WO1998003392A1 - Verfahren und vorrichtung zur steuerung von elektromotoren - Google Patents

Verfahren und vorrichtung zur steuerung von elektromotoren Download PDF

Info

Publication number
WO1998003392A1
WO1998003392A1 PCT/EP1997/003739 EP9703739W WO9803392A1 WO 1998003392 A1 WO1998003392 A1 WO 1998003392A1 EP 9703739 W EP9703739 W EP 9703739W WO 9803392 A1 WO9803392 A1 WO 9803392A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
drive
control
acceleration sensor
output signal
Prior art date
Application number
PCT/EP1997/003739
Other languages
English (en)
French (fr)
Inventor
Reiner RÜHLE
Original Assignee
Luna Gmbh Leichte Umweltfreundliche Nahverkehrsalternativen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luna Gmbh Leichte Umweltfreundliche Nahverkehrsalternativen filed Critical Luna Gmbh Leichte Umweltfreundliche Nahverkehrsalternativen
Priority to AU40100/97A priority Critical patent/AU4010097A/en
Priority to DE19780720T priority patent/DE19780720D2/de
Publication of WO1998003392A1 publication Critical patent/WO1998003392A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a control for at least one electric motor according to the preamble of claims 1 and 7 and the use of this control.
  • the invention has for its object to provide a control for an electric drive, which achieves sufficient accuracy and high robustness at low cost.
  • a particular advantage of the invention is the effective control with minimal circuit complexity, in that the acceleration of the part / vehicle is detected and an electrical output signal is generated therefrom and an evaluation is carried out to determine a setpoint for the manipulated variable of the secondary drive, with a primary drive (PA) a first power (x) and at least one secondary drive (M) act on an acceleration sensor (BS) and the acceleration sensor (BS) is connected to control electronics (RE) which detects and evaluates the fluctuations in the primary drive energy and compares the absolute values with stored characteristic curves and generates a manipulated variable corresponding to the average acceleration value (Z) for the secondary drive (M).
  • PA primary drive
  • x first power
  • M secondary drive
  • BS acceleration sensor
  • RE control electronics
  • the control of the electric drive has an acceleration sensor which is located in the moving part of the electric drive system, preferably in a vehicle.
  • the output signal of the acceleration sensor in the control electronics helps to determine the desired setpoint for the manipulated variable of the drive system.
  • the manipulated variable is preferably a value for the acceleration, the power, the torque or the speed.
  • the output signal of the acceleration sensor is preferably compared with characteristic curves stored in the electronics. When evaluating this comparison, other influencing factors such as temperatures, current speed and power value, horizontal position, etc. can also be taken into account.
  • 1 shows the basic structure of known acceleration sensors
  • 2 shows the basic structure of known acceleration sensors used according to the invention
  • Fig. 3 shows a schematic diagram of the measured value acquisition
  • Fig. 4 is a schematic diagram of a
  • Diagram 1 Curves for the force distribution of a pedal drive
  • acceleration sensors work according to the piezoelectric principle: Depending on the direction of acceleration, a moving mass, attached to a piezo element, exerts tension or pressure on this piezo element and thus generates a proportional electrical voltage that can be evaluated.
  • the acceleration sensors used in the present invention have the following micromechanical structure, as shown in FIG. 1.
  • the sensor consists of a movable electrode in the form of a comb.
  • the teeth of the comb are surrounded by two plates each.
  • the comb and thus the individual tines can move while the plates are fixed.
  • a prong of the comb forms two capacitors (Cl and C2) with two neighboring plates. In the idle state, the tine is located exactly in the middle of the two fixed plates, so that the capacitance of the two capacitors is the same.
  • the system is accelerated
  • an oscillator generates two square-wave signals shifted by 180 °, which are each passed to the two plates. At rest, when both capacitances are equal, the voltage on the movable electrode is zero. When accelerating, the two capacitances are unequal, so that a voltage is applied to the movable electrode. This voltage is fed to a synchronous demodulator. This demodulator is clocked by the oscillator mentioned at the beginning. If signals appear at the input of the demodulator that are synchronous and in phase with the oscillator signal, then the output signal is positive. If the input signal is synchronous but is shifted in phase by 180 ° with respect to the clock, then a negative output signal occurs.
  • the invention can advantageously be used in a bicycle drive system. It is described below using this example, which is shown schematically in FIG. 4.
