WO1998006522A2 - Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke - Google Patents

Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke Download PDF

Info

Publication number
WO1998006522A2
WO1998006522A2 PCT/EP1997/004072 EP9704072W WO9806522A2 WO 1998006522 A2 WO1998006522 A2 WO 1998006522A2 EP 9704072 W EP9704072 W EP 9704072W WO 9806522 A2 WO9806522 A2 WO 9806522A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
sand
binder
core box
mixture
Prior art date
Application number
PCT/EP1997/004072
Other languages
English (en)
French (fr)
Other versions
WO1998006522A3 (de
Inventor
Thomas Steinhäuser
Original Assignee
Vaw Motor Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaw Motor Gmbh filed Critical Vaw Motor Gmbh
Priority to EP97934549A priority Critical patent/EP0917499B1/de
Priority to AT97934549T priority patent/ATE197683T1/de
Priority to HU0001766A priority patent/HU222658B1/hu
Priority to DK97934549T priority patent/DK0917499T3/da
Priority to DE59702665T priority patent/DE59702665D1/de
Publication of WO1998006522A2 publication Critical patent/WO1998006522A2/de
Publication of WO1998006522A3 publication Critical patent/WO1998006522A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention relates to a process for the production of core moldings for foundry technology, a mixture of an inorganic, refractory molding sand and an inorganic binder based on water glass being produced, the mixture being poured into a temperature-controlled core box, the water contained in the mixture being removed physically and the core preform is removed from the core box and a process for producing circulating core sand.
  • test samples consisted of a compressed sand-sodium silicate mixture.
  • a vacuum in the range of 0.5 to 3 mm Hg was applied to dry the test samples and held until 10 to 30% of the moisture could be removed from the binder.
  • the only non-organic binder material mentioned in the article by Cole is a sodium silicate binder, which, however, is either mixed with complex ester hardeners or is subjected to a "chemical drying process" by "usual" C0 2 gassing systems.
  • ester compounds are not recommended because of the environmental problems mentioned above.
  • Fig. 3.28 shows on page 83 the course of the secondary strength for C0 2 tempered water glass molding materials depending on the casting temperature.
  • This process which has developed into the standard process for conventional and modified binder solutions in the past 30 years, leads to water glass-bonded molding materials with the high-temperature behavior shown in Fig.3.28, which is characterized by an increased tendency to sinter and by an inadequate disintegration ability of the molding material after casting .
  • melting phases occur, which form new bonds with the basic molding material during the subsequent cooling.
  • a reduction in the secondary strength achieved can be achieved by the following measures according to "Manual" on page 84:
  • Fig. 7 Comparison of gas volume formation with sand, AWB and CB products.
  • FIG. 1 contains a comparison of the representation of different molding material binder systems under constantly defined conditions.
  • the mold storage time is designated 0 minutes, i. H. the molding material is processed to form immediately after mixing.
  • the core storage time is 60 minutes, i. H. the shaping is stored for the specified time after the shaping and then broken.
  • the product according to the invention was produced in a rocking mixer with a mixing time of 50 seconds from 5 kg of molding sand H32 with 2.5% binder and processed on a H 2.5 core shooter.
  • the tool temperature was 150 ° C.
  • the compression was carried out at 2.5 bar overpressure and a residence time in the tool of 8 seconds, the gases produced being sucked off at a flow rate of 4 m 3 / h before the tool was opened.
  • the core molding was placed in the Microwave (600 watts) dried for 120 seconds.
  • FIG. 1 shows the associated bending strengths with a thinly hatched column with a molding material storage time of 0 min and a core storage time of 60 min.
  • a comparative product was produced with the Resol-C0 2 process and with 2.7% binder type.
  • the mixing time was 70 seconds, the compression was carried out under negative pressure at -0.8 bar.
  • the comparison product was then cured in a CO 2 atmosphere at 1 bar for 8.5 seconds.
  • the results are compared in FIG. 1 as "C0 2 " column with the same molding material storage times of 0 and core storage times of 60 minutes compared to the data according to the invention.
  • CB1, CB2, CB3 Cold Box
  • S0 2 -gassed sand system with 1% EPOXY / 0.25% resin and oxidizer has been manufactured and tested.
  • the bending strengths of the core moldings according to the invention have significantly better values than the SO 2 and CO 2 hardened moldings if the cores are removed from the mold immediately without storage.
  • FIG. 5 the illustration according to FIG. 4 is supplemented by different molding material storage times. Neither figure shows the comparison of regenerates with different core storage times because the comparison methods only allow the molded articles to be stable after the organic constituents have been removed.
  • the comparison of the bending strength of the core molding according to the invention shown in FIG. 5 with different core storage times shows that the increase in strength is less clear in the product according to the invention than in the comparison products.
  • FIG. 2 shows the curve of the bending strength as a function of the molding material storage time (FLZ) and the core storage time (KLZ).
  • FLZ molding material storage time
  • KLZ core storage time
  • Figure 3 contains a representation of the bending strength depending on the molding material storage time (FLZ) and the core storage time (KLZ) of the AWB process. 2.5% binder
  • Compression combines 2.5 bar overpressure and -0.6 bar underpressure
  • FIG. 5 shows the bending strength as a function of the core storage time (KLZ) in comparison to other molding material systems. 2.5% binder AWB process
  • the mold storage time is designated 0 minutes, i. H. the molding material is processed to form immediately after mixing.
  • the core storage time is designated 0 minutes, i. H. the shaping is broken immediately after shaping.
  • FIG. 7 shows the comparison of the gas volume formation of cold box and AWB moldings under thermal stress.
  • System parameters oven temperature 770 ° C molding material weight 2g
  • the gas volume is displayed system-adjusted, ie the dead volume is taken into account by calculation.
  • Test duration 7.5 minutes under thermal stress.
  • the sand systems were manufactured on the basis of H 32 new sand. For a separate comparison, a sample of unpolluted H 32 new sand was inserted for comparison.
  • AWB 2.5% stone houses / water extraction-hardening water glass binder
  • the samples were stored under common room conditions for 24 hours before the experiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik, wobei (a) eine Mischung aus einem anorganischen, feuerfesten Formsand und einem anorganischen Bindemittel auf Wasserglasbasis hergestellt wird, (b) die Mischung in einen temperierten Kernkasten eingefüllt, (c) das in der Mischung enthaltene Wasser auf physikalischem Wege entzogen und (d) der Kernvorformling dem Kernkasten entnommen wird. Das Verfahren ist dadurch gekennzeichnet, (e) daß der temperierte Kernkasten während der Befüllung einem Unterdruck ausgesetzt wird, (f) daß die Temperatur/Verweilzeit nach dem Schließen des Kernkastens so eingestellt wird, daß sich an dem Kernformling eine formstabile und tragfähige Randschale ausbildet, (g) daß der Kernformling unmittelbar nach dem Öffnen des Kernkastens entnommen und unter Einwirkung von Mikrowellen einer vollständigen Trocknung unterzogen wird.

