der Erregerspule (AE) eine Reihenschaltung aus einer Freilaufdiode (D1) und einer dazu entgegengesetzt gepolten Zenerdiode (D3) parallelgeschaltet ist.
6. Magnetventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Schalter aus zwei Transistoren (T1, T3) gebildet ist, die in Darlington-Schaltung miteinander verbunden sind.
EP78100313A 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung Expired EP0006843B2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE7878100313T DE2862229D1 (en) 1978-07-06 1978-07-06 Electronically controlled magnetic valve
EP78100313A EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung
IT24137/79A IT1162555B (it) 1978-07-06 1979-07-05 Valvola elettromagnetica con comando elettronico
US06/055,930 US4291358A (en) 1978-07-06 1979-07-06 Magnetic valve with electronic control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP78100313A EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung

Publications (3)

Publication Number Publication Date
EP0006843A1 EP0006843A1 (de) 1980-01-23
EP0006843B1 EP0006843B1 (de) 1983-04-13
EP0006843B2 true EP0006843B2 (de) 1987-09-23

Family

ID=8185903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100313A Expired EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung

Country Status (4)

Country Link
US (1) US4291358A (de)
EP (1) EP0006843B2 (de)
DE (1) DE2862229D1 (de)
IT (1) IT1162555B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206419A1 (de) 2012-04-19 2013-10-24 Magna Powertrain Ag & Co. Kg Steuerung für ein Druckregelventil

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614101Y2 (de) * 1980-03-31 1986-02-07
US4409638A (en) * 1981-10-14 1983-10-11 Sturman Oded E Integrated latching actuators
JPS5954873A (ja) * 1982-09-21 1984-03-29 Aisin Seiki Co Ltd 電動式流量比例制御弁
IT1196706B (it) * 1984-05-31 1988-11-25 Ghisalba Spa Circuito di alimentazione perfezionato per contattore elettromagnetico
IT1218854B (it) * 1984-11-07 1990-04-24 Ates Componenti Elettron Circuito di comando, integrato monoliticamente, per la commutazione di transistori
JPS61140114A (ja) * 1984-12-12 1986-06-27 Koushinraido Hakuyo Suishin Plant Gijutsu Kenkyu Kumiai 電磁石駆動装置
DE4010232A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Einrichtung zum erkennen des schaltzustands eines stellglieds
DE4110411A1 (de) * 1990-04-05 1992-01-02 Merit Werk Merten & Co Kg Klappankerrelais, insbesondere fuer kraftfahrzeuge
US5281939A (en) * 1993-05-28 1994-01-25 Eaton Corporation Multiple pole solenoid using simultaneously energized AC and DC coils
DE29503146U1 (de) * 1995-02-24 1995-04-13 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Schützes
US5734543A (en) * 1996-03-27 1998-03-31 Clemson University Method and apparatus to improve the performance of AC solenoid devices during lapses in power quality
US5784244A (en) * 1996-09-13 1998-07-21 Cooper Industries, Inc. Current limiting circuit
TW506498U (en) * 1996-12-01 2002-10-11 Tadahiro Ohmi Fluid control valve and fluid supply/exhaust system
US5740005A (en) * 1997-04-29 1998-04-14 Chen; Chun-Chun Solenoid valve booster
US6280147B1 (en) 1998-10-13 2001-08-28 Liquid Metronics Incorporated Apparatus for adjusting the stroke length of a pump element
US6174136B1 (en) 1998-10-13 2001-01-16 Liquid Metronics Incorporated Pump control and method of operating same
US6264432B1 (en) 1999-09-01 2001-07-24 Liquid Metronics Incorporated Method and apparatus for controlling a pump
DE10212092A1 (de) * 2002-03-19 2003-10-09 Dbt Autom Gmbh Verfahren und Vorrichtung zum Betrieb eines Elektromagneten an einem eigensicheren Gleichstromkreis
DE202004004156U1 (de) * 2004-03-17 2005-08-04 Erben Kammerer Kg Schnell auslösendes Ventil
FR2887958B1 (fr) * 2005-07-01 2007-10-12 Prospection Et D Inv S Techniq Dispositif de reglage de commande de vanne pour appareil de fixation a gaz et l'appareil comportant le dispositif
FR2978862B1 (fr) 2011-08-01 2013-09-27 Legrand France Appareil electrique comportant deux bornes de commande pour mettre un organe mobile selectivement en position de repos et en position de travail
DE102012005595B4 (de) * 2012-03-20 2024-03-21 Festo Se & Co. Kg Magnetventil
DE102014210810B4 (de) * 2014-06-05 2021-12-02 Robert Bosch Gmbh Ansteuervorrichtung eines elektromagnetischen Aktuators für ein Rückhaltemittel
CN107830229A (zh) * 2017-12-08 2018-03-23 武汉浩宏科技有限公司 电磁阀分压电路及系统、冲击波治疗机
EP4068602A1 (de) * 2021-03-30 2022-10-05 Siemens Aktiengesellschaft Kondensatorvorrichtung, umrichtermodul mit kondensatorvorrichtung, umrichtersystem mit umrichtermodul und austauschverfahren für umrichtersystem

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525021A (en) * 1968-10-07 1970-08-18 Joy Mfg Co Precipitator rapper control
US3582715A (en) * 1969-01-21 1971-06-01 Plessey Airborne Corp Multiple-mode solid-state time delay apparatus including charge-monitoring timing circuits
GB1268800A (en) * 1969-12-16 1972-03-29 English Electric Co Ltd Relay power supply
US3852646A (en) * 1970-12-28 1974-12-03 Design Elements Inc Solenoid drive circuit
US3666998A (en) * 1971-02-04 1972-05-30 Allen Bradley Co Relay input circuit
CH523583A (fr) * 1971-04-23 1972-05-31 Lucifer Sa Dispositif de commande d'un électro-aimant
US3705333A (en) * 1972-02-09 1972-12-05 Ibm Adjustable active clamp circuit for high speed solenoid operation
CH553351A (fr) * 1972-04-21 1974-08-30 Segaric Sa Dispositif d'alimentation d'un frein ou d'un embrayage a commande electromagnetique.
FR2192367B1 (de) * 1972-07-11 1976-06-11 Deude Rene
FR2242758B1 (de) * 1973-09-05 1976-06-18 Peugeot & Renault
DE2423258C3 (de) * 1974-05-14 1978-09-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen Schaltungsanordnung zur Stromversorgung eines induktiven Verbrauchers
CH607260A5 (de) * 1975-09-05 1978-11-30 Lucifer Sa
US4065096A (en) * 1976-07-01 1977-12-27 Graham-White Sales Corporation Solenoid-actuated valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206419A1 (de) 2012-04-19 2013-10-24 Magna Powertrain Ag & Co. Kg Steuerung für ein Druckregelventil
DE102012206419B4 (de) 2012-04-19 2021-08-12 Magna Pt B.V. & Co. Kg Steuerung für ein Druckregelventil

Also Published As

Publication number Publication date
DE2862229D1 (en) 1983-05-19
IT7924137A0 (it) 1979-07-05
IT1162555B (it) 1987-04-01
EP0006843B1 (de) 1983-04-13
US4291358A (en) 1981-09-22
EP0006843A1 (de) 1980-01-23

Similar Documents

Publication Publication Date Title
EP0006843B2 (de) Magnetventil mit elektronischer Steuerung
DE3503289C2 (de) Treiberschaltung
DE2828678C2 (de)
DE102006014276B4 (de) Elektromagnetventil und Elektromagnetventil-Antriebsschaltung
EP0705482B1 (de) Schaltungsanordnung zur ansteuerung eines schützes
EP1527470B1 (de) Steueranordnung für einen elektromagnetischen antrieb
EP0136968A2 (de) Schaltungsanordnung zur Speisung eines Elektromagneten mit einem Anzugsstrom und einem nachfolgenden Haltestrom
EP0901057A2 (de) Schaltungsvorrichtung zur Stromregelung
DE2546424C2 (de)
EP0807312B1 (de) Schaltungsanordnung für ein einrückrelais
DE3910810A1 (de) Schaltungsanordnung fuer ein elektromagnetisches ventil
DE4109922C2 (de) Einrichtung zum Ansteuern eines batteriebetriebenen elektromagnetischen Geräts
DE19533131C2 (de) Verfahren und Vorrichtung zum Ansteuern eines elektromagnetischen Verbrauchers
DE4332995C1 (de) Verfahren zur Ansteuerung von parallel angeordneten Relais
DE3623908A1 (de) Steuerschaltung fuer die magnetspule eines elektromagneten
DE1539223C3 (de) Funkenzündschaltung für Fahrzeug-Brennkraftmaschinen
DE2408254C3 (de) Überlastschutzeinrichtung für eine elektrische Last
DE2922521C2 (de) Schaltungsanordnung zur Ansteuerung von Magneten in Aufzeichnungsgeräten der Fernschreibtechnik
DE3231083A1 (de) Schaltung zur automatischen verringerung der einer last zugefuehrten leistung
DE3734415A1 (de) Schaltungsanordnung zur beschleunigung der versorgung eines elektromagnetischen verbrauchers
DE3112621A1 (de) "schaltungsanordnung zur ansteuerung von elektromagneten"
EP0057896B2 (de) Schaltungsanordnung für den Betrieb eines elektromagnetisch angetriebenen Schlaggerätes
DE2016198A1 (de) Schaltungsanordnung zur Steuerung von elektrischen Schrittmotoren bzw Schritt magnetanordnungen
EP0384926A1 (de) Schaltungsanordnung für die Erregung und Entregung eines bistabilen Relais
DE102004058159B4 (de) Schaltungsanordnung zur Betätigung eines Ventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB SE

REF Corresponds to:

Ref document number: 2862229

Country of ref document: DE

Date of ref document: 19830519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HONEYWELL LUCIFER S.A.

Effective date: 19840109

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19870923

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB SE

ET3 Fr: translation filed ** decision concerning opposition
EAL Se: european patent in force in sweden

Ref document number: 78100313.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970707

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970711

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970730

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980705

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980707

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 78100313.2