  • the electric drive of the bicycle (M) should contribute to the locomotion (Y) as precisely as possible in the specified ratio, as is the case through the muscle power (X) initiated by the cyclist via the pedal drive (PA).
  • complex measuring devices for force sensors are customary in conventional systems.
  • the present control is based on an acceleration sensor (BS) housed in or on the motor (M).
  • the acceleration sensor (BS) outputs a voltage corresponding to the positive or negative acceleration a, which results from the fluctuating torque on the pedals and the torque of the motor (M) or from other influences, such as braking.
  • the amplitude and frequency of this fluctuation (diagram 1) with the additional influences are recorded and evaluated by the control electronics (RE), the absolute values being compared with characteristic curves stored in the system.
  • Diagram 1 shows with curve 1 the steady increase in human pedaling power.
  • Curve 2 shows the highly uniform introduction of human strength.
  • curve 3 shows the uneven introduction of human strength.
  • the proportions of the negative acceleration represent the losses of the bicycle (rolling friction etc.).
  • Curve 4 shows the acceleration values with added engine power.
  • the stored characteristic curves are adapted to the measured pedal frequency and the measured acceleration amplitudes and then compared with the recorded curves.
  • the electric motor (M) emits a constant or constantly changing torque (curve 4, diagram 1) with a substantially higher fundamental frequency during a period (one revolution of the pedal crank).
  • the basic frequency of the torque of the motor is 10 to 100 times the pedal frequency of the cyclist.
  • the slight influence of this moment can also be taken into account in the simulation calculation of the control electronics by a feedback of the control signal Y, so that the signal of the acceleration sensor (BS) is adjusted with regard to this influencing variable.
  • the acceleration is recorded for two half pedal turns by a large number of measurement values for evaluation, since there are usually larger differences between the muscle strength of the left and right leg (curve 3, diagram 1).
  • the electronics also evaluate the course of the absolute values and difference values in two half-periods, and can also determine the changing driving resistance (F) based on characteristic courses and incorporate them into the calculation.
  • the average of the acceleration difference during a period (pedal crank revolution) now gives the degree of acceleration that the motor drive must bring about.
  • the invention can be used, for example, in a bicycle that is to be equipped with an electric auxiliary drive.
  • the auxiliary drive will be controlled according to the invention to ensure that the bicycle continues to operate as a bicycle and human pedaling performance remains an essential part of locomotion.
  • the percentage of human pedaling power is set at 50% of the total system power (cyclist and electric motor).
  • the acceleration characteristic is recorded using the acceleration sensor (BS).
  • BS acceleration sensor
  • a comparison can be made with the curves stored in the processor system to determine whether there is human pedaling power at all or whether there are other types of movement (e.g. pushing the bicycle, braking, carrying the bicycle, etc.).
  • the microprocessor control determines that the bicycle is being ridden by the cyclist, the recorded acceleration profiles are evaluated. If a positive acceleration is now determined on the average of a period (acceleration difference between the highest and lowest acceleration during a pedal crank revolution), this measure of acceleration is achieved by the control of the motor over the same period (period). This process is monitored in real time by a microprocessor. Since the engine power only achieves a certain acceleration depending on the mass of the system, the degree of acceleration must be constantly monitored in order to achieve the specified one To achieve value. The mass dependency can be compensated in this way with a real-time control.
  • Another application is vehicles with electrical drive systems with at least two motors, one motor (master) being externally controlled and the second motor (slave) being controlled in the manner already described.
  • the technically induced fluctuations in acceleration of the master motor (diagram 2) that arise during operation are recorded and evaluated.
  • the special characteristics of the acceleration fluctuations must be recorded beforehand and stored in the processor system. The slave motor is then controlled with the output signal.
  • the relatively complex programming makes the activation only marginally more expensive, while an acceleration sensor is considerably cheaper and more reliable than a force sensor integrated in a special device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

