WO1997044658A1 - Mikrobieller sensor zur bestimmung des biochemischen sauerstoffbedarfs - Google Patents

Mikrobieller sensor zur bestimmung des biochemischen sauerstoffbedarfs Download PDF

Info

Publication number
WO1997044658A1
WO1997044658A1 PCT/DE1997/001058 DE9701058W WO9744658A1 WO 1997044658 A1 WO1997044658 A1 WO 1997044658A1 DE 9701058 W DE9701058 W DE 9701058W WO 9744658 A1 WO9744658 A1 WO 9744658A1
Authority
WO
WIPO (PCT)
Prior art keywords
bod
determining
arxula
oxygen demand
biochemical oxygen
Prior art date
Application number
PCT/DE1997/001058
Other languages
English (en)
French (fr)
Inventor
Gotthard Kunze
Matthias Lehmann
Klaus Riedel
Klaus Adler
Original Assignee
Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Pflanzengenetik und Kulturpflanzenforschung filed Critical Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority to AU30892/97A priority Critical patent/AU3089297A/en
Publication of WO1997044658A1 publication Critical patent/WO1997044658A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms

Definitions

  • Microbial sensor for determining the biochemical oxygen demand
  • the present invention relates to a novel biosensor for the rapid determination of the biochemical oxygen demand (BOD).
  • BOD biochemical oxygen demand
  • the field of application of the invention is environmental technology.
  • the measurement of the BOD is one of the most frequently used tests to determine the degree of pollution of wastewater. For this purpose, the amount of oxygen required for the degradation of organic material is recorded in 5 days (BOD S ). However, due to its long analysis duration, the conventional BOD 5 is not suitable for the inspection and control of wastewater treatment plants. We were therefore looking for ways to replace the BSB S with faster and more precise methods. An example of this is the measurement of chemical oxygen consumption (COD).
  • COD chemical oxygen consumption
  • the COD now enables a faster determination of the wastewater pollution, but records all, including the non-biodegradable C-compounds, so that the COD can only be replaced to a limited extent.
  • Biosensors open up new possibilities for quick and precise determination of the BOD. With the help of biosensors, especially microbiological sensors, it is possible to analyze the wastewater in seconds and minutes (GB 158 629 1; DD 253 045 AI; DD 275 379 A3).
  • the BOD values determined with microbiological sensors are not absolutely identical to the BOD S values, since the biosensor contains a defined microbiological species, while the BOD ⁇ is obtained with organic sludge from the respective sewage treatment plant.
  • the use of bio-sludge in bio-sensors is not possible because such sensors are not stable.
  • defined microorganism species are used with a wide range of substrates, such as. B. Trichosporon cutaneum (HIKUMA, M. Et al. Europ.J.Appl.Microbio1. Biotechnol. 8, 289-297 (1979), Klebsiella (EP 0 543 407 AI) and combinations of microorganisms which are complementary in their performance Species (D 43 14 981).
  • the present invention has now set itself the task of developing a microbiological biosensor that has an analytical detection range that comes close to the BOD S. This object is achieved according to claims 1-5.
  • the Arxula genus is particularly suitable for microbiological BOD sensors due to its broad substrate spectrum, its large temperature stability and salt tolerance, and was therefore used for the first time according to the invention for this task.
  • the type Arxula adeninlvorans is preferred, the strain LS3 being particularly preferred.
  • the measurement is carried out at a temperature of 15 ° C.-50 ° C., and the measuring liquid can contain up to 10% salt, in particular common salt.
  • Example 1 The invention is explained below using representative examples. From these examples it can be seen that the microbiological BOD sensors are particularly suitable due to their broad substrate spectrum as well as the high temperature stability and salt tolerance.
  • Example 1 the microbiological BOD sensors are particularly suitable due to their broad substrate spectrum as well as the high temperature stability and salt tolerance.
  • Arxula adeninivorans is cultivated in the usual way (medium: 0.5% yeast extract; 0.5% peptone, 1.0% glucose), centrifuged out of the culture solution, resuspended and after mixing with polyvinyl alcohol (final concentration 2.5%) dropped onto a capillary pore membrane RoTrac (Oxyphen GmbH Dresden) for immobilization.
  • the loading is 5 mg dry weight / cm 2 .
  • This membrane coated with the microorganisms is placed on a Teflon membrane of a dissolved oxygen electrode.
  • the biosensor is finally brought into a measuring chamber which is filled with pH 6.8 buffer (2 ml) and stirred. This measuring chamber is tempered to 37 ° C.
  • the individual samples are dosed into the measuring cell with a dose of 100 ⁇ l each.
  • Table 1 demonstrates the substrate specificity of the Arxula sensor
  • Tab. 1 SensorBSB values of pure substrates determined with a microbial sensor that contains Arxula adeninivorans LS3.
  • Substrate dosage 100 ⁇ l
  • Substrate concentration corresponds to a BOD S value of 275 mg / 1
  • Table 2 shows the SensorBSB values of different wastewater compared to the BOD S.
  • An arxula adeninivorans sensor is prepared as described in Example 1. The measurements are carried out in a buffer with 10% salt. Table 3 shows the corresponding measurement results.
  • Tab. 3 Sensor values of pure substrates determined with a microbial sensor that contains Arxula adeninivorans LS3 in 10% saline solutions.
  • Substrate dosage 100 ⁇ l
  • Substrate concentration corresponds to a BOD S value of 275 mg / 1 Serial no.
  • Substrate concentration corresponds to a BOD S value of 275 mg / 1