Description

Verfahren zur Herstellung von Kernformlingen und Umlaufkernsand für Gießereizwecke
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik, wobei eine Mischung aus einem anorganischen, feuerfesten Formsand und einem anorganischen Bindemittel auf Wasserglasbasis hergestellt wird, die Mischung in einen temperierten Kernkasten eingefüllt, das in der Mischung enthaltene Wasser auf physikalischem Wege entzogen und der Kemvorformling dem Kernkasten entnommen wird sowie ein Verfahren zur Herstellung von Umlaufkernsand.
In einem 1962 veröffentlichten Artikel in der Zeitschrift "Foundry Trade Journal" wurde die Dehydratation-Härtung von Natritunsilikat-gebundenen Kernsanden beschrieben (siehe Foundry Trade Journal, 03. Mai 1962, Seiten 537 - 544).
Die Testproben bestanden aus einem verdichteten Sand-Natriumsilikat-Gemisch. Zur Trocknung der Testproben wurde ein Vakuum im Bereich von 0,5 bis 3 mm Hg aufgebracht und solange gehalten, bis 10 bis 30 % der Feuchte aus dem Binder entfernt werden konnte.
Weitere Versuche zur Trocknung wurden bei unterschiedlichen Temperaturen zwischen 100 bis 500 °C durchgeführt. Ferner wurde untersucht, wie die Dehydratation durch Zugabe von COz-Gas beschleunigt werden konnte .
Als Ergebnis wurde am Ende des Artikels festgestellt, daß die Zugabe von C02-Gas nicht unbedingt erforderlich ist um eine Härtung der Kernfor linge herbeizuführen. Für die praktische Durchführung wird vorgeschlagen, eine Vakuumpumpe mit ausreichender Kapazität zu benutzen, um Kernformlinge in einem "kalten" Verfahren herzustellen. Damit könne man auf eine Erwärmung des Kernkastens verzichten, die bisher wegen der Verwendung von warmaushärtenden Harzen als erforderlich angesehen wurde.
Als problematisch wurde jedoch erkannt, daß für die Herstellung von großvolumigen Kernen sehr große und schnell-laufende Pumpen verwendet werden müssen, damit ein ausreichendes Vakuum erzeugt werden kann. Andererseits wird die für die Trocknung durch Evakuierung benötigte Zeit von 8 bis 16 Minuten als hinderlich angesehen, da die lange Behandlungszeit für eine Massenproduktion von Kernformlingen ungeeignet sei.
Etwa 10 Jahre später - man benutzte überwiegend harzgebundene Kernformsande - erschienen in der Zeitschrift AFS-Transactions , Band 86, Seiten 227 - 236 ein Aufsatz über "Effekte der Mikrowellen-Erwärmung von Kernformprozessen" von G.S. Cole. Cole beschreibt die Mikrowellenbehandlung von organischen Bindersystemen und stellt im Ergebnis fest, daß bei Verwendung von Mikrowellen der Binderanteil deutlich herabgesetzt werden kann. Dieses hat entscheidende Vorteile für den Umweltschutz, da organische Materialien beim Gießen, beim Lagern und auch beim Entsorgen einer besonderen Behandlung bedürfen. Grundsätzlich ist aber auch bei der Trocknung durch Mikrowellen eine entsprechende Vorsorge gegen den Übertritt der im Binder enthaltenen organischen Materialien in die Abluft zu treffen.
Als einziges nicht-organisches Bindermaterial wird in dem Aufsatz von Cole ein Natriumsilikat-Binder erwähnt, der allerdings entweder mit komplexen Esterhärtern vermischt wird oder durch "übliche" C02-Begasungssysteme einem "chemischen-Trocknungs- verfahren" unterworfen wird. Hierdurch sind verschlechterte Zerfallseigenschaften des Kerns nach dem Abguß zu erwarten, da der Kernaltsand aufgrund von Verklumpungen der gebildeten Glas- phasen nur bedingt regenerierbar ist. Die Verwendung von Ester- Verbindungen ist wegen der oben erwähnten Umweltproblematik nicht empfehlenswert.