In vielen elektrischen Antriebssystemen benötigt die Regelung die Vorgabe eines Sollwertes für eine der wichtigen Leistungskenndaten, Beschleunigung, Leistung, Drehmoment oder Drehzahl. Dieser Sollwert kann häufig nur mit erheblichem meßtechnischen Aufwand erzeugt werden und die Regelgüte hängt von der Genauigkeit und Robustheit der eingesetzten Meßsensoren ab. Erfindungsgemäß wird der Sollwert für eine Leistungsgröße eines sich selbst bewegenden elektrischen Antriebssystems durch die Auswertung eines Beschleunigungssensors erzeugt. Hierbei wird das Ausgangssignal des Beschleunigungssensors vorzugsweise mit in der Elektronik abgespeicherten Kennlinien verglichen und der Sollwert für die Leistungsgröße aus diesem Vergleich unter Berücksichtigung weiterer Einflußfaktoren ermittelt. Die Erfindung ermöglicht insbesondere eine kostengünstige, genaue und robuste Drehmomentvorgabe in nach dem Verstärkerprinzip arbeitenden Fahrradhilfsantrieben.

Description

Verfahren und Vorrichtung zur Steuerung von Elektromotoren
Beschreibung
Die Erfindung betrifft eine Steuerung für mindestens einen Elektromotor gemäß dem Oberbegriff der Ansprüche 1 und 7 und die Verwendung dieser Steuerung.
In der DE 40 11 064 AI wird ein Steuerelement z. B. für Elektrofahrzeuge beschrieben welches manuell über ein Potentiometer bedient wird und die Möglichkeit der autonomen Regelung nicht aufweist.
Weiterhin ist aus DE 41 33 622 AI eine Drehzahlerfassung bei Antriebsanordnungen bekannt, die jedoch die Drehzahlen verschiedener Antriebe vergleicht. Im hier gegebenen Fall kommt es nicht auf die Erfassung der Drehzahl an, sondern es ist der Verlauf des Drehmomentes während jeweils einer Umdrehung des steuernden Antriebs zu ermitteln und auszuwerten.
Des weiteren sind Lösungen bekannt, die das Überschreiten eines Grenzwertes der Beschleunigung auswerten und z.B. Sicherungsmaßnahmen auslösen.
Der Erfindung liegt die Aufgabe zugrunde, eine Steuerung für einen Elektroantrieb zu schaffen, welche bei niedrigen Kosten eine ausreichende Genauigkeit und hohe Robustheit erreicht.
Diese Aufgabe wird durch die in den Ansprüchen 1 und 7 wiedergegebene Erfindung gelöst. Ein besonderer Vorteil der Erfindung ist die effektive Steuerung bei minimalem schaltungstechnischen Aufwand, indem die Beschleunigung des Teiles/Fahrzeuges erfaßt und daraus ein elektrisches Ausgangssignal erzeugt wird und zur Ermittlung eines Sollwertes für die Stellgröße des Sekundärantriebes eine Auswertung erfolgt, wobei ein Primärantrieb (PA) mit einer ersten Leistung (x) und mindestens ein Sekundärantrieb (M) auf einem Beschleunigungssensor (BS) wirken und der Beschleunigungssensor (BS) mit einer Regelelektronik (RE) verbunden ist, welche die Schwankungen der Primärantriebsenergie erfaßt und auswertet und die Absolutwerte mit gespeicherten Kennlinien vergleicht und eine Stellgröße entsprechend des gemittelten Beschleunigungswertes (Z) für den Sekundärantrieb (M) erzeugt.
Erfindungsgemäß weist die Ansteuerung des Elektroantriebs einen Beschleunigungssensor auf, der sich im bewegten Teil des elektrischen Antriebssystems, vorzugsweise in einem Fahrzeug, befindet. Das Ausgangssignal des Beschleunigungssensors trägt in der Ansteuerelektronik dazu bei, den gewünschten Sollwert für die Stellgröße des Antriebsystems zu ermitteln. Die Stellgröße ist vorzugsweise ein Wert für die Beschleunigung, die Leistung, das Drehmoment oder die Drehzahl. Bei der Bestimmung dieser Regelgröße wird vorzugsweise das Ausgangssignal des Beschleunigungssensors mit in der Elektronik abgespeicherten Kennlinien verglichen. Bei der Auswertung dieses Vergleiches können auch weitere Einflußfaktoren wie Temperaturen, aktueller Geschwindigkeits- und Leistungswert, Horizoantallage, etc. berücksichtigt werden.
Die Erfindung soll nachstehend anhand von zumindest teilweise in den Figuren dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:
Fig. 1 den prinzipiellen Aufbau bekannter Beschleunigungssensoren, Fig. 2 den prinzipiellen Aufbau bekannter Beschleunigungssensoren gemäß der Erfindung verwendeter Beschleunigungssensoren,
Fig. 3 eine Prinzipdarstellung der Meßwerterfassung
Fig. 4 eine Prinzipdarstellung eines
Fahrradantriebss s ems
Diagramm 1 : Kurven zur Kraftverteilung eines Pedalantriebes
Diagramm 2 : Kurven zu BeschleunigungsSchwankungen von motorischen Antrieben
Die beschriebenen Anordnungen benutzen einen Beschleunigungssensor. Herkömmliche Beschleunigungssensoren funktionieren nach dem piezoelektrischen Prinzip: Eine bewegliche Masse, auf einem Piezoelement befestigt, übt je nach Richtung der Beschleunigung Zug oder Druck auf ebendieses Piezoelement aus und erzeugt so eine proportionale elektrische Spannung, die ausgewertet werden kann.
Nachteilig ist, daß derartige Anordnungen teuer sind und ein professionelles Meßequipment erfordern.
Die bei der vorliegenden Erfindung eingesetzten Beschleunigungssensoren haben folgenden mikromechanischen Aufbau, wie in Fig. 1 dargestellt. Der Sensor besteht aus einer beweglichen Elektrode in der Form eines Kamms. Die Zinken des Kamms sind von jeweils zwei Plättchen umgeben. Während die Plättchen fixiert sind, kann sich der Kamm und damit die einzelnen Zinken verschieben. Ein Zinken des Kamms bildet mit zwei benachbarten Plättchen zwei Kondensatoren (Cl und C2) . Im Ruhezustand befindet sich der Zinken genau in der Mitte der beiden fixierten Plättchen, so daß die Kapazität der beiden Kondensatoren gleich ist. Wird das System beschleunigt
(Fig. 2) , dann wird die bewegliche Elektrode mit den Zinken verschoben und die Kapazitäten ändern sich entsprechend der
Veränderung des Abstandes der Kammzinken zu den fixierten Plättchen. Da es sich hier um winzige Kapazitätsänderungen handelt, besteht die Anordnung in der Praxis aus einer Vielzahl von Zinken und fixierten Plättchen, wodurch sich die variablen Kapazitäten addieren.
Die Messung selbst erfolgt gemäß Fig. 3 folgendermaßen: Ein Oszillator erzeugt zwei um 180° verschobene Rechtecksignale, die jeweils auf die beiden Plättchen geleitet werden. Im Ruhezustand, wenn beide Kapazitäten gleich sind, ist die Spannung an der beweglichen Elektrode gleich Null. Bei einer Beschleunigung sind die beiden Kapazitäten ungleich, so daß an der beweglichen Elektrode eine Spannung anliegt. Diese Spannung wird einem synchronen Demodulator zugeführt. Dieser Demodulator wird vom Eingangs erwähnten Oszillator getaktet. Erscheinen am Eingang des Demodulators Signale, die synchron und in Phase mit dem Oszillatorsignal sind, dann ist das Ausgangssignal positiv. Ist das Eingangssignal zwar synchron aber in der Phase um 180° gegenüber dem Takt verschoben, dann tritt ein negatives Ausgangssignal auf.
Die Erfindung kann vorteilhaft in einem Fahrradantriebsystem verwendet werden. Anhand dieses in Fig. 4 schematisch dargestellten Beispiels wird sie im Folgenden beschrieben.
Der Elektroantrieb des Fahrrades (M) soll möglichst exakt im vorgegebenen Verhältnis die Leistung (Y) zur Fortbewegung beitragen, wie es durch die eingeleitete Muskelleistung (X) des Fahrradfahrers über den Pedalantrieb (PA) der Fall ist. Hierzu sind in konventionellen Systemen aufwendige Meßvor- richtungen für Kraftsensoren üblich.
Dagegen basiert die vorliegende Steuerung auf einem im oder am Motor (M) untergebrachten Beεchleunigungssensor (BS) . Der Beschleunigungssensor (BS) gibt eine Spannung entsprechend der positiven oder negativen Beschleunigung a ab, die sich durch das schwankende Drehmoment an den Pedalen und das Drehmoment des Motors (M) oder durch andere Einflüsse, wie das Bremsen ergibt. Je höher die Pedalkraft d.h. die Leistung des Radfahrers ist, umso größer sind die Schwankungen zwischen vertikaler und horizontaler Stellung der Tretkurbeln. Die Amplitude und die Frequenz dieser Schwankung (Diagramm 1) mit den zusätzlichen Einflüssen werden von der Regelelektronik (RE) erfaßt und ausgewertet, wobei die Absolutwerte mit im System abgelegten Kennlinien verglichen werden.
Das Diagramm 1 zeigt mit der Kurve 1 die stetige Steigerung der menschlichen Tretleistung. In Kurve 2 wird die im hohen Maße gleichmäßige Einleitung der menschlichen Kraft gezeigt. Schließlich wird in Kurve 3 die ungleichmäßige Einleitung der menschlichen Kraft gezeigt. Hier sind deutlich die Leistungsunterschiede zwischen linkem und rechten Bein zu erkennen. Die Anteile der negativen Beschleunigung stellen die Verluste des Fahrrades (Rollreibung etc.) dar. In der Kurve 4 sind die Beschleunigungswerte mit hinzugesetzter Motorleistung dargestellt .
Die abgelegten Kennlinien werden der gemessenen Tretfrequenz und den gemessenen Beschleunigungsamplituden angepasst und dann mit den aufgenommenen Kurven verglichen.
Ergebnis dieser durch entsprechende Programmierung beliebig intelligent und komfortabel ausführbaren Vergleiche ist wie in Fig. 4 dargestellt eine Drehmomentvorgäbe (Z) an den Elektromotor (M) des Fahrrades . Der Elektromotor (M) gibt ein während einer Periode (eine Umdrehung der Tretkurbel) gleichbleibendes oder stetig sich änderndes Moment (Kurve 4, Diagramm 1) mit einer wesentlich höheren Grundfrequenz ab. Die Grundfrequenz des Drehmomentes des Motors liegt beim 10 bis lOOfachem der Tretfrequenz des Fahrradfahrerε .
Der geringe Einfluß dieses Momentes kann bei der Simulationsrechnung der Ansteuerelektronik durch eine Rückführung des AnsteuerSignals Y ebenfalls berücksichtigt werden, so daß das Signal des Beschleunigungssensors (BS) bzgl. dieser Einflußgrδße bereinigt wird. Die Beschleunigung wird jeweils für zwei Halbe Pedalumdrehung durch eine Vielzahl von Meßwerten zur Auswertung erfaßt, da meist größere Unterschiede zwischen der eingeleitete Muskelkraft des linken und des rechten Beines bestehen (Kurve 3, Diagramm 1) . Neben den Absolutwerten und Differenzwerten wertet die Elektronik auch den Verlauf in jeweils zwei Halbperioden aus, und kann anhand charakteristischer Verläufe den sich ändernden Fahrwiderstand (F) ebenfalls ermitteln und in die Berechnung einfließen lassen. Aus dem Mittelwert der Beschleunigungsdifferenz während einer Periode (Tretkurbelumdrehung) ergibt sich nun das Maß der Beschleunigung, die der Motorantrieb bewirken muß.
Die Erfindung kann beispielsweise in einem Fahrrad eingesetzt werden, das mit einem elektrischen Hilfsantrieb ausgerüstet werden soll. Der Hilfsantrieb wird dabei erfindungsgemäß gesteuert werden, um sicher zu stellen, daß das Fahrrad weiterhin als Fahrrad betrieben und die menschliche Tretleistung wesentlicher Bestandteil der Fortbewegung bleibt. Um dieses Ziel zu erreichen, wird der Anteil der menschlichen Tretleistung auf 50% der Gesamtleistung des Systems (Fahrradfahrer und Elektromotor) festgelegt.
Zunächst wird die Beschleunigungscharakteristik mit Hilfe des Beschleunigungsεensors (BS) aufgenommen. .An Hand dieser Kurven kann ein Vergleich mit den im Prozessorsystem abgelegten Kurven festgestellt werden, ob überhaupt menschliche Tretleistung vorliegt oder ob andere Arten der Bewegung gegeben sind (z.B. Schieben des Fahrrades, Bremsen, Tragen des Fahrrades o.a.) .
Stellt die Microprozessorsteuerung fest, daß das Fahrrad vom Fahrradfahrer gefahren wird, dann werden die aufgenommenen Beschleunigungsverläufe ausgewertet. Wird nun im Mittel einer Periode (Beεchleunigungsdifferenz zwischen höchster und niedrigster Beschleunigung während einer Tretkurbelumdrehung) eine positive Beschleunigung ermittelt, so wird über den gleichgroßen folgenden Zeitraum (Periode) dieses Maß der Beschleunigung durch die Steuerung des Motors erzielt. Dieser Prozeß wird durch einen Microprozessor in Echtzeit überwacht. Da die Motorleistung nur abhängig von der Masse des Systems eine bestimmte Beschleunigung erzielt, muß das Maß der Beschleunigung ständig überwacht werden, um den vorgegebenen Wert zu erreichen. Mit einer Echtzeitregelung kann die Masseabhängigkeit auf diese Weiεe ausgeglichen werden.
Ein weiterer Anwendungsfall sind Fahrzeuge mit elektrischen Antriebssystemen mit mindestens zwei Motoren, wobei ein Motor (Master) fremdgesteuert ist und der zweite Motor (Slave) in der bereits beschriebenen Weise gesteuert wird. In diesem Falle werden jedoch die technisch bedingten Beschleunigungsεchwankungen des Master-Motors (Diagramm 2) , die beim Betrieb entstehen, aufgenommen und ausgewertet. Die speziellen Charakteristiken der BeschleunigungsSchwankungen müssen jedoch zuvor aufgenommen und im Prozessorsyεtem abgelegt werden. Mit dem Ausgangssignal wird dann der Slave- Motor gesteuert .
Die relativ aufwendige Programmierung verteuert die Ansteuerung nur unwesentlich, während ein Beschleunigungssensor erheblich preisgünstiger und zuverlässiger ist als ein in eine spezielle Vorrichtung integrierter Kraftsensor.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele beschränkt. Vielmehr ist es möglich, durch Kombination der Merkmale weitere Ausführungsbeispiele zu realisieren, ohne den Rahmen der Erfindung zu verlaεsen.