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft einen neuartigen Biosensor zur Bestimmung des biochemischen Sauerstoffbedarfs. Die Aufgabe der Erfindung besteht darin, einen mikrobiologischen Biosensor zu entwickeln, der eine große analytische Erfassungsbreite aufweist. Diese Aufgabe wird mit einem physikalischen Transducer und auf diesem immobilisierten Mikroorganismen der Hefegattung Arxula gelöst. Bevorzugt ist die Art Arxula adeninivorans, besonders bevorzugt der Stamm Arxula adeninivorans LS3.

Description

Mikrobieller Sensor zur Bestimmung des biochemischen Sauerstoffbedarfs
Beschreibung
Die vorliegende Erfindung betrifft einen neuartigen Biosensor zur Schnellbestimmung des biochemischen Sauerstoffbedarfs (BSB). Anwendungsgebiet der Erfindung ist die Umwelttechnik.
Die Messung des BSB ist einer der am häufigsten benutzten Tests zur Bestimmung des Verschmutzungsgrades von Abwasser. Dazu wird die für den Abbau von organischem Material benötigte Sauerstoffmenge in 5 Tagen erfaßt (BSBS). Auf Grund seiner langen Analysendauer ist der konventionelle BSB5 zur Kontrolle und Steuerung von Abwasserreinigungsanlagen jedoch nicht geeignet. Es wurde deshalb nach Möglichkeiten gesucht, den BSBS durch schnellere und präzisere Methoden zu ersetzen. Ein Beispiel dafür ist die Messung des chemischen SauerstoffVerbrauchs (CSB) .
Der CSB ermöglicht nun eine schnellere Bestimmung der Abwasser¬ belastung, erfaßt aber alle, auch die nicht biologisch abbaubaren C-Verbindungen, so daß ein Ersatz des BSB durch den CSB nur bedingt möglich ist.
Einen entscheidenden Fortschritt brachte erst die Entwicklung von Biosensoren und deren Einsatz in der Abwasseranalytik. Biosensoren eröffnen neue Möglichkeiten zur schnellen und präzisen Bestimmung des BSB. Mit Hilfe von Biosensoren, speziell mit mikrobiologischen Sensoren ist es möglich, das Abwasser im Sekunden- und Minutenbereich zu analysieren (GB 158 629 1; DD 253 045 AI; DD 275 379 A3).
Die mit mikrobiologischen Sensoren ermittelten BSB-Werte sind allerdings nicht absolut mit den BSBS-Werten identisch, da der Biosensor eine definierte mikrobiologische Species enthält, während der BSBβ mit Bioschlamm der jeweiligen Kläranlage gewonnen wird. Der Einsatz von Bioschlamm in Biosensoren ist nicht möglich, da derartige Sensoren nicht stabil sind. Aus diesem Grunde werden definierte Mikroorganismenspezies mit einem breiten Substratspektrum eingesetzt, wie z. B. Trichospo- ron cutaneum (HIKUMA,M. et al. Europ.J.Appl.Microbio1. Biotechnol. 8, 289-297 (1979), Klebsiella (EP 0 543 407 AI) und Kombinationen aus sich in ihrem Leistungsvermögen ergänzender Mikroorganismen-Arten (D 43 14 981).
Jedoch sind auch derartige Sensoren in ihrem Substratspektrum begrenzt.
Die vorliegende Erfindung hat sich nunmehr die Aufgabe gestellt, einen mikrobiologischen Biosensor zu entwickeln, der eine analytische Erfassungsbreite aufweist, die dem BSBS nahe kommt. Diese Aufgabe wird gemäß den Ansprüchen 1 - 5 gelöst.
Die Gattung Arxula ist besonders auf Grund ihres breiten Substratspektrums, sowie ihrer großen Temperaturstabil!tat und Salztoleranz für mikrobiologische BSB-Sensoren geeignet und wurde deshalb erstmalig erfindungsgemäß für diese Aufgabenstellung eingesetzt. Bevorzugt ist die Art Arxula adeninlvorans , besonders bevorzugt der Stamm LS3. Die Messung wird bei einer Temperatur von 15°C - 50'C durchgeführt, wobei die Meßflüssigkeit bis zu 10% Salz, insbesondere Kochsalz, enthalten kann.
Nachfolgend wird die Erfindung an repräsentativen Beispielen erläutert. Aus diesen Beispielen geht hervor, daß die mikrobiologischen BSB-Sensoren auf Grund ihres breiten Substratspektrums sowie der großen Temperaturstabilität und Salztoleranz besonder geeignet sind. Beispiel 1:
Arxula adeninivorans wird in der üblichen Art und Weise kultiviert (Medium: 0,5 % Hefeextrakt; 0,5 % Pepton, 1,0 % Glukose), aus der Kulturlösung abzentrifugiert, resuspendiert und nach Mischung mit Polyvinylalkohol (Endkonzentration 2,5%) zur Immobilisierung auf eine Kapillarporenmembran RoTrac (Oxyphen GmbH Dresden) getropft. Die Beladung beträgt 5 mg Trockengewicht/cm2. Diese mit den Mikroorganismen beschichtete Membran wird auf eine Teflonmembran einer Gelöstsauerstoffelektrode plaziert. Der Biosensor wird schlie߬ lich in eine Meßkammer, die mit Puffer pH 6,8 gefüllt (2 ml) und gerührt wird, gebracht. Diese Meßkammer wird auf 37°C temperiert. Die einzelnen Proben werden mit einer Dosis von je 100 μl in die Meßzelle dosiert.
Tabelle 1 demonstriert die Substratspezifität des Arxula- Sensors
Tab.l: SensorBSB-Werte reiner Substrate bestimmt mit einem mikrobiellen Sensor, der Arxula adeninivorans LS3 enthält.
Puffer: 0,01 M Phosphatpuffer pH 6,8
Meßzeit: l min
Substratdosierung: 100 μl
Kalibrierung: Glukose 275 mg/1 BSB
Substratkonzentration: entspricht einem BSBS-Wert von 275 mg/1
Lfd.Nr. Substrat Signal SensorBSB [nA/min] [mg/1 BSB]
1 Glukose 340 275
2 Fruktose 163 132
3 Galaktose 289 234
4 Ribose 5 4
5 Xylose 148 120
6 Sorbitol 0 0 7 Saccharose 77 62
8 Laktose 27 22
9 Maltose 73 59
10 Glukosamin 62 50
11 Zitronensäure 12 10
12 Azetat 1375 1112
13 Methanol 0 0
14 Äthanol 1590 1286
15 Glycerin 36 29
16 Alanin 492 398
17 Glycin 620 501
18 Glutaminsäure 59 48
19 Lysin 274 222
20 Methionin 250 202
21 Tryptophan 61 49
22 Pepton 215 174
23 Buttersre. Na 298 241
24 Capronsre. Na 1120 906
25 Caprylsre. Na 1810 1464
26 Caprinsre. Na 1318 1066
27 Laurinsre. Na 198 160
28 Propionsre. 252 204
29 Ölsre. Gemisch 10 8
30 Phenol 0 0
31 Benzoat 8 6
In Tabelle 2 sind die SensorBSB-Werte verschiedener Abwässer im Vergleich zum BSBS wiedergegeben.
Tab.2: Vergleich von SensorBSB-Werten verschiedener Abwasserproben, ermittelt mit einem Arxula-Sensor, mit den dazugehörigen BSBS -Werten. Abwasser BSBB SensorBSB [mg/1] [mg/1]
Zulauf MW11 180 167 MW13 112 110 MW14 53 46 MW17 108 124 MW18 153 119 MW21 114 172 MW22 166 172 MW23 169 178
Ablauf MW12 3 3 MW15 0,5 5 MW16 1 3 MW19 0 1 MW20 0 1 MW24 4 3
Beispiel 2:
Ein Arxula adeninivorans-Sensor wird, wie im Beispiel l beschrieben, präpariert. Die Messungen werden in einem Puffer mit 10% Salz durchgeführt. Tabelle 3 gibt die entsprechenden Meβergebnisse wieder.
Tab.3: Sensor-Werte reiner Substrate bestimmt mit einem mikrobiellen Sensor, der Arxula adeninivorans LS3 enthält, in 10%igen Salzlösungen.
Puffer: 0,01 M Phosphatpuffer pH 6,8, 10% Salz
Meßzeit: 1 min
Substratdosierung: 100 μl
Kalibrierung: Glukose 275 mg/1 BSB
Substratkonzentration: entspricht einem BSBS-Wert von 275 mg/1 Lfd.Nr. Substrat Signal SensorBSB [nA/min] [mg/1 BSB]
1 Glukose 152 275
2 Fruktose 13 24
3 Galaktose 89 161
4 Ribose 8 14
5 Xylose 103 186
6 Sorbitol 0 0
7 Saccharose 24 43
8 Laktose 11 20
9 Maltose 15 27
10 Stärke 167 302
11 Glukosamin 29 52
12 Zitronensäure 0 0
13 Azetat 165 299
14 Methanol 0 0
15 Äthanol 1060 1918
16 Glycerin 15 27
17 Alanin 52 94
18 Glycin 51 92
19 Glutaminsäure 33 60
20 Lysin 60 109
21 Methionin 195 353
22 Tryptophan 21 38
23 Pepton 47 85
24 Oleic acid 0
25 Stearic acid 0 0
26 ölsre. Gemisch 8 14
27 Phenol 0 0
28 Benzoat 8 14 Beispiel 3:
Ein Arxula adeninivorans-Sensor wird wie im Beispiel 1 beschrieben präpariert. Die Meßergebnisse der bei 47°C durchgeführten Messungen sind in Tabelle 4 dargestellt.
Tab.4: SensorBSB-Werte reiner Substanzen bestimmt mit einem Arxula adeninivorans LS3 enthaltenen Biosensor bei 47°C und 10 % Salz.
Meßzeit: 1 min
Puffer: 0,01 M Phosphatpuffer mit 10 % Salz
Substratdosierung: lOOμl
Kalibrierung: Glukose 275 mg/1 BSB
Substratkonzentration: entspricht einem BSBS-Wert von 275 mg/1
Lfd.Nr. Substrat Signal SensorBSB
[nA/min] [mg/1 BSB]
1 Glukose 815 275
2 Fruktose 82 28
3 Galaktose 214 72
4 Ribose 89 4 - 30
5 Xylose 373 126
6 Sorbitol 0 0
7 Saccharose 80 27
8 Laktose 0 0
9 Maltose 0 0
10 Stärke 840 283
11 Zitronensäure 0 0
12 Azetat 383 129
13 Methanol 0 0
14 Äthanol 640 216
15 Glycerin 32 11
16 Alanin 464 157
17 Glycin 312 105
18 Glutaminsäure 0 0 Lysin 45 15
Methionin 298 101
Tryptophan 88 30
Pepton 208 70
Oleic acid
Stearic acid 22 7
Ölsre. Gemisch 0 0
Phenol 0 0
Benzoat 0 0

Claims

Patentansprüche
1. Vorrichtung zur Bestimmung des biochemischen Sauerstoffbedarfs (BSB) mit einem physikalischen Transducer und auf diesem immobilisierten Mikroorganismen, gekennzeichnet dadurch, daß diese Mikroorganismen der Hefegattung Arxula angehören.
2. Vorrichtung zur Bestimmung des BSB nach Anspruch 1, gekenn¬ zeichnet dadurch, daß diese Mikroorganismen der Art Arxula ade¬ ninivorans angehören.
3. Vorrichtung zur Bestimmung des BSB nach Anspruch 2, gekenn¬ zeichnet dadurch, daß diese Mikroorganismen der Stamm Arxula adeninivorans LS3 sind.
4. Verfahren zur Bestimmung des BSB mit der Vorrichtung nach Ansprüchen 1 - 3, gekennzeichnet dadurch, daß die Meßflüssigkeit bis 10 % Salz, insbesondere Kochsalz enthält, oder die Messung in einer Lösung mit einer Salzkonzentration zwischen 0 - 10 % stattfindet.
5. Verfahren zur Bestimmung des BSB mit der Vorrichtung nach Ansprüchen 1 - 3 und Anspruch 4, gekennzeichnet dadurch, daß die Messung bei einer Temperatur zwischen 15°C und 50°C durchgeführt wird.
PCT/DE1997/001058 1996-05-21 1997-05-20 Mikrobieller sensor zur bestimmung des biochemischen sauerstoffbedarfs WO1997044658A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU30892/97A AU3089297A (en) 1996-05-21 1997-05-20 Microbial sensor for determining the biochemical oxygen demand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996120250 DE19620250B4 (de) 1996-05-21 1996-05-21 Mikrobieller Sensor zur Bestimmung des biochemischen Sauerstoffbedarfs
DE19620250.7 1996-05-21

Publications (1)

Publication Number Publication Date
WO1997044658A1 true WO1997044658A1 (de) 1997-11-27

Family

ID=7794786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001058 WO1997044658A1 (de) 1996-05-21 1997-05-20 Mikrobieller sensor zur bestimmung des biochemischen sauerstoffbedarfs

Country Status (3)

Country Link
AU (1) AU3089297A (de)
DE (1) DE19620250B4 (de)
WO (1) WO1997044658A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034578B4 (de) * 1999-07-15 2009-08-27 Institut für Pflanzengenetik und Kulturpflanzenforschung Biosensoren, Verfahren zu ihrer Herstellung und ihre Verwendung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543407A1 (de) * 1991-11-22 1993-05-26 Nakano Vinegar Co., Ltd. Biochemischer Sauerstoffbedarfanalysator, Verfahren zur Analyse, Mikroorganismen zur Verwendung in Analyse
DE4301087A1 (de) * 1993-01-16 1994-07-21 Lange Gmbh Dr Bruno Vorrichtung zur Bestimmung des biochemischen Sauerstoffbedarfs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543407A1 (de) * 1991-11-22 1993-05-26 Nakano Vinegar Co., Ltd. Biochemischer Sauerstoffbedarfanalysator, Verfahren zur Analyse, Mikroorganismen zur Verwendung in Analyse
DE4301087A1 (de) * 1993-01-16 1994-07-21 Lange Gmbh Dr Bruno Vorrichtung zur Bestimmung des biochemischen Sauerstoffbedarfs

Also Published As

Publication number Publication date
DE19620250A1 (de) 1997-11-27
DE19620250B4 (de) 2006-03-09
AU3089297A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
US5177012A (en) Biosensor containing immobilized Zymomonas mobilis cells for measuring glucose, fructose and sucrose
Chan et al. Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly (carbamoyl) sulfonate (PCS) part I: construction and characterization of the microbial sensor
DE4301087C2 (de) Vorrichtung zur Bestimmung des biochemischen Sauerstoffbedarfs
Sangeetha et al. Torulopsis candida based sensor for the estimation of biochemical oxygen demand and its evaluation
Ohki et al. A BOD sensor using Klebsiella oxytoca AS1
WO1997044658A1 (de) Mikrobieller sensor zur bestimmung des biochemischen sauerstoffbedarfs
DE19736261A1 (de) Verfahren und Vorrichtung zur Erfassung der toxischen und mutagenen Wirkung von Chemikalien und Substanzgemischen
DE2926167A1 (de) Molekuelselektiver sensor und herstellung desselben
DE19728663C1 (de) Reagentienlose Biosensorsysteme zur Formaldehydbestimmung
Leung et al. Concerning the presence and formation of ascorbic acid in yeasts
DD253045A1 (de) Verfahren zur sofortbestimmung des "biochemischen sauerstoffbedarfs (bsb)
DE4218937C2 (de) Verfahren und Vorrichtung zur Bestimmung der Formaldehydkonzentration in wässrigen Medien
DE4314981C2 (de) Vorrichtung und Verfahren zur Schnellbestimmung des biochemischen Sauerstoffbedarfs (BSB)
DE10034578B4 (de) Biosensoren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2305232C3 (de) Verfahren zur Herstellung eines zell- und cholesterinfreien Enzympräparates mit Cholesterindehydrogenase-Aktivität und seine Verwendung zur Bestimmung von Cholesterin im Serum
Princz et al. BOD measurement of non-toxic wastewaters with an improved microbial probe
DE19710287B4 (de) Mikrobiologischer Biosensor, Verfahren zu seiner Herstellung und seine Verwendung
SU1656454A1 (ru) Способ определени токсичности водорастворимых веществ
DE2653047C2 (de) Herstellung eines Testsystems zum Nachweis gramnegativer Bakterien
DD225715A1 (de) Verfahren zur bestimmung von ammoniumionen mittels mikrobiologischer sensoren
DE19619056C2 (de) Verfahren und Sensor zur enzymatisch-elektrochemischen Bestimmung von Substraten NAD·+·- und NAD(P)·+·-abhängiger Dehydrogenasen
Teixeira et al. Composition and activity of a denitrifying biofilm along an anoxic rbc reactor
CH645669A5 (de) Verfahren zur gewinnung von maltose-phosphorylase und beta-phosphoglucose-mutase und verwendung derselben.
EP0476549A1 (de) Verfahren und Anordnung zur enzymatischen Bestimmung von Aspartam und dafür geeigneter Zellextrakt
DD275379A3 (de) Mikrobiologisches senseorsystem zur bestimmung des biochemischen sauerstoffbedarfs (bsb)von komplex zusammengesetzten, hoehermolekulare verbindungen enthaltenen medien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97541400

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA