EP0006843A1 - Magnetventil mit elektronischer Steuerung - Google Patents

Magnetventil mit elektronischer Steuerung Download PDF

Info

Publication number
EP0006843A1
EP0006843A1 EP78100313A EP78100313A EP0006843A1 EP 0006843 A1 EP0006843 A1 EP 0006843A1 EP 78100313 A EP78100313 A EP 78100313A EP 78100313 A EP78100313 A EP 78100313A EP 0006843 A1 EP0006843 A1 EP 0006843A1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
switch
valve according
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100313A
Other languages
English (en)
French (fr)
Other versions
EP0006843B2 (de
EP0006843B1 (de
Inventor
Heinrich Dipl. Ing. Dettmann
Wolfgang Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buerkert GmbH
Burkert GmbH
Original Assignee
Buerkert GmbH
Burkert GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8185903&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0006843(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Buerkert GmbH, Burkert GmbH filed Critical Buerkert GmbH
Priority to EP78100313A priority Critical patent/EP0006843B2/de
Priority to DE7878100313T priority patent/DE2862229D1/de
Priority to IT24137/79A priority patent/IT1162555B/it
Priority to US06/055,930 priority patent/US4291358A/en
Publication of EP0006843A1 publication Critical patent/EP0006843A1/de
Application granted granted Critical
Publication of EP0006843B1 publication Critical patent/EP0006843B1/de
Publication of EP0006843B2 publication Critical patent/EP0006843B2/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1838Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current by switching-in or -out impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/223Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil adapted to be supplied by AC

Definitions

  • the invention relates to a solenoid valve with electronic control, which supplies the excitation coil with an increased excitation current in the pull-in phase via a closed switch and in the holding phase with a series resistor connected in parallel with the switch when the switch is open, a holding current which is lower than the excitation current.
  • the holding current can be selected to be significantly lower, so that the heating of the solenoid valve can be kept below the permissible maximum limit, which is often around 80 ° C., even with a long duty cycle.
  • Another advantage of this measure is that the switching behavior of the solenoid valves is improved as a result of the increase in the tightening force. In particular, shorter switching times can be achieved.
  • the series resistor is bridged by a semiconductor switching triode or a PTC thermistor.
  • the semiconductor switching triode is controlled depending on the induction of the excitation coil.
  • the semiconductor switching triode In the pull-up phase of the solenoid valve, the semiconductor switching triode is in the conductive state and therefore shorts the series resistor. If the solenoid valve has reached its working state, the semiconductor switching triode is blocked by the increased induction of the excitation coil. Because of the series resistor, a lower current flows through the field winding, which is used for holding of the solenoid valve is sufficient in its working position.
  • An AC voltage is required as the operating voltage for actuating the solenoid valve.
  • the use of the known solenoid valve is limited to operation with AC voltage due to the way the control electronics work.
  • solenoid valves with electronic control for increasing the pick-up power are known, in which a controllable rectifier is connected in series with the excitation coil.
  • the ignition timing of the controllable rectifier is changed by a phase control so that the ignition occurs earlier during the pull-in phase and later during the hold phase.
  • This known solution which is known for example from DE-OS 25 11 564 or DE-OS 20 23 108, also has the disadvantage that an AC voltage or pulsating DC voltage or an additional clock generator is required as the operating voltage.
  • the object of the invention is to create a solenoid valve with electronic control for briefly increasing the pulling power, which is suitable both for operation with alternating current and with direct current, wherein one and the same solenoid valve should be operable either with direct current or with alternating current.
  • the electronic control of the solenoid valve should have a small volume so that it can be installed in an existing cavity of the solenoid valve. Furthermore, given the volume of the excitation coil or the electromagnet, the heating during the holding phase should be reduced or the required holding current should be reduced.
  • a solenoid valve of the type described at the outset which according to the invention is characterized in that a timing element containing a resistor and a capacitor is provided for controlling the switch.
  • the use of the simply constructed timing element enables the solenoid valve to be operated either on AC voltage or DC voltage, because the control is determined by the time constant of the timing element and not by the frequency or phase position of an AC voltage.
  • a full-wave rectifier is connected upstream of the electronic control for operating the solenoid valve on an AC voltage.
  • the solenoid valve can be operated not only with alternating current or with direct current, but also with any polarity of the direct voltage.
  • a current amplification element is connected between the timing element and the switch.
  • Another advantageous embodiment of the invention contains a voltage limiter circuit which is connected upstream of the timing element. This allows the solenoid valve to operate at different voltages.
  • a smoothing device in the form of a smoothing capacitor can be assigned to the voltage limiter circuit.
  • the series resistor is designed as a resistance wire, which forms part of the excitation winding.
  • the series resistor thus contributes to the number of ampere turns of the excitation coil.
  • the size of the actual excitation coil can be reduced or the holding current and the holding power can be reduced if the size remains the same.
  • the measure results in less heating of the solenoid valve during the holding phase.
  • the electronic control of the solenoid valve shown in Figure 1 consists essentially of a full-wave rectifier G1, a voltage limiter circuit with a resistor R1 and a Zener diode D1, a timing element from a resistor R2 and a capacitor C2, a current amplification element T1, which acts as a Darlington transistor is formed, an electronic switch, which is formed from two transistors T2, T3 in a Darlington circuit, and a series resistor RV.
  • the operating voltage is supplied via the AC connections of the full-wave rectifier via lines 1 and 2.
  • the positive connection of the full-wave rectifier Gl is connected via a line 3 to a connection of the excitation coil AE, while the other connection of the excitation coil is connected to the collectors of the transistors T2, T3 connected to one another.
  • the emitter of the transistor T2 is connected via a line 4 to the negative terminal of the full-wave rectifier G1.
  • the collector-emitter path of the transistor T2 is bridged by a series resistor RV.
  • the excitation coil AE is therefore in series with the oil sistor T2 and the series resistor R4 connected in parallel.
  • the base of the transistor T3 is connected to the positive line 3 via a resistor R4.
  • the common collector of the Darlington transistor T1 is connected to the base of the transistor T3, the. Emitter is connected to the negative line 4.
  • the base of the Darlington transistor T1 is connected via a resistor R3 to the connection point between the resistor R2 and the capacitor C2.
  • the electronic control described for the solenoid valve according to the invention works as follows: To actuate the solenoid valve, an operating voltage is applied to lines 1, 2, which can be AC voltage or DC voltage with any polarity. This voltage reaches the full-wave rectifier Gl and lines 3, 4 to the series connection of the excitation coil AE and the transistor T2 with the series resistor RV connected in parallel. The base of the transistor.T3 receives a positive voltage via the resistor R4, the transistor T3 becomes conductive and also drives the transistor T2 into its conductive state. Only a small voltage of a few tenths of a volt drops across the collector-emitter path of the transistor T2, so that the excitation coil AE is practically subjected to the full operating voltage.
  • the capacitor C2 starts charging via the resistor R2 to a voltage which is determined by the zener diode Dl.
  • This voltage is smoothed by a capacitor C1, which is connected in parallel to the zener diode Dl.
  • the voltage of the capacitor C2 passes through the resistor R3 to the base of the Darlington transistor T1. As soon as this voltage reaches a certain value, namely the base-emitter voltage of the Darlington transistor T1, the latter becomes conductive. This lowers the positive tension at the base of transistor T3.
  • the series resistor RV is fully effective for limiting the current flowing in the excitation winding AE.
  • a capacitor C3 is provided to influence the switching behavior of the Darlington transistor T1, which bridges the collector-base path. Furthermore, a series circuit comprising a freewheeling diode D2 and a zener diode D3 is provided in parallel with the excitation winding, the diodes having opposite polarity. These diodes are used to reduce the switch-off voltage peaks.
  • the diode D2 blocks the current flow during the switch-off process at a reverse voltage of approximately 0.8 volts, which results in a slowdown in the switch-off process of the magnet system.
  • Zener diode D3 raises this relatively low reverse voltage from 0.8 to, for example, 30 volts, which reduces the delay in decay of the magnet system.
  • the Zener diode D3 can also be omitted, but it is particularly useful when operating at relatively high supply voltages.
  • two thermal switches Thl and Th2 are also connected in line 2, which interrupt the circuit when a defined temperature is reached.
  • the control current to be applied by the timing element is reduced to a very low value.
  • Resistor R2 can therefore be relatively large, while capacitor C2 can be relatively small to get voted. This enables a space-saving design which enables the electronic control circuit to be installed in a cavity of the solenoid valve.
  • the capacitor C2 can also be designed for low voltages and can thereby be further reduced. Because of the voltage limitation, a relatively inexpensive version can also be selected for the Darlington transistor T1, since a low reverse voltage is sufficient.
  • the ratio of the pull-in current to the holding current or pull-in power to the holding power can be determined.
  • the solenoid valve shown in Figure 2 contains a valve body 5 and an electromagnet 6 for actuating the valve via a plunger 7, which is connected via a rod 8 to the valve plate 9 of the solenoid valve.
  • the electromagnet 6 contains a cylindrical excitation coil 10, in which the armature 7 can dip. The armature 7 is pressed into its rest position by a return spring 11.
  • the winding of the excitation coil consists of two parts, a first part 10a and a second part 10b.
  • the first part 10a is the actual winding, which consists for example of enamelled copper wire.
  • the second part 10b is formed by the series resistor RV, which is designed as a resistance wire for this purpose.
  • the series resistor RV thus contributes to the number of ampere turns. Therefore, the holding current can be reduced for a given volume of the electromagnet. This is particularly advantageous if the solenoid valve is operated with direct current. To the If the armature falls off, a remanent force must be overcome, which is caused by the return spring 11.
  • the return spring must be chosen stronger in DC systems than in AC systems, so that an increased holding power is required. For this reason, winding the series resistor as a resistance wire has a particularly positive effect on the excitation winding in direct current solenoid valves.
  • the electronic control of the direct current valve according to the invention can be constructed in an extremely space-saving manner. It can be accommodated, for example, in a cavity 12 of the solenoid valve and cast with potting compound, for example epoxy resin.
  • the inventive design of the overexcitation of the solenoid coil can be used advantageously not only with seat valves of the type shown in FIG. 2, but also with others, in particular also with hinged armature valves.

Abstract

Das Magnetventil mit elektronischer Steuerung zur Steigerung der Anzugleistung weist eine Erregerspule (AE) auf, die in der Anzugphase über einen geschlossenen Schalter (T2) einen erhöhten Erregungsstrom zugeführt bekommt. In der Haltephase wird det Erregerspule (AE) über einen Vorwiderstand (RV) bei geöffnetem Schalter (T2) ein Haltestrom zugeführt, der niedriger ist als der Erregungsstrom. Zur Steuerung des Schalters (T2) ist ein Zeitglied vorgesehen, das aus einem Widerstand (R2) und einem Kondensator (C2) gebildet ist. Das Magnetventil ist wahlweise mit Wechselstrom oder Gleichstrom betreibbar. Ein Teil der Erregerspule (AE) ist aus dem Vorwiderstand (RV) gebildet, der als Widerstandsdraht ausgebildet und auf die Erregerspule (AE) aufgewickelt ist.

Description

  • Die Erfindung betrifft ein Magnetventil mit elektronischer Steuerung, die der Erregerspule in der Anzugphase über einen geschlossenen Schalter einen erhöhten Erregerstrom und in der Haltephase über einen zu dem Schalter parallel geschalteten Vorwiderstand bei geöffnetem Schalter eine gegenüber dem Erregungsstrom erniedrigten Haltestrom zuführt.
  • Derartige Magnetventile mit elektronischer Steuerung sind aus der DE-OS 24 02 083 bekannt. Bei diesen Magnetventilen wird zur Steigerung der Anzugkraft kurzzeitig ein erhöhter Strom durch die Erregerspule geleitet. Zur Überwindung der Massenträgheit der bewegten Teile des Magnetventils und der Federkraft der normalerweise vorgesehenen Rückstellfeder ist eine wesentlich höhere Energie erforderlich als zum Halten des Ventils in seinem eingeschalteten Zustand. Der Strombedarf zum schnellen und sicheren Anziehen des Magnetventils wird weiter dadurch erhöht, daß in der Ruhestellung des Ankers die Induktion der Erregerspule wesentlich geringer ist als in seiner Arbeitsstellung. Durch die kurzzeitige Steigerung des durch die Erregerspule geleiteten Stromes kann also der Haltestrom wesentlich niedriger gewählt werden, so daß die Erwärmung des Magnetventils auch bei langer Einschaltdauer unter der zulässigen Höchstgrenze gehalten werden kann,die häufig bei etwa 80° C liegt. Ein weiterer Vorteil dieser Maßnahme besteht darin, daß durch die damit erreichte Anzugkrafterhöhung auch das Schaltverhalten der Magnetventile verbessert wird. Insbesondere können kürzere Schaltzeiten erreicht werden.
  • Bei dem Magnetventil nach der erwähnten DE-OS 24 02 083 ist der Vorwiderstand durch eine Halbleiter-Schalttriode oder einen Kaltleiter überbrückt. Die Halbleiter-Schalttriode wird abhängig von der Induktion der Erregerspule gesteuert. In der Anzugphase des Magnetventils ist die Halbleiter-Schalttriode im leitenden Zustand und schließt daher den Vorwiderstand kurz. Hat das Magnetventil seinen Arbeitszustand erreicht, so wird durch die erhöhte Induktion der Erregerspule die Halbleiter-Schalttriode gesperrt. Wegen des Vorwiderstandes fließt somit ein niedrige - rer Strom durch die Erregerwicklung, der zum Halten des Magnetventils in seiner Arbeitsstellung ausreicht. Als Betriebsspannung für die Betätigung des Magnetventils ist eine Wechselspannung erforderlich. Die Verwendung des bekannten Magnetventils ist.also aufgrund der Arbeitsweise der Steuerelektronik auf den Betrieb mit Wechselspannung beschränkt.
  • Ferner sind Magnetventile mit elektronischer Steue - rung zur Steigerung der Anzugleistung bekannt, bei denen ein steuerbarer Gleichrichter in Reihe mit der Erregerspule liegt. Durch eine Phasenanschnittsteuerung wird der Zündzeitpunkt des steuerbaren Gleichrichters derart verändert, daß während der Anzugphase die Zündung früher und während der Haltephase später erfolgt. Auch diese bekannte Lösung, die beispielsweise aus der DE-OS 25 11 564 oder der DE-OS 20 23 108 bekannt ist, weist ebenfalls den Nachteil auf, daß als Betriebsspannung eine Wechselspannung oder pulsierende Gleichspannung oder aber ein zusätzlicher Taktgenerator erforderlich ist.
  • Aufgabe der Erfindung ist es, ein Magnetventil mit elektronischer Steuerung zur kurzzeitigen Steige - rung der Anzugleistung zu schaffen,das sowohl für den Betrieb an Wechselstrom als auch an Gleichstrom geeignet ist, wobei ein und dasselbe Magnetventil wahlweise mit Gleichstrom oder mit Wechselstrom betreibbar sein soll. Ferner soll die elektronische Steuerung des Magnetventils ein geringes Volumen aufweisen, damit sie in einen vorhandenen Hohlraum des Magnetventils eingebaut werden kann. Ferner soll beim gegebenen Volumen der Erregerspule bzw. des Elektromagneten die Erwärmung während der Haltephase reduziert werden bzw. der erforderliche Haltestrom erniedrigt werden.
  • Diese Aufgabe wird durch ein Magnetventil der eingangs beschriebenen Art gelöst, das gemäß der Erfindung dadurch gekennzeichnet ist, daß ein einen Widerstand und einen Kondensator enthaltendes Zeitglied zur Steuerung des Schalters vorgesehen ist. Die Verwendung des einfach aufgebauten Zeitgliedes ermöglicht den Betrieb des Magnetventils wahlweise an Wechselspannung oder Gleichspannung, weil die Steuerung durch die Zeitkonstante des Zeitgliedes bestimmt wird und nicht durch die Frequenz oder Phasenlage einer Wechselspannung.
  • Für den Betrieb des Magnetventils an einer Wechselspannung ist gemäß einer zweckmäßigen Ausführungsform der Erfindung der elektronischen Steuerung ein Vollweg-Gleichrichter vorgeschaltet. Dadurch kann der Betrieb des Magnetventils nicht nur wahlweise mit Wechselstrom oder mit Gleichstrom, sondern auch mit beliebiger Polung der Gleichspannung erfolgen.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist zwischen das Zeitglied und den Schalter ein Stromverstärkungselement geschaltet. Dadurch kann das Zeitglied bei gegebener Zeitkon - stante äußerst platzsparend ausgebildet werden.
  • Eine weitere vorteilhafte Ausführungsform der Er- findung enthält eine Spannungsbegrenzerschaltung, die vor das Zeitglied geschaltet ist. Dadurch kann der Betrieb des Magnetventils an unterschiedlich hohen Spannungen erfolgen. Der Spannungsbegrenzerschaltung kann eine Glättungseinrichtung in Form eines Glättungskondensators zugeordnet sein.
  • Gemäß einer besonders vorteilhaften Ausführungsform der Er-findung ist der Vorwiderstand als Widerstandsdraht ausgebildet, der einen Teil der Erregerwicklung bildet. Der Vorwiderstand trägt auf diese Weise zu der Ampärewindungszahl der Erregerspule bei. Dadurch kann die Größe der eigentlichen Erregerspule reduziert werden bzw. bei gleichbleibender Größe der Haltestrom und die Halteleistung reduziert werden. Ferner ergibt sich durch die Maßnahme eine geringere Erwärmung des Magnetventils während der Haltephase.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispieles anhand der Zeichnung. In der Zeichnung ze.igen:
    • Figur 1 ein Schaltbild einer elektronischen Steuerung des erfindungsgemäßen Magnetventils; und
    • Figur 2 einen Querschnitt eines erfindungsgemäßen Magnetventils, das bei diesem Beispiel ein Sitzventil ist.
  • Die in Figur 1 gezeigte elektronische Steuerung des Magnetventils besteht im wesentlichen aus einem Vollweg-Gleichrichter G1, einer Spannungsbegrenzerschaltung mit einem Widerstand Rl und einer Zenerdiode D1, einem Zeitglied aus einem Widerstand R2 und einem Kondensator C2, einem Stromverstärkungselement Tl, das als Darlington-Transistor ausgebildet ist, einem elektronischen Schalter, der aus zwei Transistoren T2, T3 in Darlington-Schaltung ausgebildet ist, und einem Vorwiderstand RV. Die Betriebsspannung wird über die Wechselstromanschlüsse des Vollweg-Gleichrichters über Leitungen 1 und 2 zugeführt. Der positive Anschluß des Vollweg-Gleichrichters Gl ist über eine Leitung 3 an einen Anschluß der Erregerspule AE geführt, während der andere Anschluß der Erregerspule mit den miteinander verbunde - nen Kollektoren der Transistoren T2, T3 verbunden ist. Der Emitter des Transistors T2 ist über eine Leitung 4 mit dem negativen Anschluß des Vollweg-Gleichrichters G1 verbunden. Die Kollektor-Emitter-Strecke des Transistors T2 ist durch einen Vorwiderstand RV überbrückt. Die Erregerspule AE liegt also in Reihe mit dem Transistor T2 und dem dazu parallelgeschalteten Vorwiderstand R4. Die Basis des Transistors T3 ist über einen Widerstand R4 mit der positiven Leitung 3 verbunden. Ferner ist mit der Basis des Transistors T3 der gemeinsame Kollektor des Darlington-Transistors Tl verbunden, dessen. Emitter mit der negativen Leitung 4 verbunden ist. Die Basis des Darlington-Transistors Tl ist über einen Widerstand R3 mit dem Verbindungspunkt zwischen dem Widerstand R2 und dem Kondensator C2 verbunden.
  • Die Arbeitsweise der beschriebenen elektronischen Steue - rung für das erfindungsgemäße Magnetventil ist folgende: Zur Betätigung des Magnetventils wird an die Leitungen 1, 2 eine Betriebsspannung angelegt, bei der es sich um Wechselspannung oder Gleichspannung mit beliebiger Polung handeln kann. Diese Spannung gelangt über den Vollweg-Gleichrichter-Gl und die Leitungen 3, 4 zu der Reihenschaltung aus der Erregerspule AE und dem Transistor T2 mit dem dazu parallelgeschalteten Vorwiderstand RV. Über den Widerstand R4 erhält die Basis des Transistors.T3 eine positive Spannung, der Transistor T3 wird leitend und treibt den Transistor T2 ebenfalls in seinen leitenden Zustand. An der Kollektor-Emitter-Strecke des Transistors T2 fällt somit nur eine geringe Spannung von einigen Zehntel Volt ab, so daß die Erregerspule AE praktisch mit der vollen Betriebsspannung beaufschlagt wird. Gleichzeitig beginnt die Aufladung des Kondensators C2 über den Widerstand R2 auf eine Spannung, die durch die Zenerdiode Dl festgelegt wird. Diese Spannung wird durch einen Kondensator Cl, der zu der Zenerdiode Dl parallelgeschaltet ist, geglättet. Die Spannung des Kondensators C2 gelangt über den Widerstand R3 zur Basis des Darlington-Transistors Tl. Sobald diese Spannung einen bestimmten Wert erreicht, nämlich die Basis-Emitter-Spannung des Darlington-Transistors Tl, wird dieser leitend. Dadurch erniedrigt sich die positive Spannung an der Basis des Transistors T3. Bei weiterer Zunahme der Spannung des Kondensators C2 wird der Darlington-Transistor Tl durchgeschaltet, und die Spannung an der Basis des Transistors C3 sinkt so weit ab, daß der Transistor T3 gesperrt wird, wodurch auch der Transi - stor T2 in seinen nichtleitenden Zustand gesteuert wird. Dadurch wird der Vorwiderstand RV zur Begrenzung des in der Erregerwicklung AE fließenden Stromes voll wirksam.
  • Zur Beeinflussung des Schaltverhaltens des Darlington-Transistors Tl ist ein Kondensator C3 vorgesehen, der die Kollektor-Basis-Strecke überbrückt. Ferner ist parallel zu der Erregerwicklung eine Reihenschaltung aus einer Freilaufdiode D2 und einer Zenerdiode D3 vorgesehen, wobei die Dioden entgegengesetzt gepolt sind. Diese Dioden dienen zur Reduzierung der Abschaltsspannungsspitzen. Die Diode D2 sperrt den Stromlauf beim Abschaltvorgang bei einer Sperrspannung von etwa 0,8 Volt, wodurch sich eine Verlangsamung des Abschaltvorganges des Magnetsystems ergibt. Durch die Zenerdiode D3 wird diese relativ niedrige Sperrspannung von 0,8 auf beispielsweise 30 Volt angehoben, wodurch die Abfallverzögerung des Magnetsystems reduziert wird. Die Zenerdiode D3 kann auch entfallen, sie ist jedoch besonders beim Betrieb an relativ hohen Versorgungsspannungen zweckmäßig.
  • Zum Schutz des Magnetventils gegen überhöhte Temperaturen sind ferner in die Leitung 2 zwei Thermoschalter Thl und Th2 geschaltet, die den Stromkreis beim Erreichen einer definierten Temperatur unterbrechen.
  • Durch die Verwendung eines Stromverstärkungselements in Form eines Darlington-Transistors wird der von dem Zeitglied aufzubringende Steuerstrom auf einen sehr niedrigen Wert reduziert. Daher kann der Widerstand R2 relativ groß, der Kondensator C2 hingegen relativ klein gewählt werden. Dadurch wird eine platzsparende Bauweise ermöglicht, die den Einbau der elektronischen Steuerschaltung in einen Hohlraum des Magnetventils ermöglicht. Wegen der Spannungsbegrenzung durch die Zenerdiode Dl auf beispielsweise 6,8 Volt kann der Kondensator C2 ferner für niedrige Spannungen ausgelegt und dadurch weiter verkleinert werden. Wegen der Spannungsbegrenzung kann ferner für den Darlington-Transistor Tl eine relativ-kostengünstige Ausführung gewählt werden, da eine niedrige Sperrspannung ausreicht.
  • Durch Bemessung des Verhältnisses zwischen dem Widerstand der Erregerspule AE und dem Wert des Vorwiderstandes RV kann das Verhältnis vom Anzugstrom zu Haltestrom bzw. Anzugleistung zu Halteleistung bestimmt werden.
  • Das in Figur 2 gezeigte Magnetventil enthält einen Ventilkörper 5 und einen Elektromagneten 6 zur Betätigung des Ventils über einen Tauchanker 7 , der über eine Stange 8 mit der Ventilplatte 9 des Magnetventils verbunden ist. Der Elektromagnet 6 enthält eine zylindrische Erregerspule 10, in die der Anker 7 eintauchen kann. Der Anker 7 wird durch eine Rückstellfeder 11 in seine Ruhestellung gedrückt.
  • Die Wicklung der Erregerspule besteht aus zwei Teilen, einem ersten Teil 10a und einem zweiten Teil lOb. Der erste Teil 10a ist die eigentliche Wicklung, die beispielsweise aus lackisoliertem Kupferdraht besteht. Der zweite Teil 10b wird durch den Vorwiderstand RV gebildet, der zu diesem Zweck als Widerstandsdraht ausgeführt ist. Der Vorwiderstand RV trägt auf diese Weise zu der Amperewindungszahl bei. Daher kann bei vorgegebenera Volumen des Elektromagneten der Haltestrom reduziert werden. Dies ist besonders vorteilhaft, wenn das Magnetventil mit Gleichstrom betrieben wird. Zum Abfallen des Ankers muß eine Remanenzkraft überwunden werden, was durch die Rückstellfeder 11 bewirkt wird. Die Rückstellfeder muß bei Gleichstromsystemen stärker gewählt werden als bei Wechselstromsystemen, so daß eine erhöhte Halteleistung erforderlich ist. Aus diesem Grunde wirkt sich das Aufwickeln des Vorwiderstandes als Widerstandsdraht auf die Erregerwicklung besonders positiv bei Gleichstrom-Magnetventilen aus.
  • Die elektronische Steuerung des erfindungsgemäßen Gleichstromventils kann äußerst raumsparend aufgebaut werden. Sie läßt sich beispielsweise in einem Hohlraum 12 des Magnetventils unterbringen und mit Vergußmasse, beispielsweise Epoxydharz, vergießen.
  • Die erfindungsgemäße Ausbildung der Übererregung der Magnetspule läßt sich nicht nur bei Sitzventilen der in Fig. 2 dargestellten Art, sondern auch bei anderen, insbesondere auch bei Klappanker-Ventilen mit Vorteil anwenden.

Claims (10)

1. Magnetventil mit elektronischer Steuerung, die der Erregerspule in der Anzugphase über einen geschlossenen Schalter einen erhöhten Erregungsstrom und in der Haltephase über einen zu dem Schalter parallelgeschalteten Vorwiderstand bei geöffnetem Schalter einen gegenüber dem Erregungsstrom erniedrigten Haltestrom zuführt, dadurch gekennzeichnet,
daß ein einen Widerstand (R2) und einen Kondensator (C2) enthaltendes Zeitglied zur Steuerung des Schalters (T2, T3) vorgesehen ist.
2. Magnetventil nach Anspruch 1,
dadurch gekennzeichnet,
daß der elektronischen Steuerung ein Vollweg-Gleichrichter (Gl) vorgeschaltet ist, dessen Wechselspannungsanschlüsse mit der Betriebsspannungsquelle verbunden sind.
3. Magnetventil nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß zwischen das Zeitglied (R2, C2) und den Schalter (T2, T3) ein Stromverstärkungselement (Tl) geschaltet ist.
4. Magnetventil nach Anspruch 3,
dadu.rch gekennzeichnet,
daß das Stromverstärkungselement (Tl) als Transistor ausgebildet ist, dessen Basis mit dem Verbindungspunkt zwischen Kondensator (C2) und Widerstand (R2), dessen Kollektor mit einem Steueranschluß des Schalters (T2, T3) und dessen Emitter mit einem gemeinsamen Schaltungsnullpunkt verbunden ist.
5. Magnetventil nach Anspruch 4,
dadurch gekennzeichnet,
daß der Transistor (Tl) als Darlington-Transistor ausgebildet ist.
6. Magnetventil nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
daß dem Zeitglied (R2, C2) eine Spannungsbegrenzerschaltung (Rl, Dl) vorgeschaltet ist.
7. Magnetventil nach Anspruch 6,
dadurch gekennzeichnet,
daß der Spannungsbegrenzerschaltung (Rl, Dl) eine Siebeinrichtung (Cl) zur Glättung der begrenzten Spannung zugeordnet ist.
8. Magnetventil nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
daß der Vorwiderstand (RV) als Widerstandsdraht ausgebildet ist, der einen Teil der Erregerspule (AE) bildet.
9. Magnetventil nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
daß zu der Erregerspule (AE) eine Reihenschaltung aus einer Freilaufdiode (D2) und einer dazu entgegengesetzt gepolten Zenerdiode (D3) parallelgeschaltet ist.
10. Magnetventil nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
daß der Schalter aus zwei Transistoren (T1, T3) gebildet ist, die in Darlington-Schaltung miteinander verbunden sind.
EP78100313A 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung Expired EP0006843B2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP78100313A EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung
DE7878100313T DE2862229D1 (en) 1978-07-06 1978-07-06 Electronically controlled magnetic valve
IT24137/79A IT1162555B (it) 1978-07-06 1979-07-05 Valvola elettromagnetica con comando elettronico
US06/055,930 US4291358A (en) 1978-07-06 1979-07-06 Magnetic valve with electronic control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP78100313A EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung

Publications (3)

Publication Number Publication Date
EP0006843A1 true EP0006843A1 (de) 1980-01-23
EP0006843B1 EP0006843B1 (de) 1983-04-13
EP0006843B2 EP0006843B2 (de) 1987-09-23

Family

ID=8185903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100313A Expired EP0006843B2 (de) 1978-07-06 1978-07-06 Magnetventil mit elektronischer Steuerung

Country Status (4)

Country Link
US (1) US4291358A (de)
EP (1) EP0006843B2 (de)
DE (1) DE2862229D1 (de)
IT (1) IT1162555B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163349A2 (de) * 1984-05-31 1985-12-04 GHISALBA S.p.A. Speiseschaltung für einen elektromagnetischen Kontaktgeber
GB2168867A (en) * 1984-11-07 1986-06-25 Sgs Microelettronica Spa Improvements in or relating to integrated switching control circuits
EP0111016B1 (de) * 1981-10-14 1989-09-06 Oded E. Sturman Integrierte selbsthaltende Betätigungsvorrichtungen
WO1991015865A1 (de) * 1990-04-05 1991-10-17 Merit-Werk Merten & Co. Kg Klappankerrelais, insbesondere für kraftfahrzeuge
DE10212092A1 (de) * 2002-03-19 2003-10-09 Dbt Autom Gmbh Verfahren und Vorrichtung zum Betrieb eines Elektromagneten an einem eigensicheren Gleichstromkreis
EP2555216A1 (de) 2011-08-01 2013-02-06 Legrand France Elektrogerät, das mit zwei Steuerklemmen ausgestattet ist, um ein mobiles Organ wahlweise in Ruhe- oder Arbeitsstellung zu versetzen
EP4068602A1 (de) * 2021-03-30 2022-10-05 Siemens Aktiengesellschaft Kondensatorvorrichtung, umrichtermodul mit kondensatorvorrichtung, umrichtersystem mit umrichtermodul und austauschverfahren für umrichtersystem

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614101Y2 (de) * 1980-03-31 1986-02-07
JPS5954873A (ja) * 1982-09-21 1984-03-29 Aisin Seiki Co Ltd 電動式流量比例制御弁
JPS61140114A (ja) * 1984-12-12 1986-06-27 Koushinraido Hakuyo Suishin Plant Gijutsu Kenkyu Kumiai 電磁石駆動装置
DE4010232A1 (de) * 1990-03-30 1991-10-02 Bosch Gmbh Robert Einrichtung zum erkennen des schaltzustands eines stellglieds
US5281939A (en) * 1993-05-28 1994-01-25 Eaton Corporation Multiple pole solenoid using simultaneously energized AC and DC coils
DE29503146U1 (de) * 1995-02-24 1995-04-13 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Schützes
US5734543A (en) * 1996-03-27 1998-03-31 Clemson University Method and apparatus to improve the performance of AC solenoid devices during lapses in power quality
US5784244A (en) * 1996-09-13 1998-07-21 Cooper Industries, Inc. Current limiting circuit
TW506498U (en) * 1996-12-01 2002-10-11 Tadahiro Ohmi Fluid control valve and fluid supply/exhaust system
US5740005A (en) * 1997-04-29 1998-04-14 Chen; Chun-Chun Solenoid valve booster
US6280147B1 (en) 1998-10-13 2001-08-28 Liquid Metronics Incorporated Apparatus for adjusting the stroke length of a pump element
US6174136B1 (en) 1998-10-13 2001-01-16 Liquid Metronics Incorporated Pump control and method of operating same
US6264432B1 (en) 1999-09-01 2001-07-24 Liquid Metronics Incorporated Method and apparatus for controlling a pump
DE202004004156U1 (de) * 2004-03-17 2005-08-04 Erben Kammerer Kg Schnell auslösendes Ventil
FR2887958B1 (fr) * 2005-07-01 2007-10-12 Prospection Et D Inv S Techniq Dispositif de reglage de commande de vanne pour appareil de fixation a gaz et l'appareil comportant le dispositif
DE102012005595B4 (de) 2012-03-20 2024-03-21 Festo Se & Co. Kg Magnetventil
DE102012206419B4 (de) 2012-04-19 2021-08-12 Magna Pt B.V. & Co. Kg Steuerung für ein Druckregelventil
DE102014210810B4 (de) 2014-06-05 2021-12-02 Robert Bosch Gmbh Ansteuervorrichtung eines elektromagnetischen Aktuators für ein Rückhaltemittel
CN107830229A (zh) * 2017-12-08 2018-03-23 武汉浩宏科技有限公司 电磁阀分压电路及系统、冲击波治疗机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2073609A5 (de) * 1969-12-16 1971-10-01 English Electric Co Ltd
US3666998A (en) * 1971-02-04 1972-05-30 Allen Bradley Co Relay input circuit
US3705333A (en) * 1972-02-09 1972-12-05 Ibm Adjustable active clamp circuit for high speed solenoid operation
FR2181262A5 (de) * 1972-04-21 1973-11-30 Segaric Sa
FR2192367A1 (de) * 1972-07-11 1974-02-08 Deude Rene
US3852646A (en) * 1970-12-28 1974-12-03 Design Elements Inc Solenoid drive circuit
FR2242758A1 (de) * 1973-09-05 1975-03-28 Peugeot & Renault
DE2423258A1 (de) * 1974-05-14 1976-02-05 Siemens Ag Schaltungsanordnung zur stromversorgung eines induktiven verbrauchers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525021A (en) * 1968-10-07 1970-08-18 Joy Mfg Co Precipitator rapper control
US3582715A (en) * 1969-01-21 1971-06-01 Plessey Airborne Corp Multiple-mode solid-state time delay apparatus including charge-monitoring timing circuits
CH523583A (fr) * 1971-04-23 1972-05-31 Lucifer Sa Dispositif de commande d'un électro-aimant
CH607260A5 (de) * 1975-09-05 1978-11-30 Lucifer Sa
US4065096A (en) * 1976-07-01 1977-12-27 Graham-White Sales Corporation Solenoid-actuated valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2073609A5 (de) * 1969-12-16 1971-10-01 English Electric Co Ltd
US3852646A (en) * 1970-12-28 1974-12-03 Design Elements Inc Solenoid drive circuit
US3666998A (en) * 1971-02-04 1972-05-30 Allen Bradley Co Relay input circuit
US3705333A (en) * 1972-02-09 1972-12-05 Ibm Adjustable active clamp circuit for high speed solenoid operation
FR2181262A5 (de) * 1972-04-21 1973-11-30 Segaric Sa
FR2192367A1 (de) * 1972-07-11 1974-02-08 Deude Rene
FR2242758A1 (de) * 1973-09-05 1975-03-28 Peugeot & Renault
DE2423258A1 (de) * 1974-05-14 1976-02-05 Siemens Ag Schaltungsanordnung zur stromversorgung eines induktiven verbrauchers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111016B1 (de) * 1981-10-14 1989-09-06 Oded E. Sturman Integrierte selbsthaltende Betätigungsvorrichtungen
EP0163349A2 (de) * 1984-05-31 1985-12-04 GHISALBA S.p.A. Speiseschaltung für einen elektromagnetischen Kontaktgeber
EP0163349A3 (en) * 1984-05-31 1987-10-28 Ghisalba S.P.A. Feed circuit for an electromagnetic contactor
GB2168867A (en) * 1984-11-07 1986-06-25 Sgs Microelettronica Spa Improvements in or relating to integrated switching control circuits
WO1991015865A1 (de) * 1990-04-05 1991-10-17 Merit-Werk Merten & Co. Kg Klappankerrelais, insbesondere für kraftfahrzeuge
DE10212092A1 (de) * 2002-03-19 2003-10-09 Dbt Autom Gmbh Verfahren und Vorrichtung zum Betrieb eines Elektromagneten an einem eigensicheren Gleichstromkreis
EP2555216A1 (de) 2011-08-01 2013-02-06 Legrand France Elektrogerät, das mit zwei Steuerklemmen ausgestattet ist, um ein mobiles Organ wahlweise in Ruhe- oder Arbeitsstellung zu versetzen
EP4068602A1 (de) * 2021-03-30 2022-10-05 Siemens Aktiengesellschaft Kondensatorvorrichtung, umrichtermodul mit kondensatorvorrichtung, umrichtersystem mit umrichtermodul und austauschverfahren für umrichtersystem
WO2022207178A1 (de) * 2021-03-30 2022-10-06 Siemens Aktiengesellschaft Kondensatorvorrichtung, umrichtermodul mit kondensatorvorrichtung, umrichtersystem mit umrichtermodul und austauschverfahren für umrichtersystem

Also Published As

Publication number Publication date
IT1162555B (it) 1987-04-01
IT7924137A0 (it) 1979-07-05
US4291358A (en) 1981-09-22
DE2862229D1 (en) 1983-05-19
EP0006843B2 (de) 1987-09-23
EP0006843B1 (de) 1983-04-13

Similar Documents

Publication Publication Date Title
EP0006843B2 (de) Magnetventil mit elektronischer Steuerung
DE3503289C2 (de) Treiberschaltung
DE2828678C2 (de)
EP0705482B1 (de) Schaltungsanordnung zur ansteuerung eines schützes
CH659345A5 (de) Elektronische schaltungsanordnung zur ansteuerung eines elektromagnetischen bauelementes.
EP0392058A1 (de) Schaltungsanordnung zur Ansteuerung mindestens eines elektromagnetishen Relais
DE3218583C2 (de) Schaltervorrichtung zum öffnen und Schließen eines elektrischen Stromkreises mit einer induktiven Last
DE2546424C2 (de)
DE3910810A1 (de) Schaltungsanordnung fuer ein elektromagnetisches ventil
DE19704089A1 (de) Verfahren zur Steuerung eines Zerhacker(Chopper)-Treibers und Schaltungsanordnung zur Durchführung des Verfahrens
EP0229880B1 (de) Verfahren und Schaltung zur periodischen Ansteuerung eines Elektromagneten
DE19533131C2 (de) Verfahren und Vorrichtung zum Ansteuern eines elektromagnetischen Verbrauchers
DE2427961C3 (de) Temperaturregelvorrichtung
DE3623908A1 (de) Steuerschaltung fuer die magnetspule eines elektromagneten
DE4332995C1 (de) Verfahren zur Ansteuerung von parallel angeordneten Relais
DE102009011275A1 (de) Elektromagnetventilantriebssteuervorrichtung und Verfahren zum Antreiben eines Elektromagnetventils
EP1276120B1 (de) Vorrichtung zur Ansteuerung eines Elektromagneten
DE1539223B2 (de) Funkenzuendsystem
DE3231083A1 (de) Schaltung zur automatischen verringerung der einer last zugefuehrten leistung
DE4227165A1 (de) Schaltungsanordnung zum Steuern von induktiven Verbrauchern
DE3112621A1 (de) "schaltungsanordnung zur ansteuerung von elektromagneten"
DE2922521B1 (de) Schaltungsanordnung zur Ansteuerung von Magneten in Aufzeichnungsgeraeten der Fernschreibtechnik
DE2602560C3 (de) Überwachungsschaltung
EP0057896B2 (de) Schaltungsanordnung für den Betrieb eines elektromagnetisch angetriebenen Schlaggerätes
DE102018122269A1 (de) Relaismodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB SE

REF Corresponds to:

Ref document number: 2862229

Country of ref document: DE

Date of ref document: 19830519

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HONEYWELL LUCIFER S.A.

Effective date: 19840109

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19870923

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB SE

ET3 Fr: translation filed ** decision concerning opposition
EAL Se: european patent in force in sweden

Ref document number: 78100313.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970707

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970711

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970730

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980705

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980707

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 78100313.2