WO1997044431A1 - Detergent composition - Google Patents

Detergent composition Download PDF

Info

Publication number
WO1997044431A1
WO1997044431A1 PCT/US1997/008315 US9708315W WO9744431A1 WO 1997044431 A1 WO1997044431 A1 WO 1997044431A1 US 9708315 W US9708315 W US 9708315W WO 9744431 A1 WO9744431 A1 WO 9744431A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqa
bis
surfactant
die
compositions
Prior art date
Application number
PCT/US1997/008315
Other languages
English (en)
French (fr)
Inventor
Kaori Asano
Jeffrey John Scheibel
Kaori Minamikawa
Laura Cron
Jean-Luc Bettiol
Thomas Anthony Cripe
John Downing Curry
Kevin Lee Kott
Ian Martin Dodd
Richard Timothy Hartshorn
Christiaan Arthur Jacques Kamiel Thoen
Rinko Katsuda
Frank Andrej Kvietok
Mark Hsiang-Kuen Mao
Michael Alan John Moss
Susumu Murata
Peter Robert Foley
Rajan Keshav Panandiker
Kakumanu Pramod
Khizar Mohamed Khan Sarnaik
Kenneth William Willman
Sanjeev Krishnadas Manohar
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP97924742A priority Critical patent/EP0906403A1/en
Priority to BR9710444A priority patent/BR9710444A/pt
Priority to JP9542572A priority patent/JPH11511795A/ja
Priority to CA002254947A priority patent/CA2254947A1/en
Priority to BR9712542-3A priority patent/BR9712542A/pt
Priority to CA002268671A priority patent/CA2268671C/en
Priority to PCT/US1997/017817 priority patent/WO1998017760A1/en
Priority to EP97945462A priority patent/EP0934380A4/en
Priority to MA24840A priority patent/MA24381A1/fr
Priority to ARP970104795A priority patent/AR010520A1/es
Publication of WO1997044431A1 publication Critical patent/WO1997044431A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0063Photo- activating compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • C11D1/44Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines

Definitions

  • the present invention relates to a detergent bleaching composition
  • a detergent bleaching composition comprising a peroxygen bleach, a bleach activator, a non-AQA surfactant and a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant.
  • laundry detergents and other cleaning compositions presents a considerable challenge, since modern compositions are required to remove a variety of soils and stains from diverse substrates.
  • laundry detergents, hard surface cleaners, shampoos and other personal cleansing compositions, hand dishwashing detergents and detergent compositions suitable for use in automatic dishwashers all require the proper selection and combination of ingredients in order to function effectively.
  • such detergent compositions will contain one or more types of surfactants which are designed to loosen and remove different types of soils and stains. While a review of the literature would seem to indicate that a wide selection of surfactants and surfactant combinations are available to the detergent manufacturer, the reality is that many such ingredients are specialty chemicals which are not suitable in low unit cost items such as home-use laundry detergents.
  • bis-alkoxylated quaternary ammonium (bis-AQA) compounds can be used in various detergent compositions to boost detergency performance on a variety of soil and stain types, particularly the hydrophobic soil types, commonly encountered.
  • compositions containing bis- AQA surfactants, peroxygen bleach and bleach activators deliver superior cleaning and whiteness performance versus products containing any of the technologies alone. It is believed that an ion pair or other associative complex is formed with the peracid released from the activator.
  • this ion pair is carried more efficiently into the soil as a new, more hydrophobic agent, thereby enhancing bleach performance associated with the use of bleach activators such as nonanoyloxy benzene sulfonate (NOBS).
  • NOBS nonanoyloxy benzene sulfonate
  • the bis-AQA surfactants of the present invention provide substantial benefits to the formulator, over cationic surfactants previously known.
  • the bis-AQA surfactants used herein provide marked improvement in cleaning of "everyday" greasy/oily hydrophobic soils regularly encountered.
  • the bis-AQA surfactants are compatible with anionic surfactants commonly used in detergent compositions such as alkyl sulfate and alkyl benzene sulfonate; incompatability with anionic components of the detergent composition has commonly been the limiting factor in the use of cationic surfactants to date.
  • Low levels (as low as 3 ppm in the laundering liquor) of bis-AQA surfactants gives rise to the benefits described herein.
  • Bis-AQA surfactants can be formulated over a broad pH range from 5 to 12.
  • the bis-AQA surfactants can be prepared as 30% (wt.) solutions which are pumpable, and therefore easy to handle in a manufacturing plant.
  • Bis-AQA surfactants with degrees of ethoxylation above 5 are sometimes present in a liquid form and can therefore be provided as 100% neat materials.
  • the availability of bis-AQA surfactants as highly concentrated solutions provides a substantial economic advantage in transportation costs.
  • the present invention thus provides a detergent composition which delivers effective cleaning of both hydrophillic and hydrophobic everyday soils by way of a detergent composition comprising peroxygen bleach, bleach activator and a bis-AQA surfactant.
  • U.S. Patent 5,441,541, issued August 15, 1995, to A. Mehreteab and F. J. Loprest relates to anionic/cationic surfactant mixtures.
  • U.K. 2,040,990, issued 3 Sept., 1980, to A. P. Murphy, R.J.M. Smith and M. P. Brooks relates to ethoxylated cationics in laundry detergents.
  • the present invention provides a bleaching composition
  • a bleaching composition comprising or prepared by combining a peroxygen bleach, a bleach activator a non-AQA surfactant and an effective amount of a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant of the formula:
  • R 1 is a linear, branched or substituted Cg-Cjg alkyl, alkenyl, aryl, alkaryl, ether or glycityl ether moiety
  • R 2 is a C1-C3 alkyl moiety
  • R 3 and R 4 can vary independently and are selected from hydrogen, methyl and ethyl
  • X is an anion
  • a and A' can vary independently and are each C1-C4 alkoxy
  • p and q can vary independantly and are integers in the range of from 1 to 30.
  • the detergent compositions herein comprise a peroxygen bleach.
  • Preferred peroxygen bleach suitable for use in the present invention contain a hydrogen peroxide source. Although the peroxygen bleach itself has some bleaching capability, a superior bleach exists in the peracid formed as a product of the reaction between the hydrogen peroxide and a bleach activator.
  • Preferred peroxygen bleaches are perhydrate bleaches.
  • the perhydrate bleach is normally incorporated in the form of the perhydrate salt, especially the sodium salt, at a level of from 1 % to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • suitable perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the preferred perhydrate salts are normally the alkali metal salts.
  • the perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Sodium perborate can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
  • Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates for inclusion in compositions in accordance with the invention.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
  • Sodium percarbonate, being a hydrogen peroxide addition compound tends on dissolution to release the hydrogen peroxide quite rapidly which can increase the tendency for localised high bleach concentrations to arise.
  • the percarbonate is most preferably incorporated into such compositions in a coated form which provides in-product stability.
  • a suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate.
  • Such coatings together with coating processes have previously been described in GB-1, 466,799, granted to Interox on 9th March 1977.
  • the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to 1 : 4, more preferably from 1 : 99 to 1 : 9, and most preferably from 1 : 49 to 1 :
  • the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2SO4.n.Na2CO3 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
  • coatings which contain silicate (alone or with borate salts or boric acids or other inorganics), waxes, oils, fatty soaps can also be used advantageously within the present invention.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from 500 micrometers to 1,000 micrometers, not more than 10% by weight of said particles being smaller than 200 micrometers and not more thanl0% by weight of said particles being larger than 1,250 micrometers.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • a bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof.
  • Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November
  • Mixtures of bleaching agents can also be used.
  • the second essential component of the composition of the present invention is a bleach activator.
  • Bleach activators are typically present at levels of from 0.1 % to 60%, more typically from 0.5% to 40% of the bleaching composition comprising the bleaching agent- plus-bleach activator.
  • Peroxygen bleaching agents, the perborates, etc. are combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid or peracid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • R* is an alkyl group containing from 6 to 12 carbon atoms
  • R 2 is an alkylene containing from 1 to 6 carbon atoms
  • R ⁇ is H or alkyl, aryl, or alkaryl containing from 1 to 10 carbon atoms
  • L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate (NACA-OBS), (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, inco ⁇ orated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5- trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perbor
  • R 1 is a linear, branched or substituted alkyl, alkenyl, aryl, alkaryl, ether or glycityl ether moiety containing from 8 to 18 carbon atoms, preferably 8 to 16 carbon atoms, most preferably from 8 to 14 carbon atoms;
  • R 2 is an alkyl group containing from 1 to 3 carbon atoms, preferably methyl;
  • R 3 and R ⁇ can vary independently and are selected from the group consisiting of hydrogen (preferred), methyl and ethyl;
  • X" is an anion such as chloride, bromide, methyl sulfate, sulfate, sufficient to provide electrical neutrality.
  • a and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, propoxy, butoxy and mixtures thereof; p is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferably 1 to 4 and q is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferably 1 to 4. Most preferably both p and q are 1.
  • the Cg- C12 bis- AQA surfactants may be preferred by some formulators.
  • the levels of the bis-AQA surfactants used to prepare finished laundry detergent compositions can range from 0.1 % to 5 % , typically from 0.45 % to 2.5 % , by weight.
  • the weight ratio of bis- AQA to percarbonate bleach is in the range of from 1:100 to 5:1, preferably from 1 :60 to 2:1, most preferably from 1: 20 to 1:1.
  • the present invention employs an "effective amount" of the bis-AQA surfactants to improve the performance of cleaning compositions which contain other optional ingredients.
  • an “effective amount” of the bis-AQA surfactants herein is meant an amount which is sufficient to improve, either directionally or significantly at the 90% confidence level, the performance of the cleaning composition against at least some of the target soils and stains.
  • the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such stains.
  • the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such soil.
  • the bis-AQA surfactants may be used in combination with other detersive surfactants at levels which are effective for achieving at least a directional improvement in cleaning performance.
  • usage levels can vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water and the type of washing machine.
  • a wash cycle of 10 to 14 minutes and a wash water temperature of 10°C to 50°C it is preferred to include from 2 ppm to 50 ppm, preferably from 5 ppm to 25 ppm, of the bis-AQA surfactant in the wash liquor.
  • this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.1 % to 3.2 % , preferably 0.3% to 1.5%, for a heavy-duty liquid laundry detergent.
  • a wash cycle of 10 to 60 minutes and a wash water temperature of 30°C to 95°C it is preferred to include from 13 ppm to 900 ppm, preferably from 16 ppm to 390 ppm, of the bis-AQA surfactant in the wash liquor.
  • this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.4% to 2.64%, preferably 0.55% to 1.1%, for a heavy-duty liquid laundry detergent.
  • a wash cycle of 8 to 15 minutes and a wash water temperature of 5°C to 25°C it is preferred to include from 1.67 ppm to 66.67 ppm, preferably from 3 ppm to 6 ppm, of the bis-AQA surfactant in the wash liquor.
  • this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.25% to 10%, preferably 1.5% to 2%, for a heavy-duty liquid laundry detergent.
  • the amount of bis-AQA surfactant used in a machine- wash laundering context can vary, depending on the habits and practices of the user, the type of washing machine.
  • one heretofore unappreciated advantage of the bis-AQA surfactants is their ability to provide at least directional improvements in performance over a spectrum of soils and stains even when used at relatively low levels with respect to the other surfactants (generally anionics or anionic/nonionic mixtures) in the finished compositions. This is to be distinguished from other compositions of the art wherein various cationic surfactants are used with anionic surfactants at or near stoichiometric levels.
  • the weight ratio of bis-AQA: anionic surfactant in laundry compositions is in the range from 1:70 to 1:2, preferably from 1 :40 to 1:6, preferably from 1:30 to 1 :6, most preferably 1:15 to 1:8.
  • the weight ratio of bis-AQA: mixed anionic/nonionic is in the range from 1 :80 to 1:2, preferably 1 :50 to 1 :8.
  • compositions which comprise an anionic surfactant, an optional nonionic surfactant and specialized surfactants such as betaines, sultaines, amine oxides can also be formulated using an effective amount of the bis-AQA surfactants in the manner of this invention.
  • Such compositions include, but are not limited to, hand dishwashing products (especially liquids or gels), hard surface cleaners, shampoos, personal cleansing bars, laundry bars, and the like. Since the habits and practices of the users of such compositions show minimal variation, it is satisfactory to include from about 0.25% to about 5%, preferably from about 0.45% to about 2%, by weight, of the bis-AQA surfactants in such compositions.
  • the weight ratio of the bis-AQA surfactant to other surfactants present in such compositions is low, i.e., sub-stoichiometric in the case of anionics.
  • such cleaning compositions comprise bis- AQ A/surfactant ratios as noted immediately above for machine-use laundry compositions.
  • the bis-alkoxylated cationics herein have sufficient solubility that they can be used in combination with mixed surfactant systems which are quite low in nonionic surfactants and which contain, for example, alkyl sulfate surfactants.
  • This can be an important consideration for formulators of detergent compositions of me type which are conventionally designed for use in top loading automatic washing machines, especially of the type used in North America, as well as under Japanese usage conditions.
  • such compositions will comprise an anionic surfactant:nonionic surfactant weight ratio in the range from about 25: 1 to about 1:25, preferably about 20: 1 to about 3:1.
  • European-type formulas which typically will comprise anionic: nonionic ratios in the range of about 10:1 to 1:10, preferably about 5:1 to about 1:1.
  • ethoxylated cationic surfactants herein are available under the trade name ETHOQUAD from Akzo Nobel Chemicals Company.
  • ETHOQUAD ethoxylated cationic surfactants
  • such materials can be synthesized using a variety of different reaction schemes (wherein "EO” represents -CH2CH2O- units), as follows.
  • Step 1 of the reaction is preferably conducted in an aqueous medium.
  • Reaction temperatures are typically in the range of 140-200°C.
  • Reaction pressures are 50-1000 psig.
  • a base catalyst preferably sodium hydroxide can be used.
  • the mole ratio of reactants are 2:1 to 1:1 amine to alkyl sulfate.
  • the reaction is preferably conducted using Cg-Ci4 alkyl sulfate, sodium salt.
  • the ethoxylation and quatemization steps are carried out using conventional conditions and reactants.
  • reaction Scheme 5 results in products which are sufficiently soluble in the aqueous reaction medium that gels may form. While the desired product can be recovered from the gel, an alternate, two-step synthesis Scheme 6, hereinafter, may be more desirable in some commercial circumstances.
  • the first step in Scheme 6 is conducted as in Scheme 5.
  • the second step (ethoxylation) is preferably conducted using ethylene oxide and an acid such as HCI which provides the quaternary surfactant.
  • chlorohydrin i.e., chloroethanol, can also be reacted to give the desired bishydroxyethyl derivative.
  • the first step is preferably conducted in an aqueous medium.
  • Reaction temperatures are typically in the range of 100-230°C.
  • Reaction pressures are 50-1000 psig.
  • a base preferably sodium hydroxide, can be used to react with the HSO4-generated during the reaction, or an excess of the amine can be employed to also react with the acid.
  • the mole ratio of amine to alkyl sulfate is typically from 10:1 to 1: 1.5; preferably from 5: 1 to 1 :1.1; more preferably from 2: 1 to 1:1.
  • the desired substituted amine is simply allowed to separate as a distinct phase from the aqueous reaction medium in which it is insoluble.
  • the second step of the process is conducted under conventional reaction conditions. Further ethoxylation and quatemization to provide bis-AQA surfactants are conducted under standard reaction conditions.
  • Scheme 7 can optionally be conducted using ethylene oxide under standard ethoxylation conditions, but without catalyst, to achieve monoethoxylation.
  • the bis-substituted amines prepared in the foregoing Syntheses can be further 15 ethoxylated in standard fashion. Quatemization with an alkyl halide to form the bis- AQA surfactants herein is routine.
  • R 1 is Cg-Cjg hydrocarbyl and mixtures thereof, preferably Cg, CJQ. C j 2, Cj4 alkyl and mixtures thereof.
  • X is any convenient anion to provide charge balance, preferably chloride.
  • bis-AQA surfactants useful herein include compounds of the formula:
  • Rl is Cg-Cjg hydrocarbyl, preferably Cg-Ci4 alkyl, independently p is 1 to 3 and q is 1 to 3, R ⁇ is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
  • a highly preferred bis-AQA compound for use in under built formulations are of the formula wherein p and/or q are integers in the range of between 10 and 15. This compound is particularly useful in laundry handwash detergent compositions.
  • Non-AQA Detersive Surfactants In addition to the bis-AQA surfactant, the compositions of the present invention preferably further comprise a non-AQA surfactant.
  • Non-AQA surfactants may include essentially any anionic, nonionic or additional cationic surfactant.
  • Nonlimiting examples of anionic surfactants useful herein typically at levels from 1 % to 55%, by weight include the conventional Cji-Cjg alkyl benzene sulfonates ("LAS") and primary (“AS"), branched-chain and random C10-C20 alkyl sulfates, the Cjo-Cjg secondary (2,3) alkyl sulfates of the formula CH3(CH2) x (CHOSO3 " M + ) CH3 and CH3 (CH2) y (CHOS ⁇ 3 " M + ) CH2CH3 where x and (y + 1) are integers of at least 7, preferably at least 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, die Ci2-C ⁇ g alpha-sulfonated fatty acid esters, the Cjo-Cjg sulfated polyglycosides, the C10-C18 alkyl alkoxy sulfates
  • C ⁇ -Cjg betaines and sulfobetaines can also be included in the overall compositions.
  • C10-C2O conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used.
  • Other conventional useful surfactants are listed in standard texts.
  • Nonlimiting examples of nonionic surfactants useful herein typically at levels from 1 % to 55%, by weight include the alkoxylated alcohols (AE's) and alkyl phenols, polyhydroxy fatty acid amides (PFAA's), alkyl polyglycosides (APG's), CIO-CJS glycerol ethers.
  • AE alkoxylated alcohol
  • PFAA's polyhydroxy fatty acid amides
  • APG's alkyl polyglycosides
  • CIO-CJS glycerol ethers CIO-CJS glycerol ethers.
  • condensation products of primary and secondary aliphatic alcohols with from 1 to 25 moles of ethylene oxide (AE) are suitable for use as the nonionic surfactant in the present invention.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms.
  • nonionic surfactants of this type include: TergitolTM 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide) and TergitolTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Co ⁇ oration;
  • NeodolTM 45.9 me condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide
  • NeodolTM 23-3 the condensation product of C12-C13 linear alcohol with 3 moles of ethylene oxide
  • NeodolTM 45.7 me condensation product of C ⁇ -C ⁇ linear alcohol with 7 moles of ethylene oxide
  • NeodolTM 45.5 me condensation product of C14-C15 linear alcohol with 5 moles of emylene oxide
  • Genapol LA O3O or O5O the condensation product of C22-C14 alcohol with 3 or 5 moles of ethylene oxide
  • Hoechst The preferred range of HLB in these AE nonionic surfactants is from 8-11 and most preferred from 8-10. Condensates with propylene oxide and butylene oxides may also be used.
  • Another class of preferred nonionic surfactants for use herein are the polyhydroxy fatty acid amide surfactants of the formula.
  • R* is H, or C ⁇ _4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof
  • R 2 is C5.31 hydrocarbyl
  • Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R* is methyl
  • R 2 is a straight Cj ⁇ _i5 alkyl or Cj5_i7 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • Typical examples include the Ci2-C ⁇ g and C12-C14 N- methylglucamides. See U.S. 5,194,639 and 5,298,636. N-alkoxy polyhydroxy fatty acid amides can also be used; see U.S. 5,489,393.
  • alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms, preferably from 10 to 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally die hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside).
  • the intersaccharide bonds can be, e.g. , between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alky .polyglycosides have the formula:
  • R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures diereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to 10, preferably 0; and x is from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
  • the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and men reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position). The additional glycosyl units can men be attached between their 1 -position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2- position.
  • Polyemylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are also suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from 6 to 14 carbon atoms, preferably from 8 to 14 carbon atoms, in either a straight- chain or branched-chain configuration wim the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from 2 to 25 moles, more preferably from 3 to 15 moles, of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in me present invention.
  • the hydrophobic portion of these compounds will preferably have a molecular weight of from 1500 to 1800 and will exhibit water insolubility.
  • the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is 50% of the total weight of the condensation product, which corresponds to condensation with up to 40 moles of ethylene oxide.
  • Examples of compounds of Uiis type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • nonionic surfactant of the nonionic surfactant system of the present invention are the condensation products of ethylene oxide wim the product resulting from me reaction of propylene oxide and ethylenediamine.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from 40% to 80% by weight of polyoxyethylene and has a molecular weight of from 5,000 to 11,000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Suitable cationic surfactants are preferably water dispersible compound having surfactant properties comprising at least one ester (ie -COO-) linkage and at least one cationically charged group.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C ⁇ -CJO, preferably C ⁇ -C io N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by memyl, hydroxyemyl or hydroxypropyl groups.
  • Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
  • compositions of this invention illustrates various other optional ingredients which may be used in the compositions of this invention, but is not intended to be limiting thereof.
  • compositions described herein may contain an additional bleach component to die peroxygen bleach described earlier.
  • additional bleaching agents will typically be at levels of from 1 % to 30%, more typically from 5% to 20% , or even from 5% to 15% of me detergent composition, especially for fabric laundering.
  • compositions containing mixtures of a hydrogen peroxide source and bleach activator in combination with a preformed organic peracid are also envisaged.
  • bleaches include chlorin bleach or photoactivated bleaching agents.
  • photoactivated bleaching agents include the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from 0.025% to 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • Bleach catalysts are preferred components of the compositions of the present invention.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271A1 , 549,272A1, 544,440A2, and 544,490A1; Preferred examples of these catalysts include Mn ⁇ u-O ⁇ MJ- trimethyl-1 ,4,7-triazacyclononane)2(PF6)2.
  • Other metal- based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
  • die compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from 0.1 ppm to 700 ppm, more preferably from 1 ppm to 500 ppm, of the catalyst species in the laundry liquor.
  • Cobalt bleach catalysts useful herein are known, and are described, for example, in M. L.
  • cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH3)5OAc] T v , wherein "OAc” represents an acetate moiety and "T v " is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH3) 5 OAc]Cl 2 ; as well as [Co(NH3) 5 OAc](OAc)2;
  • cobalt catalysts are readily prepared by known procedures, such as taught for example in die Tobe article and die references cited therein, in U.S. Patent 4,810,410, to Diakun et al, issued March 7,1989, J. Chem. Ed. (1989), 66 (12), 1043-45; The Synthesis and Characterization of Inorganic Compounds, W.L. Jolly (Prentice-Hall; 1970), pp. 461- 3; Inore. Chem.. 18, 1497-1502 (1979); Inorg. Chem.. 21, 2881-2885 (1982); Inorg. Chem.. 18, 2023-2025 (1979); Inorg. Synthesis, 173-176 (1960); and Journal of Physical Chemistry. 56, 22-25 (1952).
  • die automatic dishwashing compositions and cleaning processes herein can be adjusted to provide on the order of at least one part per hundred million of die active bleach catalyst species in the aqueous washing medium, and will preferably provide from 0.01 ppm to 25 ppm, more preferably from 0.05 ppm to 10 ppm, and most preferably from 0.1 ppm to 5 ppm, of die bleach catalyst species in the wash liquor.
  • typical automatic dishwashing compositions herein will comprise from 0.0005% to 0.2% , more preferably from 0.004% to 0.08% , of bleach catalyst, especially manganese or cobalt catalysts, by weight of the cleaning compositions.
  • Detergent builders can optionally but preferably be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
  • Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to die precipitation of hardness ions than are die surfaces of articles to be cleaned.
  • Builder level can vary widely depending upon end use and physical form of the composition.
  • Built detergents typically comprise at least 1% builder. Liquid formulations typically comprise 5% to 50%, more typically 5% to 35% of builder.
  • Granular formulations typically comprise from 10% to 80% , more typically 15 % to 50% builder by weight of the detergent composition. Lower or higher levels of builders are not excluded. For example, certain detergent additive or high-surfactant formulations can be unbuilt.
  • Suitable builders herein can be selected from me group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured-liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other man sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
  • silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured-liquid types
  • borates e.g., for pH-buffering purposes
  • sulfates especially sodium sulfate and any odier fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
  • Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH-buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
  • preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from 60: 1 to 1 :80.
  • Certain preferred laundry detergents have said ratio in the range 0.90: 1.0 to 4.0: 1.0, more preferably from 0.95: 1.0 to 3.0:1.0.
  • P-containing detergent builders often preferred where permitted by legislation include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates exemplified by die tripolyphosphates, pyrophosphates, glassy polymeric meta-phosphates; and phosphonates.
  • Suitable silicate builders include alkali metal silicates, particularly those liquids and solids having a SiO2:Na2O ratio in die range 1.6: 1 to 3.2:1, including, particularly for automatic dishwashing purposes, solid hydrous 2-ratio silicates marketed by PQ Corp. under die tradename BRITESIL ® , e.g., BRITESIL H2O; and layered silicates, e.g., tiiose described in U.S. 4,664,839, May 12, 1987, H. P. Rieck.
  • NaSKS-6 is a crystalline layered aluminium-free ⁇ -Na2Si ⁇ 5 morphology silicate marketed by Hoechst and is preferred especially in granular laundry compositions. See preparative methods in German DE-A-3,417,649 and DE-A-3,742,043.
  • Other layered silicates such as tiiose having die general formula NaMSi x O2 X + i yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein.
  • Layered silicates from Hoechst also include NaSKS-5, NaSKS-7 and NaSKS-11, as the ⁇ , ⁇ and ⁇ layer-silicate forms.
  • Other silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
  • crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general formula in an anhydride form: xM2 ⁇ ySi ⁇ 2 zM'O wherein M is Na and/or K, M' is Ca and/or Mg; y/x is 0.5 to 2.0 and z/x is 0.005 to 1.0 as taught in U.S. 5,427,711, Sakaguchi et al, June 27, 1995.
  • Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals such as trona or any convenient multiple salts of sodium carbonate and calcium carbonate such as those having the composition 2Na2CO3-CaCO3 when anhydrous, and even calcium carbonates including calcite, aragonite and vaterite, especially forms having high surface areas relative to compact calcite may be useful, for example as seeds or for use in synthetic detergent bars.
  • Aluminosilicate builders are especially useful in granular detergents, but can also be incorporated in liquids, pastes or gels. Suitable for the present pu ⁇ oses are those having empirical formula: [M z (Al ⁇ 2) z (Si ⁇ 2) v ] xH2 ⁇ wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
  • Aluminosilicates can be crystalline or amo ⁇ hous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S. 3,985,669, Krummel, et al, October 12, 1976.
  • the aluminosilicate has a particle size of 0.1-10 microns in diameter.
  • Suitable organic detergent builders include polycarboxylate compounds, including water- soluble nonsurfactant dicarboxylates and tr .carboxylates. More typically builder polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Polycarboxylate builders include die etiier polycarboxylates, such as oxydisuccinate, see Berg, U.S. 3,128,287, April 7, 1964, and Lamberti et al, U.S.
  • Odier suitable builders are the etiier hydroxypolycarboxylates, copolymers of maleic anhydride witii ethylene or vinyl methyl ether; 1, 3, 5-trihydroxy benzene-2, 4, 6- trisulphonic acid; carboxymethyloxysuccinic acid; die various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid; as well as mellitic acid, succinic acid, polymaleic acid, benzene 1,3,5- tricarboxylic acid, carboxymemyloxysuccinic acid, and soluble salts diereof.
  • Citrates e.g., citric acid and soluble salts diereof are important carboxylate builders e.g., for heavy duty liquid detergents, due to availability from renewable resources and biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates. Oxydisuccinates are also especially useful in such compositions and combinations.
  • alkali metal phosphates such as sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane- 1 -hydroxy- 1,1-diphosphonate and odier known phosphonates, e.g., those of U.S. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137 can also be used and may have desirable antiscaling properties.
  • detersive surfactants or their short-chain homologs also have a builder action. For unambiguous formula accounting pu ⁇ oses, when they have surfactant capability, these materials are summed up as detersive surfactants.
  • Preferred types for builder functionality are illustrated by: 3,3-dicarboxy-4-oxa-l,6-hexanedioates and die related compounds disclosed in U.S. 4,566,984, Bush, January 28, 1986.
  • Succinic acid builders include die C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • Succinate builders also include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2- pentadecenylsuccinate.
  • Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., Ci2-C ⁇ g monocarboxylic acids
  • Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al, March 13, 1979 and in U.S. 3,308,067, Diehl, March 7, 1967. See also Diehl, U.S. 3,723,322.
  • Mineral Builders Waters of hydration or anions other than carbonate may be added provided tiiat the overall charge is balanced or neutral.
  • a water-soluble cation selected from the group consisting of hydrogen, water- soluble metals, hydrogen, boron, ammonium, silicon, and mixtures thereof, more preferably, sodium, potassium, hydrogen, litiiium, ammonium and mixtures thereof, sodium and potassium being highly preferred.
  • noncarbonate anions include tiiose selected from die group consisting of chloride, sulfate, fluoride, oxygen, hydroxide, silicon dioxide, chromate, nitrate, borate and mixtures thereof.
  • Preferred builders of this type in their simplest forms are selected from the group consisting of Na 2 Ca(CO3)2, K2Ca(CO3)2, Na2Ca2(CO3)3, NaKCa(CO3)2, NaKCa2(CO3)3, K2Ca2(CO3)3, and combinations thereof.
  • An especially preferred material for the builder described herein is Na2Ca(CO3)2 in any of its crystalline modifications.
  • Suitable builders of the above-defined type are further illustrated by, and include, the natural or synthetic forms of any one or combinations of the following minerals:sammlungite, Andersonite, AshcroftineY, Beyerite, Borcarite, Burbankite, Butschliite, Cancrinite, Carbocernaite, Carletonite, Davyne, DonnayiteY, Fairchildite, Ferrisurite, Franzinite, Gaudefroyite, Gaylussite, Girvasite, Gregoryite, Jouravskite, KamphaugiteY, Kettnerite, Khanneshite, LepersonniteGd, Liottite, MckelveyiteY, Microsommite, Mroseite, Natro fairchildite, Nyerereite, RemonditeCe, Sacrofanite, Schrockingerite, Shortite, Surite, Tunisite, Tuscanite, Tyrolite, Vish ⁇ evite, and Zemkorite.
  • Preferred mineral forms include Nyer
  • Enzymes can be included in me present detergent compositions for a variety of pu ⁇ oses, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
  • Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Detersive enzyme means any enzyme having a cleaning, stain removing or otiierwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition.
  • Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
  • Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases. Highly preferred for automatic dishwashing are amylases and/or proteases.
  • Enzymes are normally inco ⁇ orated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
  • cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware.
  • typical amounts are up to 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of die detergent composition.
  • the compositions herein will typically comprise from 0.001 % to 5%, preferably 0.01 %-l % by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • proteases are die subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis.
  • One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE ® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo.
  • proteases include ALCALASE ® and SAVINASE ® from Novo and MAXATASE ® from International Bio-Synthetics, Inc., The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo.
  • proteases include tiiose of WO 9510591 A to Procter & Gamble .
  • a protease having decreased adso ⁇ tion and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble.
  • a recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.
  • an especially preferred protease is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to tiiose selected from the group consisting of +99, + 101, + 103, + 104, + 107, + 123, +27, + 105, + 109, + 126, + 128, + 135, + 156, + 166, + 195, + 197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the patent applications of A.
  • Amylases suitable herein, especially for, but not limited to automatic dishwashing purposes include, for example, ⁇ -amylases described in GB 1,296,839 to Novo; RAPIDASE ® , International Bio-Synthetics, Inc. and TERMAMYL ® , Novo. FUNGAMYL ® from Novo is especially useful.
  • Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11, June 1985, pp. 6518-6521.
  • Certain preferred embodiments of die present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL® in commercial use in 1993.
  • These preferred amylases herein share die characteristic of being "stability-enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as 60°C; or alkaline stability, e.g., at a pH from 8 to 11, measured versus the above-identified reference-point amylase.
  • Stability can be measured using any of die art-disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability-enhanced amylases can be obtained from Novo or from Genencor International. One class of highly preferred amylases herein have the commonality of being derived using site-directed mutagenesis from one or more of the Bacillus amylases, especially the Bacillus ⁇ -amylases, regardless of whetiier one, two or multiple amylase strains are the immediate precursors. Oxidative stability-enhanced amylases vs. the above-identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein.
  • Such preferred amylases include (a) an amylase according to the hereinbefore incorporated WO 9402597, Novo, Feb. 3, 1994, as further illustrated by a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B licheniformis alpha-amylase, known as TERMAMYL®, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B. subtilis, or B.
  • Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T witii the M197T variant being the most stable expressed variant. Stability was measured in CASCADE® and
  • particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL®.
  • Other particularly preferred oxidative stability enhanced amylase include tiiose described in WO 9418314 to Genencor International and WO 9402597 to Novo. Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo.
  • amylase enzymes include those described in WO 95/26397 and in co-pending application by Novo Nordisk PCT/DK96/00056.
  • Specific amylase enzymes for use in the detergent compositions of the present invention include ⁇ -amylases characterized by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay.
  • ⁇ -amylases which are at least 80% homologous with the amino acid sequences shown in die SEQ ID listings in the references. These enzymes are preferably inco ⁇ orated into laundry detergent compositions at a level from 0.00018% to 0.060% pure enzyme by weight of die total composition, more preferably from 0.00024% to 0.048% pure enzyme by weight of the total composition.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of die Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under die trade name Lipase P "Amano,” or "Amano-P.” Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipotyticum NRRLB 3673 from Toyo Jozo Co.
  • D96L lipase variant
  • the present invention provides die benefit of improved whiteness maintenance on fabrics using low levels of D96L variant in detergent compositions containing the bis-AQA surfactants in the manner disclosed herein, especially when the D96L is used at levels in the range of 50 LU to 8500 LU per liter of wash solution.
  • Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
  • Peroxidase enzymes may be used in combination with oxygen sources, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution.
  • oxygen sources e.g., percarbonate, perborate, hydrogen peroxide, etc.
  • Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.
  • a range of enzyme materials and means for their inco ⁇ oration into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S.
  • Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
  • the enzyme-containing compositions herein may optionally also comprise from 0.001 % to 10%, preferably from 0.005% to 8%, most preferably from 0.01 % to 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible witii the detersive enzyme. Such a system may be inherently provided by otiier formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
  • Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
  • One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
  • Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
  • Typical detergent compositions, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated.
  • Preferably water- soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.
  • Borate stabilizers when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3% by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use.
  • Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
  • Stabilizing systems of certain cleaning compositions may further comprise from 0 to 10%, preferably from 0.01 % to 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating die enzymes, especially under alkaline conditions.
  • chlorine bleach scavengers While chlorine levels in water may be small, typically in the range from 0.5 ppm to 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme, for example during dish- or fabric- washing, can be relatively large; accordingly, enzyme stability to chlorine in-use is sometimes problematic.
  • Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations witii sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
  • Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
  • tiiat different enzymes have maximum compatibility.
  • Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc., and mixtures thereof can be used if desired.
  • the chlorine scavenger function can be performed by ingredients separately listed under better recognized functions, (e.g., hydrogen peroxide sources), there is no absolute requirement to add a separate chlorine scavenger unless a compound performing that function to the desired extent is absent from an enzyme-containing embodiment of the invention; even then, the scavenger is added only for optimum results.
  • the formulator will exercise a chemist's normal skill in avoiding die use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with other reactive ingredients.
  • ammonium salts such salts can be simply admixed with the detergent composition but are prone to adsorb water and/or liberate ammonia during storage. Accordingly, such materials, if present, are desirably protected in a particle such as that described in US 4,652,392, Baginski et al.
  • SRA polymeric soil release agents
  • SRA's can optionally be employed in die present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1 % to 5%, preferably from 0.2% to 3.0% by weight, of the composition.
  • SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
  • SRA's can include a variety of charged, e.g., anionic or even cationic (see U.S. 4,956,447), as well as noncharged monomer units and structures may be linear, branched or even star-shaped. They may include capping moieties which are especially effective in controlling molecular weight or altering the physical or surface-active properties. Structures and charge distributions may be tailored for application to different fiber or textile types and for varied detergent or detergent additive products.
  • Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(rV) alkoxide.
  • esters may be made using additional monomers capable of being inco ⁇ orated into die ester structure through one, two, three, four or more positions, without of course forming a densely crosslinked overall structure.
  • Suitable SRA's include: a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
  • ester oligomers can be prepared by (a) ethoxylating allyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1 ,2-propylene glycol (“PG”) in a two-stage transesterification/ oligomerization procedure and (c) reacting die product of (b) with sodium metabisulfite in water; the nonionic end-capped 1,2- propylene/polyoxyethylene terephthalate polyesters of U.S.
  • DMT dimethyl terephthalate
  • PG ,2-propylene glycol
  • Gosselink et al for example those produced by transesterification/oligomerization of ⁇ oly(ethyleneglycol) methyl ether, DMT, PG and ⁇ oly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
  • Gosselink for example produced from DMT, Me- capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimeti ⁇ yl-5-sulfoisophthalate; and die anionic, especially sulfoaroyl, end- capped terephthalate esters of U.S.
  • SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g., PEG 3400.
  • SRA's also include simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S.
  • Suitable SRA's characterised by poly (vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C ⁇ -C ⁇ vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0219 048, published April 22, 1987 by Kud, et al.
  • SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany.
  • Other SRA's are polyesters with repeat units containing 10-15% by weight of ethylene terephthalate together with 90-80% by weight of polyoxyethylene terephthalate, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • Commercial examples include ZELCON 5126 from Dupont and MILEASE T from ICI.
  • Another preferred SRA is an oligomer having empirical formula (CAP)2(EG/PG)5(T)5(SIP) ⁇ which comprises terephthaloyl (T), sulfoisophthaloyl (SD?), oxyethyleneoxy and oxy-l,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isetiiionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy- 1,2- ⁇ ropyleneoxy units in a defined ratio, preferably about 0.5:1 to about 10:1, and two end-cap units derived from sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
  • CAP empirical formula
  • oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from the group consisting of dihydroxy sulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1 ,2-oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isetiiionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof.
  • Preferred of such esters are those of empirical
  • CAP, EG/PG, PEG, T and SIP are as defined hereinabove
  • DEG represents di(oxyethylene)oxy units
  • SEG represents units derived from the sulfoethyl ether of glycerin and related moiety units
  • B represents branching units which are at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone
  • x is from about 1 to about 12
  • y' is from about 0.5 to about 25
  • y" is from 0 to about 12
  • y'" is from 0 to about 10
  • z is from about 1.5 to about 25
  • z' is from 0 to about 12
  • q is from about 0.05 to about 12
  • m is from about 0.01 to about 10
  • SEG and CAP monomers for the above esters include Na-2-(2-,3- dihydroxypropoxy)eti ⁇ anesulfonate (“SEG”), Na-2- ⁇ 2-(2-hydroxyethoxy) ethoxy ⁇ ethanesulfonate (“SE3”) and its homologs and mixtures thereof and the products of ethoxylating and sulfonating allyl alcohol.
  • Preferred SRA esters in this class include the product of transesterifying and oligomerizing sodium 2- ⁇ 2-(2- hydroxyethoxy)ethoxy ⁇ ethanesulfonate and/or sodium 2-[2- ⁇ 2-(2-hydroxyethoxy)- ethoxy ⁇ ethoxy]ethanesulfonate, DMT, sodium 2-(2,3-dihydroxypropoxy) ethane sulfonate, EG, and PG using an appropriate Ti(TV) catalyst and can be designated as (CAP)2(T)5(EG/PG)1.4(SEG)2.5(B)0.13 wherein CAP is (Na+ -0 3 S[CH2CH 2 0]3.5)- and B is a unit from glycerin and the mole ratio EG/PG is about 1.7:1 as measured by conventional gas chromatography after complete hydrolysis.
  • SRA's include (I) nonionic terephtiialates using diisocyanate coupling agents to link up polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al; (II) SRA's witii carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With a proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather tiian by opening of die anhydride linkage.
  • Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.; (Ill) anionic terephthalate-based SRA's of die urethane-1 inked variety, see U.S. 4,201,824, Violland et al; (IV) ⁇ oly(vinyl caprolactam) and related co-polymers witii monomers such as vinyl pyrrolidone and/or dimetiiylaminoetiiyl methacrylate, including botii nonionic and cationic polymers, see U.S.
  • compositions of die present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
  • Granular detergent compositions which contain these compounds typically contain from 0.01 % to 10.0% by weight of die water-soluble ethoxylates amines; liquid detergent compositions typically contain 0.01 % to 5% .
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraetiiylene- pentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal- antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
  • clay soil removal/antiredeposition agents which can be used include die ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; die zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and die amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985.
  • Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. See U.S. Patent 4,891,160, VanderMeer, issued January 2, 1990 and WO 95/32272, published November 30, 1995.
  • Another type of preferred antiredeposition agent includes die carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
  • Polymeric dispersing agents can advantageously be utilized at levels from 0.1% to 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from 2,000 to 10,000, more preferably from 4,000 to 7,000 and most preferably from 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from 2,000 to 100,000, more preferably from 5,000 to 75,000, most preferably from 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from 30:1 to 1 :1, more preferably from 10: 1 to 2: 1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, die alkali metal, ammonium and substituted ammonium salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol te ⁇ olymers.
  • Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 te ⁇ olymer of acrylic/maleic/vinyl alcohol.
  • PEG polyetiiylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from 500 to 100,000, preferably from 1,000 to 50,000, more preferably from 1,500 to 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of 10,000.
  • optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from 0.01% to 1.2%, by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzod ⁇ iophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
  • optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artie White CC and Artie White CWD, the 2-(4-styryl- phenyl)-2H-naptho[l ,2-d]triazoles; 4,4'-bis-(l ,2,3-triazol-2-yl)-stilbenes; 4,4'- bis(styryl)bisphenyls; and die aminocoumarins.
  • these brighteners include 4-methyl-7-dieti ⁇ yl- amino coumarin; l,2-bis(benzimidazol-2-yl)eti ⁇ ylene; 1,3- diphenyl-pyrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-naptho[l ,2-d]oxazole; and 2-(stilben-4-yl)-2H-naphtho[l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton.
  • compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
  • dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from 0.01% to 10% by weight of the composition, preferably from 0.01 % to 5%, and more preferably from 0.05% to 2% .
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures:
  • Rj, R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1 ; and die nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of die polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • Any polymer backbone can be used as long as die amine oxide polymer formed is water- soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are poly vinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • These polymers include random or block copolymers where one monomer type is an amine N-oxide and die other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000.
  • the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • poly(4-vinylpyridine-N-oxide) which has an average molecular weight of 50,000 and an amine to amine N-oxide ratio of 1:4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113.
  • the PVPVI copolymers typically have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1 : 1 to 0.2: 1 , more preferably from 0.8: 1 to 0.3: 1 , most preferably from 0.6: 1 to 0.4: 1. These copolymers can be either linear or branched.
  • compositions also may employ a polyvinylpyrrolidone (“PVP”) having an average molecular weight of from 5,000 to 400,000, preferably from 5,000 to 200,000, and more preferably from 5,000 to 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, inco ⁇ orated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from 500 to 100,000, preferably from 1,000 to 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from 2: 1 to 50:1 , and more preferably from 3: 1 to 10:1.
  • the detergent compositions herein may also optionally contain from 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, die compositions herein will preferably comprise from 0.01 % to 1 % by weight of such optical brighteners.
  • hydrophilic optical brighteners useful in the present invention are those having the structural formula:
  • Rj is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
  • R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-meti ⁇ ylamino, mo ⁇ hilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • R ⁇ is anilino
  • R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • die brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2- yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy
  • Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • Rj is anilino
  • R2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM- GX by Ciba-Geigy Co ⁇ oration.
  • Rj is anilino
  • R2 is mo ⁇ hilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilmo-6-mo ⁇ hilmo-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under die tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
  • the specific optical brightener species selected for use in die present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
  • the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
  • the extent to which brighteners deposit on fabrics in die wash solution can be defined by a parameter called the "exhaustion coefficient".
  • the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) die initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aro ⁇ matic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include etiiylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, dietiiylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy- 3,5-disulfobenzene.
  • EDDS ethylenediamine disuccinate
  • [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • compositions herein may also contain water-soluble methyl glycine diacetic acid
  • MGDA MGDA salts (or acid form) as a chelant or co-builder useful witii, for example, insoluble builders such as zeolites, layered silicates.
  • these chelating agents will generally comprise from 0.1 % to 15% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from 0.1 % to 3.0% by weight of such compositions. Suds Suppressors
  • suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in die art. See, for example, Kirk Othmer Encyclopedia of
  • One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • the detergent compositions herein may also contain non-surfactant suds suppressors.
  • non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic Cl8"C40 ketones (e.g., stearone), etc.
  • suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride witii two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters.
  • the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in die range of -40°C and 50°C, and a minimum boiling point not less ti ⁇ anllO°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below 100°C.
  • the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al.
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from 12 to 70 carbon atoms.
  • the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Non-surfactant suds suppressors comprises silicone suds suppressors.
  • This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein die polyorganosiloxane is chemisorbed or fused onto die silica.
  • Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
  • silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
  • Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
  • polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about l,500 cs. at 25°C;
  • the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene- polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol.
  • the primary silicone suds suppressor is branched/crosslinked and preferably not linear.
  • typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
  • a primary antifoam agent which is a mixture of (a) a polyorganosi
  • the silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1 ,000, preferably between about 100 and 800.
  • the polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
  • the preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300.
  • Preferred is a weight ratio of between about 1:1 and 1: 10, most preferably between 1:3 and 1:6, of polyethylene glycol: copolymer of polyethylene-polypropylene glycol .
  • the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
  • Odier suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
  • the secondary alcohols include the C ⁇ -C ⁇ alkyl alcohols having a C ⁇ -Ci ⁇ chain.
  • a preferred alcohol is 2- butyl octanol, which is available from Condea under die trademark ISOFOL 12.
  • Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
  • Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1:5 to 5:1.
  • suds should not form to the extent that they either overflow the washing machine or negatively affect the washing mechanism of the dishwasher.
  • Suds suppressors when utilized, are preferably present in a "suds suppressing amount.
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent tiiat will sufficiently control the suds to result in a low-sudsing laundry or dishwashing detergents for use in automatic laundry or dishwashing machines.
  • compositions herein will generally comprise from 0% to 10% of suds suppressor.
  • monocarboxylic fatty acids, and salts therein will be present typically in amounts up to 5%, by weight, of the detergent composition.
  • from 0.5% to 3% of fatty monocarboxylate suds suppressor is utilized.
  • Silicone suds suppressors are typically utilized in amounts up to 2.0%, by weight, of die detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
  • from 0.01 % to 1 % of silicone suds suppressor is used, more preferably from 0.25% to 0.5%.
  • these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any optional materials that may be utilized.
  • Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from 0.1 % to 2%, by weight, of the composition.
  • Hydrocarbon suds suppressors are typically utilized in amounts ranging from 0.01 % to 5.0% , although higher levels can be used.
  • the alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., inco ⁇ orated herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula -(CH2CH2 ⁇ ) m (CH2) n CH3 wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to die polyacrylate "backbone” to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of 2000 to 50,000. Such alkoxylated polycarboxylates can comprise from 0.05% to 10% , by weight, of the compositions herein.
  • Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from 0.01 % to 2%, by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from 0.0001 % to 90% of a finished perfume composition.
  • perfume ingredients useful herein include: 7-acetyl-
  • perfume materials are those that provide the largest odor improvements in finished product compositions containing cellulases.
  • These perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3-(para-tert- butylphenyl)-propionaldehyde; 7-acetyl-l ,2, 3,4,5, 6,7, 8-octahydro-l , 1 ,6,7-tetramethyl naphthalene; benzyl salicylate; 7-acetyl-l, 1,3, 4,4,6-hexamethyl tetralin; para-tert-butyl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta- naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; 1,3,4,6,7,8- hexahydro-4,6,6,7,8,
  • perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin.
  • Still other perfume chemicals include phenyl etiiyl alcohol, te ⁇ ineol, linalool, linalyl acetate, geraniol, nerol, 2-(l ,l-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol.
  • Carriers such as dietiiylphthalate can be used in the finished perfume compositions.
  • a wide variety of other ingredients useful in detergent compositions can be included in die compositions herein, including odier active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc.
  • suds boosters such as die Cifj-Ci6 alkanolamides can be incorporated into die compositions, typically at 1 %-10% levels.
  • the C1Q-C14 monoethanol and dietiianol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing optional surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • water-soluble magnesium and/or calcium salts such as MgCt ⁇ , MgSO4, CaCb, CaSO4, can be added at levels of, typically, 0.1 % -2%, to provide additional suds and to enhance grease removal performance.
  • Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed witii a surfactant before being absorbed into die porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%- 5% of C i3_ 15 ethoxylated alcohol (EO 7) nonionic surfactant.
  • die enzyme/surfactant solution is 2.5 X die weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
  • Liquid detergent compositions can contain water and odier solvents as carriers.
  • Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to 6 carbon atoms and from 2 to 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
  • the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
  • the detergent compositions herein will preferably be formulated such tiiat, during use in aqueous cleaning operations, the wash water will have a pH of between 6.5 and 11, preferably between 7.5 and 10.5.
  • Liquid dishwashing product formulations preferably have a pH between 6.8 and 9.0.
  • Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include die use of buffers, alkalis, acids, etc., and are well known to tiiose skilled in the art.
  • the formulator wishes to prepare an admixable particle containing the alkoxylated cationics for use in, for example, a high density granular detergent, it is preferred that the particle composition not be highly alkaline. Processes for preparing high density (above 650 g/1) granules are described in U.S. Patent 5,366,652. Such particles may be formulated to have an effective pH in-use of 9, or below, to avoid the odor of impurity amines.
  • PEG4000 Polyethylene glycol; average molecular weight 4000
  • Granular detergents are as follows in Examples A and B. EXAMPLE A
  • AQA-1 (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
  • the bis-AQA-l (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis- AQA surfactants herein.
  • the sample preparation basically involves following steps : 1. Preparation of premixed LAS + AS
  • the individual surfactants are weighed and mixed in the following sequence
  • Silicate 148.32 gms per 900 ml of Distilled water; 50 mis of tiiis solution are used per wash.
  • Copolymer 92.88 gms per 900 ml of Distilled water; 50 mis of tiiis solution are used per wash.
  • Granules Each granule component is weighed separately in the same beaker.
  • Hardness No extra hardness are added on top of tap water hardness.
  • Load 2.4 kg of load of following composition are typically used, Cotton dress shirt (1) Worn T-shirts (from panelists) (3) Large T-shirts (11)
  • DKPE is double-knit polyester.
  • DMO dirty motor oil
  • Test Results I show the performance of compositions according to the present invention using CoCoMeE02 plus a mixture of LAS/ AS and Test Results II show the performance using CoCoMeEOlO* plus LAS/AS, as compared with CoCoMeE02/LAS.
  • performance is measured against various soil types, i.e., body soil, builder sensitive soil, bleach sensitive soil, surfactant sensitive soil and socks.
  • EOIO indicates two poly-EO chains with an overall average of 10 EO units in the molecule, typically (but not restricted to) about 5 per chain.
  • Ci4_i5 predominantly linear primary alcohol condensed witii an average of 7 moles of ethylene oxide C25E3 A C 12- 15 branched primary alcohol condensed with an average of 3 moles of ethylene oxide C25E5 A C 12-15 branched primary alcohol condensed with an average of 5 moles of ethylene oxide
  • Nai2(A102Si ⁇ 2)i2- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
  • Citric acid Anhydrous citric acid Carbonate Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
  • Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
  • CMC Sodium carboxymethyl cellulose Protease Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under die tradename
  • NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-mo ⁇ holino- 1.3.5-triazin-2-yl)amino) stilbene-2:2'- disulfonate.
  • a and C are phosphorus-containing detergent compositions and B is a zeolite- containing detergent composition.
  • the bis-AQA-l (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or odier bis-AQA surfactants herein.
  • CocoMeE02* 1.0 1.0 1.0
  • the bis-AQA-l (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the bis-AQA-l (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the bis-AQA-l (CocoMeE02) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • Any of the granular detergent compositions provided herein may be tabletted using known tabletting methods to provide detergent tablets.
  • non-aqueous carrier medium The manufacture of heavy duty liquid detergent compositions, especially those designed for fabric laundering, which comprise a non-aqueous carrier medium can be conducted in the manner disclosed in more detail hereinafter.
  • non-aqueous compositions can be prepared according to die disclosures of U.S. Patents 4,753,570; 4,767,558; 4,772,413; 4,889,652; 4,892,673; GB-A-2, 158,838; GB-A-2,195,125; GB-A- 2,195,649; U.S. 4,988,462; U.S.
  • compositions can contain various particulate detersive ingredients (e.g., bleaching agents, as disclosed hereinabove) stably suspended therein.
  • particulate detersive ingredients e.g., bleaching agents, as disclosed hereinabove
  • non-aqueous compositions thus comprise a LIQUID PHASE and, optionally but preferably, a SOLID PHASE, all as described in more detail hereinafter and in die cited references.
  • the AQA surfactants are inco ⁇ orated in the compositions at the levels and in the manner described hereinabove for the manufacture of other laundry detergent compositions.
  • the liquid phase will generally comprise from 35% to 99% by weight of the detergent compositions herein. More preferably, the liquid phase will comprise from 50% to 95% by weight of the compositions. Most preferably, the liquid phase will comprise from 45% to 75% by weight of the compositions herein.
  • the liquid phase of the detergent compositions herein essentially contains relatively high concentrations of a certain type anionic surfactant combined witii a certain type of nonaqueous, liquid diluent.
  • the anionic surfactant essentially utilized as an essential component of the nonaqueous liquid phase is one selected from the alkali metal salts of alkylbenzene sulfonic acids in which the alkyl group contains from 10 to 16 carbon atoms, in straight chain or branched chain configuration.
  • alkylbenzene sulfonic acids in which the alkyl group contains from 10 to 16 carbon atoms, in straight chain or branched chain configuration.
  • Especially preferred are the sodium and potassium linear straight chain alkylbenzene sulfonates (LAS) in which the average number of carbon atoms in the alkyl group is from 11 to 14.
  • Sodium Cn-C 14 LAS is especially preferred.
  • the alkylbenzene sulfonate anionic surfactant will be dissolved in die nonaqueous liquid diluent which makes up the second essential component of the nonaqueous phase.
  • the alkylbenzene sulfonate anionic surfactant is generally present to the extent of from 30% to 65% by weight of the liquid phase. More preferably, die alkylbenzene sulfonate anionic surfactant will comprise from 35% to 50% by weight of die nonaqueous liquid phase of the compositions herein. Utilization of this anionic surfactant in these concentrations corresponds to an anionic surfactant concentration in the total composition of from 15% to 60% by weight, more preferably from 20% to 40% by weight, of the composition.
  • alkylbenzene sulfonate anionic surfactant is combined witii a nonaqueous liquid diluent which contains two essential components. These two components are a liquid alcohol alkoxy late material and a nonaqueous, low-polarity organic solvent. i) Alcohol Alkoxylates
  • One essential component of the liquid diluent used to form the compositions herein comprises an alkoxylated fatty alcohol material.
  • Such materials are themselves also nonionic surfactants.
  • Such materials correspond to die general formula: Rl(C m H 2m O) n OH wherein Rl is a Cg - Cjg alkyl group, m is from 2 to 4, and n ranges from 2 to 12.
  • R* is an alkyl group, which may be primary or secondary, tiiat contains from 9 to 15 carbon atoms, more preferably from 10 to 14 carbon atoms.
  • the alkoxylated fatty alcohols will be ethoxylated materials that contain from 2 to 12 ethylene oxide moieties per molecule, more preferably from 3 to 10 ethylene oxide moieties per molecule.
  • the alkoxylated fatty alcohol component of the liquid diluent will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from 3 to 17. More preferably, the HLB of this material will range from 6 to 15, most preferably from 8 to 15.
  • HLB hydrophilic-lipophilic balance
  • fatty alcohol alkoxylates useful as one of the essential components of the nonaqueous liquid diluent in die compositions herein will include tiiose which are made from alcohols of 12 to 15 carbon atoms and which contain 7 moles of ethylene oxide. Such materials have been commercially marketed under die trade names Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company.
  • Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C12 - C13 alcohol having 9 moles of ethylene oxide and Neodol 91-10, an ethoxylated C9 - Cn primary alcohol having 10 moles of ethylene oxide. Alcohol etiioxylates of this type have also been marketed by Shell Chemical Company under die Dobanol tradename.
  • Dobanol 91-5 is an ethoxylated C9-C11 fatty alcohol with an average of 5 moles ethylene oxide and Dobanol 25-7 is an ethoxylated c l2"Ci5 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
  • Suitable ethoxylated alcohols include Tergitol 15-S-7 and Tergitol 15-S- 9 both of which are linear secondary alcohol ethoxylates that have been commercially marketed by Union Carbide Co ⁇ oration.
  • the former is a mixed ethoxylation product of Cn to Cj5 linear secondary alkanol with 7 moles of ethylene oxide and die latter is a similar product but with 9 moles of ethylene oxide being reacted.
  • Alcohol ethoxylates useful in the present compositions are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14-15 carbon atoms and die number of ethylene oxide groups per mole being 11. Such products have also been commercially marketed by Shell Chemical Company.
  • the alcohol alkoxylate component which is essentially utilized as part of the liquid diluent in die nonaqueous compositions herein will generally be present to die extent of from 1 % to 60% of the liquid phase composition. More preferably, the alcohol alkoxylate component will comprise 5% to 40% of the liquid phase. Most preferably, the essentially utilized alcohol alkoxylate component will comprise from 5% to 30% of the detergent composition liquid phase. Utilization of alcohol alkoxylate in these concentrations in the liquid phase corresponds to an alcohol alkoxylate concentration in the total composition of from 1 % to 60% by weight, more preferably from 2% to 40% by weight, and most preferably from 5% to 25% by weight, of the composition, ii) Nonaqueous Low-Polaritv Organic Solvent
  • a second essential component of the liquid diluent which forms part of the liquid phase of the detergent compositions herein comprises nonaqueous, low-polarity organic solvent(s).
  • solvent is used herein to connote the non-surface active carrier or diluent portion of the liquid phase of the composition. While some of the essential and/or optional components of die compositions herein may actually dissolve in die “solvent "-containing liquid phase, other components will be present as particulate material dispersed within the "solvent "-containing liquid phase. Thus die term “solvent” is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto.
  • the nonaqueous organic materials which are employed as solvents herein are those which are liquids of low polarity.
  • low-polarity liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e. , the peroxygen bleaching agents e.g. sodium percarbonate.
  • relatively polar solvents such as ethanol should not be utilized.
  • Suitable types of low-polarity solvents useful in the nonaqueous liquid detergent compositions herein do include non- vicinal C4-Cg alkylene glycols, alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides.
  • a preferred type of nonaqueous, low-polarity solvent for use in the compositions herein comprises the non- vicinal C4-Cg branched or straight chain alkylene glycols.
  • Materials of this type include hexylene glycol (4-methyl-2,4-pentanediol), 1,6-hexanediol, 1,3-butylene glycol and 1,4-butylene glycol. Hexylene glycol is the most preferred.
  • nonaqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C2-C3 alkylene glycol mono Cj-C ⁇ alkyl ethers.
  • the specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monobutyl ether.
  • Diethylene glycol monobutyl ether and dipropylene glycol monobutyl ether are especially preferred.
  • Compounds of the type have been commercially marketed under die tradenames Dowanol, Carbitol, and Cellosolve.
  • nonaqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs).
  • PEGs polyethylene glycols
  • Such materials are those having molecular weights of at least 150.
  • PEGs of molecular weight ranging from 200 to 600 are most preferred.
  • non-polar, nonaqueous solvent comprises lower molecular weight methyl esters.
  • Such materials are those of the general formula: Rl-C(0)-OCH3 wherein R* ranges from 1 to 18.
  • suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and metiiyl dodecanoate.
  • the nonaqueous, low-polarity organic solvent(s) employed should, of course, be compatible and non-reactive with other composition components, e.g., bleach and/or activators, used in the liquid detergent compositions herein. Such a solvent component will generally be utilized in an amount of from 1 % to 70% by weight of die liquid phase.
  • the nonaqueous, low-polarity organic solvent will comprise from 10% to 60% by weight of the liquid phase, most preferably from 20% to 50% by weight, of the liquid phase of the composition. Utilization of this organic solvent in these concentrations in the liquid phase corresponds to a solvent concentration in the total composition of from 1 % to 50% by weight, more preferably from 5% to 40% by weight, and most preferably from 10% to 30% by weight, of the composition.
  • the ratio of alcohol alkoxylate to organic solvent within the liquid diluent can be used to vary the rheological properties of the detergent compositions eventually formed.
  • the weight ratio of alcohol alkoxylate to organic solvent will range from 50: 1 to 1:50. More preferably, tiiis ratio will range from 3:1 to 1:3.
  • the amount of total liquid diluent in the nonaqueous liquid phase herein will be determined by the type and amounts of odier composition components and by die desired composition properties.
  • the liquid diluent will comprise from 35% to 70% of die nonaqueous liquid phase of die compositions herein. More preferably, the liquid diluent will comprise from 50% to 65% of die nonaqueous liquid phase. This corresponds to a nonaqueous liquid diluent concentration in the total composition of from 15% to 70% by weight, more preferably from 20% to 50% by weight, of the composition.
  • the nonaqueous detergent compositions herein also essentially comprise from 1 % to 65% by weight, more preferably from 5% to 50% by weight, of a solid phase of particulate material which is dispersed and suspended within the liquid phase.
  • a solid phase of particulate material which is dispersed and suspended within the liquid phase.
  • particulate material will range in size from 0.1 to 1500 microns. More preferably such material will range in size from 5 to 200 microns.
  • the particulate material utilized herein can comprise one or more types of detergent composition components which in particulate form are substantially insoluble in the nonaqueous liquid phase of die composition.
  • the types of particulate materials which can be utilized are described in detail as follows:
  • nonaqueous liquid detergent compositions herein can be prepared by combining the essential and optional components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form the phase stable compositions herein.
  • essential and certain preferred optional components will be combined in a particular order and under certain conditions.
  • an admixture of the alkylbenzene sulfonate anionic surfactant and die two essential components of the nonaqueous diluent is formed by heating a combination of these materials to a temperature from 30 C C to 100°C.
  • a second process step the heated admixture formed as hereinbefore described is maintained under shear agitation at a temperature from 40°C to 100°C for a period of from 2 minutes to 20 hours.
  • a vacuum can be applied to die admixture at this point.
  • This second process step serves to completely dissolve die anionic surfactant in the nonaqueous liquid phase.
  • this liquid phase combination of materials is cooled to a temperature of from 0°C to 35°C.
  • This cooling step serves to form a structured, surfactant-containing liquid base into which the particulate material of the detergent compositions herein can be added and dispersed.
  • Particulate material is added in a fourth process step by combining the particulate material with the liquid base which is maintained under conditions of shear agitation.
  • shear agitation is maintained, essentially all of any optional surfactants in solid particulate form can be added in the form of particles ranging in size from 0.2 to 1,000 microns.
  • particles of substantially all of an organic builder e.g., citrate and/or fatty acid, and/or an alkalinity source, e.g., sodium carbonate
  • an organic builder e.g., citrate and/or fatty acid
  • an alkalinity source e.g., sodium carbonate
  • Other solid form optional ingredients can then be added to die composition at tiiis point. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a uniform dispersion of insoluble solid phase particulates within the liquid phase.
  • the particles of the highly preferred peroxygen bleaching agent can be added to the composition, again while the mixture is maintained under shear agitation.
  • die peroxygen bleaching agent material By adding die peroxygen bleaching agent material last, or after all or most of the other components, and especially after alkalinity source particles, have been added, desirable stability benefits for the peroxygen bleach can be realized. If enzyme prills are inco ⁇ orated, they are preferably added to the nonaqueous liquid matrix last.
  • agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics. Frequently this will involve agitation for a period of from 1 to 30 minutes.
  • one or more of the solid components may be added to the agitated mixture as a slurry of particles premixed witii a minor portion of one or more of the liquid components.
  • a premix of a small fraction of the alcohol alkoxylate and/or nonaqueous, low-polarity solvent with particles of the organic builder material and/or the particles of the inorganic alkalinity source and/or particles of a bleach activator may be separately formed and added as a slurry to the agitated mixture of composition components. Addition of such slurry premixes should precede addition of peroxygen bleaching agent and/or enzyme particles which may themselves be part of a premix slurry formed in analogous fashion.
  • compositions of this invention can be used to form aqueous washing solutions for use in the laundering and bleaching of fabrics.
  • an effective amount of such compositions is added to water, preferably in a conventional fabric laundering automatic washing machine, to form such aqueous laundering/bleaching solutions.
  • the aqueous washing/bleaching solution so formed is then contacted, preferably under agitation, with die fabrics to be laundered and bleached therewith.
  • An effective amount of the liquid detergent compositions herein added to water to form aqueous laundering/bleaching solutions can comprise amounts sufficient to form from 500 to 7,000 ppm of composition in aqueous solution. More preferably, from 800 to 3,000 ppm of the detergent compositions herein will be provided in aqueous washing/bleaching solution.
  • EXAMPLE V A non-limiting example of a bleach-containing nonaqueous liquid laundry detergent is prepared having the composition as set forth in Table I.
  • bis-AQA-l may be replaced by bis-AQA surfactants 2-22 or other bis- AQA surfactants herein.
  • the composition is prepared by mixing the bis-AQA and LAS, then die hexylene glycol and alcohol ethoxy late, together at 54°C (130°F) for 1/2 hour. This mixture is then cooled to 29°C (85°F) whereupon the remaining components are added. The resulting composition is then stirred at 29°C (85°F) for another 1/2 hour.
  • the resulting composition is a stable anhydrous heavy duty liquid laundry detergent which provides excellent stain and soil removal performance when used in normal fabric laundering operations.
  • the following hand wash detergent formulations are prepared by mixing the ingredients together in the percentage weight amounts as indicated below.
  • Brightener 1 0.15 0.15 0.15 0.15 0.15 ince misc ./water 100.0 100.0 100.0 100.0 to 100
  • AQA-9* May be replaced by any AQA surfactant described herein.
  • Preferred AQA surfactants for use in tiiis example are those with from 10 to 15 ethoxy groups; for example AQA-10, AQA-16.
  • Modem automatic dishwashing detergents can contain bleaching agents such as hypochlorite sources; perborate, percarbonate or persulfate bleaches; enzymes such as proteases, lipases and amylases, or mixtures thereof; rinse-aids, especially nonionic surfactants; builders, including zeolite and phosphate builders; low-sudsing detersive surfactants, especially ethylene oxide/propylene oxide condensates.
  • bleaching agents such as hypochlorite sources; perborate, percarbonate or persulfate bleaches; enzymes such as proteases, lipases and amylases, or mixtures thereof; rinse-aids, especially nonionic surfactants; builders, including zeolite and phosphate builders; low-sudsing detersive surfactants, especially ethylene oxide/propylene oxide condensates.
  • Such compositions are typically in die form of granules or gels. If used in gel form, various gelling agents known in
  • bis-AQA-l surfactant can be replaced by bis-AQA-2 through bis-AQA-22
  • the following illustrates mixmres of bis-AQA surfactants which can be substituted for die bis-AQA surfactants listed in any of die foregoing Examples.
  • such mixtures can be used to provide a spectrum of performance benefits and/or to provide cleaning compositions which are useful over a wide variety of usage conditions.
  • the bis-AQA surfactants in such mixmres differ by at least 1.5, preferably 2.5- 20, total EO units. Ratio ranges (wt.) for such mixtures are typically 10:1-1:10.
  • Non- limiting examples of such mixtures are as follows.
  • compositions advantageously provide improved detergency performance (especially in a fabric laundering context) over a broader range of water hardness than do the cationic surfactants herein used individually.
  • shorter EO cationics e.g., EO2
  • higher EO cationics e.g., EOI 5
  • builders can optimize the performance "window" of anionic surfactants. Until now, however, broadening the window to encompass essentially all conditions of water hardness has been impossible to achieve.
  • bleach compositions which can comprise any of the bleach activators herein or their corresponding peracids . It is preferred, but not essential, that the mole ratio of bis-AQA surfactant: activator be 1:1.
  • Composition Bleach Ingredient 1 bis-AOA Bleach:bis-AOA
  • This Example illustrates perfume formulations (A-C) made in accordance with the invention for inco ⁇ oration into any of the foregoing Examples of bis-AQA-containing detergent compositions.
  • the various ingredients and levels are set forth below.
  • perfume compositions are admixed or sprayed-onto (typically at levels up to about 2% by weight of the total detergent composition) any of die bis-AQA surfactant-containing cleaning (including bleaching) compositions disclosed herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)
PCT/US1997/008315 1996-05-17 1997-05-16 Detergent composition WO1997044431A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP97924742A EP0906403A1 (en) 1996-05-17 1997-05-16 Detergent composition
BR9710444A BR9710444A (pt) 1996-05-17 1997-05-16 Composi-Æo de detergente
JP9542572A JPH11511795A (ja) 1996-05-17 1997-05-16 洗剤組成物
CA002254947A CA2254947A1 (en) 1996-05-17 1997-05-16 Detergent composition
BR9712542-3A BR9712542A (pt) 1996-10-18 1997-10-02 Composição detergente
CA002268671A CA2268671C (en) 1996-10-18 1997-10-02 A detergent composition
PCT/US1997/017817 WO1998017760A1 (en) 1996-10-18 1997-10-02 A detergent composition
EP97945462A EP0934380A4 (en) 1996-10-18 1997-10-02 DETERGENT COMPOSITION
MA24840A MA24381A1 (fr) 1996-10-18 1997-10-17 Compositions detergentes
ARP970104795A AR010520A1 (es) 1996-10-18 1997-10-17 Composicion detergente que comprende blanqueador peroxiacido y composiciones hidrofilico noionico y tensioactivo cationico y metodo para lavarropa con la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1788396P 1996-05-17 1996-05-17
US60/017,883 1996-05-17

Publications (1)

Publication Number Publication Date
WO1997044431A1 true WO1997044431A1 (en) 1997-11-27

Family

ID=21785076

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/US1997/008315 WO1997044431A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008314 WO1997044425A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008445 WO1997043394A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008372 WO1997044432A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008444 WO1997043388A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008373 WO1997044433A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008316 WO1997044418A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008317 WO1997044419A2 (en) 1996-05-17 1997-05-16 Detergent composition

Family Applications After (7)

Application Number Title Priority Date Filing Date
PCT/US1997/008314 WO1997044425A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008445 WO1997043394A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008372 WO1997044432A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008444 WO1997043388A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008373 WO1997044433A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008316 WO1997044418A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008317 WO1997044419A2 (en) 1996-05-17 1997-05-16 Detergent composition

Country Status (9)

Country Link
EP (7) EP0907705A1 (ja)
JP (8) JPH11511799A (ja)
CN (6) CN1168812C (ja)
AR (2) AR014606A1 (ja)
BR (8) BR9710667A (ja)
CA (8) CA2255003A1 (ja)
MX (8) MX9809675A (ja)
WO (8) WO1997044431A1 (ja)
ZA (1) ZA974226B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136769A (en) * 1996-05-17 2000-10-24 The Procter & Gamble Company Alkoxylated cationic detergency ingredients

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA974226B (en) * 1996-05-17 1998-12-28 Procter & Gamble Detergent composition
DE19824687A1 (de) * 1998-06-03 1999-12-09 Henkel Kgaa Amylase und Acetonitril-Derivate enthaltende Wasch- und Reinigungsmittel
AU1228300A (en) * 1998-11-02 2000-05-22 Procter & Gamble Company, The Fabric care compositions having reduced fabric abrasion
GB2348434A (en) * 1999-04-01 2000-10-04 Procter & Gamble Detergent compositions
US5994285A (en) * 1999-06-14 1999-11-30 Colgate-Palmolive Co. Liquid laundry detergent composition containing ethoxylated amine quaternary surfactant
DE19948669A1 (de) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Waschmitteltabletten
DE19948668A1 (de) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Waschmitteltabletten
DE19948670A1 (de) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Waschmittel
DE60025651T2 (de) 1999-11-10 2006-07-06 Unilever N.V. Verfahren zum maschinellen Geschirrspülen von verschmutzten Kunststoffartikeln
EP1228176A1 (en) * 1999-11-10 2002-08-07 Unilever Plc Automatic dishwashing compositions containing water soluble cationic surfactants
ES2251908T3 (es) * 2000-05-16 2006-05-16 Clariant International Ltd. Uso de compuestos cationicos.
GB0021483D0 (en) * 2000-09-01 2000-10-18 Unilever Plc Fabric care composition
DE10045289A1 (de) * 2000-09-13 2002-03-28 Henkel Kgaa Schnell trocknendes Wasch- und Reinigungsmittel, insbesondere Handgeschirrspülmittel
US6638902B2 (en) * 2001-02-01 2003-10-28 Ecolab Inc. Stable solid enzyme compositions and methods employing them
US6462014B1 (en) 2001-04-09 2002-10-08 Akzo Nobel N.V. Low foaming/defoaming compositions containing alkoxylated quaternary ammonium compounds
JP2003129099A (ja) * 2001-10-24 2003-05-08 Kao Corp 衣料用粉末洗剤組成物
ATE321834T1 (de) * 2001-12-24 2006-04-15 Cognis Ip Man Gmbh Kationische zubereitungen für die reinigung harter oberflächen
CN1294247C (zh) * 2002-02-25 2007-01-10 西巴特殊化学品控股有限公司 纺织纤维材料的处理方法
US20030228991A1 (en) * 2002-05-31 2003-12-11 Johnson Andress Kirsty Premix compositions suitable for the preparation of aqueous or semi-aqueous cleaning and degreasing formulations with low VOCs.
EP1418226B1 (en) * 2002-11-07 2006-10-04 Unilever N.V. Detergent composition
ES2596325T3 (es) 2002-12-04 2017-01-05 Clariant International Ltd Composición de amonio cuaternario
US8110537B2 (en) * 2003-01-14 2012-02-07 Ecolab Usa Inc. Liquid detergent composition and methods for using
WO2006037438A1 (en) * 2004-10-04 2006-04-13 Unilever N.V. Liquid detergent composition
ATE483011T1 (de) * 2006-05-23 2010-10-15 Basf Se Waschmittel für textilfaserstoffe
JP2009149775A (ja) * 2007-12-20 2009-07-09 Lion Corp 洗濯槽用洗浄剤組成物
TW201031743A (en) * 2008-12-18 2010-09-01 Basf Se Surfactant mixture comprising branched short-chain and branched long-chain components
JP5340821B2 (ja) * 2009-06-22 2013-11-13 三洋化成工業株式会社 台所用洗浄剤組成物
ES2548772T3 (es) * 2009-12-10 2015-10-20 The Procter & Gamble Company Producto para lavavajillas y uso del mismo
CA2792305A1 (en) * 2010-03-10 2011-09-15 Basf Se Process for mineral oil production using cationic surfactants having a hydrophobic block with a chain length of 6 to 10 carbon atoms
JP5642533B2 (ja) * 2010-12-24 2014-12-17 ライオン株式会社 自動食器洗い乾燥機用洗浄剤組成物
DE102012212728A1 (de) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Stabiles, flüssiges Waschmittel mit vergrauungsinhibierender Leistung II
EP2931865B1 (en) * 2012-12-12 2016-08-24 Unilever N.V. Detergent composition
MX2015013672A (es) * 2013-03-28 2016-02-16 Procter & Gamble Composiciones de limpieza que contiene una polieteramina, un polimero para el desprendimiento de la suciedad y una carboximetilcelulosa.
JP6184830B2 (ja) * 2013-06-14 2017-08-23 花王株式会社 漂白洗浄剤組成物
EP2915873A1 (en) * 2014-03-06 2015-09-09 The Procter and Gamble Company Dishwashing composition
CN104059783B (zh) * 2014-06-10 2017-10-03 深圳市新纶科技股份有限公司 一种洗涤剂用表面活性剂的制备方法
EP3050955B2 (en) * 2015-02-02 2023-11-08 The Procter & Gamble Company Detergent pack
JP6684558B2 (ja) * 2015-09-03 2020-04-22 ライオン株式会社 衣料用液体洗浄剤
JP6732424B2 (ja) * 2015-10-05 2020-07-29 花王株式会社 衣料用液体洗浄剤組成物
EP3301160A1 (en) * 2016-10-03 2018-04-04 The Procter & Gamble Company Low ph laundry detergent composition
CN109983108A (zh) * 2016-11-24 2019-07-05 荷兰联合利华有限公司 液体洗涤剂组合物
ES2936215T3 (es) * 2018-07-05 2023-03-15 Evonik Operations Gmbh Sustancias activas para formulaciones de lavado y de limpieza altamente viscosas
EP4053328A1 (de) * 2021-03-02 2022-09-07 CHT Germany GmbH Kombinierte bleichbehandlung für textilien
WO2023087194A1 (en) * 2021-11-18 2023-05-25 Ecolab Usa Inc. Manual detergent for pot and pan with destaining function
NL2032249B1 (nl) * 2022-06-22 2024-01-08 Hg Int B V Samenstelling voor het verwijderen van kalkaanslag van gekleurd sanitair

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0002084A1 (en) * 1977-11-17 1979-05-30 THE PROCTER & GAMBLE COMPANY Granular detergent compositions for improved greasy soil removal
EP0026529A1 (en) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Detergent compositions
JPS5959793A (ja) * 1982-09-30 1984-04-05 ライオン株式会社 粒状洗剤組成物
EP0163910A1 (de) * 1984-05-04 1985-12-11 Hoechst Aktiengesellschaft Weichmacher enthaltende Waschmittel
EP0495554A1 (en) * 1991-01-16 1992-07-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and quaternary ammonium compounds
EP0512533A2 (en) * 1991-05-09 1992-11-11 Kao Corporation Bleach or bleaching detergent composition

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668136A (en) * 1969-07-07 1972-06-06 Witco Chemical Corp Compatible anionic-catonic surfactant compositions
US4033718A (en) * 1973-11-27 1977-07-05 The Procter & Gamble Company Photoactivated bleaching process
CA1104451A (en) * 1978-02-28 1981-07-07 Manuel Juan De Luque Detergent bleach composition and process
EP0008142B1 (en) * 1978-08-10 1984-09-26 Procter & Gamble European Technical Center Liquid detergent composition containing ternary surfactant system
JPS598392B2 (ja) * 1979-06-29 1984-02-24 花王株式会社 洗浄剤組成物
EP0026013B1 (en) * 1979-09-21 1983-09-07 THE PROCTER & GAMBLE COMPANY Washing and softening compositions and methods for their manufacture
MX155643A (es) * 1980-02-29 1988-04-11 Ciba Geigy Ag Composicion blanqueadora de telas
JPS5941672B2 (ja) * 1981-02-20 1984-10-08 花王株式会社 洗浄剤組成物
DE3366705D1 (en) * 1982-03-01 1986-11-13 Procter & Gamble Detergent composition
DE3274747D1 (en) * 1982-11-05 1987-01-29 Reckitt & Colmann Sa Rinse compositions for laundry
GB8421800D0 (en) * 1984-08-29 1984-10-03 Unilever Plc Detergent compositions
ZA862286B (en) * 1985-04-10 1987-11-25 Colgate Palmolive Co Softening and anti-static nonionic detergent composition
ATE98674T1 (de) * 1985-04-15 1994-01-15 Procter & Gamble Stabile fluessige reinigungsmittel.
ZA865751B (en) * 1985-08-20 1988-03-30 Colgate Palmolive Co Built detergent compositions containing stabilizing agents
US4806260A (en) * 1986-02-21 1989-02-21 Colgate-Palmolive Company Built nonaqueous liquid nonionic laundry detergent composition containing acid terminated nonionic surfactant and quarternary ammonium softener and method of use
GB8619153D0 (en) * 1986-08-06 1986-09-17 Unilever Plc Fabric conditioning composition
US4704221A (en) * 1986-10-22 1987-11-03 The Procter & Gamble Company Granular detergents which contain high levels of anionic surfactant that forms a middle-phase, surface treated with a water soluble cationic surfactant
EP0294893A3 (en) * 1987-06-10 1989-11-02 The Procter & Gamble Company Conditioning agents and compositions containing same
US4913828A (en) * 1987-06-10 1990-04-03 The Procter & Gamble Company Conditioning agents and compositions containing same
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
GB8727659D0 (en) * 1987-11-26 1987-12-31 Unilever Plc Machine dishwashing compositions
GB8900807D0 (en) * 1989-01-14 1989-03-08 British Petroleum Co Plc Bleach compositions
US5441541A (en) * 1989-07-19 1995-08-15 Colgate Polmolive Co. Anionic/cationic surfactant mixtures
US5290475A (en) * 1990-05-08 1994-03-01 Colgate Palmolive Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer
AU7633491A (en) * 1990-05-08 1991-11-14 Colgate-Palmolive Company, The Liquid softening and anti-static nonionic detergent composition with soil release promoting pet-poet copolymer
EP0495257B1 (en) * 1991-01-16 2002-06-12 The Procter & Gamble Company Compact detergent compositions with high activity cellulase
AU2244992A (en) * 1992-02-18 1993-09-03 Procter & Gamble Company, The Detergent compositions with high activity cellulase and quaternary ammonium compounds
US5415807A (en) * 1993-07-08 1995-05-16 The Procter & Gamble Company Sulfonated poly-ethoxy/propoxy end-capped ester oligomers suitable as soil release agents in detergent compositions
JP2813112B2 (ja) * 1993-08-30 1998-10-22 花王株式会社 衣料用液体洗浄剤組成物
US5466394A (en) * 1994-04-25 1995-11-14 The Procter & Gamble Co. Stable, aqueous laundry detergent composition having improved softening properties
MX9605097A (es) * 1994-04-25 1997-08-30 Procter & Gamble Composicion detergente acuosa estable para lavanderia que tiene propiedades suavizadoras mejoradas.
JPH07292389A (ja) * 1994-04-29 1995-11-07 Lion Corp 衣料用洗浄剤組成物
CA2191318A1 (en) * 1994-06-01 1995-12-07 Alison Lesley Main Laundry detergent compositions
EP0688859A1 (en) * 1994-06-22 1995-12-27 The Procter & Gamble Company A process for treating textiles and compositions therefore
ZA974226B (en) * 1996-05-17 1998-12-28 Procter & Gamble Detergent composition
MA25183A1 (fr) * 1996-05-17 2001-07-02 Arthur Jacques Kami Christiaan Compositions detergentes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0002084A1 (en) * 1977-11-17 1979-05-30 THE PROCTER & GAMBLE COMPANY Granular detergent compositions for improved greasy soil removal
EP0026529A1 (en) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Detergent compositions
JPS5959793A (ja) * 1982-09-30 1984-04-05 ライオン株式会社 粒状洗剤組成物
EP0163910A1 (de) * 1984-05-04 1985-12-11 Hoechst Aktiengesellschaft Weichmacher enthaltende Waschmittel
EP0495554A1 (en) * 1991-01-16 1992-07-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and quaternary ammonium compounds
EP0512533A2 (en) * 1991-05-09 1992-11-11 Kao Corporation Bleach or bleaching detergent composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8420, Derwent World Patents Index; Class A97, AN 84-123539, XP002044147 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136769A (en) * 1996-05-17 2000-10-24 The Procter & Gamble Company Alkoxylated cationic detergency ingredients

Also Published As

Publication number Publication date
CN1230213A (zh) 1999-09-29
CA2255003A1 (en) 1997-11-27
AR007169A1 (es) 1999-10-13
JP2000504061A (ja) 2000-04-04
BR9710444A (pt) 1999-08-17
WO1997043394A3 (en) 1997-12-24
EP0912686A2 (en) 1999-05-06
CN1225678A (zh) 1999-08-11
CN1168812C (zh) 2004-09-29
MX9809681A (es) 1999-03-01
MX9809679A (en) 1999-03-01
MX9809683A (en) 1999-03-01
BR9710676A (pt) 1999-08-17
CN1225677A (zh) 1999-08-11
EP0912669A2 (en) 1999-05-06
EP0906392A2 (en) 1999-04-07
CN1225675A (zh) 1999-08-11
JPH11512782A (ja) 1999-11-02
WO1997044419A2 (en) 1997-11-27
MX9809674A (en) 1999-03-01
CN1232489A (zh) 1999-10-20
WO1997044432A1 (en) 1997-11-27
WO1997043394A2 (en) 1997-11-20
BR9709587A (pt) 2000-04-25
BR9710667A (pt) 1999-08-17
WO1997044425A3 (en) 1997-12-24
CA2255006A1 (en) 1997-11-20
BR9710675A (pt) 1999-08-17
CA2255005A1 (en) 1997-11-20
WO1997043388A3 (en) 1998-02-12
EP0906405A1 (en) 1999-04-07
MX9809624A (en) 1999-03-01
CA2254948A1 (en) 1997-11-27
MX9809675A (en) 1999-03-01
JPH11510554A (ja) 1999-09-14
BR9710678A (pt) 1999-08-17
JPH11511795A (ja) 1999-10-12
CA2254820A1 (en) 1997-11-27
BR9710445A (pt) 1999-08-17
WO1997044419A3 (en) 1997-12-31
WO1997043388A2 (en) 1997-11-20
JPH11511799A (ja) 1999-10-12
ZA974226B (en) 1998-12-28
EP0906403A1 (en) 1999-04-07
AR014606A1 (es) 2001-03-28
CA2254818A1 (en) 1997-11-27
JPH11511794A (ja) 1999-10-12
WO1997044425A2 (en) 1997-11-27
JPH11511796A (ja) 1999-10-12
CN1225673A (zh) 1999-08-11
MX9809628A (en) 1999-02-01
EP0918833A1 (en) 1999-06-02
CA2254961A1 (en) 1997-11-27
BR9709321A (pt) 1999-08-10
JPH11511797A (ja) 1999-10-12
WO1997044433A1 (en) 1997-11-27
MX9809684A (en) 1999-03-01
EP0907705A1 (en) 1999-04-14
CA2254947A1 (en) 1997-11-27
WO1997044418A1 (en) 1997-11-27

Similar Documents

Publication Publication Date Title
WO1997044431A1 (en) Detergent composition
US6136769A (en) Alkoxylated cationic detergency ingredients
WO1998005749A1 (en) Detergent compositions containing dianionic esters
EP0918834A2 (en) Detergent composition
GB2314339A (en) Cleaning compositions containing amido surfactants derived from amido furandiones
WO1998051771A1 (en) Detergent compositions
WO1998000503A1 (en) Bleaching detergent compositions containing selected dianionic or alkoxylated dianionic surfactants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97196475.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN CZ HU JP MX TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 542572

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2254947

Country of ref document: CA

Ref document number: 2254947

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/009681

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997924742

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997924742

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997924742

Country of ref document: EP