WO1997046347A1 - Films en alliage de fer pour liaison par diffusion en phase liquide d'un materiau ferreux susceptible de se lier sous atmosphere oxydante - Google Patents

Films en alliage de fer pour liaison par diffusion en phase liquide d'un materiau ferreux susceptible de se lier sous atmosphere oxydante Download PDF

Info

Publication number
WO1997046347A1
WO1997046347A1 PCT/JP1997/001900 JP9701900W WO9746347A1 WO 1997046347 A1 WO1997046347 A1 WO 1997046347A1 JP 9701900 W JP9701900 W JP 9701900W WO 9746347 A1 WO9746347 A1 WO 9746347A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmosphere
phase diffusion
joint
diffusion bonding
alloy foil
Prior art date
Application number
PCT/JP1997/001900
Other languages
English (en)
French (fr)
Inventor
Yasushi Hasegawa
Eiji Tsuru
Yuuichi Satou
Shigekatsu Ozaki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14203896A external-priority patent/JP3434126B2/ja
Priority claimed from JP16381096A external-priority patent/JP3434128B2/ja
Priority claimed from JP16381196A external-priority patent/JP3434129B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US09/011,583 priority Critical patent/US5919577A/en
Priority to EP97924317A priority patent/EP0854002A1/en
Publication of WO1997046347A1 publication Critical patent/WO1997046347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the present invention is intended for joining Fe-based materials including various steel materials such as steel plates, steel pipes, steel bars (including steel wires and rebars), in an oxidizing atmosphere at a low temperature and in a short time. It relates to an Fe-based alloy foil for liquid phase diffusion bonding that is possible and can be bonded with little thermal effect to the material to be bonded (base material) o
  • the present invention also enables liquid-phase diffusion bonding in an oxidizing atmosphere to Fe-based materials including various steel materials such as steel plates, steel pipes, steel bars (including steel wires and reinforcing bars), and the like.
  • the present invention relates to an Fe-based alloy foil for liquid phase diffusion bonding, which can provide a bond having excellent bonding strength in a short time.
  • the present invention is intended for joining Fe-based materials including various steel materials such as steel plates, steel pipes, steel bars (including steel wires and rebars), in an oxidizing atmosphere at a low temperature and in a short time.
  • the present invention relates to an Fe-based alloy foil for liquid phase diffusion bonding, which is possible and can be bonded with little thermal effect on the material to be bonded (base material).
  • liquid-phase diffusion bonding pressure is applied by interposing an alloy having a low eutectic composition with a low melting point between the materials to be joined in the form of foil, powder, or a metal.
  • This is a joining method in which the joint is melted and isothermally solidified by heating the joint to a temperature just above the liquidus line of the insertion alloy (hereinafter referred to as “insert metal”).
  • insert metal a temperature just above the liquidus line of the insertion alloy
  • liquid phase diffusion bonding can be performed with a relatively low pressing force, it is conventionally used for bonding where it is necessary to minimize residual stress and deformation due to bonding. It is applied to steel or to the joint between these and carbon steel.
  • Liquid-phase diffusion bonding is often applied to the bonding of materials to be bonded that contain 0.5% or more of Cr in atomic percent as an alloy composition.
  • the C r containing material (often C r 2 0 3) dense oxide C r coating to form on the surface, oxidation resistance, it is characterized by corrosion resistance is excellent.
  • the applicant of the present invention has proposed that when liquid phase diffusion bonding is applied to stainless steel, high nickel-base alloy, heat-resistant alloy steel, or these alloy steels, an oxide film will be formed on the surface of the workpiece in air. Even after the formation, liquid phase diffusion bonding is possible, and as a result of repeated studies to provide a liquid phase diffusion bonding that can obtain a good joint in a short time while reducing the joining cost, V was reduced to 0. Insert metal containing 1 to 20.0 atomic% and increasing Si It has been found that liquid phase diffusion bonding can be performed even in an oxidizing atmosphere such as air if used.
  • V is an element that raises the melting point of the insert metal, but by appropriately adjusting other elements (only Si in the present invention), an insert metal with extremely excellent bonding properties can be obtained. It has been found that the following can be obtained beforehand: JP-A-2-151377, JP-A-2-151378, JP-A-2-185940, JP-A-7- It is mainly used for liquid phase diffusion bonding of stainless steel, high nickel-base alloy, heat-resistant alloy steel, or these alloy steels and carbon steel as disclosed in Japanese Patent No. 268521 and Japanese Patent Application Laid-Open No. Hei 7-276066. We proposed an alloy foil for liquid phase diffusion bonding that can be bonded in an oxidizing atmosphere containing Ni-based V and Si.
  • Ni-based alloy foils for liquid phase diffusion bonding are mainly used for joining stainless steel, high nickel-based alloys, and heat-resistant alloy steels. It has Ni as the basic component.
  • the present inventors have developed a method for lowering Fe-based materials typified by steel materials such as steel pipes, reinforcing bars, and thick plates made of carbon steel in a narrow place while securing sufficient joining strength in a shorter time.
  • steel materials such as steel pipes, reinforcing bars, and thick plates made of carbon steel in a narrow place while securing sufficient joining strength in a shorter time.
  • Fe-based materials have been targeted for joining.
  • the application of liquid phase diffusion bonding in air was studied.
  • the first object of the present invention is to oxidize an Fe-based material (a variety of steel materials containing 50% or more of Fe) represented by a steel material such as a steel pipe, a reinforcing bar, and a thick plate made of, for example, carbon steel. It is possible to provide an Fe-based alloy foil for liquid phase diffusion bonding that can be bonded in a medium and low temperature and in a short time, and that can be bonded with little thermal effect on the material to be bonded (base material). is there.
  • an Fe-based material a variety of steel materials containing 50% or more of Fe
  • a steel material such as a steel pipe, a reinforcing bar, and a thick plate made of, for example, carbon steel. It is possible to provide an Fe-based alloy foil for liquid phase diffusion bonding that can be bonded in a medium and low temperature and in a short time, and that can be bonded with little thermal effect on the material to be bonded (base material). is there.
  • a second object of the present invention is to quickly connect an Fe-based material represented by a steel material such as a steel plate, a steel pipe, a steel bar (including a steel wire and a reinforcing bar) made of carbon steel to an oxidizing atmosphere in a short time.
  • An object of the present invention is to provide an Fe-based alloy foil for liquid-phase diffusion bonding of an Fe-based material that can be joined in an oxidizing atmosphere and has a homogeneous structure and a joint having sufficient joining strength.
  • a third object of the present invention is to join Fe-based materials typified by steel materials such as steel pipes, reinforcing bars, and thick plates made of carbon steel, for example, in an oxidizing atmosphere at a low temperature and in a short time.
  • An object of the present invention is to provide an Fe-based alloy foil for liquid phase diffusion bonding, which is capable of performing bonding with a small thermal effect on a material to be bonded (base material).
  • One or two or more, and the rest has a composition consisting essentially of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 100 / zm.
  • An Fe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • One or two or more, and the remainder has a composition consisting essentially of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 100 ⁇ m.
  • An Fe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • One or two or more, and the balance is substantially composed of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 100 / m.
  • a Pe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • the liquid of the Fe-based material which can be bonded in an oxidizing atmosphere is characterized in that the structure of the structure is substantially amorphous.
  • An Fe-based alloy foil for phase diffusion bonding is provided.
  • Liquid-phase diffusion bonding of a Fe-based material that can be bonded in an oxidizing atmosphere characterized by having a composition substantially composed of Fe and unavoidable impurities, and having a thickness of 3.0 100;
  • An Fe-based alloy foil is provided. According to a second aspect of the second invention,
  • One or two or more, and the balance is substantially composed of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 100 m.
  • An Fe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • a Pe-based alloy foil for liquid phase diffusion bonding of a base material is provided.
  • Si 1.0-20.0%
  • V 0.1 20.0%
  • One or two or more, and the remainder has a composition consisting essentially of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 100 m.
  • the present invention provides an Fe-based alloy foil for liquid phase diffusion bonding of a suitable Fe-based material.
  • a liquid of a Fe-based material that can be bonded in an oxidizing atmosphere characterized in that the structure of the structure is substantially amorphous in the first to fourth aspects.
  • An Fe-based alloy foil for phase diffusion bonding is provided.
  • Liquid phase diffusion of a Fe-based material that can be joined in an oxidizing atmosphere characterized by having a composition substantially consisting of Fe and unavoidable impurities and having a thickness of 3.0 to 200 m.
  • An Fe-based alloy foil for bonding is provided.
  • One or two or more, and the remainder has a composition consisting essentially of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 200 ⁇ m.
  • An Fe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • One or two or more, and the remainder has a composition consisting essentially of Fe and unavoidable impurities, and has a thickness of 3.0 to 200 / m, and can be joined in an oxidizing atmosphere.
  • An alloy foil is provided.
  • One or two or more, and the balance is substantially composed of Fe and unavoidable impurities, and can be joined in an oxidizing atmosphere characterized by a thickness of 3.0 to 200 / m.
  • An Fe-based alloy foil for liquid phase diffusion bonding of an Fe-based material is provided.
  • a liquid of a Fe-based material that can be bonded in an oxidizing atmosphere characterized in that the structure of the structure is substantially amorphous in the first to fourth aspects.
  • An Fe-based alloy foil for phase diffusion bonding is provided.
  • Fe-based material means various carbon steels containing 50% or more of Fe by atomic%.
  • substantially amorphous means that more than 50% of the crystal structure of the tissue is amorphous.
  • Liquid phase diffusion bonding includes diffusion brazing, in which the materials to be bonded are bonded in the form of foil, powder, or plating.
  • the alloy has a eutectic composition with a lower melting point than that of the material and is pressurized, and the joint is melted by heating the joint to a temperature just above the liquidus line of the hardened alloy (hereinafter referred to as insert metal).
  • insert metal a temperature just above the liquidus line of the hardened alloy
  • melting includes not only complete melting but also melting of 50% or more. Isothermal solidification occurs when a specific element in the liquid phase diffuses toward the material to be joined (base material) and the chemical composition of the liquid phase changes to a component that reaches the solidus line.
  • Oxidizing atmosphere means that the bonding atmosphere contains 0.1% or more by volume of oxygen gas and has an oxygen partial pressure of l (T 3 atni or more, ie, a reducing gas such as H 2 , H 2 Even if it contains S, water vapor, etc., it means an atmosphere in which the oxidizing power is 0.1% or more corresponding to the oxygen concentration.
  • melting point shall mean the solidus line on the phase diagram of an alloy having two or more elements, unless otherwise specified.
  • Fig. 1 is a plan view showing an example of liquid phase diffusion bonding using an alloy foil for liquid phase diffusion bonding (insert metal) using a round steel bonding test piece as the material to be bonded.
  • FIG. 2 is a plan view showing an example of a sample state of a round bar test piece and a tensile test piece obtained by liquid phase diffusion bonding.
  • FIG. 3 is a plan view showing an example of a tensile test piece sampled by the tensile test piece sampling apparatus.
  • Fig. 4 shows the relationship between the amount of V in the Fe-based insert metal and the fracture strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the workpiece as related to the first invention. It is a graph.
  • FIG. 5 shows the relationship between the amount of Si in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the workpiece as related to the first invention. It is a graph showing a relationship.
  • Fig. 6 is a graph showing the relationship between the amount of P in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding in which the Fe-based material is used as the material to be joined in connection with the first invention. It is.
  • FIG. 7 is a graph showing the relationship between the thickness of the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined in connection with the first invention. is there.
  • Figure 8 shows the relationship between the first and second inventions at 0 ° C in the heat-affected zone (base material) after liquid-phase diffusion bonding using Fe-based insert metal with Fe-based material as the workpiece.
  • 5 is a graph showing toughness at temperature, comparing the case where a B-based insert metal is used and the case where a P-based insert metal is used.
  • Fig. 9 is a graph showing the relationship between the amount of V in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined in connection with the second invention. It is.
  • FIG. 10 is a graph showing the relationship between the amount of Si in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined, in connection with the second invention. It is.
  • Fig. 11 is a graph showing the relationship between the amount of B in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding in which the Fe-based material is used as the material to be joined, according to the second invention. It is.
  • FIG. 12 is a graph showing the relationship between the thickness of the Fe-based sensor metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined, in connection with the second invention. It is.
  • Fig. 13 relates to the first and second inventions, and shows the relationship between the joining time and the tensile fracture strength of the joint in the liquid phase diffusion bonding using Fe-based material as the workpiece in the liquid phase diffusion bonding. It is a graph showing the relationship, and B-type insert A comparison is made between the case using a metal and the case using a P-based insert metal.
  • Fig. 14 is a graph showing the relationship between the amount of V in the Fe-based insert metal and the fracture strength at the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined according to the third invention. It is.
  • Fig. 15 shows the relationship between the amount of P in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding using the Fe-based material as the material to be joined, related to the third invention. It is a graph.
  • Fig. 16 shows the relationship between the amount of B in the Fe-based insert metal and the fracture strength of the joint in liquid phase diffusion bonding using Fe-based material as the workpiece as related to the third invention. It is a graph showing.
  • Fig. 4 is a graph showing the relationship between the amount of Si in the Fe-based insert metal and the breaking strength of the joint in the liquid phase diffusion bonding in which the Fe-based material is used as the material to be joined, according to the third invention. It is.
  • FIG. 18 is a graph showing the relationship between the thickness of the Fe-based insert metal and the joint breaking strength in the liquid phase diffusion bonding using the Fe-based material as the material to be joined in connection with the third invention. is there.
  • Fig. 19 shows, in relation to the third invention, the joining time and joining by Fe-based Fe-based insert metal containing P and B in liquid phase diffusion joining using Fe-based material as the material to be joined. It is a graph showing the relationship with partial breaking strength.
  • Fig. 20 shows the heat-affected zone base material (liquid to be bonded) after liquid-phase diffusion bonding using Fe-based material containing P and B containing Fe-based material in connection with the third invention.
  • 5 is a graph showing the toughness of a material at a test temperature of 0 ° C.
  • the present inventor has disclosed the above-mentioned JP-A-2-151377 and JP-A-2-151378. , JP-A-2-185940, JP-A-7-26852], JP-A-7-276066, etc., liquid-phase diffusion bonding containing Ni-based V and Si Focusing on the effects obtained with alloy foils for welding, Fe-based materials are used for joining, and there is no problem of structural unevenness due to the N-th grain and deterioration of properties due to thermal effects on the material (base material) to be joined. Various studies have been made on the alloy foil for liquid phase diffusion bonding, and the present invention has been reached.
  • the Fe-based alloy foil contains 0.1 to 15% by atomic% when containing Ni which causes a problem of non-uniform structure with respect to the Fe-based structure of the material to be joined.
  • P and Z or B which is a Fe-based material and is a diffusion element that also contributes to lowering the melting point
  • Si and oxide that contribute to lowering the melting point Contains V as an essential component that reduces the effect of the coating.
  • the Fe-based alloy foil selectively contains, in addition to the components of the first aspect, one or more of Cr, Ni, and Co, which mainly increase the corrosion resistance of the joint.
  • the Fe-based alloy foil selectively contains one or more of W, Nb, and Ti, which mainly increase the joint strength, in addition to the components of the first aspect.
  • the Fe-based alloy foil simultaneously and selectively contains the components of the second and third aspects in addition to the components of the first aspect. That is, one or more of Cr, ⁇ , and Co that increase the corrosion resistance of the joint and one or more of W, Nb, and Ti that mainly increase the joint strength are simultaneously contained.
  • joining can be performed at a low temperature (1000 ° C or less), and In order to reduce the thermal effect on the (base metal) and prevent deterioration in characteristics due to coarsening of the crystal grains of the member to be joined, select P, which can be easily realized, as a diffusion atom.
  • the first invention is particularly applicable to the case where the Fe-based material, which is the material to be joined, has a component composition in which the crystal grains are coarsened by the influence of heat and the material properties are apt to deteriorate, such as steel containing Mo. It is valid.
  • the joining temperature when the joining temperature is 1050-1300 ° C, the temperature is 200 ° C or more higher than that of P, but the diffusion coefficient is larger than that of P, and the joining time is greatly shortened, and the joining strength is increased.
  • B is selected as a diffusion atom.
  • B and P are used as diffusing elements to compensate for the disadvantages of each other, and to reduce the thermal effect on the material to be joined (base material) even when the joining temperature is high, so that the members to be joined are reduced. This prevents the deterioration of characteristics due to the coarsening of the crystal grains and shortens the bonding time.
  • the complement effect of P causes the Fe-based material, which is the other material to be joined, to become coarser due to thermal effects and deteriorate in material properties.
  • steel having a component composition that is easy to be used for example, steel having a fine structure, a payinite structure, a martensite structure, or the like.
  • the bonding time is longer than when B is used alone. Therefore, the manufacturing time can be increased, and the joining time can be greatly reduced as compared with the case of using P alone.
  • the third invention makes it easy to manufacture, and it is possible to realize a high-strength joint by using Fe-based materials for joining in liquid phase diffusion joining of a wider variety of steel types.
  • Fe-based materials for joining in liquid phase diffusion joining of a wider variety of steel types.
  • Fe-based containing 50% or more of Fe in atomic%).
  • the material to be joined is an Fe-based material (steel material made of carbon steel containing 50% or more of Fe in atomic%), and there is no heterogeneity in the structure due to the intervening Ni phase as in the case of using Ni as the base material. The time can be shortened and the joining strength can be easily assured.
  • P is an element necessary as a diffusion atom for realizing isothermal solidification necessary for achieving liquid phase diffusion bonding, or an element necessary for lowering the melting point of the material to be joined.
  • the present inventors have made detailed studies that if the content exceeds 20.0%, when the material to be joined contains Mo and Cr, A coarse phosphide of 5 m or more is formed in the crystal grain size on the material to be joined, and the strength of the joint is reduced.
  • the content of P is considered in accordance with the component composition of the material to be joined and the alloy foil of the present invention, the properties required for the joint, and the like.
  • the B content is 1.0 to 20.0%.
  • B is necessary as a diffusion element for realizing the isothermal solidification required for achieving liquid phase diffusion bonding, or for lowering the melting point of the material to be bonded (in the third invention, B is P is also effective for amorphization when used together with P).
  • B is P is also effective for amorphization when used together with P.
  • 1.0 or more is necessary, but when the material to be bonded contains Mo and Cr, Coarse borides are formed in the vicinity of the joint, and the joint strength is significantly reduced.
  • Si content is 1.0 to 20.0%.
  • Si is an effective element for lowering the melting point, and containing a large amount of V prevents the melting point from becoming relatively high, thereby preventing the bonding time from becoming long. Below 1.0%, the effect is negligible. If it exceeds 20.0%, a coarse oxide containing Si may be generated in the insert metal during liquid phase diffusion bonding in an oxidizing atmosphere, and the joint strength and toughness may be degraded.
  • the Si content is set to 1.0 to 10.0%.
  • the effect of Si is the same as that of the first and second inventions, but if it exceeds 10.0%, a coarse oxide containing Si is generated in the insert metal during liquid phase diffusion bonding in an oxidizing atmosphere, The joint strength and toughness may be degraded.
  • the V content is 0.1 to 20.0%.
  • the bonding temperature (900 to It melts at 1200 ° C) and spheroidizes in the liquid phase due to the difference in surface tension, thereby improving the wetting between the Fe-based material and the molten sensor metal.
  • the diffused atoms P and / or B For this reason, it is an extremely important element that diffuses freely between spheroidized oxides and is hardly affected by the surface oxide film and realizes liquid phase diffusion bonding in an oxidizing atmosphere.
  • the Cr content is 0.1 to 20.0%.
  • the main purpose is to increase corrosion resistance and oxidation resistance. If it is less than 0.1%, the effect is insufficient.If it exceeds 20.0%, the melting point of the alloy foil rises remarkably, deteriorating manufacturability and deviating the liquid-phase diffusion bonding temperature from a practical range. Extremely high temperatures, i.e. higher than 1400 ° C I will do it.
  • the Ni content is 0.1 to 15.0%.
  • Ni is mainly used to enhance corrosion resistance and oxidation resistance. If the content is less than 0.1%, the effect is insufficient, and if it exceeds 15.0%, the homogeneity of the tissue is hindered by the intervening N-th order. . The joining time is prolonged, and the joint strength is reduced.
  • Co content should be 0.1-15.0%.
  • Co is mainly contained to increase corrosion resistance and oxidation resistance and to provide strength. If it is less than 0.1%, the effect is insufficient, and if it is more than 15.0%, coarse intermetallic compounds are formed in the insert metal and the joint toughness is impaired.
  • W is to increase the strength of the joint. If it is less than 0.10%, there is no effect, and if it exceeds 10.0%, the high-temperature strength of the material is rather lowered due to the precipitation of coarse Laves phase due to the dendritic interplanar deviation.
  • Nb is effective in improving toughness when it is dispersed in a substrate as carbide, nitride or carbonitride. If it is less than 0.1%, the effect is insufficient, and if it exceeds 10.0%, a coarse Fe-Nb-based intermetallic compound may be formed, and joint toughness may be significantly impaired.
  • Ti is used to increase the strength of the joint, and if it is uniformly dispersed as carbide or nitride, it increases toughness. If it is less than 0.1%, the effect is insufficient, and if it is more than 10.0%, coarse intermetallic compounds may be generated, and joint toughness may be significantly impaired.
  • the alloy foil for liquid phase diffusion bonding of the present invention having the above-mentioned component composition needs to be uniformly melted during liquid phase diffusion bonding in order to obtain a good joint.
  • composition is not uniform and alloy components are segregated, Since the melting point of the barrel differs depending on the position of the joint, a uniform joint interface cannot be obtained and a good joint cannot be obtained.
  • the alloy composition actually has a non-uniform composition and segregation of alloy components, it is preferable to make the structure amorphous.
  • the structure is not essential that the structure be amorphous if a homogeneous composition is easily obtained.
  • the alloy foil for liquid phase diffusion bonding of the present invention can be provided in various shapes as insert metal.
  • An alloy having any of the components according to the first to third aspects of the present invention can be easily produced as an amorphous alloy foil by, for example, a liquid quenching method.
  • the basic structural method adopted here is a liquid quenching method in which molten metal of the alloy is jetted through a nozzle into a cooling substrate and cooled and solidified by thermal contact.
  • a simple single-necked one-hole method using one cooling roll is suitable.
  • a centrifugal quenching endless belt that uses the inner wall of the drum, and improved versions of these, such as those with auxiliary rolls or roll surface temperature controllers, or under reduced pressure. It also includes structures in vacuum or inert gas. Also, a twin-roll method in which a molten metal is poured between a pair of rolls and rapidly solidified is applicable. The alloy is vacuum-melted and manufactured, and the obtained piece is rolled and annealed in a usual manner to obtain an alloy. It can also be provided in foil form. The thinner the alloy foil obtained as described above, the smaller the change in mechanical properties in the vicinity of the joint and the shorter the time required for joining, which is advantageous for liquid phase diffusion joining.
  • the absolute amount of V will be insufficient to detoxify the oxide film on the surface of the workpiece
  • the length exceeds 100 ⁇ m, it takes a long time (for example, 10 hours or more) to complete the liquid phase diffusion bonding, which is not practical. It must be thick.
  • the upper limit of the thickness is increased to 200 m for the following reason.
  • P is an element that is also useful for lowering the melting point of the foil
  • B is an element that diffuses at a high speed. If both are present at the same time, the foil will have a lower melting point than the foil with B alone. In this case, the degree of dilution of the joining foil increases due to a reaction (the joining material melts into the foil) occurring between the joining metal foil and the joining material. Of course, the same occurs with P-only foil. If the degree of dilution is large, the amount that must be diffused in the bonding foil (the amount of diffusion required to complete isothermal solidification) is relatively reduced.
  • the present invention relates to an alloy foil for liquid phase diffusion bonding, but can be bonded in the air, and is therefore useful when applied to a diffusion brazing bonding method.
  • Example 1
  • Approximately 100 g of the alloy having the component composition (atomic%) according to any one of the first to fourth aspects of the first invention is quenched by a single roll method (cooling roll: Cii alloy 300 mm diameter) to obtain a sheet width of 2
  • An alloy foil having a substantially amorphous crystal structure with a thickness of ⁇ 215 IMI and a thickness of 3.0 to 100 ⁇ m was used.
  • the peripheral speed of the cooling roll was maintained between 5.0 and 15.0 m / s.
  • the composition (atomic%) of the alloy foil of the present invention in this example is based on Fe as the base material.
  • the difference between the sum and the 100% means the total concentration of Fe and unavoidable impurities.
  • Table 2 shows the composition (atomic%) of the comparative alloy foil with respect to the alloy foil of the present invention.
  • all use Fe as a base material and the difference between the sum of each component in Table 2 and 100% means the total concentration of Fe and inevitable impurities.
  • the comparative alloy foils in Table 2 were produced in exactly the same manner as the alloy foils of the present invention in Table 1.
  • the insert metal of the present invention An alloy foil satisfying any of the first to fifth aspects of the first invention shown in Nos. 1 to 199 of Table 1 (hereinafter referred to as “the insert metal of the present invention”) and a No. 1 of Table 2 Liquid phase diffusion bonding was performed using comparative alloy foils (including conventional insert metal, hereinafter referred to as “comparative insert metal”) shown in 200 to 212.
  • the insert metal of the present invention was formed into a disk having a thickness of 3 to 100 mm and a diameter of 20 mm and a comparative insert metal of 5.16 to 133.74 / m thickness and a diameter of 20 mm.
  • a base material JIS STK400
  • JIS STK400 was prepared and sandwiched between a round steel (diameter 20 maraud) and a round steel (diameter 20 hidden) as shown in Fig. 1.
  • 1 and 1 are materials to be joined (round steel), and 2 is a liquid phase diffusion bonding alloy (insert metal).
  • the liquid phase diffusion bonding atmosphere is air, and the bonding temperature is just above the melting point of each alloy foil.
  • Liquid-phase diffusion bonding was carried out using a large heating furnace with the target temperature set at substantially 950 to 1 000 ° C.
  • the material 1 to be joined and the insert metal 2 were pressurized with a pressure of 2 megapascals (MPa) in order to improve the adhesion between them.
  • the joining time is 10 minutes for all the cases, and the heat treatment after joining is annealed, quenched + annealed, annealed + tempered, quenched + annealed + tempered to secure the strength, corrosion resistance and toughness of the materials to be joined Were applied singly or in combination as appropriate.
  • the non-joined area ratio was 0% for all the test pieces using the insert metal of the present invention.
  • JISA2 No. 2 tensile test pieces 5 as shown in Fig. 3 were cut out from the axial direction of the round bar as shown in Fig. 2, and the joint breaking strength was examined at room temperature using a tensile tester.
  • the tensile strength at the joint is determined by the material and thickness of the material to be joined, the operating environment, etc.In this example, 40 OMPa was temporarily set as the minimum required strength due to practical limitations. However, it was determined that sufficient bonding was realized when a breaking strength equal to or higher than this value was obtained.
  • the experimental results are shown in Tables 1 and 2.
  • FIG. 4 to 7 confirm the relationship between the component (atomic%) and the thickness specified in the alloy foil for diffusion bonding of the present invention and the joint breaking strength (expressed in MPa), and FIG. 8 shows the heat-affected zone (base).
  • Fig. 4 shows the effect of the concentration of V in the insert metal on the joint rupture strength, where the V concentration is 0.1% in atomic%. If it is less than 10%, the rupture strength of the joint is low because the oxide film on the surface of the alloy to be bonded cannot be sufficiently detoxified, but the rupture strength of the joint is 0.1% to 20.0% in atomic%.
  • V acts effectively to detoxify oxide film, but if V exceeds 20.0% in atomic%, the melting point of the insert metal The joining time is insufficient due to the increase in the joint strength, and the joint breaking strength decreases.
  • FIG. 5 is a diagram similarly showing the relationship between Si and the joint breaking strength.
  • Si is less than 5.0%, especially when it is less than 1.0% and more than 20.0%, the joint rupture strength is low, and when it is 1.0 to 20.0%, high joint rupture strength is obtained.
  • P is less than 1.0%, the melting point of the insert metal is high. If it is more than 20.0%, the fracture strength at the joint decreases due to the metal compound generated near the joint interface. In the case of 1.0 to 20.0% P, high joint breaking strength can be obtained.
  • Fig. 7 shows the relationship between the thickness of the insert metal and the joint breaking strength. It is clear that when the thickness is 100 / m or more, the joint breaking strength is insufficient.
  • Figure 8 shows the 0% base metal near the joint when P was used as the diffusion element.
  • the toughness at a temperature of ° C was determined, and the results are shown in comparison with the case where B was used as a diffusion element.
  • the conditions of this experiment are shown in Tables 3 and 4.
  • the toughness here was determined by collecting a JIS No. 4 Charpy impact test specimen from the joined round steel test specimen, performing an impact test on this specimen, and examining the crystal of the heat-affected zone of the base metal (STK400). It was obtained by evaluating the grain coarsening, and the toughness threshold value of 50 J, which is often required for general structural materials, was selected as the evaluation reference value.
  • Table 2 shows the chemical composition of the comparative alloy foil with respect to the alloy foil of the present invention, and the obtained tensile fracture strength at the joint.
  • the comparative alloy foil No. 200 had an insufficient P content, so the melting point exceeded 1300 ° C, and as a result, the breaking strength was extremely low, while No. 201 contained P. This is an example in which the amount is high, and a coarse metal compound is generated in the vicinity of the joint to lower the joint breaking strength.
  • No. 202 is an example where the amount of Si is insufficient and the melting point becomes 1300 ° C or more, resulting in a remarkably low joint breaking strength
  • No. 203 where the amount of Si is excessive. become coarse S i 0 2 based oxide joint breaking strength generated by in Lee Nsa Tome barrel at the time of bonding and is an example in which reduced.
  • No. 204 is an example where the oxide film formed on the surface of the alloy to be joined was insufficiently detoxified due to insufficient V content and the joint breaking strength was low. This is an example in which the liquid phase diffusion bonding was not sufficiently performed and the joint breaking strength was low.
  • No. 206 contains a large amount of Cr, so it has a remarkably high melting point. Examples where liquid phase diffusion bonding was not performed sufficiently and the joint breaking strength was low
  • No. 207 is an example in which the Ni phase intervenes in the Fe phase to cause non-uniform structure due to the high content of Ni, lowering the toughness and lowering the joint breaking strength.
  • No. 21 1 is an example in which the amount of Ti is excessive, a coarse intermetallic compound is generated due to excessive generation of a coarse intermetallic compound, the toughness is reduced, and the joint breaking strength is low. This is an example in which the thickness of the alloy foil is too large and the joint rupture strength is low.
  • the liquid phase diffusion bonding using the comparative insert metal which partially satisfies the requirements of the present invention but does not satisfy all the requirements of the present invention, has the following problems.
  • the joint breaking strength of 400 MPa could not be achieved.
  • Alloy foil Chemical composition (atomic%) Bonding strength of alloy foil Breaking strength
  • the first invention it is possible to perform liquid phase diffusion bonding at a low temperature in an oxidizing atmosphere for various Fe-based materials (steel plates, steel pipes, steel bars, steel bars, etc.). It reduces the thermal effect on the material to be joined (base material) and enables to secure a joint with high rupture strength.
  • the welding time can be effectively utilized, and the joining time can be shortened as compared with the case of welding, so that the time required for the joining work can be greatly reduced.
  • liquid phase diffusion bonding was performed using a Fe-based material as a material to be bonded.
  • the implementation conditions and the implementation results are described below with reference to tables and figures together with the comparative example.
  • the composition (atomic%) of the alloy foil of the present invention in this example is, as shown in Table 5 (Table 5-11 to 5-8), all using Fc as the base material.
  • the difference between the sum and the 100% means the total concentration of Fe and unavoidable impurities.
  • Table 6 shows the composition (atomic%) of the comparative alloy foil relative to the alloy foil of the present invention.
  • All use Fe as a base material and the difference between the sum of each component in Table 6 and 100% means the total concentration of Fe and inevitable impurities.
  • the comparative alloy foils in Table 6 were produced in exactly the same manner as the alloy foils of the present invention in Table 5.
  • the alloy foil satisfying any of the first to fifth aspects of the second invention shown in Nos. 1 to 199 of Table 5 (hereinafter referred to as “the insert metal of the present invention”) and No. 1 of Table 6 Liquid phase diffusion bonding was carried out using comparative alloy foils (including conventional insert metal, hereinafter referred to as “comparative insert metal”) shown at 200 to 212.
  • the insert metal of the present invention was a disk having a thickness of 3 to 100 mm and a diameter of 20 mm
  • the comparative insert metal was a disk of 7.67 to 234.10 zm and a diameter of 20 mm, as shown in Figure 1. It was sandwiched between a round steel (diameter 20 mm) made of Fe-based material (component composition is shown in Table 2) and a round steel (diameter 20 mm).
  • Fig. 1 and 1 are materials to be joined (round steel), and 2 is a liquid phase diffusion bonding alloy (insert metal).
  • the liquid-phase diffusion bonding atmosphere was set to the atmosphere, the bonding temperature was set between the temperature just above the melting point of each alloy foil and the melting point + 50 ° C, and the target temperature was set at 1050 to 1300 ° C using a large heating furnace. To perform liquid phase diffusion bonding.
  • the material 1 to be joined and the insert metal 2 were pressurized with a pressure of 2 megapascals (MPa) in order to improve the adhesion between them.
  • the integrity of the joint was examined using a J1SA2 sub-size round bar tensile tester.
  • the non-joined area ratio was 0% for all the test pieces using the insert metal of the present invention.
  • J1SA2 tensile test piece 5 as shown in Fig. 3 was cut out from the axial direction of the round bar as shown in Fig. 2, and the joint breaking strength was examined at room temperature using a tensile tester.
  • the rupture strength of the joint is determined by the material, plate thickness, operating environment conditions, etc. of the materials to be joined, but in this example, 400 MPa was temporarily set as the minimum required strength due to practical limitations. It was judged that sufficient bonding was realized when the breaking strength equal to or higher than this value was obtained.
  • the experimental results are shown in Tables 5 and 6.
  • FIGS. 9 to 13 show the effects of the components (atomic-%) specified in the alloy foil for diffusion bonding of the present invention, the thickness, the bonding time, and the relationship between the bond breaking strength (expressed in MPa). Things.
  • Figure 9 shows the effect of the concentration of V in the insert metal on the joint fracture strength. When the V concentration is less than 0.1% in atomic%, the oxide film on the surface of the bonded alloy cannot be sufficiently rendered harmless, so the joint breaking strength is low. The joint rupture strength is equal to or higher than the base metal (material to be bonded), and V acts effectively to render the oxide film harmless. However, when V exceeds 20.0% in atomic%, the melting point of the insert metal increases, so that the joining time is insufficient and the joint breaking strength decreases.
  • FIG. 10 is a diagram showing the relationship between Si and the joint breaking strength in the same manner.
  • Si is less than 1.0% or more than 20.0%, the joint breaking strength is low, and when it is 1.0 to 20.0%, a high joint breaking strength is obtained.
  • FIG. 11 is a diagram showing the relationship between B and the joint breaking strength. If B is less than 1.0%, the melting point of the sensor metal is high. If it is more than 20.0%, the rupture strength of the joint decreases due to boride generated near the joint interface. In the case of 1.0 to 20.0% B, high joint tensile strength can be obtained.
  • Figure 12 shows the relationship between the thickness of the insert metal and the joint breaking strength. It is clear that the bonding strength is not sufficient for foils with a thickness of 100 m or more.
  • Figure 13 shows the relationship between the joint rupture strength (MPa) and the welding time when using B as the diffusion element, and shows the results in comparison with the case where P was used as the diffusion element. It is a thing.
  • Table 7 shows the conditions of this experiment.
  • Table 6 shows the chemical composition of the comparative alloy foil with respect to the alloy foil of the present invention, and the obtained values. It shows the obtained joint tensile strength at break.
  • the comparative alloy foil No. 200 had an insufficient B content, so the melting point exceeded 1300 ° C, and as a result, the breaking strength was extremely low, while No. 201 contained B.
  • No. 204 is an example in which the oxide film formed on the surface of the alloy to be joined was insufficiently detoxified and the rupture strength of the joint was low due to insufficient V content, while No. 205 had a melting point due to excessive V content This is an example of extremely high liquid-phase diffusion bonding, resulting in low joint rupture strength.
  • No. 206 contains a large amount of Cr, so the melting point is remarkably high and the liquid-phase diffusion bonding is not performed sufficiently, resulting in low joint breaking strength.
  • No. 207 contains a large amount of Ni In this example, the Ni phase intervenes in the Fe phase, causing non-uniform structure, lowering toughness and lowering the joint breaking strength.
  • the liquid-phase diffusion bonding using the comparative insert metal partially satisfies the requirements of the present invention but does not satisfy all of the requirements of the present invention.
  • a breaking strength of 400 MPa could not be achieved.
  • liquid-phase diffusion bonding in an oxidizing atmosphere is enabled for various Fe-based materials (thick steel plates, steel pipes, strips, steel bars, steel bars, etc.) to be bonded.
  • Fe-based materials thin steel plates, steel pipes, strips, steel bars, steel bars, etc.
  • liquid phase diffusion bonding was performed using an Fe-based material as a material to be bonded.
  • the implementation conditions and the implementation results will be described below with reference to tables and figures together with the case of the comparative example.
  • the peripheral speed of the cooling roll at this time was kept between 5.0 and 15.0 m / s.
  • the composition (atomic%) of the alloy foil of the present invention in this example is, as shown in Table 9 (Tables 91-1 to 9-18), based on Fe as the base material. The difference between the sum and the 100% means the total concentration of Fe and unavoidable impurities.
  • Table 10 shows the composition (atomic%) of the comparative alloy foil with respect to the alloy foil of the present invention.
  • all use Fe as a base material and the difference between the sum of each component in Table 10 and 100% means the total concentration of Fe and inevitable impurities.
  • the comparative alloy foil in Table 10 was produced in exactly the same manner as the alloy foil of the present invention in Table 1.
  • the insert metal of the present invention An alloy foil satisfying any of the first to fifth aspects of the first invention (hereinafter referred to as “the insert metal of the present invention”) shown in Nos. 1 to 199 of Table 9 and No. 200 of Table 2 Liquid phase diffusion bonding was performed using comparative alloy foils (including conventional insert metal, hereinafter referred to as “comparative insert metal”) indicated by Nos. 212.
  • the insert metal of the present invention is a disk having a thickness of 3.0 to 100 um and a diameter of 20 mm
  • the comparative metal is a disk having a diameter of 7.67 to 234.10 m and a diameter of 20 mm.
  • a Fe-based material (STK400) was prepared and sandwiched between round steel (diameter 20 strokes) and round steel (diameter 20 ram) as shown in Fig. 1.
  • Fig. 1 and 1 are materials to be joined (round steel), and 2 is a liquid phase diffusion bonding alloy (insert metal).
  • the liquid-phase diffusion bonding atmosphere was set to the atmosphere, the bonding temperature was set between the temperature just above the melting point of each alloy foil and the melting point + 50 ° C, and the target temperature was set at 900 to 1300 ° C using a large heating furnace. To perform liquid phase diffusion bonding.
  • the material to be joined 1 and the insert metal 2 were pressurized with a pressure of 2 megapascals (MPa) in order to improve the adhesion between them.
  • the integrity of the joint was examined using a JISA No. 2 subsize round bar tensile tester.
  • the non-joined area ratio was 0% for all the test pieces using the insert metal of the present invention.
  • a JISA2 tensile test piece 5 as shown in FIG. 3 was cut out from the axial direction of the round bar, and the joint breaking strength was examined at room temperature using a tensile tester.
  • the tensile strength at the joint is determined by the material and thickness of the material to be joined, the operating environment, etc.In this example, 40 OMPa was temporarily set as the minimum required strength due to practical limitations. However, it was determined that sufficient bonding was realized when a breaking strength equal to or higher than this value was obtained.
  • the experimental results are shown in Tables 9 and 10.
  • Figs. 14 to 19 show the relationship between the component (atomic-%), thickness, bonding time, and joint breaking strength (expressed in MPa) specified in the alloy foil for diffusion bonding of the present invention. 20 is for confirming the toughness of the heat-affected zone (base material) It is.
  • Figure 14 shows the effect of the concentration of V in the insert metal on the joint breaking strength. If the V concentration is less than 0.1% at atomic%, the oxide film on the surface of the alloy to be bonded cannot be sufficiently rendered harmless, so the joint breaking strength is low. The joint rupture strength is equal to or higher than the base metal (material to be bonded), and V acts effectively to render the oxide film harmless. However, if V exceeds 20.0% in atomic%, the melting point of the sensor metal increases, so that the joining time is insufficient and the joint breaking strength decreases.
  • FIG. 15 is a view similarly showing the relationship between P and the joint breaking strength. Is less than 1.0% and more than 20.0%, the joint breaking strength is low, and if it is 1.0 to 20.0%, the target joint breaking strength is obtained.
  • FIG. 16 is a diagram showing the relationship between B and the joint breaking strength. If B is less than 1.0%, the melting point of the insert metal is high, and if it is more than 20.0%, the rupture strength of the joint decreases due to boride generated near the joint interface. A target joint breaking strength can be obtained in the case of 1.0 to 20.0%.
  • FIG. 17 is a view similarly showing the relationship between Si and the joint breaking strength. When Si is less than 1.0% or more than 10.0%, the joint breaking strength is low, and when Si is 1.0 to 10.0%, the target joint breaking strength is obtained.
  • Fig. 18 is a diagram showing the relationship between the thickness of the insert metal and the joint breaking strength. It is clear that when the thickness is 200 m or more, the joint breaking strength is insufficient.
  • Fig. 19 is a diagram showing the relationship between the tensile strength at joint (MPa) and the welding time when P and B are used together as diffusion elements.
  • Figure 20 shows the results of evaluating the toughness of the joints due to thermal effects when P and B are used together.
  • the joining temperature is reduced to 1050 ° C or less by P, the thermal effect on the material to be joined (base material) is reduced, the toughness of the base material is increased, and as a result, the fracture strength of the joint is increased.
  • the toughness here was determined by taking a J1S4 Charpy impact test specimen from the joined round steel specimen, performing an impact test on this specimen, and examining the grain size of the heat-affected zone of the base metal (STK400). This was obtained by evaluating the coarsening of husks. For the threshold of paddy properties, 50J, which is often required for general structural materials, was selected as the evaluation reference value.
  • Table 10 shows the chemical composition of the comparative alloy foil with respect to the alloy foil of the present invention, and the obtained tensile fracture strength at the joint.
  • the comparative alloy foil No. 200 had an insufficient P content, so the melting point exceeded 1300 ° C, and as a result, the breaking strength was significantly lower, while No. 201 contained P. This is an example in which the amount is high, and a coarse metal compound is generated in the vicinity of the joint to lower the joint breaking strength.
  • the amount of B was insufficient, the melting point was 1300 ° C or more, and the liquid phase diffusion was insufficient.As a result, the joint rupture strength was extremely low. This is an example in which the amount of B is excessive and coarse boride is generated at the time of joining to lower the joint breaking strength.
  • No.204 becomes more than 1300 D C melting point and insufficient amount of Si, results to junction strength at break authored rather low Natsuta example, No.205 during joining becomes amount Si is excessive This is an example in which a coarse SiO-based oxide is generated and the joint rupture strength is reduced.
  • -No.206 is an example where the V content is insufficient and the oxide film formed on the alloy surface of the material to be joined is not sufficiently detoxified and the joint breaking strength is low. This is an example in which the melting point becomes excessively high due to an excessive amount, and the liquid-phase diffusion bonding is not sufficiently performed, resulting in a low joint breaking strength.
  • No. 208 contains a large amount of Cr, so that the melting point is remarkably high and the liquid-phase diffusion bonding is not sufficiently performed to reduce the joint breaking strength, while No. 209 has Ni. This is an example in which N-gauges intervene in the Fe phase to cause non-uniform structure due to the high content, resulting in a decrease in toughness and a decrease in joint breaking strength.
  • No. 213 is an example in which the amount of Ti is excessive, a coarse intermetallic compound is generated due to excessive generation of a coarse intermetallic compound, the toughness is reduced, and the joint breaking strength is low.
  • This is an example in which the thickness of the alloy foil is too large and the joining is insufficient, resulting in a low joint breaking strength.
  • the target joining may be achieved by the liquid phase diffusion joining using a comparative insert metal that partially satisfies the requirements of the present invention but does not satisfy all the requirements of the present invention.
  • the partial breaking strength of 400 MPa could not be achieved.
  • P and B are used in combination as diffusing elements, and various Fe-based materials (steel plates, steel pipes, steel bars, steel bars, etc.) can be joined in an oxidizing atmosphere. Even if liquid phase diffusion bonding is performed at a high temperature, it is possible to secure a joint having high heat resistance and high rupture strength in a short time with respect to the workpiece (base material). The features of phase diffusion bonding can also be used effectively in the joining of Fe-based materials, making it possible to significantly shorten the time required for joining compared to welding. Industrial applicability
  • P and B are used in combination as diffusion elements, and liquid phase diffusion is performed in an oxidizing atmosphere for various Fe base materials (steel plates, steel pipes, steel bars, steel bars, etc.) to be joined. Even if welding is performed at a high temperature, it is possible to secure a joint in a short time that has a small thermal effect on the material to be joined (base material) and has high rupture strength.
  • the advantages of liquid-phase diffusion bonding can also be used effectively in the joining of Fe-based materials, making it possible to significantly reduce the time required for joining work compared to welding. Become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

明 細 書 酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔
技術分野
本発明は、 厚鋼板、 鋼管、 棒鋼 (鋼線、 鉄筋を含む) 等の各種鋼 材を含む Fe基材料を接合対象と して、 酸化雰囲気中でかつ低温度で かつ短時間での接合が可能で、 被接合材 (母材) に対して熱影響の 小さい接合が可能な液相拡散接合用 Fe基合金箔に関する ものである o
本発明は、 また、 厚鋼板、 鋼管、 棒鋼 (鋼線、 鉄筋を含む) 等の 各種鋼材を含む Fe基材料を接合対象と して、 酸化雰囲気中での液相 拡散接合を可能と し、 接合強度に優れた接合部を短時間で得るこ と ができる液相拡散接合用 Fe基合金箔に関する ものである。
本発明は、 厚鋼板、 鋼管、 棒鋼 (鋼線、 鉄筋を含む) 等の各種鋼 材を含む Fe基材料を接合対象と して、 酸化雰囲気中でかつ低温度で かつ短時間での接合が可能で、 被接合材 (母材) に対して熱影響の 小さい接合が可能な液相拡散接合用 Fe基合金箔に関する ものである
背景技術
液相拡散接合は、 接合しょう とする材料の間に箔、 粉末、 あるい はメ ッキ等の形態で被接合材ょり も融点の低い共晶組成を有する合 金を介在させて加圧し、 挿入合金 (以下 「イ ンサー トメ タル」 と称 する) の液相線直上の温度に接合部を加熱するこ とによって溶融、 等温凝固させる接合法であり、 固相接合法の 1 種と考えられている 。 この等温凝固は、 液相中の特定元素が被接合材 (母材) 側へ拡散 し、 液相の化学組成が固相線に達する成分へと変化するこ とにより 起こ る。
この液相拡散接合は、 比較的低い加圧力で接合できる こ とから、 従来、 接合による残留応力や、 変形を極力避ける必要のある接合に 用いられ、 また、 溶接の困難な高合金鋼、 耐熱鋼あるいはこれらと 炭素鋼との接合に適用されている。
一方、 炭素鋼からなる一般鋼材どう しの接合手段と しては、 従来 から各種の溶接が主流であり、 液相拡散接合が適用された例は少な い。
液相拡散接合は、 合金組成と して原子%で 0. 50 %以上の C rを含有 する被接合材料の接合に適用されている場合が多い。
この C r含有材料は緻密な酸化 C r (多く の場合 C r 2 0 3 )皮膜を表面に 形成するために、 耐酸化性、 耐食性が優れているのが特徴である。
したがって、 接合時の加熱によっても当然ながら接合面に酸化皮 膜が形成されるこ と となり、 溶融したィ ンサー トメ タルの漏れが阻 害され、 接合に必要な原子の拡散が著し く 妨げられ、 良好な接合部 を得るこ とは困難であつた。
そのため、 従来、 特開昭 53 - 8 1 458号公報、 特開昭 62 - 34685号公報 、 更に特開昭 62— 227595号公報に見られるように、 何れも液相拡散 接合の際、 雰囲気を真空、 不活性、 も し く は還元性に保たねばなら ず、 接合コス トの著しい上昇を招いていた。
本出願人は、 ステンレス鋼、 高ニッケル基合金、 耐熱合金鋼ある いはこれらの合金鋼を接合対象と して液相拡散接合を適用する場合 において、 大気中で酸化被膜が被接合材表面に生成していても液相 拡散接合が可能で、 接合コス トを低減しながら良好な接合部を短時 間に得られる液相拡散接合を提供するために種々研究を重ねた結果 、 Vを 0. 1〜20. 0原子%含有し、 S iを増量したイ ンサー ト メ タルを 用いれば、 大気中など酸化雰囲気中でも液相拡散接合が可能である こ とを見い出 した。
すなわち、 Vはィ ンサ一 トメ タルの融点を上昇させる元素ではあ るが、 他の元素 (本発明においては専ら S i ) を適当に調整するこ と で接合性の極めて優れたイ ンサー トメ タルを得るこ とができるこ と を見い出 し、 先に特開平 2 — 1 51 377号公報、 特開平 2 — 1 5 1 378号公 報、 特開平 2 — 185940号公報、 特開平 7 - 268521号公報、 特開平 7 一 276066号公報等に開示されるような、 主と してステン レス鋼、 高 ニッケル基合金、 耐熱合金鋼あるいはこれらの合金鋼と炭素鋼の液 相拡散接合に用いられる N i基の V, S iを含有する酸化雰囲気中で接 合可能な液相拡散接合用合金箔を提案した。
しかし、 これらの N i基の液相拡散接合用合金箔は、 上記したよう に主と してステンレス鋼、 高ニッ ケル基合金、 耐熱合金鋼を接合対 象と して、 用いられる ものであり N iを基本成分とする ものである。 本発明者らは、 最近、 狭隘な場所で例えば炭素鋼による鋼管、 鉄 筋、 厚板などの鋼材で代表される Fe基材料を、 より短時間でかつ十 分な接合強度を確保しつつ低コス 卜で接合することの要請が高ま つ てきており、 従来の各種の溶接による接合によってはこの要請に十 分に応えられないとの認識に基づいて、 Fe基材料を接合対象と して 大気中での液相拡散接合の適用について検討した。
その結果、 これらの Fe基材料を液相拡散接合する場合に、 上記 N i 基の液相拡散接合用合金箔をィ ンサー トメ タルと して用いた場合に は、 被接合材間に Nけ目が介在して接合組織は不均質となり、 接合時 間が長く なるとと もに、 接合強度、 靱性にも影響があるこ とから、 上記の要請に十分に応えることは困難であるこ とを確認するに至つ た。 発明の開示
本発明の第 1 の目的は、 例えば炭素鋼による鋼管、 鉄筋、 厚板な どの鋼材で代表される Fe基材料 (Feを 50%以上含有する各種の鋼材 ) を接合対象と して、 酸化雰囲気中でかつ低温度でかつ短時間での 接合が可能で、 被接合材 (母材) に対して熱影響の小さい接合が可 能な液相拡散接合用 Fe基合金箔を提供するこ とである。
本発明の第 2 の目的は、 例えば炭素鋼による厚鋼板、 鋼管、 棒鋼 (鋼線、 鉄筋を含む) 等の鋼材で代表される Fe基材料を接合対象と して、 酸化雰囲気で短時間に、 均質な組織を有し十分な接合強度を 有する接合部を確保できる、 酸化雰囲気中で接合可能な Fe基材料の 液相拡散接合用 Fe基合金箔を提供するこ とである。
本発明の第 3 の目的は、 例えば炭素鋼による鋼管、 鉄筋、 厚板な どの鋼材で代表される Fe基材料を接合対象と して、 酸化雰囲気中で かつ低温度でかつ短時間での接合が可能で、 被接合材 (母材) に対 して熱影響の小さい接合が可能な液相拡散接合用 Fe基合金箔を提供 するこ とである。
第 1 の目的を達成するために、 第 1 発明の第 1 の観点によれば、 原子%で、
P : 1.0〜20.0%、
Si : 1.0〜20.0%、
V : 0.卜 20.0%、
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さが 3.0〜100 z mであるこ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。 第 1 発明の第 2 の観点によれば、
- 原子%で、
P : 1.0〜20.0%、 Si : 1.0〜20.0%、
V : 0.ト 20.0%
を含有し、
Cr 0.卜 20.0%、
Ni 0.1-15.0%、
Co 0.卜 15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜100 /z mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 1 発明の第 3 の観点によれば、
原子%で、
P 1.0〜20.0%、
Si 1.0〜20.0%、
V 0.1〜20· 0%
を含有し
W 0.卜 10.0%、
Nb 0.1〜 10.0%、
Ti 0.卜 10· 0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜100 〃 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 1 発明の第 4 の観点によれば、
原子%で、
P : 1.0〜20.0%、
Si : 1.0〜20.0%、 V 0.1 20.0%
を含有し、
Cr 0.1 20.0%
Ni 0.1 15· 0%
Co 0.1 15.0%
の一種または二種以上を含有し、 さ らに
W 0.1 10.0%
Nb 0.1 10.0%
Ti 0.1 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0 100 / mである こ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Pe基 合金箔が提供される。
第 1 発明の第 5 の観点によれば、 第 1 〜第 4 の観点において組織 の構造が実質的に非晶質であるこ とを特徴とする酸化雰囲気中で接 合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。
第 2 の目的を達成するために、 第 2発明の第 1 の観点によれば、 原子%で、
B 1.0 20.0%
Si 1.0-20.0%
V 0. 20.0%
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さが 3.0 100 ; である こ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。 第 2発明の第 2 の観点によれば、
- 原子%で、
B 1.0-20.0% Si : 1.0- 20.0%、
V : 0.レ 20.0%
を含有し、
Cr : 0.1〜20.0%、
Ni : 0.1〜 15.0%、
Co : 0.1〜 15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜100 mである こ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 2発明の第 3 の観点によれば、
原子%で、
B 1.0—20.0%、
Si 1.0~20.0%、
V 0.卜 20· 0%
を含有し、
W : 0,卜 10.0%、
Nb: 0.1〜10.0%、
Ti : 0.1〜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜100 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Pe基 合金箔が提供される。
第 2発明の第 4 の観点によれば、
原子%で、
- B : 1.0〜20.0%、
Si : 1.0〜20.0%、 V : 0.1 20.0%
を含有し、
Cr 0.1 20.0%、
Ni 0.1 15.0%、
Co 0.1 15.0%
の一種または二種以上を含有し、 さ らに
W : 0.1〜 10.0%、
Nb: 0.1〜 10.0%、
Ti : 0.卜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜100 mである こ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 2発明の第 5 の観点によれば、 第 1 〜第 4 の観点において組織 の構造が実質的に非晶質であるこ とを特徴とする酸化雰囲気中で接 合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。
第 3 の目的を達成するために、 第 3 発明の第 1 の観点によれば、 原子%で、
P : 1.0〜20.0%、
Si : 1.0〜 10.0%、
V : 0.1〜20.0%、
B : 1.0〜20.0%
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さが 3.0〜200 mである こ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。 - 第 3発明の第 2 の観点によれば、
原子%で、 P 1.0〜20.0%
Si 1.0〜 10.0%
V 0.1— 20.0%
B 1.0〜20.0%
を含有し、
Cr : 0.1〜20· 0%、
Ni : 0.1〜 15.0%、
Co : 0.卜 15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜200 〃 mであることを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 3 発明の第 3 の観点によれば、
原子%で、
P 1.0〜20.0%、
Si 1.0〜 10.0%、
V 0.1〜20.0%、
B 1.0〜20.0%
を含有し、
W 0.卜 10.0%
Nb 0.卜 10.0%
Ti 0.1〜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜200 / mであるこ とを特 徵とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 基 -.合金箔が提供される。
第 3発明の第 4 の観点によれば、 原子%で、
P 1.0~20.0%、
Si 1.0〜10.0%、
V 0.卜 20.0%、
B 1.0〜20.0%
を含有し、
Cr 0.卜 20.0%、
Ni 0. 1〜15.0%、
Co 0.卜 15.0%
の一種または二種以上を含有し、 さ らに
W : 0.卜 10.0%、
Nb : 0.卜 10.0%、
Ti : 0. 1〜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜200 / mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔が提供される。
第 3発明の第 5 の観点によれば、 第 1 〜第 4 の観点において組織 の構造が実質的に非晶質であるこ とを特徴とする酸化雰囲気中で接 合可能な Fe基材料の液相拡散接合用 Fe基合金箔が提供される。
なお、 本発明において、
「Fe基材料」 とは、 Feを原子%で50%以上含有している各種の炭 素鋼による鋼材を意味している。
「実質的に非晶質」 とは、 組織の結晶構造の 50%以上が非晶質に なっている ものを意味している。
「液相拡散接合」 とは、 拡散ろう付けを含むものであり、 接合し よう とする材料の間に箔、 粉末、 あるいはメ ツキ等の形態で被接合 材より も融点の低い共晶組成を有する合金を介在させて加圧し、 揷 入合金 (以下イ ンサー トメ タルと称する) の液相線直上の温度に接 合部を加熱するこ とによって溶融、 等温凝固させる接合法であるが 、 溶融とは完全溶融の場合のみではなく 、 50 %以上の溶融を含んで いる。 等温凝固は、 液相中の特定元素が被接合材 (母材) 側へ拡散 し、 液相の化学組成が固相線に達する成分へと変化するこ とによ り 起こる。
「酸化雰囲気」 とは、 接合雰囲気中に体積%で 0. 1 %以上の酸素 ガスを含有し、 酸素分圧が l (T 3 a tni 以上、 すなわち還元性のガス、 例えば H 2, H 2 S、 水蒸気その他を含有している場合でも酸化力が酸 素濃度相当で 0. 1 %以上である雰囲気を意味している。
また 「融点」 とは、 2 元以上の合金においては、 その状態図上で の固相線を、 特に断わらない限りにおいて意味する ものとする。 図面の簡単な説明
図 1 は、 丸鋼接合試験片を被接合材とする、 液相拡散接合用合金 箔 (イ ンサー トメ タル) による液相拡散接合例を示す平面図である o
図 2 は、 液相拡散接合により得られた丸鋼試験片と引張試験片採 取状態例を示す平面図である。
図 3 は、 引張試験片採取装置により採取された引張試験片例を示 す平面図である。
図 4 は、 第 1 発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー ト メ タル中の V量と接合部破断強度の関 係を表わすグラフである。
- 図 5は、 第 1 発明に関連して、 F e基材料を被接合材と した液相拡 散接合での Fe基のイ ンサー トメ タル中の S i量と接合部破断強度の関 係を表わすグラフである。
図 6 は、 第 1 発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のイ ンサー トメ タル中の P量と接合部破断強度の関 係を表わすグラフである。
図 7 は、 第 1 発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー トメ タルの厚みと接合部破断強度との関 係を表わすグラフである。
図 8 は、 第 1 および第 2 発明に関連して、 Fe基材料を被接合材と した Fe基のィ ンサー トメ タルによる液相拡散接合後の熱影響部 (母 材) の 0 °Cの温度での靱性を表わすグラフであり、 B系イ ンサー ト メ タルを用いた場合と P系イ ンサ一 ト メ タルを用いた場合を比較し て示す。
図 9 は、 第 2発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー トメ タル中の V量と接合部破断強度の関 係を表わすグラフである。
図 10は、 第 2発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー トメ タル中の Si量と接合部破断強度の関 係を表わすグラフである。
図 11は、 第 2発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のイ ンサー トメ タル中の B量と接合部破断強度の関 係を表わすグラフである。
図 12は、 第 2発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサ一 トメ タルの厚みと接合部破断強度との関 係を表わすグラフである。
図 13は、 第 1 および第 2発明に関連して、 Fe基材料を被接合材と した液相拡散接合での Fe基のイ ンサー 卜メ タルによる接合時間と接 合部引張破断強度との関係を表わすグラフであり、 B系イ ンサー ト メ タルを用いた場合と P系ィ ンサー ト メ タルを用いた場合を比較し て示す。
図 14は、 第 3発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のイ ンサー トメ タル中の V量と接合部破断強度の関 係を表わすグラフである。
図 15は、 第 3 発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー ト メ タル中の P量と接合部破断強度の関 係を表わすグラフである。
図 16は、 第 3発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のイ ンサ一 ト メ タル中の B量と接合部破断強度の関 係を表わすグラフである。
図 Πは、 第 3発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のィ ンサー トメ タル中の Si量と接合部破断強度の関 係を表わすグラフである。
図 18は、 第 3発明に関連して、 Fe基材料を被接合材と した液相拡 散接合での Fe基のイ ンサー トメ タルの厚みと接合部破断強度との関 係を表わすグラフである。
図 19は、 第 3発明に関連して、 Fe基材料を被接合材と した液相拡 散接合で Fe基の Feベースの P と Bを含有するィ ンサー トメ タルによ る接合時間と接合部破断強度との関係を表すグラフである。
図 20は、 第 3発明に関連して、 Fe基材料を被接合材と した Fe基の P と Bを含有するイ ンサ一 トメ タルによる液相拡散接合後の熱影響 部母材 (被接合材) の試験温度 0 °Cでの靱性を表わすグラフである
発明を実施するための最良の形態
本発明者は、 上記の特開平 2 — 151377号公報、 特開平 2 — 151378 号公報、 特開平 2 - 185940号公報、 特開平 7 — 26852】号公報、 特開 平 7 — 276066号公報等に開示されるよ うな、 Ni基の V, Siを含有す る液相拡散接合用合金箔で得られる効果に着目 し、 Fe基材料を接合 対象と して、 N 目による組織不均--、 被接合材 (母材) への熱影響 による特性低下の問題も生じない、 液相拡散接合用合金箔について 種々検討を重ね本発明に到達した。
第 1 〜第 3発明の第 1 の観点では、 Fe基合金箔は、 被接合材の Fe 基の組織に対して組織不均一の問題を生じる Niを含有させる場合は 原子%で 0.1〜15%の範囲に抑え、 接合対象である Fe基材料と同様 、 Fe基と し、 これに拡散元素で低融点化にも寄与する Pおよび Zま たは B と、 低融点化に寄与する Si、 酸化被膜の影響を軽微にする V を必須成分と して含有する。
第 2 の観点では、 Fe基合金箔は、 第 1 観点の成分に加えて、 主と して接合部の耐食性を高める Cr, Ni, Coの一種または二種以上を選 択的に含有する。
第 3 の観点では、 Fe基合金箔は、 第 1 観点の成分に加えて、 主と して接合部強度を高める W, Nb, Tiの一種または二種以上を選択的 に含有する。
第 4 の観点では、 Fe基合金箔は、 第 1 観点の成分に加えて、 第 2 観点および第 3観点の成分を同時に選択的に含有する。 すなわち、 接合部の耐食性を高める Cr, Νί, Coの一種または二種以上と、 主と して接合部強度を高める W, Nb, Tiの一種または二種以上を同時に 含有させる。
これらの選択成分は、 接合対象の成分組成、 接合部に求められる 特性等に応じて組み合わせ、 適量含有させる。
- 拡散原子と しては B と Pが知られている。
第 1 発明では、 低温 ( 1000°C以下) での接合が可能で、 被接合材 (母材) に対する熱影響を小さ く して、 被接合部材の結晶粒の粗大 化による特性低下を防止するため、 その実現が容易な Pを拡散原子 と して選択する。
第 1 発明は、 被接合材である F e基材料が熱影響により結晶粒が粗 大化し、 材料特性が低下しやすい成分組成を有する もの、 例えば Mo を含有する鋼等の場合に用いて特に有効である。
拡散元素と して Bを単独で用いてこの種の鋼を液相拡散接合した 場合には良好な接合部を得るこ とは難しい。
第 2発明では、 接合温度が 1 050〜 1 300°Cで Pの場合より 200 °C以 上高く なるが、 Pの場合よ り拡散係数が大き く接合時間を大幅に短 縮して接合強度を大幅に高められる Bを拡散原子と して選択する。 第 3発明では、 B と Pを拡散元素と して用いて、 それぞれの短所 を補完し合い、 接合温度が高く なつても被接合材 (母材) に対する 熱影響を小さ く して被接合部材の結晶粒の粗大化による特性低下を 防止するとと もに、 接合時間を短縮する ものである。
第 3発明は、 拡散元素と して B と Pを併せて用いるため、 この P の補完作用により、 他被接合材である F e基材料が熱影響により結晶 粒が粗大化し、 材料特性が低下しやすい成分組成を有するもの、 例 えばフ ヱライ ト組織、 ペイナイ ト組織、 マルテンサイ ト組織を有す る鋼等の場合に用いても問題はない。
また、 拡散元素と して Pを単独で用いた場合では、 Bを単独で用 いた場合に比して接合時間が長く なるが、 B と併用するこ とによつ て非晶質の形成能を高めるこ とができ、 製造を容易にすると と もに P単独の場合に比し接合時間を大幅に短縮するこ とができる。
したがって、 第 3発明は、 製造を容易と し、 Fe基材料を接合対象 と して、. より広い鋼種の液相拡散接合に用い、 破断強度の高い接合 を実現させるこ とが可能である。 以下に本発明で用いる各成分について、 含有させる目的と含有量 について、 説明する。 なお、 下記説明は、 特に断らない限り第 1 〜 第 3 発明に共通である。
( 1 ) Fe基 (Feが原子%で 5 0 %以上含有) とする。
被接合材が Fe基材料 (Feが原子%で50%以上含有する炭素鋼によ る鋼材) であり、 Ni基と した場合のような Ni相の介在による組織の 不均質がな く 、 接合時間を短縮すると と もに、 接合強度を容易に確 保できる。
( 2 ) P含有量は し 0〜20.0%とする。 (第 1 、 第 3 発明)
Pは液相拡散接合を達成するために必要な等温凝固を実現するた めの拡散原子と して、 あるいは融点を被接合材よ り も低く するため に必要な元素であり、 それぞれの目的のためには 1.0%以上含有さ せるこ とが必要である力 本発明者らは詳細な研究によって 20.0% を超えて含有させると、 被接合材が Mo, Crを含有している場合には 、 被接合材側結晶粒径に 5 m以上の粗大な燐化物が生成し、 接合 部強度が低下するので、 1.0〜20.0%と した。
ただし第 3発明においては、 Pは被接合材および本発明の合金箔 の成分組成、 接合部に要求される特性等に応じて Bとの含有量を考 慮する。
( 3 ) B含有量は 1.0〜20.0%とする。 (第 2 、 第 3発明)
Bは液相拡散接合を達成するために必要な等温凝固を実現させる ための拡散元素と して、 あるいは融点を被接合材より も低く するた めに必要 (第 3 発明においては、 Bは上記 P と併用 して非晶質化に も有効) な元素であり、 それぞれの目的のためには、 1.0以上必要 であるが、 被接合材が Mo, Crを含有している場合、 被接合材の接合 部近傍に粗大な硼化物が生成し接合部強度が著し く 低下する。
( ) Si含有量は 1.0〜20.0%とする。 (第 1 、 第 2 発明) Siは、 融点を降下させるための有効元素であり、 Vを多く 含有す る こ とによ り融点が比較的高く なつて接合時間が長く なる こ とを防 止する。 1.0%未満ではその効果は軽微である。 20.0%超では、 酸 化雰囲気中での液相拡散接合の際にィ ンサー ト メ タル中に Siを含む 粗大な酸化物を生成し、 接合部強度および靱性を劣化させる場合が ある。
第 3 発明においては、 Si含有量は 1.0〜10.0%とする。 Siの効果 は第 1 、 第 2 発明と同じであるが、 10.0%超では、 酸化雰囲気中で の液相拡散接合の際にイ ンサー トメ タル中に Siを含む粗大な酸化物 を生成し、 接合部強度および靱性を劣化させる場合がある。
( 5 ) V含有量は、 0.1〜20.0%とする。
Vは、 被接合材表面の酸化被膜物(Fe2(h) を、 低融点複合酸化物 V 205— Fe 203 (融点約 800°C) とする。 したがって、 接合温度(900〜 1200°C) では溶融し、 液相中では表面張力の差によって球状化する こ とにより、 Fe基材料と溶融ィ ンサ一 トメ タルとの濡れを良く する 。 拡散原子 Pおよび/または Bは、 このため、 表面酸化皮膜の影響 をほとんど受けるこ とな く 、 球状化酸化物の間を自由に拡散し、 酸 化雰囲気中における液相拡散接合を実現させる極めて重要な元素で ある。
0.1%未満では酸化皮膜を溶融させるに不十分であるために効果 がなく 、 20.0%を超えて添加するとイ ンサー トメ タルの融点が 1300 °Cを超えてしまい液相拡散接合が実質的に不可能となる。
( 6 ) Cr含有量は 0· 1〜20.0%とする。
は、 主と して耐食性、 耐酸化性を高めるためのものである。 0 .1%未満では効果が不十分であり、 20.0%を超えると合金箔の融点 が著し く 上昇してしまい、 製造性を悪化させ、 液相拡散接合温度を 実用的な範囲を逸脱した極めて高い温度、 すなわち 1400°C以上に高 めてしま う。
( 7 ) Ni含有量は 0.1~15.0%とする。
Niは主と して耐食性、 耐酸化性を高めるためのものであり、 0.1 %未満ではその効果が不十分であり、 15.0%超では、 Nけ目の介在に より組織の均質性を阻害する。 接合時間が長 く なり、 また接合部強 度の低下の原因にもなる。
( 8 ) Co含有量は 0.1〜15.0%とする。
Coは、 主と して耐食性、 耐酸化性を高め、 強度を付与するために 含有させる。 0.1%未満ではその効果が不十分であり、 15.0%超で は、 イ ンサー トメ タル中に粗大な金属間化合物が生成して接合部靱 性を阻害する。
( 9 ) W, Nb, Ti含有量はそれぞれ 0.1〜 10.0%とする。
Wは、 接合部の強度を高めるためのものである。 0.10%未満では 効果がな く 、 10.0%超では樹枝状晶間偏折に起因する粗大 Laves相 析出によって材料の高温強度がかえって低下する。
Nbは、 炭化物、 窒化物あるいは炭窒化物と して基材中に分散する 場合、 靱性向上に効果がある。 0.1%未満では効果不十分であり、 10.0%超では粗大な Fe - Nb系金属間化合物が生成して接合部靱性を 著し く 阻害する場合がある。
Tiは、 接合部の強度を高めるためのものであり、 炭化物、 窒化物 と して均一分散させると靱性を高める。 0.1%未満では効果不十分 であり、 10.0%超では粗大な金属間化合物が生成して接合部靱性を 著し く 阻害する場合がある。
以上の成分組成からなる本発明の液相拡散接合用合金箔は、 良好 な接合部を得るために、 液相拡散接合時に均一に溶融する必要があ - る。
不均一な組成で、 合金成分の偏析がある場合には、 イ ンサー ト メ タルの融点が接合部の位置によって異なるこ とになり、 均質な接合 界面が得られず良好な接合部が得られないこ とになる。
実際には不均一な組成で、 合金成分の偏析がある という こ とを考 慮すると、 構造を非晶質にするこ とが好ま しい。
均一な組成のものが容易に得られる場合には、 構造は非晶質であ るこ とは不可欠ではない。
本発明の液相拡散接合用合金箔は、 イ ンサー ト メ タルと して種々 の形状で提供するこ とが可能である。
第 1 〜第 3発明の第 i 〜第 4観点の何れかの成分を有する合金は 、 例えば液体急冷法によって、 容易に非晶質の合金箔と して製造す るこ とができる。
こ こで採用される基本的構造方法と しては、 合金の溶湯をノ ズル を介して冷却基板状に噴出 し、 熱的接触によって冷却凝固させる液 体急冷法のうち、 冷却基板と して一個の冷却ロールを用いる、 簡易 な単口一ル法が適している。
他に、 ドラムの内壁を使う遠心急冷法ゃェン ドレスタイプのベル トを使用する方法や、 これらの改良型、 例えば補助ロールや、 ロー ル表面温度制御装置を付属させた方法、 あるいは減圧下ないし、 真 空中または不活性ガス中での铸造もそれに含まれる。 また、 一対の ロール間に溶湯を注入して急冷凝固させる双ロール法も適用できる また、 合金を、 真空溶解して铸造し、 得られた铸片を通常の方法 で圧延、 焼鈍して、 合金箔の形態で提供するこ と も可能である。 上記のようにして得られる合金箔の厚みは、 薄いほど接合部近傍 における機械的特性の変化が少な く 、 接合に要する時間も短かく で きるので、 液相拡散接合に有利であるが、 3. 0 m未満の場合には Vの絶対量が被接合材表面の酸化皮膜を無害化するに不十分となり 、 第 1 、 第 2発明においては、 1 00 ^ mを超えると液相拡散接合終 了までに長時間 (例えば 10時間以上) を要し実用的でないこ とから 3. 0〜1 00 mの厚みとする必要がある。
第 3 発明においては、 下記の理由によ り、 厚みの上限は 200 m まで拡げられる。
Pは箔の融点を下げる こ とにも有用な元素であり、 Bは高速で拡 散する元素である。 両者が同時に存在する と、 B単独添加箔に比較 して融点が低い箔となる。 この場合、 接合金属箔と被接合材料との 間で生じる反応 (被接合材料が箔中に溶け込む) によって、 接合箔 が希釈される度合いが大き く なる。 もちろん P単独添加箔でも同様 の事は生じる。 希釈度合いが大きいと、 接合箔中の、 拡散しなけれ ばならない (等温凝固を終了させるに必要な拡散量) が相対的に低 下する。 従って、 接合終了後の接合金属部分の幅は広く なる ものの 、 その広い部分の等温凝固終了は実際には P単独添加に比してずつ と早く なる。 1 150°Cの接合であれば、 実質接合時間は、 継ぎ手強度 と図 1 9の関係にあるので、 「 Pと Bの複合添加」 は接合箔厚みの、 継ぎ手強度の観点からの上限値規定を緩和し、 およそ 2倍とするこ とができる。
端的に言えば、 P単独、 B単独、 P + B複合はそれぞれ接合時の 想定される反応状態図が著し く 異なっている。
本発明は、 液相拡散接合用の合金箔に関する ものであるが、 大気 中で接合が可能であるこ とから、 拡散ろう付けの接合法に応用 して も有用である。 実施例 1
- 第 1 発明の液相拡散接合用合金を用い、 F e基材料を被接合材とす る液相拡散接合を実施した。 実施条件と実施結果を、 比較例の場合 と と もに表、 図を用いて以下に説明する。
第 1 発明の第 1 〜第 4観点の何れかの成分組成 (原子%) 有する 、 合金約 100 gを、 単ロール法 (冷却ロール : Cii合金製 300mm径) にて急冷して、 板幅 2〜215IMI 、 板厚 3.0〜100 μ mの実質的に非 晶質の結晶構造を有する合金箔と した。
この際の冷却ロ ールの周速は 5.0〜15.0m/ s の間に保持した。 この実施例での本発明合金箔の成分組成 (原子%) は表 1 (表 1 一 1 〜 1 一 8 ) に示す通り、 何れも Feを基材と しており、 表 1 中の 各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意味 する。
本発明合金箔に対する比較合金箔の成分組成 (原子%) は表 2 に 示した。 本発明合金箔と同様、 何れも Feを基材と しており、 表 2 中 の各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意 味する。 表 2 の比較合金箔は表 1 の本発明合金箔の場合と全く 同様 に して製造したものである。
表 1 の No. 1 〜 199 に示される、 第 1 発明の第 1 〜第 5観点の何 れかを満足する合金箔 (以下 「本発明イ ンサー ト メ タル」 という) および表 2 の No.200〜212 に示される比較合金箔 (従来型イ ンサ一 ト メ タルを含み、 以下 「比較イ ンサー トメ タル」 という) を用いて 液相拡散接合を実施した。
この実施に際しては、 本発明イ ンサー ト メ タル 3 〜100 〃 m厚 X 20mm径、 比較ィ ンサー トメ タル 5. 16~ 133.74 / m厚 X 20mm径の円盤 状と し、 被接合材である Fe基材料 (JIS STK400) を用意し、 図 1 に 示すごと く 被接合材である丸鋼 (径 20匪) と丸鋼 (径 20隱) 間に挟 み込んた。
図 1 において 1 、 1 は被接合材 (丸鋼) 、 2 は液相拡散接合用合 金 (イ ンサー トメ タル) である。 液相拡散接合雰囲気は大気と し、 接合温度を各合金箔の融点直上
〜融点 + 50 °Cの範囲と し、 大型加熱炉を用いて目標温度を実質的に 950〜 1 000 °Cに設定して液相拡散接合を実施した。
この際、 被接合材 1 とイ ンサー ト メ タル 2 を、 両者の密着性を良 好にするため、 2 メ ガパスカル(MPa ) の加圧力で加圧した。
接合時間は全て 1 0分と し、 被接合材の強度、 耐食性、 靱性を確保 するために接合後の熱処理を焼き鈍し、 焼き入れ +焼き鈍し、 焼き 鈍し +焼き戻し、 焼き入れ +焼き鈍し +焼き戻しを適宜単独で、 あ るいは組み合わせて施した。
これら熱処理の間に被接合材どう しの元素の相互拡散が進行し、 接合部の均質化が進んだが、 本発明イ ンサー トメ タル中の析出物の 生成、 増加、 成長は殆ど見られなかった。
次に J 1 SA2号サブサイズ丸鋼引張試験装置により接合部の健全性 を調査したが、 本発明イ ンサー トメ タルによる全ての試験片で非接 合面積率は 0 %であった。
更に図 2 に示す要領で丸鋼の軸方向から、 図 3 のような J I SA2号 引張試験片 5 を切り 出 し、 引張試験機を用いて常温で接合部破断強 度を調査した。
接合部の引張破断強度は、 被接合材の材質、 板厚、 および使用環 境条件等で決定されるが、 本実施例においては実用上の制限から 40 OMPaを最低必要強度と して仮に設定し、 この値以上の破断強度が得 られた場合に十分な接合が実現したと判断した。 実験結果を表 1 、 表 2 に併記して示した。
表 1 に示すよう に、 本発明合金箔を用いた液相拡散接合によって 得られた接合部は、 すべて目標レベルの 400MPa以上の極めて良好な 接合強度を示した。
これに対して、 本発明を満足しない比較合金箔を用いた液相拡散 接合によ って得られた接合部は、 すべて目標レベルの 400MPa以下の 接合強度を示し、 全く 満足できる ものではなかった。 個別の結果は 後述する。
図 4 〜図 7 は、 本発明の拡散接合用合金箔で規定する成分 (原子 %) および厚みを接合部破断強度 (MPa で表す } との関係を確認し 、 図 8 は熱影響部 (母材) の靱性を確認するためのものである。 図 4 は、 接合部破断強度に与えるイ ンサー ト メ タル中の Vの濃度 の影響を表している。 V濃度が原子%で 0. 1%未満の場合には被接 合材合金表面の酸化皮膜を十分に無害化できないために、 接合部破 断強度が低いが、 原子%で 0. 1〜20.0%の範囲では接合部破断強度 が母材 (被接合材) 並みあるいは母材以上となっており、 Vが効果 的に作用 して酸化皮膜を無害化している。 しかし Vが原子%で 20.0 %を超えるとィ ンサー ト メ タルの融点が上昇するために接合時間が 不足して接合部破断強度が低下する。
図 5 は同様に Siと接合部破断強度の関係を示した図である。 Siが 5.0%未満特に 1.0%未満および 20.0%超の場合では接合部破断強 度が低く 、 1.0〜 20.0%の場合には高い接合部破断強度を得られる 図 6 は P と接合部破断強度の関係を示した図である。 Pが 1.0% 未満の場合にはイ ンサー トメ タルの融点が高いために、 20.0%超の 場合には接合界面近傍に生成する金属化合物のために接合部破断強 度が低下する。 1.0〜20.0%の Pの場合には高い接合部破断強度が 得られる。
図 7 はイ ンサ一 トメ タルの厚みと接合部破断強度との関係を示し た図である。 厚みが 100/ m以上の箔では、 接合部破断強度が不十 分であるこ とが明らかである。
図 8 は、 拡散元素と して Pを用いた場合の接合部近傍の母材の 0 °Cの温度での靱性を求め、 その結果を拡散元素と して Bを用いた場 合と比較して示したものである。 この実験の条件は、 表 3 、 表 4 に 示した。
図 8 、 表 3 、 表 4 から、 Pを拡散元素と した本発明では、 Bを拡 散元素と した場合より接合時間はかなり長く なるが、 接合温度を 1 0 00 °C以下にでき、 被接合材 (母材) に対する熱影響を小さ く して、 接合部近傍母材の靱性を高めるこ とができる。
なお、 こ こでの靱性は、 接合済みの丸鋼試験片から J I S 4号シャル ピー衝撃試験片を採取し、 この試験片について衝擊試験を実施し、 母材 (STK400 ) の熱影響部の結晶粒の粗大化を評価して得られたも のであり、 靱性の閾値については、 一般構造材に要求される場合の 多い 50 J を評価基準値と して選んだ。
表 2 は本発明合金箔に対する比較合金箔の化学成分組成と、 得ら れた接合部引張破断強度を示したものである。
表 2 に示すように、 比較合金箔 No. 200は P含有量が不足したため に融点が 1300°Cを超え、 結果と して破断強度が著し く 低く なつた例 、 No. 201は P含有量が高く 、 接合部近傍に粗大な金属化合物が生成 して接合部破断強度が低下した例である。
N o. 202は S i量が不足して融点が 1 300°C以上になり、 結果と して接 合部破断強度が著し く低く なつた例、 No. 203は S i量が過多となって 接合時に粗大な S i 02系酸化物がイ ンサー トメ タル中に生成して接合 部破断強度が低下した例である。
No. 204は V量が不足して被接合材合金表面に生成した酸化皮膜が 十分に無害化されず接合部破断強度が低く なつた例、 N o. 205は V量 が過多となって融点が極めて高く なり、 液相拡散接合が十分に行わ れず接合部破断強度が低く なつた例である。
N o . 206は C rを多量に含有しているため、 融点が著し く 高く なつて 、 液相拡散接合が十分に行われず接合部破断強度が低く なつた例、
No. 207は N iを多く 含有しているため、 Fe相中に N i相が介在して組織 不均一を生じ靱性を低下させ、 接合部破断強度が低く なつた例であ る。
No. 208は Co量が過多となり、 粗大な金属間化合物が生成して靱性 が低下し、 接合部破断強度が低く なつた例、 No. 209は W量が過多と なり、 粗大な金属間化合物が生成して靱性が低下し、 接合部破断強 度が低く なつた例、 No. 210は Nb量が過多となり、 Fe— Nb系の金属間 化合物が粗大析出 して脆化し接合部破断強度が低く なつた例である
No. 21 1は T i量が過多となり、 粗大な金属間化合物の過剰生成に より粗大な金属間化合物が生成して靱性が低下し、 接合部破断強度 が低く なつた例、 No. 212は合金箔厚みが厚過ぎて接合部破断強度が 低く なつた例である。
上記のよう に、 本発明の要件を部分的に満足するが、 本発明のす ベての要件は満足していない比較イ ンサー トメ タルを用いた液相拡 散接合によつては、 目標の接合部破断強度 400MPaを達成することは できなかった。
Figure imgf000028_0001
表卜 2
合金箔のィ匕学成分 (原子%) 合金箔の 接 合 破断強度
No. P Si V Cr Ni Co W Nb Ti 厚み ( u rn) 雰囲気 (Mpa)
27 2. 64 15. 83 12. 99 5. 27 4. 52 42 大気 514. 97
28 1. 71 13. 02 7. 31 15. 57 6. 41 11 大気 486. 53
29 4, 15 12. 15 7. 05 10. 67 12. 48 14. 79 70 大気 485. 23
30 4. 08 5. 76 2. 90 10. 59 2. 10 5. 82 45 大気 464. 49
31 13. 13 3. 94 11. 11 17. 26 5. 18 2. 68 76 大気 505. 53
32 18. 33 18. 46 4. 33 6. 49 42 大気 536. 61
33 8. 58 12. 66 18. 98 2. 83 52 大気 573. 14
34 4. 14 3. 27 1. 58 7. 92 37 大気 537. 08
35 8. 54 3. 97 6. 76 8. 04 75 大気 540. 07
36 13. 96 2. 59 11. 28 3. 95 66 大気 534. 02
37 3. 64 3. 13 14. 70 2. 54 84 大気 541. 27
38 8. 42 11. 98 3. 23 7. 68 34 大気 527. 57
39 17. 78 15. 85 6. 47 9. 06 34 大気 554. 85
40 3. 78 4. 85 10. 26 8. 18 77 大気 566. 76
41 1. 64 12. 39 9. 17 5. 83 1. 14 39 大気 562. 09
42 10. 50 5. 61 1. 31 3. 64 1. 49 16 大気 503. 37
43 5. 89 18. 61 10. 74 1. 93 7. 38 93 大気 574. 64
44 14. 76 16. 80 17. 36 0. 30 7. 98 39 大気 602. 71
45 3. 12 13. 17 13. 21 6. 51 9. 50 64 大気 637. 66
46 14. 99 12. 07 12. 22 4. 57 0. 40 11 大気 546. 26
47 17. 74 13. 98 4. 47 5. 31 3. 44 85 大気 552. 97
48 15. 48 16. 75 13. 19 3. 91 1. 52 69 大気 567. 28
49 6. 48 14. 56 18. 35 1. 04 4. 05 36 大気 584. 57
50 9. 96 12. 11 15. 39 7. 62 9. 20 3. 73 75 大気 697. 45
51 10. 75 11. 00 19. 76 4. 47 2. 04 6. 51 9 大気 659. 83
52 7. 24 17. 86 3. 65 6. 78 8. 59 2. 69 19 大気 617. 79
表' 1一 3
合金箔の化学成分 (原子%) 合金箔の 接 合 破断強度
No. P Si V Cr Ni Co W Nb Ti 厚み ( π 雰囲気 (Mpa)
53 8.59 5.81 4.39 12.28 7.68 84 大気 548.82
54 11.34 10.92 17.78 10.31 3.73 88 大気 576.23
55 9.73 17.71 9.66 13.60 4.87 100 大気 547.02
56 1.93 2.53 12.22 15.83 9.60 4 大気 578.28
57 8.39 7.06 16.64 5.35 7.71 36 大気 587.17
58 12.47 1.29 8.49 13.00 4.29 49 大気 522.49
59 15.72 16.35 10.45 1.07 8.27 62 大気 568.46
60 5.64 11.09 14.93 0.71 4.78 92 大気 562.87
61 17.70 8.58 0.93 12.59 6.18 15 大気 504.05
62 15.75 15.61 16.11 8.31 2.78 6.95 36 大気 606.90
63 11.52 10.34 15.68 3.41 4.57 4.39 69 大気 604.89
64 6.12 11.09 15.54 17.31 0.99 8.49 43 大気 597.05
65 18.70 6.62 18.67 2.99 9.65 7.86 24 大気 673.76
66 14.90 18.10 12.66 2.94 6.23 9.53 5 大気 633.11
67 6.94 18.73 12.48 16.74 7.35 5.64 96 大気 608.91
68 5.21 6.35 3.34 18.21 2.71 4.67 12 大気 531.20
69 8.99 18.98 15.59 8.75 4.92 6.26 59 大気 627.20
70 14.09 2.33 16.37 17.92 8.59 9.97 92 大気 697.53
71 15.20 18.74 0.85 7.74 2.56 8.83 3.91 93 大気 572.89
72 10.31 14.41 10.84 3.42 5.77 8.79 0.79 20 大気 629.66
73 18.39 6.89 7.87 5.14 7.33 1.54 5.16 4 大気 614.76
74 3.53 3.89 11.80 10.86 7.96 75 大気 588.64
75 6.55 17.16 13.02 5.55 6.54 88 大 580.44
76 13.44 10.48 7.19 5.82 7.69 42 大気 562.83
77 1.51 15.84 4.76 13.55 2.86 72 大気 493.79
78 4.88 9.39 3.63 11.68 4.49 88 大気 499.57
79 12.56 9.21 0.73 4.61 5.29 41 大気 490.72
表 1一 4
合金箔のィ :学成分 (原子%) 合金箔の 接 合 破断強度
No. p Si v Cr Ni Co w Nb Ti 厚み ium) 雰囲気 (Mpa)
80 10.33 8.21 2. 16 1.70 4.96 49 大気 500.47
81 6.83 7.17 3.69 4 12 2.00 70 大気 484.45
82 16 73 13 44 6 40 5· 55 5.64 15 大気 527. 15
83 2 59 9 79 7.34 0.30 4.60 2.44 27 大気 549.79
84 298 4 SO 3 73 12.48 7.93 0, 62 18 大気 552.34
85 11 74 17 14 0 31 8.82 1.98 4.71 9 大気 504.33
86 3 57 11. 17 15 91 8.35 2.36 7.75 48 大気 608.05
87 in 44 4 63 18 55 14 48 5.36 0.73 38 大気 586. 18
88 17 69 13 60 A 01 10 07 9.77 1.95 10 大気 554.00
89 11 fin 9 Q 4« u» uu 3 1 34 大気 551.36
90 A 67 794 229 3 75 0, 85 48 大気 534.01
91 9 76 2 74 4 03 275 5.00 6. 13 49 大気 569. 14
92 13.73 4.33 15.40 7.86 2.84 4.90 4. 11 83 大気 622.53
93 16.82 16. 18 9.08 13.76 0.89 1.33 0.88 36 大気 520.59
94 8 40 15 81 18 61 12.44 6.78 8.40 0.71 38 大気 675.28
95 5.34 19.58 8.07 5.86 6.83 54 大気 558.62
96 14.01 6.53 9.63 10.37 8.48 50 大気 582.95
97 17.80 16.69 9.99 5. 16 2.97 11 大気 529.69
98 6.06 7.90 10.90 13.90 5.26 96 大気 541.31
99 15.79 13.26 8.65 14.09 5.32 34 大気 530.43
100 19.95 1.47 14.47 3. 14 3.55 42 大気 547.25
101 4.09 6.88 8.01 9. 18 1.25 73 大気 500.06
102 7.55 12.68 5. 18 3.50 3.71 8 大気 505.60
103 16.47 13.03 12.84 11.69 8.53 49 大気 582.40
104 12.83 1.70 12.04 1.83 T.60 5.85 58 大気 627. 19
105 8.54 1.72 6.91 0.41 7.06 5.25 55 大気 591.89
106 15.52 6.94 5.75 11.21 4.36 1.62 55 大気 533.67
Figure imgf000032_0001
表 '卜 6
合金箔のィ匕学成分 (原子%) 合金箔の 接 合 破断強度
No. P Si V Cr Ni Co W Nb Ti 厚み ( im) 雰囲気 (Mpa)
134 5.78 10.02 5.12 4.67 9.43 1.72 0.43 3.79 63 大気 526.24
135 7.28 14.37 8.84 9.14 1.81 8.41 6.63 3.95 49 大気 656.26
136 13.31 11.97 9.49 17.53 0.30 6.51 6.46 7.41 30 大気 667.02
137 5.45 11.22 8.52 5.81 2.63 2.61 46 大気 518.67
138 8.17 10.96 11.65 2.92 8.78 6.27 6 大気 570.89
139 17.52 2.11 9.37 2.41 12.35 6.13 43 大気 558.15
140 13.17 8.95 16.05 6.34 3.63 9.88 80 大気 599.39
141 18.61 4.71 4.63 2.67 7.13 0, 33 30 大気 475.45
142 13.02 7.81 3.01 5.75 13.39 5.41 61 大気 502.93
143 3.99 4.49 2.60 6.72 10.07 3.74 17 大気 492.97
144 19.34 15.06 7.40 8.23 14.03 2.57 17 大気 507.55
145 14.96 16.51 5.69 10.49 9.72 1.25 40 大気 488.43
146 2.87 19.69 4.03 7.23 1.43 8.52 6.38 84 大気 599.98
147 10.39 10.90 11.25 9.47 9.16 8.57 1.45 11 大気 602.14
148 10.74 16.91 8.58 2.81 0.26 9.75 1.36 42 大気 599.91
149 1.98 17.40 12.19 5.61 12.81 9.77 2.35 18 大気 598.13
150 13.52 2.74 6.96 6.58 7.59 6.64 0.43 55 大気 534.78
151 9.05 18.42 14.45 7.43 9.38 9.72 2.19 61 大気 607.80
152 17.53 13.61 8.44 1, 36 7.62 9.90 2.78 43 大気 613.40
153 11.09 19.48 11.90 14.55 13.55 1.00 4.86 13 大気 558.35
154 11.81 13.80 18.39 11.67 11.77 8.32 7.30 13 大気 683.58
155 4.23 5.41 12.96 6.21 1.69 8.53 6.26 2.34 92 大気 662.61
156 6.07 2.19 16.64 7.83 7.18 6.97 1.62 6.02 32 大気 662.42
157 15.37 10.39 17.69 6.44 7.73 8.08 7.79 1.84 11 大気 688.54
158 4.68 16.62 12.50 1.44 6.33 7.84 86 大気 590.93
159 18.95 7.37 1.09 4.63 10.50 2.69 72 大気 482.30
160 16.54 3.87 18.32 9.21 11.55 4.70 72 大気 588.62
表' 1一 7
合金箔の化学成分 (原子%) 合金泊の 接 合 破断強度
No. Ρ Si V Cr Ni Co W Nb Ti 厚み ( m) 雰囲気 (Mpa)
161 1.20 8.43 13.41 16.22 2.87 2.18 23 大気 532.34
162 11.60 3.37 2.03 13.67 11.98 6.18 52 大気 503.46
163 2.97 4.49 11.16 18.15 8.00 5.59 57 大気 544.92
164 1.13 8.43 15.17 1.35 5.20 5.17 10 大気 567.25
165 15.49 18.46 0.63 1.19 7.02 8.75 53 大気 523.17
166 19.71 4.24 4.43 8.78 2.20 2.32 56 大気 490.74
167 7.02 17.66 15.77 8.95 1.95 8.17 6.59 80 大気 656.63
168 8.05 4.28 2.61 11.28 14.44 5.51 6.61 94 大気 564.37
169 10.16 1.91 8.28 8.32 13.43 1.62 3.23 78 大気 530.24
170 5.06 11.41 19.83 9.29 7.12 3.54 7.24 88 大気 631.90
171 11.69 17.39 14.58 13.78 7.15 2.66 1.58 46 大気 554.17
172 19.48 18.72 8.98 3.06 10.70 1.67 6.99 80 大気 562.51
173 15.83 9.08 13.17 7.39 14.89 0.52 2.40 48 大気 540.19
174 14.73 7.83 14.99 5.31 4, 70 9.10 8.84 50 大気 686.73
175 10.11 11.04 13.99 12.00 5.63 2.95 9.33 61 大気 624.04
176 7.78 1.12 0.12 16.10 13.78 0.86 4.29 4.66 84 大気 526.51
177 17.44 18.76 11.90 0.12 1.37 1.28 3.23 4.33 35 大気 579.53
178 6.07 15.58 10.90 19.19 2.85 7.72 3.10 9.74 56 大^ 681.26
179 16.21 1.98 17.51 12.73 13.91 10.33 0.24 77 539.92
180 5.18 10.43 16.13 10.82 11.85 8.30 9.35 99 大気 624.17
181 6.51 4.35 9.36 10.18 10.19 2.24 9.94 26 大気 596.19
182 17.60 4.14 16.75 9.75 9.81 4.55 5.83 32 大気 574.80
183 4.66 12.40 3.83 18.19 12.65 14.57 2.73 18 488.26
184 11.43 2.84 4.01 15.41 10.17 2.14 5.84 4 大気 510.94
185 9.11 16.74 15.68 12.37 12.99 1.17 6.59 85 大気 581.14
186 2.29 13.27 2.27 0.37 7.78 4.04 6.88 82 大気 516.41
Figure imgf000035_0001
;2
合金箔のィ匕学成分 (原子%) ¾
□ ^ ί 泊 fひTリ\ 敏断強度
J>iひ. n Γ l V し Γ M:
IN1 to W i I 分 Η) 5
Π υ. 1
丄 丄 d 04 1U, υά 丄乙, o +与 U. UO
^ί on 1
丄 ΌΛ oU 14. 4A 91 on 1 0 八 ΧΪ| 1 ί y. U Λβb
9Π9 17, 4 U. U4 17. Ul +与 Λ Q 1
U.01
1 5ο tJ. lb 4. OL u. 丄
1 Q no o9. i 人 0.0 乙 If 14.09 17.55 22.95 OA 1 ς Q 1 Q1 d4丄. y丄
206 5.78 10.44 10.91 23.15 64.65 大気 123.71
207 5.14 6.90 8.07 19.93 40· 54 大気 117.93
208 9.65 14.36 1.07 18.71 42.86 大気 198.49
209 4.86 15.47 19.18 14.52 90, 92 大気 145.05
210 1.86 19.78 18.05 16.17 11· 11 大気 180.77
211 2.40 9.99 13.40 11.21 1.57 2· 95 14.44 84· 27 大気 214.24
212 15.51 6.32 13.93 8.15 6.16 133.74 大気 258.07
表 3 イ ンサー ト メ タル化学成分 (原子%) 、 厚み 30 m
Figure imgf000037_0001
被接合材化学成分 : STK400に準ずる
表 4 接合温度、 突き合わせ応力、 接合時間
Figure imgf000037_0002
第 1 発明によれば、 各種の F e基材料 (厚鋼板、 鋼管、 条鋼、 棒鋼 等) を接合対象と して、 酸化雰囲気中で液相拡散接合を低温度で実 施するこ とができ、 被接合材 (母材) に対して熱影響を小さ く して 破断強度の高い接合部を確保するこ とを可能にする ものであり、 液 相拡散接合の特長を、 Fe基材料の接合にも有効に生かすことができ 、 また、 溶接による場合に比して接合時間も短縮するこ とができ、 接合施工のェ期を大幅に短縮することが可能になった。
実施例 2
第 2発明の液相拡散接合用合金を用い、 F e基材料を被接合材とす る液相拡散接合を実施した。 実施条件と実施結果を、 比較例の場合 と と もに表、 図を用いて以下に説明する。
第 2発明の第 1 〜第 4観点の何れかの成分組成 (原子%) 有する 、 合金約 1 00 gを、 単ロール法 (冷却ロール : C u合金製 300議径) にて急冷して、 板幅 2 〜2 1 5mn> 、 板厚 3〜 1 00〃 mの実質的に非晶 質の結晶構造を有する合金箔と した。
この際の冷却ロールの周速は 5. 0〜 1 5. 0 m / s の間に保持した。 この実施例での本発明合金箔の成分組成 (原子%) は表 5 (表 5 一 1 〜 5 — 8 ) に示す通り、 何れも Fcを基材と しており、 表 5 中の 各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意味 する。
本発明合金箔に対する比較合金箔の成分組成 (原子%) は表 6 に 示した。 本発明合金箔と同様、 何れも Feを基材と しており、 表 6 中 の各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意 味する。 表 6の比較合金箔は表 5 の本発明合金箔の場合と全く 同様 にして製造したものである。
表 5 の No. 1 〜 199 に示される、 第 2 発明の第 1 〜第 5観点の何 れかを満足する合金箔 (以下 「本発明イ ンサー ト メ タル」 という) および表 6 の No.200〜212 に示される比較合金箔 (従来型イ ンサー ト メ タルを含み、 以下 「比較イ ンサー トメ タル」 という) を用いて 液相拡散接合を実施した。
この実施に際しては、 本発明イ ンサー トメ タルは 3 〜100 〃 m厚 X 20mm径、 比較イ ンサー トメ タルは 7.67〜234. 10 z m厚 x 20mm径の 円盤状と し、 図 1 に示すごと く被接合材である Fe基材料 (成分組成 は表 2 に示した) からなる丸鋼 (径 20mm) と丸鋼 (径 20mm) 間に挟 み: ^んた。
図 1 において 1 、 1 は被接合材 (丸鋼) 、 2 は液相拡散接合用合 金 (イ ンサー トメ タル) である。
液相拡散接合雰囲気は大気と し、 接合温度を各合金箔の融点直上 〜融点 + 50°Cの範囲と し、 大型加熱炉を用いて目標温度を実質的に 1050〜 1300°Cに設定して液相拡散接合を実施した。
この際、 被接合材 1 とイ ンサー トメ タル 2 を、 両者の密着性を良 -好にするため、 2 メ ガパスカル(MPa) の加圧力で加圧した。
接合時間は全て 10分と し、 被接合材の強度、 耐食性、 靱性を確保 するために接合後の熱処理を焼き鈍し、 焼き入れ +焼き鈍し、 焼き 鈍し +焼き戻し、 焼き入れ +焼き鈍し +焼き戻しを適宜単独で、 あ るいは組み合わせて施した。
これら熱処理の間に被接合材どう しの元素の相互拡散が進行し、 接合部の均質化が進んだが本発明ィ ンサー トメ タル中の析出物の生 成、 増加、 成長は殆ど見られなかった。
次に J 1 SA2号サブサイ ズ丸鋼引張試験装置により接合部の健全性 を調査したが、 本発明イ ンサー ト メ タルを用いた全ての試験片で非 接合面積率は 0 %であった。
更に図 2 に示す要領で丸鋼の軸方向から、 図 3 のよ うな J 1 SA2号 引張試験片 5 を切り出 し、 引張試験機を用いて常温で接合部破断強 度を調査した。
接合部の破断強度は、 被接合材の材質、 板厚、 および使用環境条 件等で決定されるが、 本実施例においては実用上の制限から 400MPa を最低必要強度と して仮に設定し、 この値以上の破断強度が得られ た場合に十分な接合が実現したと判断した。 実験結果を表 5 、 表 6 に併記して示した。
表 5 に示すように、 本発明合金箔を用いた液相拡散接合によって 得られた接合部は、 すべて目標レベルの 400MPa以上の極めて良好な 接合強度を示した。
これに対して、 本発明を満足しない比較合金箔を用いた液相拡散 接合によって得られた接合部は、 すべて目標レベルの 400MPa以下の 接合強度を示し、 全く 満足できる ものではなかった。 個別の結果は 後述する。
図 9 〜図 13は、 本発明の拡散接合用合金箔で規定する成分 (原子 -% ) および厚み、 接合時間と接合部破断強度 (MPa で表す } との関 係で効果を確認するためのものである。 図 9 は、 接合部破断強度に与えるィ ンサー トメ タル中の Vの濃度 の影響を表している。 V濃度が原子%で 0.1%未満の場合には被接 合材合金表面の酸化皮膜を十分に無害化できないために、 接合部破 断強度が低いが、 原子%で 0.1~20.0%の範囲では接合部破断強度 が母材 (被接合材) 並みあるいは母材以上となっており、 Vが効果 的に作用 して酸化皮膜を無害化している。 しかし Vが原子%で 20.0 %を超えるとイ ンサー トメ タルの融点が上昇するために接合時間が 不足して接合部破断強度が低下する。
図 10は同様に S iと接合部破断強度の関係を示した図である。 S iが 1.0%未満および 20.0%超の場合では接合部破断強度が低く 、 1.0 〜 20.0%の場合には高い接合部破断強度を得られる。
図 11は B と接合部破断強度の関係を示した図である。 Bが 1.0% 未満の場合にはィ ンサ一 ト メ タルの融点が高いために、 20.0%超の 場合には接合界面近傍に生成する硼化物のために接合部破断強度が 低下する。 1.0〜20.0%の Bの場合には高い接合部引張強度が得ら れる。
図 12はィ ンサー ト メ タルの厚みと接合破断強度との関係を示した 図である。 厚みが lOO^ m以上の箔では、 接合強度が不十分である こ とが明らかである。
図 13は、 拡散元素と して Bを用いた場合の接合部破断強度(MPa) と接合時間の関係を実験で求め、 その結果を拡散元素と して Pを用 いた場合と比較して示したものである。 この実験の条件は、 表 7 、
Figure imgf000040_0001
図 13、 表 7 、 表 8 から、 Bを拡散元素と した本発明では、 Pを拡 散元素と した場合より接合温度は高いが、 より短時間で目標の接合 部破断強度 400 (MPa) を実現できるこ とが確認できる。
表 6 は本発明合金箔に対する比較合金箔の化学成分組成と、 得ら れた接合部引張破断強度を示したものである。
表 6 に示すように、 比較合金箔 No.200は B含有量が不足したため に融点が 1300°Cを超え、 結果と して破断強度が著し く 低く なつた例 、 No.201は B含有量が高く 、 接合部近傍の被接合合金側に粗大な硼 化物が多数生成して接合部破断強度が低下した例である。
No.202は Si量が不足して融点が 1300°C以上になり、 結果と して接 合部破断強度が著し く 低く なった例、 No.203は S i量が過多となって 接合時に粗大な Si02系酸化物がィ ンサ一 ト メ タル中に生成して接合 部破断強度が低下した例である。
No.204は V量が不足して被接合材合金表面に生成した酸化皮膜が 十分に無害化されず接合部破断強度が低く なつた例、 No.205は V量 が過多となつて融点が極めて高く なり、 液相拡散接合が十分に行わ れず接合部破断強度が低く なつた例である。
No.206は Crを多量に含有しているため、 融点が著し く 高く なつて 、 液相拡散接合が十分に行われず接合部破断強度が低く なつた例、 No.207は Niを多く 含有しているため、 Fe相中に Ni相が介在して組織 不均一を生じ靱性を低下させ、 接合部破断強度が低く なつた例であ
O o
No.208は Co量が過多となり、 粗大な金属間化合物が生成して靱性 が低下し、 接合部破断強度が低く なつた例、 No.209は W量が過多と なり、 粗大な金属間化合物が生成して靱性が低下し、 接合部破断強 度が低く なつた例、 No.210は Nb量が過多となり、 Fe— Nb系の金属間 化合物が粗大析出 して脆化し接合部破断強度が低く なつた例である
No.211は Ti量が過多となり、 粗大な金属間化合物の過剰生成によ り粗大な金属間化合物が生成して靱性が低下し、 接合部破断強度が 低く なつた例、 No.212は合金箔厚みが厚過ぎて接合部破断強度が低 く なつた例である。
上記のよう に、 本発明の要件を部分的に満足するが、 本発明の要 件のすべては満足していない比較ィ ンサー ト メ タルを用いた液相拡 散接合によっては、 目標の接合部破断強度 400MPaを実現する こ とが できなかった。
一表 合金箔のィ匕学成分(原子%) 合金箔の 接 合 破断強度
No. B Si V Cr Ni Co W Nb Ti 厚み ( urn) 雰囲気 (Mpa)
1 7. 80 4. 57 1. 50 12 大気 457. 49
2 3. 70 6. 64 4. 94 81 大気 474. 72
3 4. 64 17. 44 3. 69 50 大気 468. 45
4 3. 47 6. 68 12. 35 53 大気 511. 77
5 8. 59 8. 89 14. 32 7 大気 521. 59
6 16. 58 2. 15 3. 29 74 大気 466. 45
7 9. 91 12. 68 10. 29 15 大気 501. 47
8 6. 43 9. 35 14. 75 98 大気 523. 76
9 11. 31 7. 57 10. 49 42 大気 502. 47
10 8. 43 16. 88 19. 93 90 大気 549. 66
11 19. 16 15. 76 9. 15 4. 76 41 大気 495. 73
12 6. 24 8. 90 3. 53 2. 94 71 大気 467. 65
13 10. 65 9. 19 5. 97 0. 45 67 大気 479. 87
14 3. 26 3. 74 10. 89 8. 67 93 大気 504. 47
15 2. 47 12. 28 17. 04 4. 80 82 大気 535. 20
16 9. 00 13. 56 19. 17 14. 93 44 大気 545. 85
17 1. 97 18. 63 14. 53 7. 25 6 大気 522. 63
18 5. 84 18. 25 5. 06 3. 03 92 大気 475. 28
19 17. 05 13. 00 16. 18 13. 25 75 大気 530. 90
20 18. 35 8. 52 19. 01 1. 21 6. 65 17 大気 545. 07
21 3. 60 9. 23 4. 96 17. 87 1. 98 96 大気 474. 79
22 5. 45 12. 08 0. 79 7. 26 11. 89 3 大気 453. 93
23 14. 28 7. 36 8. 93 11. 65 6. 80 3 大気 494. 64
24 12. 74 10. 87 1. 68 0. 33 6. 64 88 大気 458. 39
25 15. 47 12. 67 19. 48 5. 99 11. 85 7 大気 547. 41
Figure imgf000044_0001
表 5— 3
合金箔のィ匕学成分 (原子%) 合金箔の 接 合 破断強度
No. B Si V Cr Ni Co W Nb Ti 厚み (〃m) 雰囲気 (Mpa)
53 14.72 17.82 10.31 15.79 0.82 59 大気 509.76
54 14.97 12.22 19.57 15.93 3.15 54 大気 579.35
55 8.69 10.73 7.37 11.50 4.40 39 大気 530.90
56 16.80 9.73 11.72 0.63 6.61 84 大気 554.86
57 1.83 5.30 18.39 4.32 4.48 26 大気 573.34
58 10.61 1.89 2.60 1.55 2.26 21 大気 478.85
59 3.16 1.28 17.83 18.27 4.30 72 大気 573.53
60 7.45 9.56 16.08 9.82 0.35 41 大気 533.21
61 3.63 17.60 9.86 12.16 0.81 96 大気 505.77
62 9.61 7.82 0.80 4.88 2.64 5.69 11 大気 520.26
63 10.41 2.99 1.56 10.74 4.48 10.00 73 大気 572.61
64 19.33 3.83 7.71 7.51 0.62 8.59 44 大気 554.83
65 7.69 3.04 19.82 11.78 6.39 9.91 88 大気 673.15
66 4.46 19.07 5.43 3.14 5.61 1.56 63 大気 528.88
67 8.32 5.54 20.00 11.75 9.47 8.54 83 大気 684.59
68 15.14 9.55 11.21 16.22 5.67 2.94 71 大気 586.21
69 14.57 10.64 3.65 11.88 8.89 4.70 71 大気 594.79
70 19.09 18.75 16.02 0.52 4.43 5.87 52 大気 621.37
71 17.98 14.51 5.98 8.07 7.12 4.06 4.96 87 大気 619.09
72 11.67 13.43 0.80 17.29 5.88 2.13 9.67 17 大気 605.05
73 10.48 11.21 3.71 1.27 3.63 7.98 5.23 51 大気 602.56
74 19.85 8.59 17.87 10.93 2.44 65 大気 563.73
75 8.89 7.30 1.85 12.91 1.52 13 大気 474.50
76 16.63 2.79 8.27 2.64 9.96 99 大気 590.98
77 15.83 18.29 15.20 0.33 5.59 38 大気 565.12
78 7.40 3.19 2.35 14.33 6.59 54 大気 507.87
79 8.47 13.82 0.50 10.21 4.88 56 大気 486.67
80 11.96 12.18 17.01 7.15 8.89 19 大気 604.58
Figure imgf000046_0001
表 合金箔のィ匕学成分 (原子%) 合金箔の 接 合 破断強度
No. B
15 - Si v Cr Ni Co w Nb Ti 厚み (β ) 雰囲気 (Mpa)
107 19.91 13.77 7.05 4.65 9.48 9.25 76 大気 625.60
108 j 5 19.95 5.77 11, 40 U.48 9.04 4.08 33 大 602.84
109 10.71 19.87 6.71 12.38 1.43 4.17 39 大気 526.88
110 4.61 8.98 2 71 11.55 4.92 5.68 80 大気 558.24
111 5.67 16.14 4.56 4.33 1.02 0.49 4 大気 486.87
112 6.69 1.28 5.46 14.68 1.78 0.53 40 大気 499.35
113 4.49 9.96 7.57 9.69 5.72 2.64 0.43 23 大気 566.97
114 19.33 12.70 10.44 0.24 5.21 9.44 8.99 65 大気 692.31
115 16.58 18.97 3.70 0.13 0.42 5.18 6.58 71 大気 561.63
116 12.82 13.01 12.78 18.91 1.29 4.27 88 大気 556.64
117 2.30 8.20 3.42 3.63 4.97 3.30 40 大気 500.14
118 12.23 8.87 19.13 15.25 1.49 8.27 65 大気 628.31
119 16.93 1.41 14.34 13.58 11.28 6.04 82 大気 563.98
120 4.86 8.42 18.86 13.43 11.49 4.63 95 大気 576.71
121 19.60 5.28 5.17 14.91 1.61 9.45 69 大気 542.00
122 5.77 4.40 4.07 2.29 1.37 5.26 42 大気 512.40
123 6.68 18.42 0.52 15.94 6.73 4.54 71 大気 488.95
124 9.95 8.89 2.10 1.32 9.32 4.41 90 大気 495.75
125 5.19 3.42 14.26 5.77 1.45 8.97 6.63 66 大気 657.41
126 18.48 11.83 1.77 19.52 10.28 3.94 1.74 73 大気 510.43
127 1.02 10.77 7.08 15.79 2.70 9.59 7.05 86 大気 630.66
128 6.58 6.08 11.42 8.47 11.84 5.26 5.41 52 大気 587.24
129 4.69 4.22 9.12 5.68 10.12 9.13 3.43 77 大気 587.00
130 7.26 11.76 0.43 18.62 13.90 6.98 4.11 35 大気 533.86
131 11.26 17.62 3.71 4.39 1.96 7.31 3.61 93 大気 570.55
132 11.81 3.26 5.15 10.04 11.53 8.21 9.14 49 大気 630.92
133 13.62 1.74 3.70 14.32 5.61 1.86 0.31 18 大気 489.63
合金箔の化学成分 (原子 合金泊 の 接 合 破断強度
NO. B Si V Cr Ni Co w Nb Ti 厚み ( im) (Mpa; 表 分囲気
134 i. 46 1. 29 13. 39 6. 92 12. 70 0. 77 5. 85 l. 04 68 大気 573. 91
,5
135 5. 49 2. 62 14. 16 18. 12 12. 92 8. 65 6. 98 6. 05 57 大気 704. 55
136 6 12. 54 4. 83 2. 67 1. 79 0. 95 5. 46 6. 90 0, 69 92 大気 571. 78
137 9. 04 1. 95 11. 42 2. 11 2. 58 2. 30 54 大気 530. 12
138 2. 24 6. 25 3. 74 14. 65 14. 52 2. 17 19 大気 490. 43
139 8. 17 2. 72 0. 80 6. 26 9. 54 8. 20 53 大気 535. 98
140 2. 21 1. 34 19. 08 5. 51 5. 26 5. 81 37 大気 586. 08
I4l 3. 95 4. 82 9. 22 7. 82 13. 18 9. 04 36 大気 559. 37
142 8. 73 7. 41 1. 37 7. 94 6. 61 3. 31 63 大気 480. 03
143 2. 96 16. 44 3. 71 9. 10 2. 93 3. 67 47 大気 497. 92
144 19. 83 6. 35 16. 98 8. 77 2. 69 5. 01 98 大気 575. 02
145 10. 65 7. 92 7. 77 0. 62 13. 83 7. 24 64 大気 546. 74
146 8. 29 11. 86 18. 68 4. 40 2. 03 7. 27 8. 57 57 大気 676. 14
147 12. 48 9. 18 4. 45 13. 70 5. 66 2. 62 2. 97 67 大気 519. 23
148 1. 13 3. 25 16. 50 11. 15 13. 27 7. 44 9. 87 61 大気 676. 00
149 7. 55 2. 07 1. 01 14. 67 4. 39 3. 04 4. 59 59 大気 513. 06
150 7. 01 15. 99 19. 06 13. 96 7. 19 6. 00 0. 67 17 大気 592. 67
I5l 10. 74 11. 24 12. 02 4. 16 12. 67 7. 40 7. 24 10 大気 619. 85
152 7. 87 3. 01 12. 23 2. 17 3. 48 2. 41 4. 53 76 大気 571. 47
153 15. 19 15. 78 5. 53 14. 24 5. 95 2. 78 8. 65 70 大気 574. 67
154 9. 86 2. 21 0. 81 3. 72 2. 89 1. 58 2. 24 88 大気 487. 86
155 16. 33 10. 22 3. 63 11. 65 9. 92 6. 00 3. 65 6. 84 68 大気 606. 81
156 14. 65 4. 92 12. 43 9. 16 6. 86 6. 26 6. 64 6. 55 92 大気 673. 63
157 14. 80 15. 17 4. 64 1. 14 9. 84 8. 23 6. 08 2. 49 98 大気 617. 96
158 12. 08 9. 34 9. 42 0. 61 10. 36 7. 11 23 大気 568. 18
159 5. 88 14. 39 16. 38 15. 09 11. 60 2. 48 59 大気 556. 75
160 7. 91 14. 37 7. 19 19. 11 14. 79 4. 42 93 大気 530. 13
表 '5 _ 7
合金箔のィ匕学成分 (原子%) 合金箔の 接 合 破断強度
No. B Si V Cr Ni Co W Nb Τί 厚み ( m) 雰囲気 (Mpa)
161 19.77 15.75 8.13 7.39 7.89 4.30 47 大気 520.75
162 16.61 14.57 12.56 7.24 7.01 8.86 79 大気 574.85
163 19.01 1.91 11.09 3.15 2.77 5.25 32 大気 542.22
164 14.06 16.47 11.17 17.00 8.49 5.43 94 大気 549.32
165 10.41 8.85 2.51 15.29 10.85 8.18 25 大気 527.95
166 4.63 7.65 2.80 18.84 6.97 8.38 6 大気 531.01
167 5.11 19.97 17.17 17.39 13.25 7.89 0.65 80 大気 619.35
168 1.83 4.75 2.25 4.13 0.55 4.35 0.61 52 大気 509.03
169 16.52 5.86 1.58 2.94 13.04 0.31 0.91 5 大気 467.38
170 1.01 8.12 10.48 14.35 9.22 3.62 0.65 55 大気 532.88
171 4.88 9.32 6.28 19.41 11.52 3.51 1.42 84 大気 517.29
172 3.08 13.42 11.96 14.30 4.73 3.77 8.13 46 大気 601.23
173 1.87 12.91 15.79 17.48 9.31 5.03 2.06 89 大気 595.73
174 7.74 5.88 13.35 8.73 14.47 6.24 4.82 87 大気 617.69
175 4.04 17.10 14.91 17.20 2.45 5.41 3.18 97 大気 604.12
176 1.66 19.61 0.93 17.55 13.52 5.53 3.59 2.71 62 大気 556.75
177 6.24 19.25 13.92 15.02 1.46 1.60 7.74 9.12 20 大気 662.71
178 15.43 19.72 17.58 7.50 11.02 6.95 8.43 2.72 10 大気 688.17
179 17.82 15.25 5.18 1.04 6.34 14.40 2.83 90 大気 504.20
180 12.28 19.54 8.39 13.04 12.39 3.05 6.35 28 大気 555.47
181 8.74 5.22 7.05 7.49 11.87 7.41 0.61 59 大気 491.39
182 10.94 11.22 18.37 6.86 8.04 9.68 7.41 22 大気 593.73
183 19.84 7.90 3.46 14.04 3.88 10.60 3.74 41 大気 493.49
184 15.17 7.07 0.99 0.60 8.41 10.89 5.46 17 大気 493.20
185 16.97 16.87 4.56 12.90 1.64 11.17 6.31 86 大気 523.26
186 6.76 6.99 10.54 19.46 12.18 1.62 8.65 83 大気 571.92
187 13.40 16.75 15.27 7.52 1.03 6.61 8.90 50 大気 581.53
表 5— 8
合金箔の匕学成分(原子%) tl 接 J flKw!
No. R Si V Cr Ni Γη W Nh i IS iwya
188 13 93 15 26 in 43 7Q 1 73 3 fi8 女 J4J. O
189 1 11 in fin Ifi 53 8 u.77 9· 8 u»u 7 1Q RQ 女
190 l . UO 4 fii OO J. UO 7 41 7 女 30 40
191 18.85 16.10 18.68 0.93 1.64 11.88 4.55 7 41 女^
192 10.51 4.89 4.35 16.88 1.45 13.26 7.07 4.10 68 大気 /
193 17.18 12.23 4.02 16.47 12.78 8.57 4.84 0.96 39 大気 511.62
194 19.49 1.69 6.35 2.44 4.71 4.90 9.72 9.92 84 大気 658.33
195 17.82 18.84 13.60 0.66 10.93 10.19 1.08 0.70 82 大気 534.37
196 6.87 14.37 3.18 14.83 0.31 10.37 5.48 7.36 30 大気 579.59
197 18.80 18.48 18.86 8.93 2.21 13.78 0.65 7.85 2.43 43 大気 625.18
198 4.34 10.19 7.71 18.13 0.83 2.78 3.08 2.40 9.61 70 大気 612.98
199 3.39 10.88 3.21 10.40 10.98 5.32 5.34 8.54 0.15 12 大気 580.47
表 6
合金箔のィ匕学成分 (原子%) 八口 法 1¾ ム口
Μ ;
lNπU, D 01 V し Γ し w t U T 1 1i ί目 { // m 11リ \ 分 Ed ^
U. 11U, θ θ7 ( ID. DU 女八^ X ί Π 19 ος i 1
UJL 1
乙 π on 1 c
U. ID QO 97 八 x Lo , 丄 Ό
1 c: e π OR 1丄丄1, 1丄丄1 +ノ x¾ Π 99 \ 12.16 23.11 10.15 一 Aナ Q9Q 1
X、 丄 ο
204 3.20 4.04 0.02 52.33 大気 0.01
205 11.25 19.59 31.44 59.03 大気 323.50
206 5.85 6.05 12.51 25.38 59.38 大気 176.66
207 4.54 16.83 17.09 18.16 48.16 大気 289.02
208 12.07 18.75 10.27 19.95 7.73 大気 302.65
209 17.62 19.50 9.13 13.15 11.48 93.12 大気 132.07
210 18.83 7.37 6.83 12.66 63.58 大気 145.51
211 6.57 1.04 8.63 3.14 14.37 83.45 大気 132.82
212 16.79 2.38 2.78 4.45 150.32 大気 198.86
表 7 イ ンサー トメ タル化学成分 (原子%) 、 厚み 30〃 m
Figure imgf000052_0001
被接合材化学成分 : STK400に準ずる
表 8 接合温度、 突き合わせ応力
Figure imgf000052_0002
第 2 発明によれば、 各種の F e基材料 (厚綱板、 鋼管、 条鋼、 鉄筋 、 棒鋼等) を接合対象と して、 酸化雰囲気中での液相拡散接合を可 能と し、 短時間で破断強度の高い接合部を確保するこ とを可能にす るものであり、 液相拡散接合の特長を F e基材料の接合にも有効に生 かすこ とができ、 接合施工のェ期を大幅に短縮するこ とが可能にな つた。
実施例 3
第 3 発明の液相拡散接合用合金を用い、 Fe基材料を被接合材とす る液相拡散接合を実施した。 実施条件と実施結果を、 比較例の場合 とと もに表、 図を用いて以下に説明する。
第 1 発明の第 1 〜第 4観点の何れかの成分組成 (原子%) 有する 、 合金約 1 00 gを、 単ロール法 (冷却ロール : C u合金製 300πιπ)径) にて急冷して、 板幅 2 〜21 5mm 、 板厚 3. 0 ~ 200〃 mの実質的に非 晶質の結晶構造を有する合金箔と した。
- この際の冷却ロールの周速は 5. 0〜1 5. 0 m / s の間に保持した。 この実施例での本発明合金箔の成分組成 (原子%) は表 9 (表 9 一 1 〜 9 一 8 ) に示す通り、 何れも Feを基材と しており、 表 9 中の 各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意味 する。
本発明合金箔に対する比較合金箔の成分組成 (原子%) は表 10に 示した。 本発明合金箔と同様、 何れも Feを基材と しており、 表 10中 の各成分の和と 100%との差が Feと不可避の不純物の合計濃度を意 味する。 表 10の比較合金箔は表 1 の本発明合金箔の場合と全く 同様 に して製造したものである。
表 9 の No. 1 〜 199 に示される、 第 1 発明の第 1 〜第 5観点の何 れかを満足する合金箔 (以下 「本発明イ ンサー トメ タル」 という) および表 2 の No.200〜212 に示される比較合金箔 (従来型イ ンサー ト メ タルを含み、 以下 「比較イ ンサー トメ タル」 という) を用いて 液相拡散接合を実施した。
この実施に際しては、 本発明イ ンサ一 卜メ タルは 3.0〜100 u m 厚 X 20mm径、 比較ィ ンサ一 トメ タルは 7.67〜234. 10 m厚 x 20mm径 の円盤状と し、 被接合材である Fe基材料 (STK400) を用意し、 図 1 に示すごと く被接合材である丸鋼 (径 20画) と丸鋼 (径 20ram) 間に 挟み込んだ。
図 1 において 1 、 1 は被接合材 (丸鋼) 、 2 は液相拡散接合用合 金 (イ ンサー トメ タル) である。
液相拡散接合雰囲気は大気と し、 接合温度を各合金箔の融点直上 〜融点 + 50°Cの範囲と し、 大型加熱炉を用いて目標温度を実質的に 900〜 1300°Cに設定して液相拡散接合を実施した。
この際、 被接合材 1 とイ ンサー トメ タル 2 を、 両者の密着性を良 好にするため、 2 メ ガパスカル(MPa) の加圧力で加圧した。
接合時間は全て 10分と し、 被接合材の強度、 耐食性、 靱性を確保 するために接合後の熱処理を焼き鈍し、 焼き入れ +焼き鈍し、 焼き 鈍し +焼き戻し、 焼き入れ +焼き鈍し +焼き戻しを適宜単独で、 あ るいは組み合わせて施した。
これら熱処理の間に被接合材どう しの元素の相互拡散が進行し、 接合部の均質化が進んだが、 本発明イ ンサー トメ タル中の析出物の 生成、 増加、 成長は殆ど見られなかった。
次に J I SA2号サブサイズ丸鋼引張試験装置により接合部の健全性 を調査したが、 本発明イ ンサー ト メ タルによる全ての試験片で非接 合面積率は 0 %であった。
更に図 2 に示す要領で丸鋼の軸方向から、 図 3のような J I SA2号 引張試験片 5を切り出し、 引張試験機を用いて常温で接合部破断強 度を調査した。
接合部の引張破断強度は、 被接合材の材質、 板厚、 および使用環 境条件等で決定されるが、 本実施例においては実用上の制限から 40 OMPaを最低必要強度と して仮に設定し、 この値以上の破断強度が得 られた場合に十分な接合が実現したと判断した。 実験結果を表 9 、 表 10に併記して示した。
表 9 に示すように、 本発明合金箔を用いた液相拡散接合によって 得られた接合部は、 すべて目標レベルの 400MPa以上の極めて良好な 接合強度を示した。
これに対して、 本発明を満足しない比較合金箔を用いた液相拡散 接合によって得られた接合部は、 すべて目標レベルの 400MPa以下の 接合強度を示し、 全く満足できるものではなかった。 個別の結果は 後述する。
図 1 4〜図 1 9は、 本発明の拡散接合用合金箔で規定する成分 (原子 -% ) および厚み、 接合時間と接合部破断強度 { MPa で表す } との関 係を確認し、 図 20は熱影響部 (母材) の靱性を確認するためのもの である。
図 14は、 接合部破断強度に与えるイ ンサー 卜 メ タル中の Vの濃度 の影響を表している。 V濃度が原子%で 0.1%未満の場合には被接 合材合金表面の酸化皮膜を十分に無害化できないために、 接合部破 断強度が低いが、 原子%で 0.1〜20.0%の範囲では接合部破断強度 が母材 (被接合材) 並みあるいは母材以上となっており、 Vが効果 的に作用 して酸化皮膜を無害化している。 しかし Vが原子%で 20.0 %を超えるとィ ンサ一 トメ タルの融点が上昇するために接合時間が 不足して接合部破断強度が低下する。
図 15は同様に P と接合部破断強度の関係を示した図である。 が 1.0%未満および 20.0%超の場合では接合部破断強度が低く 、 1.0 〜20.0%の場合に目標の接合部破断強度が得られる。
図 16は B と接合部破断強度の関係を示した図である。 Bが 1.0% 未満の場合にはィ ンサー トメ タルの融点が高いために、 20.0%超の 場合には接合界面近傍に生成する硼化物のために接合部破断強度が 低下する。 1.0〜 20.0%の場合に目標の接合部破断強度が得られる 図 17は同様に Siと接合部破断強度の関係を示した図である。 Siが 1.0%未満および 10.0%超の場合では接合部破断強度が低く 、 1.0 〜 10.0%の場合に目標の接合部破断強度が得られる。
図 18はィ ンサー トメ タルの厚みと接合部破断強度との関係を示し た図である。 厚みが 200 ^ m以上では接合部破断強度が不十分であ る こ とが明らかである。
図 19は拡散元素と して P と Bを併用 した場合の接合部引張破断強 度(MPa) と接合時間の関係を示した図である。
- 接合時間は拡散元素と して Bを単独で用いた場合並に短時間にす るこ とができ、 P単独で用いた場合に比し、 接合時間を大幅に短縮 するこ とができる。
図 20は P と Bを併用 した場合の被接合部の熱影響による靱性の評 価結果を示した図である。
接合温度が Pによ って 1050°C以下になるため、 被接合材 (母材) に対する熱影響を小さ く して、 母材の靱性を高め、 結果と して接合 部の破断強度を高められる。
なお、 こ こでの靱性は、 接合済みの丸鋼試験片から J1S4号シャル ピー衝撃試験片を採取し、 この試験片について衝撃試験を実施し、 母材 (STK400) の熱影響部の結晶粒の粗大化を評価して得られたも のであり、 籾性の閾値については、 一般構造材に要求される場合の 多い 50Jを評価基準値と して選んだ。
表 10は本発明合金箔に対する比較合金箔の化学成分組成と、 得ら れた接合部引張破断強度を示したものである。
表 10に示すよう に、 比較合金箔 No.200は P含有量が不足したため に融点が 1300°Cを超え、 結果と して破断強度が著し く 低く なつた例 、 No.201は P含有量が高く 、 接合部近傍に粗大な金属化合物が生成 して接合部破断強度が低下した例である。
No.202は B量が不足して融点が 1300°C以上になり液相拡散も不十 分であり、 結果と して接合部破断強度が著し く 低く なつた例、 No.2 03は B量が過多となって接合時に粗大な硼化物が生成して接合部破 断強度が低下した例である。
No.204は Si量が不足して融点が 1300DC以上になり、 結果と して接 合部破断強度が著し く低く なつた例、 No.205は Si量が過多となって 接合時に粗大 SiO 系の酸化物が生成して接合部破断強度が低下した 例である。
- No.206は V量が不足して被接合材合金表面に生成した酸化皮膜が 十分に無害化されず接合部破断強度が低く なつた例、 No.207は V量 が過多となって融点が極めて高く なり、 液相拡散接合が十分に行わ れず接合部破断強度が低く なつた例である。
No. 208は C rを多量に含有しているため、 融点が著し く 高く なつて 、 液相拡散接合が十分に行われず接合部破断強度が低く なつた例、 No. 209は N iを多 く 含有しているため、 Fe相中に Nけ目が介在して組織 不均一を生じて靱性を低下させ、 接合部破断強度が低く なった例で ある。
No. 210は Co量が過多となり、 粗大な金属間化合物が生成して靱性 が低下し、 接合部破断強度が低く なつた例、 No. 21 1は W量が過多と なり、 粗大な金属間化合物が生成して靱性が低下し、 接合部破断強 度が低く なつた例、 No. 212は Nb量が過多となり、 F e— Nb系の金属間 化合物が粗大析出して脆化し接合部破断強度が低く なつた例である
No. 213は T i量が過多となり、 粗大な金属間化合物の過剰生成によ り粗大な金属間化合物が生成して靱性が低下し、 接合部破断強度が 低く なつた例、 No. 214は合金箔厚みが厚過ぎて接合不十分になり接 合部破断強度が低く なつた例である。
上記のように、 本発明の要件を部分的に満足するが、 本発明のす ベての要件は満足していない比較イ ンサ一 トメ タルを用いた液相拡 散接合によっては、 目標の接合部破断強度 400MPaを達成するこ とは できなかった。
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
箔のィ 源子%) 合金泊の 接 合 薩嫩
N表o. B P Si V Cr Ni Co W Nb Ti 厚 ^m) 棚気 (Mpa)
159 •1 15.27 11.75 1.70 11.64 12.59 11.30 2.16 4.17 34 入: ¾ 556.66
152 16.27 19.37 2.24 19.48 7.36 7.29 2.81 5.11 38 大気 616.42
153 7 11.28 5.42 3.33 15.11 1.43 5.49 1.38 5.36 41 582.24
154 6.14 17.74 9.79 9.40 2.79 14.16 2.56 4.94 16 大気 562.19
155 19.97 16.06 8.30 16.33 12.54 0.24 6.62 2.65 1.90 23 631.54
156 6.18 16.70 8.17 11.91 2.94 3.99 8.16 9.99 1.38 42 672.10
157 2.32 7.15 9.33 12.31 9.61 7.61 2.74 0.64 2.79 62 大気 565.70
158 4.75 19.41 2.30 3.29 1.00 12.44 2.07 52 大気 487.18
159 19.22 8.75 8.26 12.57 6.13 2.99 4.66 92 Am 559.48
160 11.21 17.07 1.92 4.23 11.83 0.77 9.10 18 562.16
161 3.50 11.62 5.77 16.84 8.68 1.81 0.10 66 534.91
162 18.82 4.60 9.62 11.18 15.03 1.58 1.37 52 大気 515.50
163 14.31 13.28 5.26 5.64 5.45 10.98 2.72 11 大 497.26
164 17.19 8.66 2.81 13.17 19.25 7.57 9.84 86 594.57
165 18.17 7.77 5.63 10.33 7.02 9.92 2.42 84 521.02
166 14.36 2.01 8.75 8.79 16.69 2.29 1.44 74 495.45
167 7.75 7.06 1.03 12.42 9.85 10.65 8.09 2.83 59 < 612.81
168 6.77 12.98 1.66 11.18 3.08 5.32 5.44 4.35 41 大気 590.72
169 18.80 3.71 5.62 3.40 7.11 0.80 2.37 2.35 27 大気 507.22
170 9.44 7.76 9.71 5.26 0.44 14.95 9.83 7.64 35 大気 606.21
I7l 18.79 4.53 9.71 2.40 18.21 0.77 4.40 7.06 97 大気 549.28
172 4.99 15.81 1.00 11.48 0.99 12.99 6.21 8.57 98 大気 619.38
173 8.09 2.04 5.56 6.50 18.75 2.36 0.19 7.46 14 大気 544.05
174 16.07 7.61 2.28 19.20 15.71 12.72 1.85 4.41 46 大気 599.73
175 10.91 17.52 5.45 8.90 3.98 13.89 9.27 3.66 68 大気 616.54
Figure imgf000065_0001
Figure imgf000066_0001
第 3発明によれば、 拡散元素と して P と Bを併用 しており、 各種 の F e基材料 (厚鋼板、 鋼管、 条鋼、 棒鋼等) を接合対象と して、 酸 化雰囲気中で液相拡散接合を高温で実施しても、 被接合材 (母材) に対して熱影響が小さ く 破断強度の高い接合部を短時間で確保する こ とを可能にする ものであり、 液相拡散接合の特長を、 F e基材料の 接合にも有効に生かすこ とができ、 溶接による接合の場合に比し、 接合施工のェ期を大幅に短縮するこ とが可能になった。 産業上の利用可能性
本発明は、 拡散元素と して P と Bを併用 しており、 各種の F e基材 料 (厚鋼板、 鋼管、 条鋼、 棒鋼等) を接合対象と して、 酸化雰囲気 中で液相拡散接合を高温で実施しても、 被接合材 (母材) に対して 熱影響が小さ く かつノも し く は破断強度の高い接合部を、 短時間で 確保するこ とを可能にする ものであり、 液相拡散接合の特長を、 F e 基材料の接合にも有効に生かすこ とができ、 溶接による接合の場合 に比し、 接合施工のェ期を大幅に短縮することが可能になる。

Claims

1 . 原子%で、
P : 1.0〜20.0%
Si : 1.0〜20.0%、
V : 0.1〜20.0%、
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さ力く 3.0〜100 m求であるこ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散の接合用 Fe基合金箔。
2. 原子%で、
P 1.0〜20.0%、
Si 1.0〜20.0%、
V 0.卜 20.0%
を含有し、
Cr : 0.卜 20.0%、
Ni : 0.1〜15.0%、
Co : 0.1-15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜100 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
3 . 原子%で、
P : 1.0〜20.0%、
Si : 1.0〜20.0%、
V : 0.1〜20.0%
を含有し、
W : 0.1〜 10.0%、 Nb: 0.卜 10.0%、
Ti : 0.ト 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜100 mである こ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
4 . 原子%で、
P 1.0〜20.0%、
Si 1.0-20.0%、
V 0.1〜20.0%
を含有し、
Cr 0.ト 20.0%、
Ni 0.1-15.0%、
Co 0.1〜15.0%
の一種または二種以上を含有し、 さ らに
W : 0.1〜10.0%
Nb : 0.1〜 10.0%、
Ti : 0.卜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜100 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 口 泊 ο
5. 組織の構造が実質的に非晶質であるこ とを特徴とする請求項 1 〜 4 のいずれかに記載の酸化雰囲気中で接合可能な Fe基材料の液 相拡散接合用 Fe基合金箔。
-
6. 原子%で、
B 1.0-20.0%、 Si 1.0 20· 0%
V 0.卜 20.0%
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さが 3.0 100 〃 mである こ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔。
7 . 原子%で、
B 1.0 20· 0%
Si 1.0 20· 0%
V 0.卜 20.0%
を含有し、
Cr 0. 20.0%
Ni 0.1 15.0%、
Co 0.卜 15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0 100 // mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
8 . 原子%で、
B 1.0-20.0%
Si 1.0 20.0%
V 0.1 20.0%
を含有し、
W 0.卜 10.0%
Nb 0.卜 10.0%
Ti 0.1 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0 100 〃 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
9. 原子%で、
B 1.0〜20.0%、
Si 1.0〜20.0%、
V 0.卜 20.0%
を含有し、
Cr 0.1〜20.0%、
Ni 0.卜 15.0%、
Co 0.卜 15.0%
の一種または二種以上を含有し、 さ らに
W 0.1〜10.0%
Nb 0.1〜10.0%
T1 : 0.1〜10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さが 3.0〜100 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
10. 組織の構造が実質的に非晶質であるこ とを特徴とする請求項 6 〜 9 のいずれかに記載の酸化雰囲気中で接合可能な Fe基材料の液 相拡散接合用 Fe基合金箔。
11. 原子%で、
P 1.0〜20.0%、
Si 1.0〜 10.0%、
V 0.1〜20.0%、
B 1.0〜20.0%
を含有し、 残部は実質的に Feおよび不可避の不純物からなる組成を 有し、 厚さ力く 3.0〜200 〃 mである こ とを特徴とする酸化雰囲気中 で接合可能な Fe基材料の液相拡散接合用 Fe基合金箔。
12. 原子%で、
P 1.0〜20.0%
Si 1.0〜10.0%
V 0.卜 20.0%
B 1.0〜20.0%
を含有し、
Cr : 0.卜 20.0%、
Ni : 0.卜 15.0%、
Co : 0.卜 15.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜200 ; u mであるこ とを特 徵とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
13. 原子%で、
P 1.0-20.0%、
Si 1.0〜10· 0%、
V 0.卜 20.0%、
B 1.0〜20.0%
を含有し
W 0.1〜10.0%
Nb 0.卜 10.0%
Ti 0.1〜10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力く 3.0〜200 /z mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
14. 原子%で、
P 1.0〜20.0%
Si 1.0〜 10.0%
V 0.卜 20.0%
B 1.0〜20.0%
を含有し、
Cr 0.1〜20.0%、
Ni 0.1〜15.0%、
Co 0.1-15.0%
の一種または二種以上を含有し、 さ らに
W : 0.1〜 10.0%、
Nb : 0.ト 10.0%、
Ti : 0.卜 10.0%
の一種または二種以上を含有し、 残部は実質的に Feおよび不可避の 不純物からなる組成を有し、 厚さ力 < 3.0〜200 mであるこ とを特 徴とする酸化雰囲気中で接合可能な Fe基材料の液相拡散接合用 Fe基 合金箔。
15. 組織の構造が実質的に非晶質であるこ とを特徴とする請求項 11〜 14のいずれかに記載の酸化雰囲気中で接合可能な Fe基材料の液 相拡散接合用 Fe基合金箔。
PCT/JP1997/001900 1996-06-04 1997-06-04 Films en alliage de fer pour liaison par diffusion en phase liquide d'un materiau ferreux susceptible de se lier sous atmosphere oxydante WO1997046347A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/011,583 US5919577A (en) 1996-06-04 1997-06-04 Fe-based alloy foil for liquid-phase diffusion bonding of Fe-based materials by enabling bonding in oxidizing atmospheres
EP97924317A EP0854002A1 (en) 1996-06-04 1997-06-04 Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP14203896A JP3434126B2 (ja) 1996-06-04 1996-06-04 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JP16381096A JP3434128B2 (ja) 1996-06-04 1996-06-04 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JP16381196A JP3434129B2 (ja) 1996-06-04 1996-06-04 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JP8/163811 1996-06-04
JP8/163810 1996-06-04
JP8/142038 1996-06-04

Publications (1)

Publication Number Publication Date
WO1997046347A1 true WO1997046347A1 (fr) 1997-12-11

Family

ID=27318374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001900 WO1997046347A1 (fr) 1996-06-04 1997-06-04 Films en alliage de fer pour liaison par diffusion en phase liquide d'un materiau ferreux susceptible de se lier sous atmosphere oxydante

Country Status (5)

Country Link
US (1) US5919577A (ja)
EP (1) EP0854002A1 (ja)
KR (1) KR19990036151A (ja)
CN (1) CN1198116A (ja)
WO (1) WO1997046347A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107637A (en) * 1997-08-11 2000-08-22 Hitachi, Ltd. Electron beam exposure or system inspection or measurement apparatus and its method and height detection apparatus
JP2001058279A (ja) * 1999-08-23 2001-03-06 Daido Steel Co Ltd 拡管に適した炭素鋼管接合体の製造方法および拡管方法
WO2001087531A1 (fr) 2000-05-18 2001-11-22 Fukuju Industry Corporation Ltd Composant de machine de precision, en metal, soude par diffusion en phase liquide, et procede de production associe
IL138203A0 (en) * 2000-09-01 2001-10-31 A M T P Advanced Metal Product NEW AMORPHOUS Fe-BASED ALLOYS CONTAINING CHROMIUM
SE523855C2 (sv) * 2000-11-10 2004-05-25 Alfa Laval Corp Ab Järnbaserat lodmaterial för sammanfogning av elememt och lödd produkt framställd härmed
SE524928C2 (sv) * 2001-06-05 2004-10-26 Alfa Laval Corp Ab Järnbaserat lodmaterial för sammanfogning av element genom lödning samt lödd produkt framställd härmed
JP3929327B2 (ja) * 2002-03-01 2007-06-13 独立行政法人科学技術振興機構 軟磁性金属ガラス合金
JP4540392B2 (ja) * 2003-06-02 2010-09-08 新日本製鐵株式会社 金属機械部品の液相拡散接合方法
JP5008969B2 (ja) * 2006-01-31 2012-08-22 新日本製鐵株式会社 液相拡散接合用合金
US8894780B2 (en) 2006-09-13 2014-11-25 Vacuumschmelze Gmbh & Co. Kg Nickel/iron-based braze and process for brazing
SE530724C2 (sv) * 2006-11-17 2008-08-26 Alfa Laval Corp Ab Lodmaterial, förfarande för att löda med detta lodmaterial, lött föremål framställt med förfarandet samt lodpasata innefattande lodmaterialet
SE531988C2 (sv) * 2006-11-17 2009-09-22 Alfa Laval Corp Ab Lodmaterial samt förfarande för lödning med detta material
DE102007028275A1 (de) 2007-06-15 2008-12-18 Vacuumschmelze Gmbh & Co. Kg Hartlotfolie auf Eisen-Basis sowie Verfahren zum Hartlöten
EP2272619B9 (en) * 2008-04-18 2013-11-20 Fukuda Metal Foil&powder Co., Ltd. Iron-base heat- and corrosion-resistant brazing filler metals
KR101307529B1 (ko) * 2011-10-06 2013-09-12 (주)동남이엔지 디스크 결합방법 및 디스크를 결합시키는 필러
US8419869B1 (en) * 2012-01-05 2013-04-16 The Nanosteel Company, Inc. Method of producing classes of non-stainless steels with high strength and high ductility
US20130220523A1 (en) * 2012-02-29 2013-08-29 c/o Chevron Corporation Coating compositions, applications thereof, and methods of forming
US9316341B2 (en) 2012-02-29 2016-04-19 Chevron U.S.A. Inc. Coating compositions, applications thereof, and methods of forming
ES2706986T3 (es) 2012-03-28 2019-04-02 Alfa Laval Corp Ab Nuevo concepto de soldadura fuerte
CN103128463B (zh) * 2013-03-14 2015-05-27 西南石油大学 一种耐磨耐蚀铁基非晶堆焊焊条及其制备方法
US9878396B2 (en) 2013-04-09 2018-01-30 Aktiebolaget Skf Bearing component and its manufacturing method
US9555500B2 (en) * 2013-04-10 2017-01-31 Aktiebolaget Skf Method of joining two materials by diffusion welding
CN107824995B (zh) * 2017-09-12 2020-04-10 青岛理工大学 一种应用于含铝的氧化物弥散强化铁素体/马氏体钢的焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151377A (ja) * 1988-11-30 1990-06-11 Nippon Steel Corp 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JPH02151378A (ja) * 1988-11-30 1990-06-11 Nippon Steel Corp 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JPH02185940A (ja) * 1989-01-11 1990-07-20 Nippon Steel Corp 酸化雰囲気中での接合が可能な液相拡散接合用合金箔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820613B2 (ja) * 1994-03-29 1998-11-05 新日本製鐵株式会社 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔
JP2733016B2 (ja) * 1994-04-06 1998-03-30 新日本製鐵株式会社 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151377A (ja) * 1988-11-30 1990-06-11 Nippon Steel Corp 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JPH02151378A (ja) * 1988-11-30 1990-06-11 Nippon Steel Corp 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JPH02185940A (ja) * 1989-01-11 1990-07-20 Nippon Steel Corp 酸化雰囲気中での接合が可能な液相拡散接合用合金箔

Also Published As

Publication number Publication date
CN1198116A (zh) 1998-11-04
EP0854002A1 (en) 1998-07-22
KR19990036151A (ko) 1999-05-25
US5919577A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
WO1997046347A1 (fr) Films en alliage de fer pour liaison par diffusion en phase liquide d&#39;un materiau ferreux susceptible de se lier sous atmosphere oxydante
EP2196551B1 (en) Use of low-thermal-expansion nickel-based superalloy for a boiler component, according boiler component and method for its production
JP3243184B2 (ja) 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JP2820613B2 (ja) 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔
JP2733016B2 (ja) 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔
JP6197885B2 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP3699077B2 (ja) 溶接熱影響部の低温靭性に優れたクラッド鋼板用母材および該クラッド鋼板の製造方法
JPH10140296A (ja) 熱間加工性に優れるAl含有オーステナイト系ステンレス鋼
JP3434128B2 (ja) 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JP2001279391A (ja) フェライト系耐熱鋼
JP3733902B2 (ja) 低合金フェライト系耐熱鋼
WO2019049792A1 (ja) 溶接方法および接合部材
JP5070866B2 (ja) 熱延鋼板およびスポット溶接部材
JP3434126B2 (ja) 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JPH02185940A (ja) 酸化雰囲気中での接合が可能な液相拡散接合用合金箔
JP4374104B2 (ja) 超微細鋼からなる、脆性き裂伝播停止特性に優れた継手及び構造体
JPH02151377A (ja) 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JP2010100909A (ja) 抵抗スポット溶接の継手強度に優れた高耐食性フェライト系ステンレス鋼板およびその製造方法
JP3434129B2 (ja) 酸化雰囲気中で接合可能な液相拡散接合用合金箔
JPH02151378A (ja) 酸化雰囲気中で接合可能なCr含有材料の液相拡散接合用合金箔
JP2692312B2 (ja) 鉄骨建築構造用Cr‐Mo‐Nb鋼
JP2024088135A (ja) フェライト系ステンレス鋼
JP2005334887A (ja) 疲労特性に優れた溶接継手
JPH09206961A (ja) 圧延型チタンクラッド鋼板の製造方法
JP2005279748A (ja) 接合用の鉄基非晶質合金箔

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190924.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09011583

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980700819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997924317

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997924317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700819

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980700819

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997924317

Country of ref document: EP