WO1997049669A1 - Verbindungen, die mit metallen komplexe bilden können - Google Patents

Verbindungen, die mit metallen komplexe bilden können Download PDF

Info

Publication number
WO1997049669A1
WO1997049669A1 PCT/EP1996/002796 EP9602796W WO9749669A1 WO 1997049669 A1 WO1997049669 A1 WO 1997049669A1 EP 9602796 W EP9602796 W EP 9602796W WO 9749669 A1 WO9749669 A1 WO 9749669A1
Authority
WO
WIPO (PCT)
Prior art keywords
myxochelin
nitrile
dibenzyloxybenzoyl
compounds
compound according
Prior art date
Application number
PCT/EP1996/002796
Other languages
English (en)
French (fr)
Inventor
Wolfram Trowitzsch-Kienast
Rolf Reissbrodt
Horst-Dieter Ambrosi
Vera Hartmann
Original Assignee
Analyticon Ag Biotechnologie Pharmazie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE4447374A priority Critical patent/DE4447374A1/de
Application filed by Analyticon Ag Biotechnologie Pharmazie filed Critical Analyticon Ag Biotechnologie Pharmazie
Priority to AU64172/96A priority patent/AU6417296A/en
Priority to EP96923943A priority patent/EP0923538A1/de
Priority to PCT/EP1996/002796 priority patent/WO1997049669A1/de
Publication of WO1997049669A1 publication Critical patent/WO1997049669A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/58Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/60Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • C07C255/43Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form

Definitions

  • the present invention relates to a compound of the general formula according to claim 1, an iron complex of this compound according to claim 3, a process for the preparation of the compounds according to claim 4, a conjugate according to claim 5, a medicament according to claim 6, a use of the invention Compounds according to claim 7, a method for complexing metal ions and a use according to claim 9.
  • the present invention therefore relates to compounds of the general formula I.
  • R -CH 2 -NH-C0- (2,3-dihydroxiphenyl), CN or -CH 2 -NH 2
  • the absolute configuration at C-2 can be both S and R and n is a natural number of 1 to 5.
  • Myxochelin C (D, L) -1, 2, 7-triamino-tris- [N 1 , N 2 , N 7 - (2, 3-dihydroxy-benzoyl)] -heptane (myxochelin F).
  • the compounds according to the invention can be prepared according to the invention by a process in which starting from the amides of the amino acids lysine, ornitine or 2,3-diaminopropionic acid is reduced to the corresponding triamines using a complex hydride.
  • the triamines formed are converted to the corresponding triamides using known coupling methods in peptide chemistry with protected 2,3-dihydroxybenzoic acids.
  • the triamides obtained are converted by hydrogenolysis into the compounds according to the invention of the general formula (I).
  • Myxochelin C can be produced from L-lysinamide using known methods using DCC / HOBt coupling.
  • the benzyl-protected 2,3-dihydroxybenzoic acid is bound amidically to the two NH 2 groups, the primary amide is converted into the nitrile by means of crystalline triphosgene, the nitrile is reduced to the primary amine by means of sodium borohydride reduction with the aid of cobalt chloride Structure 6 leads.
  • Figure 1 shows the reaction sequence to myxochelin B.
  • Figure 2 shows the reaction sequence of the compound
  • Compound 6 can be coupled into the 6-fold benzyl-protected triamide by further coupling using DCC / HOBt and an equivalent of benzyl-protected 2,3-dihydroxybenzoic acid
  • compound 7 can also be obtained from L-lysinamide after reduction with lithium aluminum hydride to 1,2,6-triaminohexane and reaction of the triamine with three equivalents of the bisbenzyl-protected 2,3-dihydroxybenzoic acid.
  • the compounds according to the invention with a siderophoric structure are suitable for being taken up by bacteria. They overcome the bacterial cell wall.
  • the compounds R-4 and 5 are introduced by the bacteria in an active transport process. This opens up the possibility of specifically introducing desired substances into such bacteria.
  • These can be, for example, pharmacologically or biologically active compounds, such as pharmaceuticals, for example antibiotics, etc.
  • they may also have higher molecular structures, for example nucleic acids which are able to transform the corresponding bacterium in this way, or structures of antibodies which determine Recognize, block or otherwise modify bacterial structures.
  • the compounds to be introduced into the cell can be covalently attached, for example, to certain functional groups of the compounds according to the invention and then brought into the cell of the bacterium.
  • the covalent bond mentioned can also be made unstable, so that this covalent bond is released again by intracellular processes and the active substance is then present in its free form in the cell.
  • the advantage of such a coupling is that the active ingredients are brought specifically to the site of action can, so that increased active concentrations can be lowered and thus the risk of side effects can be reduced.
  • the conjugates according to the invention can also be used for the production of corresponding medicaments.
  • the compounds according to the invention can be used as pharmaceuticals, it being advisable to provide an effective amount of one of the compounds of the formula I or their mixtures with pharmaceutical auxiliaries and / or carriers.
  • the choice of aids is based, among other things, on galenical considerations, which in turn may depend on the type of application of the drugs. In principle, it is possible to apply the compounds in dissolved or solid form in appropriate dosage forms.
  • the medicaments can be used in particular in therapeutic approaches in which the diseases are caused by defective metal ion metabolism. This can be indicated in particular in the event of an iron or aluminum metabolism error.
  • the pharmaceuticals according to the invention complex the metal ions, in particular iron or aluminum ions, which can then be removed from a cell.
  • the compounds according to the invention are suitable as antibacterial or antiviral substances.
  • the medicaments according to the invention can therefore be used for the treatment of bacterial and / or viral infections.
  • the medicaments according to the invention can also be used for parasitic diseases.
  • the medicament according to the invention can also be used as medicament in a form loaded with metal ions.
  • the medicament according to the invention can remove iron and aluminum in various diseases of humans or animals, e.g. in hemosiderosis or thalassemia or also in Alzheimer's disease, in its metal ion-free form.
  • a suitable dosage of the medicament according to the invention can be determined by the person skilled in the art by known tests.
  • the medicament according to the invention can also be used for tumor treatment. Iron complexes are thus able to generate oxygen radicals which can attack tumors in particular.
  • a method using the uses according to the invention relates to the complexation of metal ions.
  • the metal ion-containing solution is brought into direct contact with solutions of the compounds according to the invention or the compounds according to the invention themselves.
  • This method is therefore suitable for complexing, characterizing and / or removing metals from corresponding solutions containing these metal ions.
  • Radioactive metal ions can also be complexed with the compounds according to the invention. This can serve as a starting point for the enrichment of radioactive isotopes and can be used in an analogous manner for the removal of radioactive isotopes.
  • the compounds according to the invention can be used for the analysis of bacteria.
  • the presence of pathogenic enterobacteria can be quickly analyzed.
  • samples contaminated with pathogenic enterobacteria are incubated in an iron deficiency medium.
  • the dark-colored residue is used to separate residual catalyst and metal complexes, which had already formed from traces of metals in the solvents used, in approx. 1 ml of a solution of dichloromethane and 10% methanol, which was previously removed using Chelex 100 to remove Traces of iron were filtered, taken up and applied via a small Pasteur pipette filled with silica gel (100 mg). 1 is eluted from this mini column with a further approx. 10 ml of the solvent, the solution is then freed from the solvent under an oil pump vacuum, 1 crystallizing out in white plates.
  • the enantiomerically pure D- and L-ornitinamides can be used to prepare the compound which is shorter by one CH 2 group.
  • the enantiomerically pure 2, 3-diaminopropionic acid amides can be used to prepare the chelators which are shorter by three CH 2 groups.
  • the following examples relate to the siderophore Myxochelin- C- nitrile (2.) And a method for its preparation.
  • the following examples relate to myxochelin D-nitrile (3_) and a process for its production.
  • 3_ becomes - as for 2 .
  • 3_a is characterized as follows:
  • the following example relates to myxochelin D R -nitrile R-3, and a process for its preparation which follows the same route as described for 3_.
  • the precursor R-3a shows the same spectroscopic properties as 3_a, but has a rotation value of:
  • R-3a 48 mg are hydrogenated under standard conditions at normal pressure. After filtering off over kieselguhr and concentrating i.V. 22 mg (88.7%) of R-3 are obtained. See the description for R-3 for the spectroscopic properties.
  • the following example relates to the enantiomer of the natural product myxochelin B, the myxochelin B R (R-4) and a process for its preparation.
  • the starting point is R-2b, the spectroscopic properties of which, with the exception of the rotational value, are the same as for . 2 B are (W. Trowitzsch-Kienast, H. Irschik, V. Wray, H. Reichen ⁇ bach, G. Höfle, Liebigs Ann. Chem. 1996, in preparation).
  • the rotation value for R-2b is:
  • nitrile R-2b is converted into the primary amine by means of NaCNBH 3 , which is hydrogenated by standard hydrogenation at RT and under normal pressure for two hours on a Pd / C catalyst:
  • Salmonella typhimurium 32), E. coli (30), Klebsiella pneumonia (33), Pseudomonas aeruginosa strain 6609 (34), strain 648 (30), strain 201 (32), strain K 437 (34).
  • Myxochelin C and Myxochelin C R have antiviral activities against cytomegalon viruses from strain AD-169.
  • the IC 50 values for the active substances are 0.7 ⁇ g / ml for myxochelin C and 1 ⁇ g / ml for myxochelin C B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Verbindung der allgemeinen Formel (I), wobei R = -CH2-NH-CO-(2,3-dihydroxyphenyl), CN oder -CH2-NH2, n = 1 bis 5 ist.

Description

Verbindungen, die mit Metallen Komplexe bilden können
Gegenstand der vorliegenden Erfindung ist eine Verbindung der allgemeinen Formel gemäß Anspruch 1, ein Eisenkomplex dieser Verbindung gemäß Anspruch 3, ein Verfahren zur Herstellung der Verbindungen gemäß Anspruch 4, ein Konjugat nach Anspruch 5, ein Arzneimittel gemäß Anspruch 6, eine Verwendung der erfin¬ dungsgemäßen Verbindungen nach Anspruch 7, ein Verfahren zur Komplexierung von Metallionen sowie eine Verwendung gemäß Anspruch 9.
Auf der 25. Hauptversammlung der Gesellschaft Deutscher Chemiker vom 10. bis 16. September 1995 wurden Verbindungen der gat¬ tungsgemäßen Art u.a. in Form von Myxochelin C der Öffentlich¬ keit vorgestellt (Kurzreferate und Teilnehmerverzeichnis der 25. Hauptversammlung der Gesellschaft Deutscher Chemiker Mün¬ ster, 10. bis 16. September 1995) . In dem Abstractband wird von Trowitzsch-Kienast et al . über Myxochelin B als neuer Eisen¬ transporteur aus dem Stamm der Gleitenden Bakterien Myxococcus xanthus Mx x 48 (W. Trowitzsch-Kienast, et al . 9. DECHEMA- Jahrestagung der Biotechnologen, Berlin, Januar 1991, Kurzrefe¬ rate-Band Seite 382) berichtet.
Der anläßlich der GDCH-Tagung veröffentlichte Abstract berichtet über den synthetischen Zugang zum Myxochelin C sowie dazu homologen Verbindungen. Zur biologischen Wirkung des Myxochelins C wird offenbart, daß Myxochelin C als hexadentates Siderophor enorm effektiv ist. Die Aufnahme des mit Eisen beladenen Sidero- phors durch Enterobakterien verläuft dabei offenbar nach einem
ORIGINALUNTERLAGEN zum Myxochelin B vergleichbaren Mechanismus (tonB-Abhängigkeit) . Das R-Isomer des Myxochelin C zeigt nur geringe Effektivität.
Gegenstand der vorliegenden Erfindung sind mithin Verbindungen der allgemeinen Formel I
Figure imgf000004_0001
wobei R = -CH2-NH-C0- (2, 3-dihydroxiphenyl) , CN oder -CH2-NH2 ist, die absolute Konfiguration an C-2 sowohl S wie auch R sein kann und n eine natürliche Zahl von 1 bis 5 ist.
Insbesondere kommen erfindungsgemäß die folgenden Verbindungen in Betracht:
- wenn R = CN (Myxochelin - Nitrile)
2 Myxochelin B-Nitril, n = 4; R-2 Myxochelin BR-Nitril, n = 4;
3 Myxochelin D-Nitril, n = 3; R-3 Myxochelin DR-Nitril, n = 3;
- wenn R = -CH2-NH? (Cheline der B-Reihe)
R-4 Myxochelin BR/ n = 4 ; 5 Myxochelin D-B, n = 3 ; R-5 Myxo¬ chelin D„-B, n = 3 ; desweiteren
Myxochelin C; (D, L) -1, 2, 7-Triamino-tris- [N1, N2,N7- (2, 3-dihy- droxi-benzoyl) ] -heptan (Myxochelin F) .
Als Zwischenverbindungen kommen erfindungsgemäß in Betracht : N,N,N-1,2, 6-Tris- (2,3-0-dibenzyloxi-benzoyl) -1,2, 6-triaminohexan
(7) ; (D,L) -2-Amino-heptandicarbonsäure-dimethylester-Hydrochlo- rid (la) ; (D,L) -2-Amino- [N- (2, 3-dibenzyloxi-benzoyl) ] -heptan- dicarbonsäure-dimethylester (lb) ; (D,L) -2-Amino- [N- (2, 3-diben¬ zyloxi-benzoyl) ] -heptandicarbonsäure-diamid (.lc) ; (D,L) -2-Amino-
[N- (2, 3-dibenzyloxi-benzoyl) ] -heptandinitril (ld) ; (D,L) -1, 2, 6- Triamino- [N2- (2, 3-dibenzyloxi-benzoyl) ] -heptan (le,) ; (D,L)- 1,2, 6-Triamino-tris- [N^N^N6- (2, 3-dibenzyloxi-benzoyl) ] -heptan
(lf) ; (L) -2, 6-Diamino-bis- [N2,N6- (2, 3-dibenzyloxi-benzoyl) ] - hexancarbonsäureamid (2a) ; (L) -2, 6-Diamino-bis- [N2,N6- (2,3-diben- zyloxi-benzoyl) ] -hexannitril (.2b) ; (L) -2, 6-Diamino-bis- [N2,N6-
(2, 3-dihydroxi-benzoyl) ] -hexannitril (Myxochelin C-Nitril, 2) ;
(L) -2, 5-Diamino-bis- [N2,N5- (2, 3-dibenzyloxi-benzoyl) ] -pentan-- nitril (Tetra-O-benzyl-Myxochelin D-Nitril, 3a) ;
Gegenstand der vorliegenden Erfindung ist auch ein Eisenkomplex der Verbindung der allgemeinen Formel I, wobei der Eisenkomplex eine UV/VIS - Absorption bei λmax «= 571 nm aufweist.
Die erfindungsgemäßen Verbindungen lassen sich erfindungsgemäß durch ein Verfahren herstellen, bei dem ausgehend von den Amiden der Aminosäuren Lysin, Ornitin oder 2,3-Diaminopropionsäure mit einem komplexen Hydrid bis zu den korrespondierenden Triaminen reduziert wird. Die entstandenen Triamine werden mit an sich bekannten Kopplungsmethoden der Peptidchemie mit geschützten 2, 3-Dihydroxybenzoesäuren zu den entsprechenden Triamiden um¬ gesetzt . Die erhaltenen Triamide werden durch Hydrogenolyse in die Verbindungen gemäß der Erfindung der allgemeinen Formel (I) überführt.
So kann Myxochelin C ausgehend von L-Lysinamid mit an sich bekannten Methoden mittels DCC/HOBt-Kopplung hergestellt werden. Dabei werden die Benzyl-geschützten 2, 3-Dihydroxybenzoesäure amidisch an die beiden NH2-Gruppen gebunden, mittels kristal¬ linem Triphosgen das primäre Amid in das Nitril überführt, das Nitril mittels Natriumborhydrid-Reduktion unter Zuhilfenahme von Cobaltchlorid in das primäre Amin mit der Struktur 6 über- führt. Die Figur 1 zeigt die Reaktionssequenz zum Myxochelin B. Die Figur 2 zeigt die Reaktionssequenz von der Verbindung
6 zum Myxochelin C.
Dabei läßt sich die Verbindung 6 durch eine weitere Kopplung mittels DCC/HOBt und einem Äquivalent der Benzyl-geschützten 2,3-Dihydroxibenzoesäure in das 6-fach Benzyl-geschützte Triamid
7 überführen. 7 kann durch hydrogenolytische Spaltung in das freie Myxochelin C überführt werden.
Gemäß Figur 3 läßt sich die Verbindung 7 auch aus L-Lysinamid nach Reduktion mit Lithiumaluminiumhydrid zum 1,2, 6-Triaminohe- xan und Umsetzen des Triamins mit drei Äquivalenten der Bisben- zyl-geschützten 2, 3-Dihydroxibenzoesäure erhalten.
Die erfindungsgemäßen Verbindungen mit siderophorer Struktur sind geeignet, von Bakterien aufgenommen zu werden. Dabei überwinden sie die bakterielle Zellwand. Insbesondere die Verbindung R-4 und 5 werden von den Bakterien in einem aktiven Transportvorgang eingeschleust. Damit eröffnet sich eine Mög¬ lichkeit gezielt in solche Bakterien gewünschte Stoffe ein¬ zuschleusen. Dies können beispielsweise pharmakologisch oder biologisch wirksame Verbindungen sein, wie Arzneimittel z.B. Antibiotika etc. Es können jedoch möglicherweise auch höher molekulare Strukturen sein, so z.B. Nukleinsäuren, die auf dieser Art das entsprechende Bakterium zu transformieren vermö¬ gen, oder Strukturen von Antikörpern, die bestimmte Strukturen des Bakteriums erkennen, Blockieren oder sonst modifizieren können. Dabei lassen sich die in die Zelle einzuschleusenden Verbindungen, beispielsweise kovalent an bestimmten funktionei¬ len Gruppen der erfindungsgemäßen Verbindungen anheften und dann in die Zelle des Bakteriums verbringen. Die angesprochene kovalente Bindung kann auch labil ausgestaltet sein, so daß durch intrazelluläre Vorgänge diese kovalente Bindung wieder gelöst wird und der Wirkstoff danach in seiner freien Form in der Zelle vorliegt. Der Vorteil einer solchen Kopplung ist, daß die Wirkstoffe gezielt an den Wirkort herangeführt werden können, so daß sich erhöhte Wirkkonzentrationen erniedrigen lassen und damit das Risiko von Nebenwirkungen reduziert werden kann. Die erfindungsgemäßen Konjugate können auch zur Herstel¬ lung von entsprechenden Arzneimitteln dienen.
Die erfindungsgemäßen Verbindungen können als Arzneimittel eingesetzt werden, dabei ist es empfehlenswert eine wirksame Menge einer der Verbindungen mit der Formel I oder deren Gemi¬ sche mit pharmazeutischen Hilfsmitteln und/oder Trägerstoffen zu versehen. Die Wahl der Hilfsmittel erfolgt unter anderem nach galenischen Gesichtspunkten, die wiederum abhängig sein können von der Art der Applikation der Arzneimittel. Grundsätzlich ist es möglich, die Verbindungen in gelöster oder in fester Form in entsprechenden Darreichungsformen zu applizieren.
Die Arzneimittel können insbesondere bei therapeutischen Ansät¬ zen verwendet werden, bei denen die Erkrankungen durch fehler¬ haften Metallionenstoffwechsel hervorgerufen werden. Dies kann insbesondere bei einem Eisen- oder Aluminiumstoffwechselfehler angezeigt sein. Die erfindungsgemäßen Arzneimittel bewirken eine Komplexierung der Metallionen, insbesondere Eisen- oder Alumi¬ niumionen, die dann aus einer Zelle ausgeschleust werden können. Desweiteren kommen die erfindungsgemäßen Verbindungen als antibakteriell oder antiviral wirkende Stoffe in Frage. Die erfindungsgemäßen Arzneimittel können mithin zur Behandlung von bakteriellen und/oder viralen Infektionen eingesetzt werden. Die erfindungsgemäßen Arzneimittel können auch bei parasitären Erkrankungen eingesetzt werden. Das erfindungsgemäße Arzneimit¬ tel kann aber auch in mit Metallionen beladener Form als Arznei¬ mittel verwendet werden. Das erfindungsgemäße Arzneimittel kann die Entfernung von Eisen und Aluminium bei verschiedenen Erkran¬ kungen des Menschen oder von Tieren, z.B. bei der Hämosiderose oder Thalassämie oder auch bei Morbus Alzheimer bewirken, und zwar in seiner metallionenfreien Form.
Eine geeignete Dosierung des erfindungsgemäßen Arzneimittels ist vom Fachmann durch bekannte Untersuchungen ermittelbar. In der Form mit gebundenem Eisen oder anderen Metallionen kann das erfindungsgemäße Arzneimittel ferner zur Tumorbehandlung eingesetzt werden. So sind Eisenkomplexe in der Lage, Sauer¬ stoffradikale zu erzeugen, die insbesondere Tumore angreifen können.
Ein Verfahren unter Verwendung der erfindungsgemäßen Verwendun¬ gen betrifft die Komplexierung von Metallionen. Hierbei werden in einfacher Weise die metallionenhaltige Lösung mit Lösungen der erfindungsgemäßen Verbindungen oder den erfindungsgemäßen Verbindungen selbst direkt in Kontakt gebracht. Dieses Verfahren ist mithin geeignet, zur Komplexierung, Charakterisierung und/oder Entfernung von Metallen aus entsprechenden diese Metallionen enthaltenden Lösungen eingesetzt zu werden. Es lassen sich auch radioaktive Metallionen mit den erfindungsgemä¬ ßen Verbindungen komplexieren. Dies kann als Ausgangsbasis für Anreicherung von radioaktiven Isotopen dienen und in analoger Weise zur Entfernung von radioaktiven Isotopen Verwendung finden.
Die erfindungsgemäßen Verbindungen können zur Analytik von Bakterien eingesetzt werden. Insbesondere läßt sich die Anwesen¬ heit pathogener Enterobakterien schnell analysieren. Hierzu werden beispielsweise mit pathogenen Enterobakterien belastete Proben in einem Eisenmangelmedium inkubiert. Durch Zusatz der erfindungsgemäßen Verbindungen gelingt es, selektiv nur einen pathogenen Bakterienstamm zum Wachsen anzuregen.
Die Erfindung wird anhand der folgenden Beispiele näher er¬ läutert .
Beispiel 1
N, N, N-1 , 2 , 6-Tris- ( 2 , 3 -0-dibenzyloxi -benzoyl ) - 1 , 2 , 6 -triaminohexan ( 7 ) : 173,9 mg (0,52 mmol) Bis-O-benzyl-geschützte Benzoesäure, Fp. 123°C (dargestellt nach Literaturvorschrift F. Kanai, K. Is- shiki, H. Nagawana, T. Takita, T. Takeuchi, H. Umezawa, "J. Antibiot.", 37, 3987 (1985), Fp. 124°C) werden in 8 ml trockenem Dimethylformamid (DMF) gelöst. Nach Zugabe von 156,8 mg (1,16 mmol) N-Hydroxibenzotriazol (HOBt) und 52,9 mg (0,26 mmol) (DCC) wird die Lösung auf 0°C abgekühlt und eine Stunde unter Eiskühlung danach eine weitere Stunde bei RT gerührt.
245 mg Tetra-O-benzylgeschütztes Myxochelin B, das aus L-Lysin nach oben angegebenen Schema 2 erhalten wurde, wird in 5 ml trockenem DMF gelöst und dieser Lösung zugetropft. Halbstündige DC-Kontrolle (Dichlormethan/ 5 % Methanol) zeigt nach Ansprühen mit Ninhydrin, daß nach zwei Stunden kein Edukt mehr vorhanden ist. Nach dieser Zeit wird das Lösemittel bei Ölpumpenvakuum abdestilliert. Der grünliche Rückstand wird in Dichlormethan aufgenommen, zunächst mit 2 N Salzsäure, danach mit 1 M Natrium- hydrogencarbonat-Lösung und schließlich mit Wasser neutral gewaschen, über Natriumsulfat getrocknet. Bei Wasserstrahlvakuum wird vom Dichlormethan befreit. Der Rückstand wird in trockenem Tetrahydrofuran aufgenommen, der dabei ausfallende Dicyclohexyl- Harnstoff abfiltriert. Es werden 265,1 mg Rohprodukt erhalten, die über eine Mitteldruck-Säulenchromatographie mit Dichlor¬ methan/ 0,37 % Methanol fraktioniert werden. Bei einem Fluß von 6 ml/min wird 7 bei Rt = min gesammelt. Nach Einengen werden 104,2 mg 7 erhalten (Ausbeute 37 %) , Fp. 115°C.
PC-Verhalten (Merck, Kieselgel 60 F254, Alufolie) ; Laufmittel: Dichlormethan mit 7 % Methanol, R£ = 0,42. Optische Drehung: [at] 25 D = + 1,34 (c = 0,6 in CHC13) . ^-NMR (400 MHz, CDCl,, siehe Abbildung 1) : δ (ppm) = 8,28 (d, J = 7,4 Hz, 1 H, NH am C-2) , 7,98 (t, J = 5,5 Hz, 1 H, NH am C-6) , 7,81 (t, J = 3,9 Hz, 1 H, NH am C-l) , 7,30 (m, 20 H, aromatische Protonen der Benzylreste) , 5,05 (m, 8 H, -CH2-Reste der Benzylgruppen) , 3,99 (m, 1 H, 2-H) , 3,35 (m, 1 H, 1-Ha) , 3,25 (m, 1 H, 1-Hb) , 3,11 (m, 2 H, 6-CH2) , 1,15 bis 0,98 (m, 6 H, 3,4,5-CH2) . IR (CCL Abbildung 3) : nü = 3390 (NH) , 3034 (arom. H) , 2939 (CH) , 1662 (Amid-I) , 1526 cm1 (Amid-II) .
(+) -FAB-MS: Matrix: 3-Nitrobenzylalkohol m/z = 1080 (M+H) +. MS-Hochauflösunq: für C69H66N309 gefunden 1080,4671 und berechnet 1080,4799.
Beispiel 2
N,N,N-1 , 2 , 6-Tris- (2 , 3-dihydroxibenzoyl) -1,2, 6-triaminohexan, Myxochelin C (1) :
93,8 mg (0,087 mmol) 7 werden in 3 ml Methanol gelöst und mit 1 ml 10 % Essigsäure versetzt. Der Lösung werden 93,8 mg Pal¬ ladium mit 10 % Aktivkohle als Katalysator zugesetzt. Mittels einer Hydrierapparatur (als H2-Reservoir dient ein Luftballon) wird zunächst mit N2 gespült, danach für zwei Stunden bei RT hydriert. Nach 90 min wird das Experiment beendet, vom Katalysa¬ tor wird abfiltriert, die Lösemittel werden bei Ölpumpenvakuum (30°C) abgedampft.
Der dunkel gefärbte Rückstand wird zur Abtrennung von restlichem Katalysator und von Metallkomplexen, die sich aus Spuren von Metallen in den verwendeten Lösemitteln bereits gebildet hatten, in ca. 1 ml einer Lösung aus Dichlormethan und 10 % Methanol, die zuvor über Chelex 100 zur Entfernung von Eisenspuren filtriert wurde, aufgenommen und über eine kleine Pasteur- pipette, die mit Kieselgel (100 mg) gefüllt war, aufgetragen. 1 wird mit weiteren ca. 10 ml des Lösemittels von dieser Mini- Säule eluiert, die Lösung wird anschließend bei Ölpumpenvakuum vom Lösemittel befreit, wobei 1 in weißen Plättchen auskristal¬ lisiert .
Es werden 39 mg von 1 mit Fp. 115°C erhalten, Ausbeute 83 %.
PC-Verhalten: (auf Kieselgelplatten Fa. Merck wie oben) : Laufmittel: Dichlormethan mit 10 % Methanol und 1 % Eisessig, Rf = 0,29, Ansprüchen mit FE- (III) -Cl3-Lösung führt zur schlagartigen Blaufärbung des auch bei 254 nm detektierbaren Fleckes. Optische Drehung: [α]20 D = + 9,14 (c = 0,35, in Methanol) . *H-NMR (600 MHz, CDC13 + 5 % CD3OD, Abbildung 4) : 6 (ppm) = 7,25
(m, 3 H, 3 x 6'-H der Benzoylreste) , 6,9 und 6,25 (m, 6 H, 3 x 5' -H und 3 x 4' -H) , 5,5 CH2C12-Reste, 4,4 (m, 1 H, 2-H) , 3,65
(m, 1 H, 1-HJ , 3,59 (m, 1 H, 1-HJ , 3,43 (m, 2 H, 6-CH2) , 1,9 bis 1,5 (m, 6 H, 3,4,5-CH2) .
Beispiel 3
Myxochelin-Eisen- (III) -Komplex:
Wird eine Lösung von 1 in Methanol mit verdünnter Eisen- (III)- chlorid-Lösung - ebenfalls methanolisch - versetzt, tritt sofortige Blaufärbung ein: λmax » 571 nm.
Beispiel 4
Zur Darstellung der enantiomeren Verbindung Myxochelin CE wird lediglich unter Beibehaltung aller Reaktionsbedingungen vom D- Lysinamid ausgegangen.
Beispiel 5
Zur Darstellung der um eine CH2-Gruppe kürzeren Verbindung können die enantiomerenreinen D- und L-Ornitinamide eingesetzt werden.
Beispiel 6
Zur Darstellung der um zwei CH2-Gruppen kürzeren Chelatoren lassen sich die enantiomerenreinen 2, 3-Diaminobuttersäureamide einsetzen. Beispiel 7
Zur Darstellung der um drei CH2-Gruppen kürzeren Chelatoren können sich die enantiomerenreinen 2, 3-Diaminopropionsäureamide eingesetzt werden.
Beispiel 8
(D, L) -2-Amino-heptandicarbonsäure-dimethylester-Hydrochlorid (la)
5,0 g (28,5 mmol) (D,L) -2-Amino-heptandicarbonsäure (Fa. Bachern, Schweiz) werden in ca. 100 ml trockenem Methanol suspendiert. Unter Rühren wird solange HClg eingeleitet, bis die Lösung klar wird. Über Nacht wird gerührt, danach i.V. eingeengt. Das Rohprodukt wird über eine Flash-Chromatographie an Kieselgel Si60 (Merck, Darmstadt) mit n-Hexan/Essigsäureethylester = 7:3 gereinigt. Es werde 4,78 g (70 %) an la isoliert.
APCI-MS: m/z (%) = 520 (50) [M + H] *, 542 (6) [M + Na]*, 317
(100) . "C-NMR: (75,4 MHz, DMSO-d6) : δ = 23,7 (t, C-4) , 23,9 (t, C-3) ,
29,6 (t, C-5) , 33,0 (t, C-6), 51,4 (d, C-2) , 51,9 und
52,9 (q, 0-CH3) , 170,2, 173,5 (-C=0) .
Für C9H18N04C1 (MG 239,5) ber. C 45,09 H 7,52 N 5,85 Cl 14,82 gef. C 45,07 H 7,66 N 5,64 Cl 15,28
Beispiel 9
(D,L) -2-Amino- [N- (2,3-dibenzyloxi-benzoyl) ] -heptandicarbonsäure- dimethylester (lb) .
1,5 g 2 , 3-Dibenzyloxibenzoesäure (4,5 mmol) , hergestellt nach F. Kanai, K. Isshiki, H. Nagawana, T. Takeuchi, H. Umezawa, in "J. Antibiotics" , 3_7, 3987 (1985) , werden in einem Kolben mit Trockenrohr in 50 ml absolutem Dichlormethan gelöst und nachein- ander mit 1,08 g la (4,5 mmol) , 1,44 g TBTU (4,5 mmol) sowie mit 1,74 g (13,5 mmol, drei Equiv.) Hünig-Base versetzt. Es wird für 72 Stunden gerührt .
Zur Aufbereitung wird die organische Phase mit 1) 50 ml 5 % HCl, 2) mit gesättigter NaHC03-Lösung und 3) mit ges. NaCl-Lösung gewaschen. Sie wird mit MgS04 getrocknet und i.V. eingeengt. Gereinigt wird mittels Flash-Chromatographie an Kieselgel Si60 (Merck, Darmstadt) , Laufmittel: n-Hexan-Essigsäureethylester = 1:1. Ausbeute: 630 mg (27 %, als heller Sirup) .
IR (KBr) : v = 3360, (NH) , 2925 (CH) 1730 (Ester-CO) , 1655
(Amid-I) , 1560 cm"1 (Amid-II)
APCI-MS: m/z (%) = 520 (50) [M + H] \ 542 (6) [M + Na] +, 317 (100) .
13C-NMR: (75,4 MHz, CDCL3) : δ = 24,5 : t , c-4. : 25,1 (t, C-5)
31,7 (t, C-3) , 33,7 (t, C-6) , 51,6 (d, C-2) , 52,3 und 52,6 (q, 0-CH3) , 71,4 und 76,3 (t, 0-CH2-Phenyl) , 117,4, 123,5, 124,7 (d, arom. =C-H) , 126,8 (s, arom. =C-) , 128, 0, 128, 7, 128, 9, 129, 0 (je 2 x d. arom. =C- H) , 128,5 und 128,8 (s, arom. =C-) , 136,5 uns 136,6 (s, arom. =C-) , 147,2 und 152,0 (s, arom. =C-0) , 165,2 (s, Amid-CO) , 173,0 und 174,0 (Ester-CO) .
Für C30H33NO7 (MG 519,60) ber. C 69,35 H 6,40 N 2,70 gef. C 68,70 H 6,31 N 3,01
Beispiel 10
(D,L) -2-Amino- [N- (2,3-dibenzyloxi-benzoyl) ] -heptandicarbonsäure- diamid ( lc.) .
630 mg (1,2 mmol) lb_ werden in 150 ml Methanol gelöst, die Lösung wird auf -5°C abgekühlt. Für drei Stunden wird durch die gekühlte Lösung NH3-Gas geleitet. Die noch kühle Lösung wird in einen Autoklaven gegeben, der verschlossen für vier Tage bei RT belassen wird. Nach vorsichtigem Belüften wird die Lösung i.V. eingeengt, Ausbeute 470 mg (80 %) kristallines lc, Fp. 200 bis 203°C.
IR (KBr) : v = 3390, (NH) , 3180 und 3250 (NH2) , 2850, 2930, 3020, 3050 (CH) , 1640 und 1650 (Amid-I) , 1520 cm1 (Amid-II) -CI-MS(NH,) : m/z (%) = 490 (22) [M + H] \ 472 (18) [M-H20+H] \
455 (55) , 365 (100) , 337 (56) , 275 (81) , 247 (48) , 11 (76) .
13 C-NMR: (75,4 MHz, DMSO-d6) : δ (ppm) = 24,8 (t, C-4) , 24,9 (t,
C-5) , 32,3 (t, C-3) , 34,9 (t, C-6) , 52,6 (d, C-2) , 70,4 und 75,1 (t, 0-CH2-Phenyl) , 116,6, 121,6, 124,3 (d, arom. =C-H) , 128,2, 128,2, 128,6, 128,8 (je 2 x d, arom. =C-H) , 136 , 7 und 136 , 8 (s, arom. =C-) , 145,8 und 151,8 (s, arom. =C-0) , 164,5 (s, Amid-CO) , 173,6 und 174,3 (Ester-CO) .
Für C28H31N305 (MG 489,58,' ber. C 69,69 H 6,38 N 8,58 gef. C 68,50 H 6,29 N 8,48
Beispiel 11
(D,L) -2-Amino- [N- (2,3-dibenzyloxi-benzoyl) ] -heptandinitril (ld) .
Es werden 450 mg (0,92 mmol) lc, 0, 3 ml (3,68 mmol) Pyridin und 200 mg (0,62 mmol) Triphosgen in 80 ml getrocknetem Dichlor¬ methan gelöst und für eine Stunde bei RT gerührt. Zur Aufar¬ beitung wird die organische Phase mit 1) 5 % HCl und 2) mit ges. NaCl-Lösung extrahiert. Sie wird über MgS04 getrocknet und i.V. eingeengt; dabei werden 350 mg (84 %) reines ld erhalten.
IR (KBr) : v = 3330 (-NH) , 2870, 2925, 3020, 3055 (-CH) , 2235
(-CN) , 1650 (Amid-I) , 1570 (Amid-II) cm1
-CI-MS(NHJ : m/z (%) = 454 (100) [M + H]*, 471 (8) [M+NHJ \
427 (39) [M-CN+H]+, 337 (89) [M-CN-Benzyl+H] * .
"C-NMR: (75,4 MHz, CDCL3) : δ (ppm) = 16,9 (t, C-4) , 24,5
(t, C-5) , 24,7 (t, C-3) , 31,8 (t, C-6) , 40,1 (d, C- 2) , 71,5 und 76,8 (t, 0-CH?-Phenyl ) , 118,4 und 119,3 (s, -CN) , 118,2, 123,7 und 124,8 (d, arom. =C-H) , 125,2, 128, 7 und 128, 78 (s, quart . arom. =C-) , 129,0, 129,2, 129,3 (6C, d, arom. =C-H) , 136, 3 und 136, 4 (s, arom. =C-) , 147,4 und 151,9 (s, arom. =C-0) , 164,8
(Amid-CO) .
Für C28H27N303 (MG 453,55) ber. C 74,15 H 6,00 N 9,26 gef. C 73,66 H 6,10 N 9,20
Beispiel 12
(D,L) -1,2, 7-Triamino- [N2- (2, 3-dibenzyloxi-benzoyl) ] -heptan (le) .
300 mg (0,66 mmol) ld und 200 mg Co2B, S. W. Heinzmann, B. Ganem, in J. Amer. Chem. Soc. , 1982 , 6801 sowie 0,5 g NaBH„ werden in 10 ml THF und 40 ml Methanol gelöst und für zwei Stunden gerührt . Zur Aufarbeitung werden 5 % HC1 zugefügt (pH 2-3) , sodann wird mit NH3 basisch gestellt und viermal mit 30 ml CHC13 extrahiert (bis der Extrakt auf DC aufgetüpfelt mit Ninhydrin keine positive Reaktion anzeigt!) . Die Chloroform- Lösung wird über MgS04 getrocknet und i.V. eingeengt. Es werden 324 mg öliges Diamin-le. als Rohprodukt erhalten, das ohne Reinigung in die folgende Reaktion eingesetzt wird.
Für C28H35N303 (MG 461,61)
Beispiel 13
(D,L) -1,2,7-Triamino-tris- [N^N^N7- (2, 3-dibenzyloxi-benzoyl) ] - heptan (If.) .
300 mg Rohprodukt le aus der Vorreaktion werden mit 417 mg TBTU (1,23 mmol) , 0,43 g Dibenzyloxibenzoesäure (1,23 mmol) und 0,44 ml (2,6 mmol) Hünig-Base in 50 ml trockenem Dichlormethan gelöst und bei RT für 72 Stunden gerührt. Die Aufarbeitung erfolgt wie für lb beschrieben. Gereinigt wird mittels Flash- Chromatographie mit dem Laufmittel n-Hexan/Essigsäureethylester = 1:1. Es werden 311 mg If erhalten, 43 % bezogen auf ld aus Stufe 4.
IR (Kbr) : v = 3370 (-NH) , 2850, 2915, 3020, 3055 (CH) , 1630
(Amid-I) , 1565 cm"1 (Amid-II) .
ESI-MS: m/z (%) = 1094,4 (100) [M + H] \ 1116,5 (65) [M+Na] \ 1132,4 (36) [m+K]+.
"C-NMR: (75,4 MHz, CDCL3) : δ (ppm) = 25,7 (t, C-5) , 26,9 (t, C-4) , 29,2 (t, C-6 ) , 32,3 (t, C-3) , 39,7 (t, C-7) , 43,5 (t, C-l) , 49,9 (d, C-2) , 71,4, 71,4, 71,4, 75,9, 76,2, 76,5 (t, 0-CH2-Phe) , 117,0, 117,1, 117,2 (d, arom. =CH-), 123,4, 123,6, 123,7 und 124,4, 124,5, 124,6 (d, arom. =CH-) , 127,2, 127,7, 128,0 (s, quart . arom. =C-), 127,8, 127,9, 127,9, 128,5, 128,5, 128,7, 128,7, 128,8, 128,80, 128,85, 128,85, 128,90, 128,90, 128,93, 128,93 (alle als d, arom. =CH-) , 136,57, 136,6, 136,6, 136,63, 136,7, 136,7 (s, quart. arom. =C-) , 146,9, 147,0, 147,1 (s, quart. =C-0) , 151,9, 152,0, 152,0 (s, quart. =C-0) , 165,2, 165,4, 165,9 (s, Amid-CO) .
Für C70H67N3O9 (MG 1094,33) ber. C 76,83 H 6,17 N 3,84 gef. C 75, 91 H 6,23 N 4,19
Beispiel 14
(D,L) -1,2, 7-Triamino-tris- [N1,^,^- (2, 3-dihydroxi-benzoyl) ] - heptan (Myxochelin F, 1) .
113 mg (0,1 mmol) If. werden in 20 ml THF und 30 ml Methanol gelöst und mit Pd/C-H2 für zwei Stunden bei Normaldruck hy¬ driert. Über Kieselgur wird filtriert, die Lösung i.V. ein¬ geengt, Ausbeute 50 mg, 87 %.
IR (KBr) : v = 3360 (NH) , 2920, 2850 (CH) , 1640 (Amid-I) , 1580
(Aromat) , 1540 cm"1 (Amid-II) .
ESI-MS: m/z (%) = 576 (100) [M + Na]4. "C-NMR: (100,6 MHz, CD3OD) : δ (ppm) = 26,9 (t, C-4), 27,8 (t, C-5) , 30,3 (t, C-6) , 33,1 (t, C-3), 40,4 (t, C-7), 44,6 (t, C-l), 51,2 (d, C-2), 116,9, 116,9, 117,0 (s, quart. arom. =C-) , 118,7, 118,9, 119,0, 119,6, 119,7, 119,7 (alle d, arom. =CH-) , 147,3, 147,3, 147,4 (s, arom. =C-0-) , 150,2, 150,2, 150,3 (s, arom. =C-0-) , 171,5, 171,8, 172,0 (s, Amid-CO) .
Für C28H31N3Og (MG 553,58) ber. C 60,75 H 5,64 N 7,59
Die folgenden Beispiele betreffen den Siderophor Myxochelin C- Nitril (2.) sowie ein Verfahren zu seiner Herstellung.
Die Substanz wird im folgenden anhand ihrer Herstellung und mit ihren spektroskopischen Eigenschaften beschrieben:
Beispiel 15
Sie wird erhalten aus: (L) -2, 6-Diamino-bis- [N2,N6- (2 , 3-diben- zyloxi-benzoyl) ] -hexancarbonsäureamid (.2a) , das selbst aus dem käuflich zu erwerbenden L-Lysinamid dargestellt wird. Die spektroskopischen Merkmale von .2a sind die folgenden. :
[α]20 D = - 9 (c = 0,5 in Aceton) .
IR (KBr) : v = 3371, 3200 (NH) , 3032, 2930 (CH) , 1651 (Amid-I) ,
1526 cm"1 (Amid-II) .
13C-NMR: (75,4 MHz, CDCl3) : δ (ppm) = 23,03 (t, C-4), 28,9 (t, C-5) , 30,6 (t, C-3) , 39,1 (t, C-6) , 53,1 (d, C-2), 71,3, 71,4, 76,3, 76,4 (t, 0-CH?-Phenyl) , 116,9, 117,4, 123,0, 123,3, 124,4, 124,4 (d, arom. =CH-) ,
126.7, 127,3 (s, quart. arom. =C-) 127,6, 127,6,
127.8, 128,2 (d, arom. =CH-) , 128,3 (d, 10 x arom. =CH-) , 128,7 (d, 5 x arom. =CH-) 128,9 (d, arom. =CH- ) , 136,2, 136,3, 136,4, 136,4 (s, quart. arom. =C-) , 146,8, 146,9, 151,7, 151,7 (s, =C-0-) , 165,1, 165,6 (s, sek. Amid-C=) , 173,7 (s, prim. Amid-CO)
Für C48H47N307 (MG 777,34) ber. C 74,16 H 6,10 N 5,41 gef. C 72,60 H 6,07 N 4,60
Beispiel 16
(L) -2,6-Diamino-bis- [N2,N6- (2,3-dibenzyloxi-benzoyl) ] -hexannitril (2b) .
0,98 g (1,2 mmol) 2a. werden in 15 ml absolutiertem Dichlormethan gelöst und mit 0,29 ml Pyridin und 176 mg Triphosgen versetzt. Nach Aufarbeiten - wie für ld beschrieben - werden 670 mg 2b erhalten (73,6 %) .
[α]20 D = - 16,1 (c = 1 in CHC13) .
IR (KBr) : v = 3367 (NH) , 2866, 2927, 3031, 3064 (CH) , 2230 (CN) ,
1661 (Amid-I), 1520 cm"1 (Amid-II) .
"C-NMR: (75,4 MHz, CDC13) : δ (ppm) = 22,7 (t, C-4) , 28,4 (t,
C-5) , 32,1 (t, C-3) , 39,0 (t, C-6) , 40,3 (d, C-2) , 71,3, 71,4, 76,4, 76,6 (t, 0-CH2-Phe) , 117,0, 117,9 (d, arom. =CH-) , 118,5 (s, -CN) , 123,3, 123,4, 124,4, 124,5 (d, arom. =CH-) , 127,6, 127,6, 128,4, 128,4 (d, arom. =C-H) , 128,3, 128,4 (s, quart. arom. =C-) 128,7 (4 x C) , 128,8 (8 x C) , 129,0 (4 x C, alle d, 16 arom. =CH- aus Bn - Gruppen ) , 135,9, 136,0, 136,2, 136,4 (s, arom. =C- aus Bn-Gruppen) , 146,8, 147,1 (s, quart. arom. -0-C=) , 151,6, 151,7 (s, quart. arom. 0-C=) , 164,5, 165,0 (s, Amid-0=) .
Für C75H45N306 (MG 759,91) ber. C 75,87 H 5,97 N 5,53 gef. C 72,18 H 5,63 N 4, 16 Beispiel 17
(L) -2, 6-Diamino-bis- [N2,N6- (2, 3-dihydroxi-benzoyl) ] -hexannitril (Myxochelin C-Nitril, 2_) .
Es werden 90 mg (0,12 mmol) .2b unter Standardbedingungen hy¬ driert. Nach Filtration über Kieselgur und Einengen i.V. werden 45 mg (95 %) 2 isoliert.
[a] 20 D = - 12 (c = 1 in Methanol) . MG 399,43
Die folgenden Beispiele betreffen das Myxochelin D-Nitril (3_) und ein Verfahren zu seiner Herstellung.
Beispiel 18
3_ wird - wie schon für 2. dargestellt - aus dem Tetra-benzyl- geschützten Myxochelin D-Nitril (3_a) durch hydrogenolytische Spaltung an Pd/C mittels H2 erhalten. 3_a ist wie folgt charak¬ terisiert :
Beispiel 19
(L) -2, 5-Diamino-bis- [N2,N5- (2, 3-dibenzyloxi-benzoyl) ] -pentan-- nitril (Tetra-O-benzyl-Myxochelin D-Nitril, 3a) .
Fp. 134 bis 136°C [α]20 D = 18,4 (c = 1 in Methanol) .
IR (KBr) : v = 3360 (NH) , 3015, 3065, 2900, 2925, 2860 (CH) , 1650
(Amid-I) , 1520 cm"1 (Amid-II) .
Cl- (+) -MS: m/z (%) = 746 (100) [M + H]4.
"C-NMR: (75,9 MHz, CDCl3) : δ (ppm) = 25,4 (t, C-4) , 30,0 (t, C-3) , 38,5 (t, C-5) , 40,3 (d, C-2) , 71,3, 71,4, 76,5, 76,7 (t, 0-CH2-Phe) , 117,1, 117,9 (d, arom. =CH-) , 118,3 (s, -CN) , 123,4, 123,5, 124,4, 124,5 (d, arom. =CH-), 127,6, 127,7 (d, arom. =CH-), 128,3, 128,4 (s, quart. arom. =C-) 128,7, 128,8, 128,9 129,1 (18 C, d, arom. =CH-) , 135,8, 136,2, 136,3, 136,4 (s, quart. arom. =C~) , 146,9, 147,1 (s, quart. arom. -0-C=) , 151,6, 151,63 (s, quart. arom. -0-C=) , 164,4, 165,0 (s, sek. Amid-CO) .
Für C47H43N306 (MG 745,87) ber. C 75,68 H 5,81 N 5,63 gef. C 75,66 H 5,80 N 5,36
Beispiel 20
(L) -2, 5-Diamino-bis- [N2,N5- (2,3-dihydroxi-benzoyl) ] -pentan-nitril (Myxochelin D-Nitril, 3.) .
50 mg (7,7 x 10"5 mol) L-2,5-diamino-bis- [N2,N5- (2,3-dibenzyloxi- benzoyl)] -pentannitril (3_a) werden unter Standardbedingungen hydriert. Nach Filtration über Kieselgur und Einengen i.V. werden 24 mg (93,4 %) 3_ erhalten.
[o;]20 D = - 14,5 (c = 0,9 in Methanol) .
IR (KBr) : v = 3360 (NH) , 2925 (CH) , 2230 (CN) 1630 (Amid-I) ,
1525 cm'1 (Amid-II) .
13C-NMR: (125,6 MHz, CD3OD) : δ (ppm) = 26,8 (t, C-4) , 31,0 (t,
C-3) , 39,4 (t, C-5) , 41,5 (d, C-2) , 116,1, 116,7 (s, quart. arom. -C=) 118,7, 119,1 (d, arom. = CH-) , 118,7 (s, -CN) , 119,6, 119,7, 120,0, 120,4 (d, arom. =CH~) , 147,3, 147,4, 150,2, 150,3 (s, quart. -0-C=) , 171,1, 171,7 (s, sek. Amid-CO) .
'H-NMR: (500 MHz, CD3OD) : δ (ppm) = 1,02 (quin., Jx = 14,8 Hz,
J2 = 7,4 Hz 2H, 4-CH2-) , 125 (9 Linien, Jx = 15,5, J2 = 7,8, J3 = 7,7 Hz, 2H, 3-CH2-) , 2,67 (dd, Jλ = 6,6, J2 = 7,0 Hz, 1H, 2-H) , 5, 91 (dd, J, = 7 , 8 , Jz = 8 , 1 Hz , 1H, meta-Harom ) , 5,95 (dd, Jx = 8,1, J? = 8,2 Hz, 1H, meta-Haron, ) , 6,13 (dd, J1 = 1,2, J2 = 7,8 Hz, 1H, para¬ tem ) , 6,17 ( dd , J, = 1,2, J2 = 7,8 Hz, 1H, para- Harom ) , 6,41 (dd, J1 = 1,5, J2 = 8,1 Hz, 1H, ortho- Harom ) , 6,45 (d, Jα = 1,1, J2 = 8,1 Hz, 1H, ortho-
Harom. )
ESI- (+) -MS: m/z (%) = 408 (100) [M + Na]4.
Für C19H19N306 (MG 385,39) ber. C 59,36 H 4,72 N 10,93 gef. C 57,10 H 5,44 N 9,78
Das folgende Beispiel betrifft Myxochelin DR-Nitril R-3, und ein Verfahren zu seiner Herstellung, die auf dem gleichen Weg wir für 3_ beschrieben verläuft .
Beispiel 21
Die Vorstufe R-3a zeigt die gleichen spektroskopischen Eigen¬ schaften wie 3_a, besitzt aber einen Drehwert von:
[a] 20 D = + 16,9 (c = 1 in Methanol) .
(R) -2,5-Diamino-bis- [N2,N5- (2,3-dihydroxi-benzoyl) ] -pentan-nitril (Myxochelin DR-Nitril, R-3) .
Es werden 48 mg R-3a unter Standardbedingungen bei Normaldruck hydriert. Nach Abfiltrieren über Kieselgur und Einengen i.V. werden 22 mg (88,7 %) R-3 gewonnen. Die spektroskopischen Eigenschaften siehe bei der Beschreibung für R-3.
[α]2D D = + 16 (c = 1 in Methanol) .
Das folgende Beispiel betrifft das Enantiomere des Naturstoffs Myxochelin B das Myxochelin BR (R-4) und ein Verfahren zu seiner Herstellung.
Beispiel 22
Es wird ausgegangen von R-2b, dessen spektroskopische Eigen¬ schaften mit Ausnahme des Drehwertes die gleichen wie für .2b sind (W. Trowitzsch-Kienast, H. Irschik, V. Wray, H. Reichen¬ bach, G. Höfle, Liebigs Ann. Chem. 1996, in Vorbereitung) . Der Drehwert beträgt für R-2b:
[ot] D = + 18,5 (c = 1 in CHC13) .
Das Nitril R-2b wird mittels NaCNBH3 in das primäre Amin über¬ führt, das durch Standardhydrierung bei RT und unter Normaldruck für zwei Stunden am Pd/C-Katalysator hydriert wird:
(R) -1,2, 6-Triamino-bis- [N2,N6- (2, 3-dihydroxi-benzoyl) ] -hexan- hydrochlorid (Myxochelin BR-Hydrochlorid, R-4) .
[ot] 2D D = + 7 (c = 0,5 in 6N HC1) . (Der Naturstoff Myxochelin B besitzt: [a] 2°D = - 8 (c = 1 in 6N HC1) (W. Trowitzsch-Kienast, H. Irschik, V. Wray, H. Reichenbach, G. Höfle, Liebigs Ann. Chem. 1966 , in Vorbereitung) .
13C-NMR: (75,4 MHz, DMSO-d6) : δ (ppm) = 22,9 (t, C-4) , 28,7 (t, C-5) , 31,3 (t, C-3) , 38,6 (t, C-6) , 48,7 (d, C-2) , 44,0 (t, C-l) , 115,7, 115,7 (s, quart. arom. C) , 114,1, 115,8, 116,0, 117,2, 117,8, 118,4 (d, arom. =CH-) , 147,0, 147,6, 151,6, 153,6 (s, quart. -0-C=) , 169,3, 169,9 (s, sek. Amid-CO) .
FAB- (+) -MS: m/z (%) = 404 (100) [M + H] 4.
C20H25N3O6 (MG 403 , 44 )
Wirkung
Die Wirkung von 1 wird mittels eines Bioassays bewiesen.
Folgende Stämme von Enterobakterien (gram-negative Bakterien) , die im Eisentransportsystem einen Defekt vorliegen haben, das Eisen also nicht aufnehmen können, werden durch 1 in der Kon¬ zentration von 5 μg/disc derart gut mit Eisen versorgt, daß die Stämme in einem Eisen verarmten Medium dennoch enorme Wachs¬ tumszonen (in mm) zeigen:
Salmonella typhimurium (32) , E. coli (30) , Klebsiella pneumonia (33) , Pseudomonas aeruginosa Stamm 6609 (34) , Stamm 648 (30) , Stamm 201 (32) , Stamm K 437 (34) .
Die Testbedingungen sind publiziert in R. Reissbrodt, L. Hei¬ nisch, U. Möllmann, W. Rabsch, H. Ulbricht, "Biometais", 6, Seiten 155 bis 162 (1993) und R. Reissbrodt" und W. Rabsch, "Zbl. Bakt. Hyg. " , A 268, Seiten 306 bis 317, (1988) .
Myxochelin C und Myxochelin CR weisen antivirale Aktivitäten gegen Cytomegalonviren vom Stamm AD-169 auf. Die IC50-Werte für die Wirkstoffe lauten für Myxochelin C 0,7 ug/ml und für Myxo¬ chelin CB 1 ug/ml.

Claims

Ansprüche
Verbindung der allgemeinen Formel (I)
Figure imgf000024_0001
wobei R = -CH2-NH-CO- (2, 3-dihydroxiphenyl) , CN oder -CH2- NH2, n = 1 bis 5 ist.
2. Verbindung nach Anspruch 1, wobei R = CN (Myxochelin - Nitrile) ist und die Verbindungen
2 Myxochelin B-Nitril, n = 4; R-2 Myxochelin BR-Nitril, n = 4; 3 Myxochelin D-Nitril, n = 3; R-3 Myxochelin DR-Ni- tril, n = 3 umfaßt,
wobei R = -CH2-NH2 (Cheline der B-Reihe) ist und die Ver¬ bindungen
R-4 Myxochelin BR, n = 4; 5 Myxochelin D-B, n = 3; R-5 Myxochelin DR-B, n = 3 umfaßt; desweiteren
Myxochelin C; (D,L) -1, 2,7-Triamino-tris- [N1, N2,N'- (2,3- dihydroxi-benzoyl) ] -heptan (Myxochelin F) umfaßt. Ve rb i ndungen
N,N#N-1,2,6-Tris- (2,3-O-dibenzyloxi-benzoyl) -1,2, 6-triami- nohexan; (D,L) -2-Amino-heptandicarbonsäure-dimethylester- Hydrochlorid; (D,L) -2-Amino- [N- (2, 3 -dibenzyloxi-benzoyl) ] - heptandicarbonsäure-dimethylester; (D,L) -2-Amino- [N- (2,3- dibenzyloxi -benzoyl) ] -heptandicarbonsäure-diamid; (D,L) -2- Amino- [N- (2, 3 -dibenzyloxi-benzoyl) ] -heptandinitril ; (D,L) - 1,2, 7-Triamino- [N2- (2, 3 -dibenzyloxi-benzoyl ) ] -heptan;
(D, L) -1,2, 7-Triamino-tris- [N^N^N7- (2, 3 -dihydroxi -ben¬ zoyl) ] -heptan; (L) -2, 6-Diamino-bis- [N2,N6- (2, 3 -dibenzyloxi- benzoyl) ] -hexancarbonsäureamid; (L) -2, 6-Diamino-bis- [N2,NG-
(2,3 -dibenzyloxi-benzoyl ) ] -hexannitril ; (L) -2 , 6-Diamino- bis- [N2,N6- (2, 3 -dihydroxi -benzoyl) ] -hexannitril (Myxochelin C-Nitril) oder (L) -2 , 5-Diamino-bis- [N2,NB- (2 , 3 -dibenzyloxi- benzoyl) ] -pentan-nitril (Tetra-O-benzyl-Myxochelin D- Nitril) als Zwischenprodukte zur Herstellung von Verbindun¬ gen gemäß Anspruch 1 und/oder 2.
Eisen-Komplex der Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Eisen-Komplex eine UV/VIS - Absorption bei λmax «= 571 nm aufweist.
Verfahren zur Herstellung der Verbindungen nach einem der
Ansprüche 1 bis 3 , wobei die Amide der Aminosäuren Lysin, Ornitin, Asparaginamid
(Myxochelin E) oder 2 , 3-Diaminopropionsäureamid mit einem komplexen Hydrid reduziert werden zu den korrespondierenden
Triaminen,
die entstandenen Triamine mit Kopplungsmethoden der Peptid- chemie mit geschützten 2, 3-Dihydroxybenzoesäuren zu den entsprechenden Triamiden umgesetzt werden und
Die erhaltenen Triamide durch Hydrogenolyse in die Verbin¬ dungen nach einem der Ansprüche 1 oder 2 überführt . 6. Konjugat aus einer Verbindung gemäß mindestens einem der Ansprüche 1 bis 3 und einer pharmazeutisch und/oder biolo¬ gisch wirksamen Substanz wie Arzneimittel.
7. Arzneimittel enthaltend neben üblichen pharmazeutischen Hilfsmitteln und/oder Trägerstoffen, eine wirksame Menge mindestens einer der Verbindungen nach Anspruch 1 bis 3 und/oder 5.
8. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 3 zur Herstellung eines Arzneimittels zur Behandlung von Erkrankungen, die mit fehlerhaftem Metall- ionenstoffWechsel, insbesondere Eisen- oder Aluminium¬ stoffwechsel korreliert sind oder zur Ausschleusung von Metallionen, insbesondere Eisen- oder Aluminiumionen, aus Zellen und/oder zur Behandlung von bakteriellen, viralen und/oder parasitären Infektionen sowie zur Tumorbehandlung.
9. Verfahren zur Komplexierung von Metallionen, insbesondere Eisenionen, durch Versetzen einer metallionenhaltigen Lösung mit einer Verbindung nach mindestens einem der Ansprüche 1 bis 3.
10. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 3 zur Komplexierung, Charakterisierung und/oder Entfernung von Metallen aus die entsprechenden Metallionen enthaltenden Lösungen.
11. Verwendung nach Anspruch 10, wobei die Metallionen radioak¬ tive Metallionen sind.
12. Verfahren zur Analytik von Bakterien, insbesondere pathoge- ne Enterobakterien, wobei die mit Bakterien belasteten Proben in einem Eisenmangelmedium inkubiert werden und durch Zusatz einer Verbindung nach mindestens einem der Ansprüche 1 bis 3 selektiv die Bakterien wachsen, welche in der Lage sind, diese Verbindungen aufzunehmen.
PCT/EP1996/002796 1994-12-22 1996-06-26 Verbindungen, die mit metallen komplexe bilden können WO1997049669A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE4447374A DE4447374A1 (de) 1994-12-22 1994-12-22 Myxochelin C und verwandte Verbindungen, neue Syntheseprodukte als Metalltransporteure und als chemo-therapeutische Mittel
AU64172/96A AU6417296A (en) 1994-12-22 1996-06-26 Compounds which can form complexes with metals
EP96923943A EP0923538A1 (de) 1994-12-22 1996-06-26 Verbindungen, die mit metallen komplexe bilden können
PCT/EP1996/002796 WO1997049669A1 (de) 1994-12-22 1996-06-26 Verbindungen, die mit metallen komplexe bilden können

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4447374A DE4447374A1 (de) 1994-12-22 1994-12-22 Myxochelin C und verwandte Verbindungen, neue Syntheseprodukte als Metalltransporteure und als chemo-therapeutische Mittel
PCT/EP1996/002796 WO1997049669A1 (de) 1994-12-22 1996-06-26 Verbindungen, die mit metallen komplexe bilden können

Publications (1)

Publication Number Publication Date
WO1997049669A1 true WO1997049669A1 (de) 1997-12-31

Family

ID=42315199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002796 WO1997049669A1 (de) 1994-12-22 1996-06-26 Verbindungen, die mit metallen komplexe bilden können

Country Status (4)

Country Link
EP (1) EP0923538A1 (de)
AU (1) AU6417296A (de)
DE (2) DE4447374A1 (de)
WO (1) WO1997049669A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042435A2 (de) * 1998-02-21 1999-08-26 Analyticon Ag Biotechnologie Pharmazie Myxocheline
DE19807475A1 (de) * 1998-02-24 1999-09-09 Analyticon Ag Myxocheline

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447374A1 (de) * 1994-12-22 1996-06-27 Trowitzsch Kienast Wolfram Pro Myxochelin C und verwandte Verbindungen, neue Syntheseprodukte als Metalltransporteure und als chemo-therapeutische Mittel
DE10111161A1 (de) * 2001-03-01 2002-09-05 Gruenenthal Gmbh Neue Siderophoranaloga als 4- oder 6-zähnige Eisenchelatoren auf der Basis von Aminosäuren oder Peptiden, Verfahren zu ihrer Herstellung und ihre Anwendung
DE102007008655A1 (de) * 2007-02-20 2008-08-21 Henkel Ag & Co. Kgaa Siderophor-Metall-Komplexe als Bleichkatalysatoren
WO2008151288A2 (en) * 2007-06-05 2008-12-11 Xenon Pharmaceuticals Inc. Aromatic and heteroaromatic compounds useful in treating iron disorders

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252197A (ja) * 1994-03-13 1995-10-03 Masayasu Akiyama リジン残基を含むトリスカテコールアミド誘導体
DE4447374A1 (de) * 1994-12-22 1996-06-27 Trowitzsch Kienast Wolfram Pro Myxochelin C und verwandte Verbindungen, neue Syntheseprodukte als Metalltransporteure und als chemo-therapeutische Mittel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252197A (ja) * 1994-03-13 1995-10-03 Masayasu Akiyama リジン残基を含むトリスカテコールアミド誘導体
DE4447374A1 (de) * 1994-12-22 1996-06-27 Trowitzsch Kienast Wolfram Pro Myxochelin C und verwandte Verbindungen, neue Syntheseprodukte als Metalltransporteure und als chemo-therapeutische Mittel

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKIYAMA, MASAYASU ET AL: "Design and synthesis of artificial siderophores: lysine-based triscatecholate ligands as a model for enterobactin", CHEM. LETT. (1995), (9), 849-850 CODEN: CMLTAG;ISSN: 0366-7022, 1995, XP000617378 *
BARELMANN, I. ET AL: "Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia", Z. NATURFORSCH., C: BIOSCI. (1996), 51(9/10), 627-630 CODEN: ZNCBDA;ISSN: 0341-0382, 1996, XP000617477 *
DIARRA, M. S. ET AL: "Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria", ANTIMICROB. AGENTS CHEMOTHER. (1996), 40(11), 2610-2617 CODEN: AMACCQ;ISSN: 0066-4804, 1996, XP000617329 *
KUNZE, BRIGITTE ET AL: "Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties", J. ANTIBIOT. (1989), 42(1), 14-17 CODEN: JANTAJ;ISSN: 0021-8820, 1989, XP000616420 *
M. AUGUSTIN: "Cyclisierung von höheren DL-alpha-Aminocarbonsäurediestern und deren Dipeptidestern zu 2.5-Diketo-piperazinen.", CHEMISCHE BERICHTE, vol. 99, 1966, WEINHEIM DE, pages 1040 - 1048, XP000617382 *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 010 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042435A2 (de) * 1998-02-21 1999-08-26 Analyticon Ag Biotechnologie Pharmazie Myxocheline
WO1999042435A3 (de) * 1998-02-21 1999-12-16 Analyticon Ag Biotechnologie P Myxocheline
DE19807475A1 (de) * 1998-02-24 1999-09-09 Analyticon Ag Myxocheline

Also Published As

Publication number Publication date
DE4447374A1 (de) 1996-06-27
AU6417296A (en) 1998-01-14
DE19626020A1 (de) 1998-01-02
EP0923538A1 (de) 1999-06-23

Similar Documents

Publication Publication Date Title
DE69532645T2 (de) Heterozyklische pentapeptitische und halophenyl amide als hemmer für menschlichen krebs
DE2450355C2 (de)
DE69532475T2 (de) Krebs hemmende peptide
DE60003791T2 (de) Felbamat-derivate
DE2440956C3 (de) Kanamycin B-Derivate, Verfahren zu ihrer Herstellung und solche Derivate enthaltende Arzneimittel
DE69832987T2 (de) Spingosinanaloga
DE69907419T2 (de) Antitumorwirkstoffe
WO1999042435A2 (de) Myxocheline
EP0923538A1 (de) Verbindungen, die mit metallen komplexe bilden können
DE19507820A1 (de) Neuartig substituierte DTPA-Derivate, deren Metallkomplexe, diese Komplexe enthaltende pharmazeutische Mittel, deren Verwendung in der Diagnostik, sowie Verfahren zur Herstellung der Komplexe und Mittel
DE3132221A1 (de) Neue cyclophosphamid-derivate, verfahren zu ihrer herstellung und ihre verwendung
EP0863139B1 (de) Benzoxazindionderivate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2618009A1 (de) 1-n-(alpha-hydroxy-omega-aminoacyl)-derivate des 3'-deoxykanamycins a und verfahren zur herstellung derselben
DE2423591A1 (de) 1-n-isoserylkanamycine
DE69917440T2 (de) 5-Imino-13-desoxy-antracyclin-Derivate, ihre Verwendung sowie Verfahren zu deren Herstellung
DE60035154T2 (de) Verbindungen zum spalten von doppelstrang-dns sowie verfahren zu deren verwendung
DE19807475A1 (de) Myxocheline
DE69910810T2 (de) Natriumsalz von 3-(4-cinnamyl-1-piperazinyl)-iminomethyl-rifamycin sv und verfahren zu seiner herstellung
DE2435619C3 (de)
DE69829881T2 (de) Synthetische antineoplastische wirkstoffe abgeleitet von dolastatin 15 sowie verfahren zu ihrer herstellung
EP3254679A1 (de) Wirkstoffe gegen protozoen und bakterien
WO2002085841A2 (de) Substituierte catecholderivate abgeleitet von mehrbasischen sekundären aminosäuren, verfahren zu ihrer herstellung und ihre anwendung
DE2950020A1 (de) Neues verfahren zur herstellung von 1-n-isoseryl- oder 1-n-(l-4-amino-2-hydroxybutyryl)-3',4'-didesoxykanamycin b und dessen zeue zwischenstufen
DE3227178A1 (de) 2'-modifizierte kanamycinderivate, verfahren zur herstellung derselben sowie mittel mit antibakterieller wirkung, die diese modifizierten kanamycinderivate enthalten
DE2855424A1 (de) 2'-n-substituierte fortimicin a-derivate und ihre salze mit saeuren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ DE EE GE HU IL IS JP KG KP KR LK LR LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996923943

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97516877

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996923943

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1996923943

Country of ref document: EP