In einem 1993 erschienenen Handbuch über "Formstoffe und Formverfahren" des Deutschen Verlages für Grundstoffindustrie ist auf die Problematik der Regenerierung bei auftretenden Glasphasen hingewiesen (Seite 80/81). In Abb. 3.28 ist auf Seite 83 der Verlauf der Sekundärfestigkeit für C02-gehärtete Wasserglas- Formstoffe in Abhängigkeit von der Gießtemperatur dargestellt. Dieses Verfahren, das sich in den zurückliegenden 30 Jahren zum Standardverfahren für konventionelle und modifizierte Binderlösungen entwickelt hat, führt zu wasserglasgebundener Formstoffen mit dem in Abb. 3.28 dargestellten Hochtemperaturverhalten , das gekennzeichnet ist durch eine erhöhte Sinterneigung und durch eine unzureichende Zerfallsfähigkeit des Formstoffes nach dem Gießen. Außerdem treten Schmelzphasen auf, die bei der nachfolgenden Abkühlung neue Bindungen mit dem Formgrundstoff ausbilden. Eine Verminderung der dabei erzielten Sekundärfestigkeit läßt sich durch folgende Maßnahmen gemäß "Handbuch" Seite 84 erzielen:
1. Optimierung der Formstoffrezeptur zur Verminderung der Alkalität ;
2. Verwendung von Wasserglas-Lösungen mit abgesenktem Binderanteil;
3. Zugabe von zerfallsfördernden Zusätzen.
Dieses Optimierungsproblem ist bis heute nicht zufriedenstellend gelöst. Das Ablösen der Binderhüllen, bestehend aus dehydrati- siertem Natriumsilikat oder aus über chemische Umsetzung gebildete Gelphasen sowie aus den kristallisierten Schmelzphasen und Reaktionsprodukten, erfordert eine intensive Behandlung des Altformstoffes auf naß-chemischen Wege. Bei Estergehärteten Formstoffen liegen teilweise elastische Binderhüllen vor, die den Einsatz kombinierter thermisch-mechanischer Trennverfahren erforderlich machen. Aufgabe der vorliegenden Erfindung ist es nunmehr, ein Verfahren zur Herstellung von Kernformlingen für Gießereizwecke zu entwik- keln, das die vorstehend beschriebenen Nachteile nicht aufweist. Mit mit dem neuen Verfahren sollen komplex geformte Großserienteile in einer umweltschonenden, energiegünstigen Herstellungsweise insbesondere als großvolumige Kernformlinge erzeugt werden können, die eine für die Handhabung ausreichende Biegefestigkeit und eine im Vergleich zu bisherigen Kernsandoberflächen "glatte" Oberfläche aufweist und die den vollständigen Verzicht auf zerfallsfördernde Zusätze ermöglicht. Bei der Wiederaufbereitung des "Altsandes" soll auf jegliche Auftrennung bzw. Abspaltung von z. B. organischen Stoffen und auf die naß-chemische Behandlung des Altsandes verzichtet werden und dennoch ein Umlaufkernsand mit solchen physikalischen Eigenschaften herstellbar sein, die mit denen des natürlichen ursprünglich eingesetzten Ausgangsproduktes identisch sind.
Im folgenden wird die Erfindung anhand mehrerer Ausführungsbei- spiele näher erläutert. Es zeigen:
Fig. 1 und Tabelle 1 Gegenüberstellung der Biegefestigkeiten von AWB- und anderen Kernsystemen in Abhängigkeit von der Kernlagerzeit ( KLZ ) ;
Fig. 2 und Tabelle 2 Gegenüberstellung der Biegefestigkeiten von AWB- und anderen Kernsystemen in Abhängigkeit bei unterschiedlicher Formstofflagerzeit (FLZ);
Fig. 3 und Tabelle 3 Darstellung der Biegefestigkeiten bei veränderter Formstofflagerzeit und veränderter Kernlagerzeit des erfindungsgemäßen Produktes; Fig. 4 und Tabelle 4 Vergleich der Biegefestigkeit des erfindungsgemäßen Produktes mit den Werten von drei anderen Systemen CB1, CB2 , CB3 bei wechselnder Kernlagerzeit;
Fig. 5 und Tabelle 5 Gegenüberstellung der Biegefestig-kei tswerte des erfindungsgemäßen Produktes mit drei anderen Systemen bei konstanter Formstoff lagerzeit aber unterschiedlicher Kernlagerzeit;
Fig. 6 und Tabelle 6 Vergleich des erfindungsgemäßen Produktes mit drei anderen Produkten hinsichtlich ihrer Biegefestigkeiten;
Fig. 7 Vergleich der Gasmengenbildung bei Sand, AWB- und CB-Produkten.
Figur 1 beinhaltet einen Darstellungsvergleich von unterschiedlichen Formstoffbindersystemen bei konstant definierten Bedingungen. Die Formstofflagerzeit ist mit 0 Minuten bezeichnet, d. h. der Formstoff wird sofort nach dem Mischen zu Formungen verarbeitet. Die Kernlagerzeit ist mit 60 Minuten bezeichnet, d. h. der Formung wird nach der Gestaltgebung mit der vorgegebenen Zeit gelagert und anschließend gebrochen.
Das erfindungsgemäße Produkt wurde im Schwingmischer mit einer Mischdauer von 50 Sekunden aus 5 kg Formsand H32 mit 2,5 % Bindemittel hergestellt und auf einer Kernschießmaschine vom Typ H 2,5 verarbeitet. Die Werkzeugtemperatur betrug 150 °C. Die Verdichtung erfolgte bei 2,5 bar Überdruck und einer Verweildauer im Werkzeug von 8 Sekunden, wobei vor dem Öffnen des Werkzeuges die entstandenen Gase mit einer Durchflußmenge von 4 m3/h abgesaugt wurden. Nach der Entnahme wurde der Kernformling in der Mikrowelle (600 Watt) 120 Sekunden getrocknet. In Figur 1 sind die zugehörigen Biegefestigkeiten mit dünn schraffierter Säule bei einer Formstofflagerzeit von 0 min und eine Kernlagerzeit von 60 min dargestellt.
Ein Vergleichsprodukt wurde mit dem Resol-C02-Verfahren und mit 2,7 % Bindergattierung hergestellt. Die Mischzeit betrug 70 Sekunden, die Verdichtung erfolgte im Unterdruck bei -0,8 bar. Anschließend wurde das Vergleichsprodukt in C02-Atmosphäre bei 1 bar für 8,5 Sekunden ausgehärtet. Die Ergebnisse sind in Figur 1 als "C02"-Säule bei gleichen Formstofflagerzeiten von 0 und Kernlagerzeiten von 60 Minuten den erfindungsgemäßen Daten gegenübergestellt .
Weitere Vergleichsprodukte sind als CB1, CB2 , CB3 (Cold Box) bezeichnet und mit 0,8/0,8 % DMEA durchgeführt worden. Ferner ist ein S02-begastes Sandsystem mit 1 % EPOXY/0,25 % Harz und Oxydator hergestellt und getestet worden.
Es zeigt sich, daß die Biegefestigkeiten der erfindungsgemäßen Kernformlinge im Vergleich zu den S02 und C02-gehärteten Formungen deutlich bessere Werte aufweisen, wenn man die Kerne sofort ohne Lagerung aus der Form entnimmt.
Der in Figur 4 angestellte Vergleich bekannter Cold-Box-Systeme bei unterschiedlichen Kernlagerzeiten und einer Formstofflagerzeit von 0 min mit dem erfindungsgemäßen Kernformling zeigt, daß die erfindungsgemäßen Produkte deutlich bessere Werte als die Vergleichsprodukte aufweisen, wenn FLZ = 0 und KLZ = 0 ist. In Figur 5 ist die Darstellung nach Figur 4 durch unterschiedliche Formstofflagerzeiten ergänzt. Keine Figur zeigt den Vergleich von Regeneraten bei unterschiedlichen Kernlagerzeiten, weil die Vergleichsverfahren eine Stabilität der Formlinge nur nach Entfernung der organischen Bestandteile gestatten. Der in Figur 5 gezeigte Vergleich der Biegefestigkeit des erfindungsgemäßen Kernformlings bei unterschiedlichen Kernlagerzeiten läßt erkennen, daß die Festigkeitssteigerung beim erfindungsgemäßen Produkt weniger deutlich ist als bei den Vergleichsprodukten.
Figur 2 zeigt den Verlauf der Biegefestigkeit in Abhängigkeit der Formstofflagerzeit (FLZ) und der Kernlagerzeit (KLZ). Es wird das AWB-Verfahren mit dem Resol-C02-Verfahren gegenübergestellt (das Resol-C02-Verfahren kommt dem klassischen Wasserglas-Verfahren sehr nah, da hierbei die Verfestigung durch eine Gelbildung in den Binderbrücken erfolgt) . FLZ 0 : Angaben in Minuten FLZ 30: Angaben in Minuten bei KLZ 0.
Der Vergleich beider Systeme beruht auf dem Basisneusand H32. Die Versuchsparameter für das AWB-Verfahren sind dem Blatt 3/1 zu entnehmen. Resol-C02-Verfahren mit 2,7 % Bindergattierung, Mischzeit 70 sec . , Verdichtung im Unterdruck -0,8 bar, Aushärtung über C02/lbar/8,5 sec.
Figur 3 enthält eine Darstelllung der Biege estigkeit in Abhängigkeit der Formstofflagerzeit (FLZ) und der Kernlagerzeit (KLZ) des AWB-Verf hrens . 2,5 % Bindemittel
FLZ 0 Zeitangaben in Minuten FLZ 15 Zeitangaben in Minuten FLZ 30 Zeitangaben in Minuten KLZ 0 Zeitangaben in Minuten KLZ 60 Zeitangaben in Minuten KLZ 180 Zeitangaben in Minuten
FLZ = Formstofflagerzeit; KLZ = Kernlagerzeit Verarbeitung eines Materials aus 5 Kg H 32 im Schwingmischer,
Mischdauer 50 sec, Verarbeitung auf einer Kernschießmaschine
H 2,5
Werkzeugtemperatur 150°C
Verdichtung kombiniert 2,5 bar Überdruck und -0,6 bar Unterdruck
Verweildauer im Werkzeug 8 sec, mit Absaugung des Werkzeuges
4 m3/h
Mikrowellentrocknung 120 sec, 600 W
(Hinweis: der Feststoffanteil des Bindemittels beträgt 35 %).
Die in Figur 4 dargestellten Formstofffestigkeiten wurden mit folgenden Sandsystemen erzeugt: alle Sandsysteme wurden auf der Basis von H 32 Neusand hergestellt.
CB 1 0,8/0,8 % DMEA/HA Cold-Box
CB 2 0,8/0,8 % DMEA/HA Cold-Box
CB 3 0,8/0,8 % DMEA/HA Cold-Box
S02 l%/0,25 % H/Oxyd. Epoxy.
Dies ergibt die Darstellung der Biegefestigkeit gemäß Figur 4 in Abhängigkeit der Kernlagerzeit (KLZ) im Vergleich zu anderen FormstoffSystemen. 2,5 % Bindemittel AWB-Verfahren
KLZ 0 Zeitangaben in Minuten KLZ 60 Zeitangaben in Minuten FLZ 0 Zeitangaben in Minuten
FLZ = Formstofflagerzeit; KLZ = Kernlagerzeit
Wie in Figur 4 wurden die Sandsysteme aus der Basis von H 32 Neusand hergestellt.
CB 1 0,8/0,8 % DMEA/HA Cold-Box CB 2 0,8/0,8 % DMEA/HA Cold-Box CB 3 0,8/0,8 % DMEA/HA Cold-Box S02 l%/0,25 % H/Oxyd. Epoxy.
In Figur 5 ergab sich eine Darstellung der Biegefestigkeit in Abhängigkeit der Kernlagerzeit (KLZ) im Vergleich zu anderen FormstoffSystemen. 2,5 % Bindemittel AWB-Verfahren
KLZ 0 Zeitangaben in Minuten KLZ 60 Zeitangaben in Minuten FLZ 30 Zeitangaben in Minuten
FLZ = Formstofflagerzeit; KLZ = Kernlagerzeit
Im Darstellungsvergleich gemäß Figur 6 wurden unterschiedliche Formstoffbindersysteme bei konstant definierten Bedingungen gezeigt. Die Formstofflagerzeit ist mit 0 Minuten bezeichnet, d. h. der Fσrmstoff wird sofort nach dem Mischen zu Formungen verarbeitet. Die Kernlagerzeit ist mit 0 Minuten bezeichnet, d. h. der Formung wird sofort nach der Gestaltgebung gebrochen.
FLZ = 0 Minuten KLZ = 0 Minuten
Alle Sandsysteme wurden auf der Basis von H 32 Neusand im Schwingmischer mit einer Chargengröße von 5 Kg, wie in den vorhergehenden Beispielen, hergestellt.
In Figur 7 wird der Vergleich der Gasmengenbildung von Cold Box und AWB-Formlingen bei thermischer Beanspruchung dargestellt. Systemparameter: Ofentemperatur 770 °C Formstoffeinwaage 2g Die Gasmenge wird systembereinigt dargestellt, d. h. das Totvolumen ist rechnerisch berücksichtigt. Versuchsdauer: 7,5 Minuten unter thermischer Beanspruchung.
Die Sandsysteme wurden auf der Basis von H 32 Neusand hergestellt. Zum gesonderten Vergleich wurde eine Probe aus unbelastetem H 32 Neusand zum Vergleich mit eingefügt. AWB 2,5 % (Steinhäuser/wasserentzug-härtender Wasserglasbinder) CB Cold Box 0,8/0,8 %.
Die Proben wurden unter gemeinsamen Raumbedingungen vor dem Versuch 24 Stunden gelagert.

Claims

Verfahren zur Herstellung von Kernformlingen und Umlaufkernsand für GießereizweckePatentansprüche
1. Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik, wobei a) eine Mischung aus einem anorganischen, feuerfesten Formsand und einem anorganischen Bindemittel auf Wasserglasbasis hergestellt wird, b) die Mischung in einen temperierten Kernkasten eingefüllt, c) das in der Mischung enthaltene Wasser auf physikalischem Wege entzogen und d) der Ke vorformling dem Kernkasten entnommen wird,
dadurch gekennzeichnet,
e) daß der temperierte Kernkasten während der Befüllung einem Unterdruck ausgesetzt wird, f) daß die Temperatur/Verweilzeit nach dem Schließen des Kernkastens so eingestellt wird, daß sich an dem Kernformling eine formstabile und tragfähige Randschale ausbildet, g) daß der Kernformling unmittelbar nach dem Öffnen des Kernkastens entnommen und unter Einwirkung von Mikrowellen einer vollständigen Trocknung unterzogen wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß der Unterdruck im Bereich von 100 - 400 mbar gehalten wird.
3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Temperatur des Kernkastens im Bereich von 150 - 200°C gehalten wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Ausbildung einer Randschale im temperierten Kernkasten in einer Zeit von 10 bis 30 Sekunden erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die vollständige Trocknung und Durchhärtung des Kern- formlings unter Mikrowellen in einer Zeit von 30 bis 180 Sekunden erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Befüllung des Kernkastens mit einer Mischung aus Umlaufkernsand erfolgt, die aus 1,5 bis 3,0 Gew.-% Bindemittel, bezogen auf den Sandanteil, besteht, wobei der Binder 20 - 50 Gew.-% Wasserglas, Rest Wasser enthält.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Anteil an Schmelzphasen im Umlaufkernsand <. 0,1 Gew.- beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Wassergehalt des Bindemittels unmittelbar vor der Befüllung des Kernkastens um 20 - 40 % erhöht wird.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Unterdruck ausreicht, um zumindest den Hauptteil des im Formstoff enthaltenen Wassers zu entfernen.
10. Verfahren zur Herstellung eines Umlaufkernsandes , bestehend aus Reststoffen von Altkernen für Gießereizwecke, nämlich Quarzsand und einem Bindemittel auf Wasserglas-Basis,
dadurch gekennzeichnet,
daß die Reststoffe mit einem Bindemittelgehalt von 1,5 bis 3 % auf die Ausgangs-Primärkorngröße deaglomeriert werden, daß dieses Primärkorn eine dehydrierte Wasserglas-Bindemittelhülle aufweist, die frei von organischen Resten und freien Soda ist, daß der Anteil der Schmelzphasen im Umlaufkernsand <. 0,1 Gew.-% beträgt und daß die Menge an Wasserglas im Bereich von 1,5 bis 3,0 Gew.-%, bezogen auf die Menge an Quarzsand bei einem maximalen Feststof anteil von 50 Gew.-% bezogen auf das Bindemittel beträgt.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Primärkornanteil in der Umlaufkernsand-Mischung >. 99 Gew.-% beträgt.
2. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Deaglomeration in einem Backenbrecher einer Kreuzschlagmühle und die Mischung mit dem Bindemittel im Schwingungsmischer ohne Sichtung erfolgt.
PCT/EP1997/004072 1996-08-09 1997-07-26 Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke WO1998006522A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP97934549A EP0917499B1 (de) 1996-08-09 1997-07-26 Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke
AT97934549T ATE197683T1 (de) 1996-08-09 1997-07-26 Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke
HU0001766A HU222658B1 (hu) 1996-08-09 1997-07-26 Eljárás mag-idomdarabok és újrahasznosított maghomok elżállítására öntödei célokra
DK97934549T DK0917499T3 (da) 1996-08-09 1997-07-26 Fremgangsmåde til fremstilling af kerneråstykgods og recurkulationskernesand til støbeformål
DE59702665T DE59702665D1 (de) 1996-08-09 1997-07-26 Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19632293.6 1996-08-09
DE19632293A DE19632293C2 (de) 1996-08-09 1996-08-09 Verfahren zur Herstellung von Kernformlingen für die Gießereitechnik

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09242236 A-371-Of-International 1999-02-05
US09/866,489 Continuation-In-Part US6371194B1 (en) 1996-08-09 2001-05-25 Method for producing core preforms and recycling core sand for a foundry

Publications (2)

Publication Number Publication Date
WO1998006522A2 true WO1998006522A2 (de) 1998-02-19
WO1998006522A3 WO1998006522A3 (de) 1998-06-04

Family

ID=7802305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/004072 WO1998006522A2 (de) 1996-08-09 1997-07-26 Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke

Country Status (7)

Country Link
EP (1) EP0917499B1 (de)
AT (1) ATE197683T1 (de)
DE (2) DE19632293C2 (de)
DK (1) DK0917499T3 (de)
ES (1) ES2153677T3 (de)
HU (1) HU222658B1 (de)
WO (1) WO1998006522A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292857C (zh) * 2001-09-08 2007-01-03 曼德尔和贝格尔氢化铝有限公司 制造成型件的方法和射砂造型机及其实施所述方法的应用
CN1298456C (zh) * 2001-09-14 2007-02-07 曼德尔和贝格尔氢化铝有限公司 制造铸件的方法,型砂及其实施此方法的应用
DE102006061876A1 (de) 2006-12-28 2008-07-03 Ashland-Südchemie-Kernfest GmbH Kohlenhydrathaltige Formstoffmischung
DE102007051850A1 (de) 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
US7770629B2 (en) 2004-09-02 2010-08-10 As Lungen Gmbh Moulding mixture for producing casting moulds for metalworking
DE202007019192U1 (de) 2006-10-19 2011-02-03 Ashland-Südchemie-Kernfest GmbH Kohlenhydrathaltige Formstoffmischung
DE202007019185U1 (de) 2006-10-19 2011-03-31 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29925010U1 (de) * 1999-10-26 2008-09-04 Mincelco Gmbh Wasserglasgebundener Kernformstoff
MXPA04001086A (es) * 2001-08-10 2004-07-08 Laempe Joachim Metodo y dispositivo para produccion de moldes o machos para propositos de fundicion.
DE10200927A1 (de) * 2001-08-10 2003-03-06 Laempe Joachim Verfahren und Vorrichtung zur Herstellung von Formen oder Kernen für Giessereizwecke
DE10144391C1 (de) * 2001-09-10 2002-10-17 Vaw Mandl & Berger Gmbh Linz Verfahren und Formschießmaschine zum Herstellen von Formteilen, wie Gießkernen, für Gießformen zum Vergießen von Metallschmelze
DE10209183A1 (de) * 2002-03-04 2003-10-02 Vaw Mandl & Berger Gmbh Linz Formstoff für die Herstellung von Gießformteilen
DE10209224A1 (de) * 2002-03-04 2003-10-09 Vaw Mandl & Berger Gmbh Linz Verfahren zum Herstellen von Gußstücken
DE10216464B4 (de) * 2002-04-12 2004-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Silica gebundene Kernwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE102006003198A1 (de) * 2006-01-24 2007-07-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kerne für den Leichtmetall- und/oder den Feinguss
DE102008041217A1 (de) * 2008-08-13 2010-02-18 Volkswagen Ag Formstoffbinder für schüttbare Formmassen und Verfahren zum Herstellen von Kerneinsätzen für Gussformen
EP2163328A1 (de) * 2008-09-05 2010-03-17 Minelco GmbH Mit Wasserglas beschichteter und/oder vermischter Kern- oder Formsand mit einem Wassergehalt im Bereich von >= etwa 0,25 Gew.-% bis etwa 0,9 Gew.-%
EP2537926A1 (de) 2011-06-21 2012-12-26 Isobionics B.V. Valencensynthase
DE102015106126A1 (de) 2015-04-21 2016-10-27 Nemak, S.A.B. De C.V. Kernkasten zum Herstellen von Gießkernen
RU2763701C1 (ru) * 2021-06-22 2021-12-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ изготовления литейных стержней и форм

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952788A (en) * 1962-02-15 1964-03-18 Foseco Int Moulds, cores and the like suitable for foundry and like purposes
US4226277A (en) * 1978-06-29 1980-10-07 Ralph Matalon Novel method of making foundry molds and adhesively bonded composites
WO1986000033A1 (en) * 1984-06-12 1986-01-03 MIKROVA^oGSAPPLIKATION AB A method and a plant of manufacturing cores
WO1989005204A1 (en) * 1987-12-08 1989-06-15 Harri Sahari Method for preparation of moulds and cores used in the casting of metals
US4960162A (en) * 1989-02-17 1990-10-02 Esco Corporation Method of reclaiming foundry sand

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167539A (ja) * 1984-09-12 1986-04-07 Mitsubishi Heavy Ind Ltd 塗型材の乾燥方法
JPH01215433A (ja) * 1988-02-19 1989-08-29 Mitsubishi Motors Corp 高圧鋳造用中子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952788A (en) * 1962-02-15 1964-03-18 Foseco Int Moulds, cores and the like suitable for foundry and like purposes
US4226277A (en) * 1978-06-29 1980-10-07 Ralph Matalon Novel method of making foundry molds and adhesively bonded composites
WO1986000033A1 (en) * 1984-06-12 1986-01-03 MIKROVA^oGSAPPLIKATION AB A method and a plant of manufacturing cores
WO1989005204A1 (en) * 1987-12-08 1989-06-15 Harri Sahari Method for preparation of moulds and cores used in the casting of metals
US4960162A (en) * 1989-02-17 1990-10-02 Esco Corporation Method of reclaiming foundry sand

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MACDONALD R M: "The Rebonding of Reclaimed Silicate Sands" MODERN CASTING, vol. 66, no. 6, June 1976, pages 66-67, XP002060227 *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 234 (M-507), 14 August 1986 & JP 61 067539 A (MITSUBISHI HEAVY IND LTD), 7 April 1986, *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 526 (M-897), 22 November 1989 & JP 01 215433 A (MITSUBISHI MOTORS CORP), 29 August 1989, *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292857C (zh) * 2001-09-08 2007-01-03 曼德尔和贝格尔氢化铝有限公司 制造成型件的方法和射砂造型机及其实施所述方法的应用
CN1298456C (zh) * 2001-09-14 2007-02-07 曼德尔和贝格尔氢化铝有限公司 制造铸件的方法,型砂及其实施此方法的应用
US7770629B2 (en) 2004-09-02 2010-08-10 As Lungen Gmbh Moulding mixture for producing casting moulds for metalworking
DE202005021896U1 (de) 2004-09-02 2011-01-20 AS Lüngen GmbH Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung
DE102004042535B4 (de) 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
DE202007019192U1 (de) 2006-10-19 2011-02-03 Ashland-Südchemie-Kernfest GmbH Kohlenhydrathaltige Formstoffmischung
DE202007019185U1 (de) 2006-10-19 2011-03-31 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
DE102006061876A1 (de) 2006-12-28 2008-07-03 Ashland-Südchemie-Kernfest GmbH Kohlenhydrathaltige Formstoffmischung
DE102007051850A1 (de) 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
DE202008017975U1 (de) 2007-10-30 2011-01-27 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fließfähigkeit
US10232430B2 (en) 2007-10-30 2019-03-19 Ask Chemicals Gmbh Mould material mixture having improved flowability

Also Published As

Publication number Publication date
EP0917499B1 (de) 2000-11-22
DK0917499T3 (da) 2001-02-12
HUP0001766A2 (hu) 2000-09-28
DE19632293C2 (de) 1999-06-10
HU222658B1 (hu) 2003-09-29
ES2153677T3 (es) 2001-03-01
ATE197683T1 (de) 2000-12-15
EP0917499A2 (de) 1999-05-26
WO1998006522A3 (de) 1998-06-04
DE59702665D1 (de) 2000-12-28
HUP0001766A3 (en) 2000-11-28
DE19632293A1 (de) 1998-02-19

Similar Documents

Publication Publication Date Title
EP0917499B1 (de) Verfahren zur herstellung von kernformlingen und umlaufkernsand für giessereizwecke
DE3221357A1 (de) Verfahren zur herstellung von formen und kernen fuer giesszwecke
DE69725315T2 (de) Verfahren zur herstellung von speisern und anderen beschickungs- und zuführungs-elementen für giessformen und zusammensetzung zur herstellung der speiser und elemente
DE69129860T2 (de) Verbesserungen bezüglich wasserdispergierbarer formen
DE69404687T2 (de) Kern für Giessverfahren
DE102006056093B4 (de) Kernwerkstoff aus Aerogelsand enthaltend Additivsand und dessen Verwendung
EP1697273B1 (de) Herstellung von füllstoffhaltigen aerogelen
DE2157845A1 (de) Verfahren zur Herstellung von feuer festen Gegenstanden und feuerfeste Matenalmischung
EP2308614B1 (de) Grünfeste Aerosande
DE1238622B (de) Formmasse fuer Schalenformen zum Vergiessen von Metallen
DE102007008104A1 (de) Verfahren zur Regeneration von Gießereisanden
US6371194B1 (en) Method for producing core preforms and recycling core sand for a foundry
EP2941327B1 (de) Verfahren zur herstellung eines kern- und oder formsandes für giessereizwecke
DE60219471T2 (de) Verbessertes verfahren zur herstellung von platten aus einer marmor-haltigen zusammensetzung
EP1682291B1 (de) Füllstoff enthaltende aerogele
DE1646585A1 (de) Verfahren zur Herstellung von zur Verarbeitung keramischer Massen dienenden Formen
DE3704726C2 (de)
DE102011010548A1 (de) Anorganisches Bindemittel und Verfahren zur Herstellung von kalthärtenden Formstoffen für den Metallguss und für Faserverbundbauteile
EP1752235A1 (de) Giesskernmasse
DE69214022T2 (de) Giessform
DE10216403A1 (de) Aerogelgebundene Formstoffe mit hoher Wärmeleitfähigkeit
DE102008041217A1 (de) Formstoffbinder für schüttbare Formmassen und Verfahren zum Herstellen von Kerneinsätzen für Gussformen
DE3709374A1 (de) Poren-leichtbeton
DE3600956A1 (de) Verfahren zur herstellung von giessereikernen
DE2632880A1 (de) Organisch gebundene isolierkoerper fuer die erstarrungslenkung von metallen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA HU MX US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA HU MX US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997934549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09242236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/001325

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1997934549

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997934549

Country of ref document: EP