Claims

Patentansprüche
1. Verfahren zur Steuerung von mindestens einem Elektromotor, welcher als Sekundärantrieb zusätzlich zu einem Primärantrieb eine .Antriebsenergie erzeugt und ein sich bewegendes Teil, vorzugsweise ein Fahrzeug, antreibt, dadurch gekennzeichnet, daß die Beschleunigung des Teiles/Fahrzeuges erfaßt und daraus ein elektrisches Ausgangsεignal erzeugt wird und zur Ermittlung eines Sollwertes für die Stellgröße des Sekundärantriebes eine Auswertung erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Ausgangssignal mit gespeicherten, vorgegebenen Kennlinien verglichen und aus der Differenz ein Wert für die Beschleunigung und/oder die Leistung und/oder das
Drehmoment und/oder die Drehzahl ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zusätzlich zu der Beschleunigung weitere Einflußfaktoren zu der Beschleunigung weitere Einflußfaktoren wie Temperatur und/oder aktuelle Geschwindigkeit und/oder Horizontallage zur Ermittlung des Sollwertes berücksichtigt werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Ermittlung des Sollwertes über die Schwankung der Beschleunigung der Einfluß der Pri ärantriebsenergiezufuhr auf das Antriebsεystem bestimmt wird.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der aus der Schwankungsbreite des Beschleunigungssignals berechnete Sollwert durch weiter Regelgrößen korrigiert wird, wobei diese Korrekturgrößen durch Rückführung der aktuellen Motorwerte und/oder durch weiter Sensoren erzeugt werden.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Auswertung der Primärantriebsenergie in jeweils zwei Halbperioden erfolgt.
7. Vorrichtung zur Steuerung von mindestens einem Elektromotor, welcher als Sekundärantrieb zusätzlich zu einem Primärantrieb eine Antriebsenergie erzeugt und ein sich bewegendes Teil, vorzugsweise ein Fahrzeug, antreibt, dadurch gekennzeichnet, daß ein Primärantrieb (PA) mit einer ersten Leistung (x) und mindestens ein Sekundärantrieb (M) auf einem Beschleunigungssensor (BS) wirken und der Beschleunigungssenεor (BS) mit einer Regelelektronik (RE) verbunden ist, welche die Schwankungen der
Primärantriebsenergie erfaßt und auswertet und die Absolutwerte mit gespeicherten Kennlinien vergleicht und eine Stellgröße entsprechend des gemittelten Beschleunigungswertes (Z) für den Sekundärantrieb (M) erzeugt .
8. Vorrichtung nach Anspruch 7 , dadurch gekennzeichnet, daß die Stellgröße (2) eine Drehmomentvergabe und/oder eine Drehzahlvorgäbe .
9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Beschleunigungssensor (BS) eine bewegliche Elektrode in Form eines Kammes, wobei die Zinken des
Kammes von feststehenden Plättchen umgeben sind und durch die Relativbewegungen zwischen Zinken und Plättchen
Kapazitätsveränderungen erzeugt und als Maß der Beschleunigung erfaßt werden.
10. Verwendung einer Steuerung für einen Elektromotor der ein sich bewegendes Teil/Fahrzeug antreibt, wobei die Ansteuerung einen mit dem Teil/Fahrzeug bewegten Beschleunigungεsenεor aufweist, dessen Ausgangssignal zur
Ermittlung eines Sollwertes für eine Stellgröße ausgewertet wird, dadurch gekennzeichnet, daß die Steuerung in einem Fahrrad mit elektrischem Zusatzantrieb untergebracht ist .
11. Verwendung einer Steuerung für einen Elektromotor der ein sich bewegendes Teil antreibt, wobei die Ansteuerung einen mit dem Teil bewegten Beschleunigungεsensor aufweiεt, dessen Ausgangsεignal zur Ermittlung eines
Sollwertes für eine Stellgröße ausgewertet wird, dadurch gekennzeichnet, daß die Steuerung in einem System mit zwei Elektromotoren verwendet wird, wobei ein Motor (Master) fremdgeεteuert ist und der zweite Motor (Slave) gemäß dem beschriebenen Verfahren betrieben wird.
PCT/EP1997/003739 1996-07-18 1997-07-14 Verfahren und vorrichtung zur steuerung von elektromotoren WO1998003392A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU40100/97A AU4010097A (en) 1996-07-18 1997-07-14 Method and device for controlling electric motors
DE19780720T DE19780720D2 (de) 1996-07-18 1997-07-14 Verfahren und Vorrichtung zur Steuerung von Elektromotoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19630553A DE19630553A1 (de) 1996-07-18 1996-07-18 Beschleunigungsabhängige Ansteuerung für einen Elektromotor
DE19630553.5 1996-07-18

Publications (1)

Publication Number Publication Date
WO1998003392A1 true WO1998003392A1 (de) 1998-01-29

Family

ID=7801170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003739 WO1998003392A1 (de) 1996-07-18 1997-07-14 Verfahren und vorrichtung zur steuerung von elektromotoren

Country Status (3)

Country Link
AU (1) AU4010097A (de)
DE (2) DE19630553A1 (de)
WO (1) WO1998003392A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869564A (zh) * 2010-05-06 2013-01-09 罗伯特·博世有限公司 用于估计转矩的方法以及用于估计踏板曲柄驱动装置的转矩的装置
US11518470B2 (en) 2018-04-30 2022-12-06 Accelerated Systems Inc. Method and apparatus for controlling a vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423393B2 (en) * 2002-05-07 2008-09-09 Kabushiki Kaisha Bridgestone Car control method and car control apparatus
DE102009000919B4 (de) * 2009-02-17 2021-01-28 Robert Bosch Gmbh Verfahren zum Betreiben eines motorisch unterstützten Tret-Vehikels, insbesondere Fahrrads und eine Vorrichtung zur Anwendung des Verfahrens sowie ein Tret-Vehikel mit dieser Vorrichtung
EP2532576A1 (de) * 2011-06-10 2012-12-12 Koninklijke Gazelle B.V. Schaltung mit Elektromotor
KR20150042037A (ko) * 2013-10-10 2015-04-20 삼성전기주식회사 전동식 자전거의 모터제어 장치 및 그 방법
DE102020210867A1 (de) 2020-08-28 2022-03-03 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Erfassen einer an einem Fahrrad vorliegenden Trittfrequenz

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144387A (ja) * 1983-02-07 1984-08-18 Meidensha Electric Mfg Co Ltd 直流回転電機の揃速制御装置
DE4011064A1 (de) 1990-04-05 1991-10-10 Frei Gmbh & Co Geb Steuerelement, insbesondere fuer elektrofahrzeuge
JPH0550977A (ja) * 1991-08-19 1993-03-02 Yasushi Sakano 自転車
DE4133622A1 (de) 1991-10-10 1993-04-22 Mannesmann Ag Drehzahlerfassung bei einer antriebsanordnung fuer ein kraftfahrzeug
EP0591554A1 (de) * 1992-04-27 1994-04-13 Nippondenso Co., Ltd. Beschleunigungssensor und seine herstellung
EP0718631A2 (de) * 1994-12-22 1996-06-26 Murata Manufacturing Co., Ltd. Kapazitiver Beschleunigungsaufnehmer mit elektrostatischem Servosystem
EP0734945A1 (de) * 1995-03-27 1996-10-02 Sanyo Electric Co. Ltd Fahrrad mit elektromotorischem Hilfsantrieb

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144387A (ja) * 1983-02-07 1984-08-18 Meidensha Electric Mfg Co Ltd 直流回転電機の揃速制御装置
DE4011064A1 (de) 1990-04-05 1991-10-10 Frei Gmbh & Co Geb Steuerelement, insbesondere fuer elektrofahrzeuge
JPH0550977A (ja) * 1991-08-19 1993-03-02 Yasushi Sakano 自転車
DE4133622A1 (de) 1991-10-10 1993-04-22 Mannesmann Ag Drehzahlerfassung bei einer antriebsanordnung fuer ein kraftfahrzeug
EP0591554A1 (de) * 1992-04-27 1994-04-13 Nippondenso Co., Ltd. Beschleunigungssensor und seine herstellung
EP0718631A2 (de) * 1994-12-22 1996-06-26 Murata Manufacturing Co., Ltd. Kapazitiver Beschleunigungsaufnehmer mit elektrostatischem Servosystem
EP0734945A1 (de) * 1995-03-27 1996-10-02 Sanyo Electric Co. Ltd Fahrrad mit elektromotorischem Hilfsantrieb

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 277 (E - 285) 18 December 1984 (1984-12-18) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 358 (M - 1440) 7 July 1993 (1993-07-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869564A (zh) * 2010-05-06 2013-01-09 罗伯特·博世有限公司 用于估计转矩的方法以及用于估计踏板曲柄驱动装置的转矩的装置
US11518470B2 (en) 2018-04-30 2022-12-06 Accelerated Systems Inc. Method and apparatus for controlling a vehicle

Also Published As

Publication number Publication date
DE19630553A1 (de) 1998-01-29
DE19780720D2 (de) 1999-10-14
AU4010097A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
DE10048911C1 (de) Verfahren und Vorrichtung zur Bestimmung der Absolutposition bei Weg- und Winkelgebern
DE3008901A1 (de) Dynamometersystem fuer die simulierung von strassenlast- und fahrzeugtraegheitsvermoegenskraeften bei der untersuchung von stationaer angeordneten fahrzeugen
EP0955522B1 (de) Verfahren und Schaltung zur Überprüfung der Weite des Luftspaltes bei einem Drehzahlsensor
AT4801U2 (de) Verfahren und vorrichtung zum bereitstellen eines kurbelwinkelbasierten signalverlaufes
DE3721162A1 (de) Verfahren und vorrichtung zum detektieren des maximalzylinderdruckwinkels bei einer brennkraftmaschine
DE3906680A1 (de) Kraftfahrzeug-betriebssteuervorrichtung
DE2629516B2 (de) Ergometer
DE2941977A1 (de) Einrichtung zum optimieren von betriebskenngroessen einer brennkraftmaschine
DE4341796A1 (de) Verfahren zur Regelung der Verbrennung im Brennraum einer Brennkraftmaschine
DE4330481A1 (de) Verfahren zum Herstellen einer Fügeverbindung, insbesondere einer Schraubverbindung
DE2557530A1 (de) Steuersystem fuer eine brennkraftmaschine
DE19733958A1 (de) Verfahren und Vorrichtung zur Korrektur von Toleranzen eines Geberrades
DE19531845A1 (de) Verbrennungsaussetzererkennungsverfahren
WO2014095279A1 (de) Verfahren zur ermittlung einer temperatur einer zelle einer batterie, ermittlungsvorrichtung und batterie
DE19844663C2 (de) Schaltungsanordnung und Verfahren zum Einstellen von Schaltpunkten eines Entscheiders
DE4215581B4 (de) System zur Steuerung einer magnetventilgesteuerten Kraftstoffzumeßeinrichtung
DE4235880A1 (de) Verfahren und Vorrichtung zur Erfassung einer veränderlichen Größe bei Fahrzeugen
EP1275007A1 (de) Vorrichtung zur positions - und/oder drehzahl- und/oder drehrichtungs- erkennung eines rotierenden teils
WO1998003392A1 (de) Verfahren und vorrichtung zur steuerung von elektromotoren
EP0406712B1 (de) Verfahren und Vorrichtung zur Erfassung des bei einem Fahrzeug eingelegten Getriebeganges
DE2739508C2 (de) Vorrichtung zur Extremwertregelung bei Brennkraftmaschinen
EP0427909B1 (de) Verfahren zur Ermittlung der Querbeschleunigung eines Kraftfahrzeugs
DE3447629A1 (de) Signalverarbeitungssystem fuer einen kraftfahrzeug-beschleunigungsfuehler
DE2731249B2 (de) Verfahren zum Feststellen ungenügender Kompression in einzelnen Zylindern einer Innenbrennkraftmaschine
DE2748067A1 (de) Elektronisches messystem zum ueberwachen und messen der betriebsgroessen einer kolbenmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref document number: 1998506514

Country of ref document: JP

REF Corresponds to

Ref document number: 19780720

Country of ref document: DE

Date of ref document: 19991014

WWE Wipo information: entry into national phase

Ref document number: 19780720

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA