WO1997043299A1 - Alkylierter nucleosid-3'-phosphate, verfahren zu ihrer herstellung und ihrer verwendung - Google Patents

Alkylierter nucleosid-3'-phosphate, verfahren zu ihrer herstellung und ihrer verwendung Download PDF

Info

Publication number
WO1997043299A1
WO1997043299A1 PCT/DE1997/000957 DE9700957W WO9743299A1 WO 1997043299 A1 WO1997043299 A1 WO 1997043299A1 DE 9700957 W DE9700957 W DE 9700957W WO 9743299 A1 WO9743299 A1 WO 9743299A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
nucleoside
groups
nucleobase
phosphates
Prior art date
Application number
PCT/DE1997/000957
Other languages
English (en)
French (fr)
Inventor
Manfred Wiessler
Hans-Christian Kliem
Original Assignee
Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts filed Critical Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Priority to JP09540389A priority Critical patent/JP2000510127A/ja
Priority to EP97923808A priority patent/EP0918784A1/de
Publication of WO1997043299A1 publication Critical patent/WO1997043299A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a process for the preparation of alkylated nucleoside 3'-phosphates, these and their use.
  • tumor therapeutics are often used, the effect of which is based on the alkylation of DNA.
  • the effect of these tumor therapeutic agents is, however, reduced or even completely prevented by cellular repair mechanisms, for example the O 6 -alkyl guanosine transferase.
  • Alkylated nucleoside-3'-phosphates represent the substrate for the O 6 -alkyl guanosine transferase, whereby it would be bound in the tumors and prevented from their DNA repair activity.
  • the production of alkylated nucleoside 3'-phosphates turns out to be extremely difficult.
  • the present invention is therefore based on the object of providing a process by which alkylated nucleoside 3 'phosphates can be produced.
  • the present invention thus relates to a process for the preparation of an alkylated nucleoside 3 'phosphate which has a nucleobase, a pentose and a phosphate group, the process comprising the following steps:
  • nucleobases encompasses any basic reacting heterocycle, eg purine, pyrimidine or derivatives of these, such as adenine, guanine, cytosine, uracil or thymidine.
  • pentose includes any saccharide that has 5 carbon atoms, such as D-ribofuranose and 2-deoxy-D-ribofuranose.
  • the pentose can be bound via its carbon atom 1 ⁇ -glycosidically to a nitrogen atom of the nucleobase.
  • phosphate group embraces organic and inorganic phosphates of any kind, e.g. Mono-, di- or triphosphates.
  • the phosphate group can be bound to the carbon atom 3 and optionally 5 of the pentose.
  • Preferred nucleoside 3 'phosphates are adenosine, guanosine, cytidine, uridine, 2' deoxyadenosine, 2 'deoxyguanosine, 2' deoxycytosine and thymidine 3 'phosphate, their monophosphates being whole are particularly preferred.
  • nucleoside 3 'phosphates which have protective groups are reacted with an alkylating agent.
  • the nucleoside 3 'phosphate can have the protective groups on OH groups of the pentose, on OH groups of the phosphate group (s) and, if appropriate, on the nucleobase. It is advantageous if all OH groups of the pentose and the phosphate group (s) are provided with protective groups.
  • protective groups on OH groups of the pentose are dimethoxytrityl, silyl and / or acyl groups, such as phenylacetyl and acetyl groups.
  • protective groups on OH groups of the phosphate group (s) are cyanoethyl groups and derivatives thereof.
  • protecting groups on the nucleobase are the above acyl groups.
  • the protecting groups on the nucleobase can be at any suitable position on the nucleobase that is not to be alkylated, e.g. on an amino group.
  • nucleoside 3 'phosphates containing protective groups and the materials required for this purpose are known to the person skilled in the art. For example, these can be obtained from commercially available forerunners (see implementation of 7 to 8 in Fig. 2). They can also be produced from the nucleosides (pentose and nucleobase) themselves (cf. FIG. 1).
  • Suitable alkylating agent in step (a) of the process according to the invention is any agent which can alkylate the above nucleosides, in particular the nucleobases of the above nucleosides, e.g. on an O and / or N atom.
  • alkylating agents which provide carbocations e.g. Diazoalkanes, such as diazomethane, diazoethane and / or diazo-n-butane.
  • the alkylation can also introduce several alkyl groups, e.g. in different positions.
  • the alkyl groups can be the same or different from one another.
  • Step (a) gives alkylated, protecting group-containing nucleoside 3 'phosphates.
  • step (b) of the process according to the invention the protective groups are split off. This is advantageously carried out under mild conditions, so that the alkyl groups introduced in step (a) are not influenced.
  • the removal of dimethoxytrityl groups can be carried out, for example, by means of an ion exchanger in the H + form.
  • the silyl groups can be split off with fluoride.
  • Acyl groups can be split off by treatment with bases, for example ammonia or OH-. Cyanoethyl groups or their derivatives can be split off by incubation with ammonia.
  • the protective groups can be split off in succession or in a "one-pot reaction".
  • a cleaning and / or separation step can take place before and / or after step (b). If, for example, an isomer mixture of alkylated, protecting group-containing nucleoside 3 'phosphates is obtained in step (a), it is advantageous to separate this into the isomers before the protective groups are split off.
  • the Reini- The separation and / or separation step can be carried out, for example, using chromatographic methods, such as preparative HPLC.
  • FIGS. 1 and 2 Examples of the method according to the invention are shown in FIGS. 1 and 2.
  • the process according to the invention is characterized in that alkylated nucleoside 3 'phosphates are obtained in large quantities and with high purity. Furthermore, the method is easy to carry out and inexpensive.
  • alkylated nucleoside-3 'phosphates comprising a nucleobase, a pentose and a phosphate group as defined above, an alkyl group being located on the nucleobase.
  • Alkylated nucleoside 3 'phosphates can be used in the treatment of tumors with tumor therapeutics, e.g. alkylating the DNA. It can thus be achieved that these tumor therapeutic agents have their full effect. Furthermore, alkylated nucleoside 3'-phosphates can be used alone for the treatment of tumors.
  • alkylated nucleoside 3 'phosphates can be used for the analysis of DNA-alkyl adducts, for example in the 32 P postlabeling method.
  • Alkylating compounds can cause cancer by alkylating bases of cellular DNA, creating DNA-alkyl adducts. Such adducts can be detected using the 32 P postlabeling method.
  • the above DNA is degraded enzymatically to nucleoside 3 'phosphates, whereby a mixture of conventional nucleoside 3' phosphates and alkylated nucleoside 3 'phosphates is formed.
  • a radioactive phosphate group is then introduced enzymatically at the 5 'position using y- 32 P-ATP.
  • nucleosides it is necessary for the nucleosides to have a phosphate group at the 3 'position, since only these can be labeled in the above manner.
  • the mixture of radio actively labeled nucleosides are then separated in the usual way and the radioactive labeled nucleosides are detected.
  • DNA-alkyl adducts can be detected in very small amounts (approx. 1 adduct per 10 9 normal nucleosides). Because of this small amount, structural proof of the DNA-alkyl adducts is not possible.
  • substances that can be used as reference substances in the 32- postlabeling procedure Such substances are alkylated nucleoside 3 'phosphates.
  • DNA-alkyl adducts are also detected with monoclonal antibodies.
  • the procedure is as described above, the alkylated nucleoside 3 'phosphates being detected by means of monoclonal antibodies directed against them.
  • Alkylated nucleoside 3 'phosphates can be used to obtain the monoclonal antibodies.
  • Fig. 2 shows the preparation of 3 isomeric alkylated 2'-deoxythymidine-3 'monophosphates.
  • Compound 8 is prepared from commercially available compound 7 in a two-step one-pot reaction (1st tetrazole-catalyzed coupling with hydroxypropiononitrile; 2nd oxidation with cumene hydroperoxide). Compound 8 is then reacted directly with any diazoalkane, for example diazomethane, diazoethane or diazo-n-butane. In this reaction, the 3 isomeric compounds 9a-c are formed simultaneously. The compounds 9a-c are separated by means of preparative HPLC. The protecting groups are split off for each isomer separately. The dimethoxytrityl groups are marked with a split off the ion exchanger in the H + form. The cyanoethyl groups are split off by incubation with ammonia. The alkylated nucleoside 3 'monophosphates 10a-c are obtained, which are purified by means of preparative HPLC.
  • any diazoalkane for example diazomethane, diazoethan
  • Solution 1 10 mmol (2.67 g) 2'-deoxyguanosine 1 were concentrated in 2 x 30 ml pyridine and suspended in 50 ml pyridine. 50 mmol (6.5 ml) of trimethylchlorosilane were slowly added dropwise to the suspension. After 30 minutes the mixture was cooled with ice.
  • Solution 2 1 6.0 mmol (2.7 g) of hydroxybenzotriazole were concentrated with acetonitrile (4 ⁇ 30 ml) and suspended in 5 ml of acetonitrile. 15 mmol (2 ml) of phenylacetic acid chloride were added dropwise with the exclusion of air and moisture. After 30 minutes, so much pyridine was added that the precipitate dissolved (about 0.3 ml).
  • Solution 2 was then dropped into the cooled solution 1 with the exclusion of air and moisture. After the addition had ended, the mixture was warmed to room temperature overnight (15 hours). The reaction mixture was then cooled with ice. Then 10 ml of water and after 5 minutes 20 ml of concentrated ammonia were added. After a further 15 minutes, the mixture was evaporated to the dry state in a vacuum (water bath temperature: 30 ° C.). The residue obtained was taken up in as much water (about 20 ml) as was necessary to dissolve it. The mixture was then extracted with 50 ml of diethyl ether and the organic phase decanted. The aqueous phase was crystallized at 4 ° C. The crystallized precipitate was filtered off and dried in vacuo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines alkylierten Nucleosid-3'-Phosphates, wobei das Nucleosid-3'-Phosphat eine Nucleobase, eine Pentose und eine Phosphat-Gruppe aufweist, umfassend die folgenden Schritte: (a) Umsetzen eines Schutzgruppen aufweisenden Nucleosid-3'-Phosphats mit einem Alkylierungsmittel und (b) Abspalten der Schutzgruppen. Ferner betrifft die Erfindung alkylierte Nucleosid-3'-Phosphate sowie deren Verwendung in der Tumortherapie, und als Vergleichssubstanzen im 32P-Postlabeling-Verfahren.

Description

ALKYLIERTER NUCLEOSID-3' -PHOSPHATE, VERFAHREN ZU lHRER HERSTELLUNG UND lHRER VERWENDUNG
Die Erfindung betrifft ein Verfahren zur Herstellung alkylierter Nucleosid-3'- Phosphate, diese und deren Verwendung.
Bei der Therapie von Tumoren werden oft Tumortherapeutika eingesetzt, deren Wirkung auf der Alkylierung von DNA beruht. Die Wirkung dieser Tumortherapeutika wird jedoch durch zelluläre Reparaturmechanismen, z.B. der O6-Alkyl- Guanosin-Transferase, vermindert oder sogar ganz verhindert. Um diesem entgegen treten zu können, könnte es nützlich sein, alkylierte Nucleosid-3'- Phosphate ergänzend zu den angesprochenen Tumortherapeutika zu verwenden. Alkylierte Nucleosid-3'-Phosphate stellen das Substrat für die O6-Alkyl-Guanosin- Transferase dar, wodurch diese in den Tumoren gebunden und von ihrer DNA- Reparatur-Aktivität abgehalten würde. Die Herstellung von alkylierten Nucleosid- 3'-Phosphaten stellt sich allerdings als äußerst schwierig heraus.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem alkylierte Nucleosid-3 ' -Phosphate hergestellt werden können.
Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.
Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung eines alkylierten Nucleosid-3 '-Phosphats, das eine Nucleobase, eine Pentose und eine Phosphat-Gruppe aufweist, wobei das Verfahren die folgenden Schritte umfaßt:
(a) Umsetzen eines Schutzgruppen aufweisenden Nucleosid-3 '-Phosphats mit einem Alkylierungsmittel, und
(b) Abspalten der Schutzgruppen.
Der Ausdruck "Nucleobasen" umfaßt jeden basisch reagierenden Heterocyclus, z.B. Purin, Pyrimidin oder Derivate von diesen, wie Adenin, Guanin, Cytosin, Uracil oder Thymidin.
Der Ausdruck "Pentose" umfaßt jedes Saccharid, das 5 Kohlenstoffatome aufweist, wie D-Ribofuranose und 2-Desoxy-D-ribofuranose. Die Pentose kann über ihr Kohlenstoff-atom 1 β -glykosidisch an ein Stickstoffatom der Nucleobase gebunden sein.
Der Ausdruck "Phosphat-Gruppe" umfaßt organische und anorganische Phosphate jeglicher Art, z.B. Mono-, Di- oder Triphosphate. Die Phosphat-Gruppe kann an das Kohlenstoffatom 3 und ggf. 5 der Pentose gebunden sein.
Bevorzugte Nucleosid-3 '-Phosphate sind Adenosin-, Guanosin-, Cytidin-, Uridin-, 2 ' -Desoxyadenosin-, 2 '-Desoxyguanosin-, 2 '-Desoxycytosin- und Thymidin-3 '- Phosphat, wobei deren Monophosphate von ganz besonders bevorzugt sind.
Im erfindungsgemäßen Verfahren werden in Schritt (a) Schutzgruppen aufweisende Nucleosid-3 '-Phosphate mit einem Alkylierungsmittel umgesetzt. Das Nucleosid-3 '-Phosphat kann die Schutzgruppen an OH-Gruppen der Pentose, an OH-Gruppen der Phosphat-Gruppe(n) und ggf. an der Nucleobase aufweisen. Dabei ist es günstig, wenn alle OH-Gruppen der Pentose und der Phosphat- Gruppe(n) mit Schutzgruppen versehen sind. Beispiele von Schutzgruppen an OH-Gruppen der Pentose sind Dimethoxytrityl-, Silyl- und/oder Acylgruppen, wie Phenylacetyl- und Acetylgruppen. Beispiele von Schutzgruppen an OH-Gruppen der Phosphat-Gruppe(n) sind Cyanoethyl-Gruppen und Derivate davon. Beispiele von Schutzgruppen an der Nucleobase sind vorstehende Acylgruppen. Die Schutzgruppen an der Nucleobase können sich an jeder geeigneten Position der Nucleobase befinden, die nicht alkyliert werden soll, z.B. an einer Aminogruppe.
Die Herstellung von Schutzgruppen aufweisenden Nucleosid-3 '-Phosphaten sowie dazu notwendige Materialien sind dem Fachmann bekannt. Beispielsweise können diese von käuflichen Vorläufern erhalten werden (vgl. Umsetzung von 7 zu 8 in Fig. 2) . Sie können auch aus den Nucleosiden (Pentose und Nucleobase) selbst hergestellt werden (vgl. Fig. 1 ) .
Als Alkylierungsmittel in Schritt (a) des erfindungsgemäßen Verfahrens ist jedes Mittel geeignet, das vorstehende Nucleoside, insbesondere die Nucleobasen vorstehender Nucleoside alkylieren kann, z.B. an einem O- und/oder N-Atom. Ein Beispiel hierfür sind Carbokationen liefernde Alkylierungsmittel, z.B. Diazoalkane, wie Diazomethan, Diazoethan und/oder Diazo-n-butan.
In Schritt (a) können durch die Alkylierung auch mehrere Alkylgruppen eingeführt werden, z.B. an verschiedenen Positionen. Die Alkylgruppen können gleich oder verschieden voneinander sein.
Durch Schritt (a) werden alkylierte, Schutzgruppen aufweisende Nucleosid-3 '- Phosphate erhalten.
In Schritt (b) des erfindungsgemäßen Verfahrens erfolgt das Abspalten der Schutzgruppen. Günstigerweise geschieht dies unter milden Bedingungen, so daß die in Schritt (a) eingeführten Alkylgruppen nicht beeinflußt werden. Die Abspaltung von Dimethoxytritylgruppen kann z.B. mittels eines Ionenaustauschers in der H +-Form durchgeführt weden. Die Abspaltung von Silylgruppen kann mit Fluorid erfolgen. Acylgruppen können durch Behandlung mit Basen, z.B. Ammoniak oder OH- , abgespalten werden. Die Abspaltung von Cyanoethylgruppen oder deren Derivaten kann durch Inkubation mit Ammoniak geschehen. Die Schutzgruppen können nacheinander oder in einer "Eintopfreaktion" abgespalten werden.
In einer bevorzugten Ausführungsform des erfindungemäßen Verfahrens kann vor und/oder nach Schritt (b) ein Reinigungs- und/oder Trennschritt erfolgen. Wird z.B. in Schritt (a) ein Isomerengemisch von alkylierten, Schutzgruppen aufweisenden Nucleosid-3 ' -Phosphaten erhalten, so ist es günstig, dieses in die Isomeren zu trennen, bevor die Schutzgruppen abgespalten werden. Der Reini- gungs- und/oder Trennschritt kann z.B. mit chromatographischen Methoden, wie präparativer HPLC, erfolgen.
Beispiele des erfindungegemäßen Verfahrens sind in den Figuren 1 und 2 dargestellt.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß alkylierte Nucleosid-3 '-Phosphate in großen Mengen und hoher Reinheit erhalten werden. Ferner ist das Verfahren leicht durchführbar und kostengünstig.
Ein weiterer Gegenstand der vorliegenden Erfindung sind alkylierte Nucleosid-3 ' - Phosphate, umfassend eine Nucleobase, eine Pentose und eine Phosphatgruppe, wie sie vorstehend definiert sind, wobei sich an der Nucleobase eine Alkylgruppe befindet. Diese sind durch das vorstehende Verfahren erhältlich.
Alkylierte Nucleosid-3 ' -Phosphate können bei der Behandlung von Tumoren mit Tumortherapeutika, die z.B. die DNA alkylieren, verwendet werden. Damit kann erreicht werden, daß diese Tumortherapeutika ihre volle Wirkung entfalten. Ferner können alkylierte Nucleosid-3'-Phosphate alleine zur Behandlung von Tumoren eingesetzt werden.
Desweiteren können alkylierte Nucleosid-3 ' -Phosphate zur Analyse von DNA- Alkyl-Addukten eingesetzt werden, z.B. im 32P-Postlabeling-Verfahren. Alkylierende Verbindungen können Krebs verursachen, in dem sie Basen zellulärer DNA alkylieren, wodurch DNA-Alkyl-Addukte entstehen. Solche Addukte können mit dem 32P-Postlabeling-Verfahren nachgewiesen werden. Hierzu wird vorstehende DNA enzymatisch zu Nucleosid-3 '-Phosphaten abgebaut, wodurch ein Gemisch von üblichen Nucleosid-3 '-Phosphaten und alkylierten Nucleosid-3 '-Phosphaten entsteht. Anschließend wird unter Verwendung von y-32P-ATP enzymatisch an der 5 '-Position eine radioaktive Phosphatgruppe eingeführt. Dabei ist es notwendig, daß die Nucleoside an der 3'-Position eine Phosphat-Gruppe tragen, da nur diese auf vorstehende Art markiert werden können. Das Gemisch der radio aktiv markierten Nucleoside wird dann in üblicher weise getrennt und die radio- activ markierten Nucleoside werden nachgewiesen. Mit diesem Verfahren könne DNA-Alkyl-Addukte in sehr kleinen Mengen nachgewiesen werden (ca. 1 Addukt auf 109 normale Nucleoside) . Wegen dieser geringen Menge ist ein Strukturbeweis der DNA-Alkyl-Addukte jedoch nicht möglich. Um die Struktur eines DNA- Addukts zu beweisen, ist die Bereitstellung von Substanzen notwendig, die als Vergleichssubstanzen im 32-Postlabeling-Verfahren eingesetzt weden können. Derartige Substanzen sind alkylierte Nucleosid-3 ' -Phosphate.
Neben dem 32P-Postlabeling-Verfahren werden DNA-Alkyl-Addukte auch mit monoklonalen Antikörpern nachgewiesen. Hierzu wird, wie vorstehend beschrieben, vorgegangen, wobei die alkylierten Nucleosid-3 '-Phosphate mittels gegen sie gerichteter monoklonaler Antikörper nachgewiesen werden. Zur Gewinnung der monoklonalen Antikörper können alkylierte Nucleosid-3 '-Phosphate verwendet werden.
Kurze Beschreibung der Zeichnungen:
Fig. 1 : zeigt die Herstellung von O6-n-Butyl-2 '-desoxyguanosin-3 ' -mono- phosphat, und
Fig. 2: zeigt die Herstellung von 3 isomeren alkylierten 2 ' -Desoxythymidin-3 ' -monophosphaten.
Die Verbindung 8 wird aus der käuflichen Verbindung 7 in einer zweistufigen Eintopf reaktion ( 1 . Tetrazol-katalysierte Kopplung mit Hydroxypropionnitril; 2. Oxidation mit Cumolhydroperoxid) hergestellt. Verbindung 8 wird dann direkt mit einem beliebigen Diazoalkan, z.B. Diazomethan, Diazoethan oder Diazo-n-Butan, umgesetzt. Bei dieser Reaktion entstehen gleichzeitig die 3 isomeren Verbindungen 9a-c. Die Verbindungen 9a-c werden mittels präparativer HPLC getrennt. Die Abspaltung der Schutzgruppen erfolgt für jedes Isomer getrennt. Die Dimethoxytrityl-Gruppen werden mit einem lonenaustauscher in der H +-Form abgespalten. Die Abspaltung der Cyanoethylgruppen erfolgt durch Inkubation mit Ammoniak. Es werden die alkylierten Nucleosid-3 ' -monophosphate 10a-c erhalten, die mittels präperativer HPLC gereinigt werden.
Das folgende Beispiel erläutert die Erfindung.
Beispiel: Herstellung von O6-n-Butyl-2 ' -desoxyguanosin-3 ' -monophosphat
Die Struktur und die Herstellung von O6-n-Butyl-desoxyguanosin-3 ' -monophosphat ist in Figur 1 gezeigt.
(a) Herstellung von N2-Phenylacetyl-2'-desoxyguanosin 2 nach Synthesis, 1 986( 1 ), 45-46
Lösung 1 10 mmol (2,67 g) 2'-Desoxyguanosin 1 wurden in 2 x 30 ml Pyridin eingeengt und in 50 ml Pyridin suspendiert. Zu der Suspension wurden 50 mmol (6,5 ml) Trimethylchlorsilan langsam zugetropft. Nach 30 Minuten wurde das Gemisch mit Eis gekühlt.
Lösung 2 1 6,0 mmol (2,7 g) Hydroxybenzotriazol wurden mit Acetonitril (4 x 30 ml) eingeengt und in 5 ml Acetonitril suspendiert. Unter Luft- und Feuchtigkeitsausschluß wurden 15 mmol (2 ml) Phenylessigsäurechlorid zugetropft. Nach 30 Minuten wurde soviel Pyridin zugegeben, daß sich der Niederschlag löste (ca. 0,3 ml).
Lösung 2 wurde dann in die gekühlte Lösung 1 unter Luft- und Feuchtigkeitsauschluß getropft. Nach beendeter Zugabe wurde über Nacht ( 1 5 Stunden) auf Raumtemperatur erwärmt. Anschließend wurde das Reaktionsgemisch mit Eis gekühlt. Dann wurden 10 ml Wasser und nach 5 Minuten 20 ml konzentrierter Amoniak zugegeben. Nach weiteren 1 5 Minuten wurde im Vakuum zur Trockne eingeengt (Wasserbadtemperatur: 30 °C). Der erhaltene Rückstand wurde in soviel Wasser (ca. 20 ml) aufgenommen, wie zum Lösen nötig war. Dann wurde mit 50 ml Diethylether ausgeschüttelt und die organische Phase dekantiert. Die wäßrige Phase wurde bei 4° C kristallisiert. Der kristallisierte Niederschlag wurde abfiltriert und im Vakuum getrocknet. Es wurden 3,0 g (78 %) 2 erhalten. (b) Herstellungvon5'-O-(4,4-Dimethoxytrityl)-N2-phenylacetyl-2'-desoxygua- nosin 3 nach Nucleic Acid Research 1 987 ( 1 5/2) 397-41 6)
Es wurden 5,7 mmol (2, 1 8 g) 2 mit Pyridin (3 x 1 0 ml) eingeengt, in Pyridin (30 ml) suspendiert und auf 0° C abgekühlt. In diese Suspension wurden 6,3 mmol (2, 1 3 g) Dimethoxytritylchlorid eingetragen. Es wurde über Nacht (ca. 1 5 Stunden) gerührt. Dann wurden 4 ml Methanol zugegeben. Nach 1 5 Minuten wurde im Vakuum eingeengt (Wassertemperatur 30° C) . Der Rückstand wurde in Dichlormethan (100 ml) aufgenommen und mit 5 %-iger wäßriger Natriumcarbonat-Lösung (3 x 75 ml) und Wasser ( 1 x 75 ml) gewaschen. Die organische Phase wurde dekantiert, über Natriumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde an Kieselgel mit Chloroform/Ethanol = 95/5 chromatographiert. Es wurden 2,9 g (74 %) 3 erhalten.
(c) Herstellungvon5'-O-(4,4-Dimethoxytrityl)-N2-phenylacetyl-2'-desoxygua- nosin-3'-bis(cyanoethyl)phosphat 4
Es wurden 1 mmol (0,68 g) 3 mit THF (2 x 10 ml) eingeengt und in THF (10 ml) gelöst. Unter Argonatmosphäre wurden 4 Äquvalente Hünigbase und danach 2 Äquivalente Cyanoethyl-(bis-isopropyl)amido-chlorphosphit zugetropft und bei Raumtemperatur gerührt. Nach 1 Stunde wurden zu dem Reaktionsgemisch 30 ml Essigester und 1 ,5 ml Triethylamin zugegeben. Die organische Lösung wurde mit 10 %-iger Natriumcarbonat-Lösung (2 x 10 ml) und gesättigter Natriumchlorid-Lösung ( 10 ml) gewaschen, über Natriumsulfat getrocknet und unter Vakuum eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Kieselgelsäuienchromatographie; Dichlormethan/Essigester/Triethylamin/Methanol = 45/45/10/2,5. Es wurden 0,6 g (67 %) eines Zwischenprodukts erhalten.
0, 1 1 mmol ( 100 mg) dieses Zwischenprodukts wurden in ca. 1 0 ml Acetonitril gelöst, mit 0,25 mmol (18 mg) Hydroxypropionsäurenitril und mit 0,5 mmol (35 mg) Tetrazol versetzt. Nach 1 Stunde wurde 1 Äquivalent 3 %-iger Cumolhydroperoxid-Lösung in Acetonitril zugegeben und bei Raumtemperatur gerührt (DC-Kontrolle, Kieselgel Chlorofrom/Methanol = 9/1 ) . Nach ca. 1 Stunde wurde mit wenigen Tropfen Ethanol versetzt und unter Vakuum eingeengt. Der Rückstand wurde in Chloroform (30 ml) aufgenommen und mit 2 %-iger Natriumhydrogencarbonat-Lösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und unter Vakuum eingeengt. Die Reinigung erfolgte über Säulenchromatographie an Kieselgel mit Chloroform/Methanol = 95/5). Es wurden 300 mg (61 %) 4 erhalten.
(d) Herstellung von O6-n-Butyl-5'-O-(4,4-dimethoxytrityl)N2phenylacetyl-2'- desoxyguanosin-3'-bis(cyanoethyl)phosphat 5
1 1 5 μmol ( 100 mg) 4 wurden in 5 ml Methanol gelöst und mit 3 ml etherischer Diazo-n-butan-Lösung versetzt. Nach 30 Minuten wurde unter Vakuum eingeengt und anschließend an Kieselgel chromatorgaphiert (Chloroform/Ethanol = 98/2). Es wurden 40 mg (37 %) 5 erhalten.
(e) Herstellung von O6-n-Butyl-2'desoxyguanosin-3'-bis(cyanoethyl)phosphat 6
32 μmol (30 mg) des vollständig geschützten 5 wurden in 3 ml Nitromethan gelöst und mit einer an Zink(ll)bromid gesättigten Lösung in 3 ml Nitromethan versetzt. Nach 1 5 Minuten wurde mit 50 ml Dichlormethan verdünnt und die organische Phase mit 30 ml 1 M AmmoniumacetatLösung ausgeschüttelt. Die organische Phase wurde mit Wasser und gesättigter Kochsalz-Lösung (je 10 ml) gewaschen und unter Vakuum eingeengt. Das Rohprodukt wurde in 5 ml Wasser gelöst und mit konzentriertem wäßrigen Ammoniak ( 10 ml) 1 5 Stunden bei Raumtemperatur grührt. Es wurde anschließend lyophilisiert, der Rückstand in wenig Wasser aufgenommen, mit 3 x 1 0 ml Chloroform ausgeschüttelt und die wäßrige Lösung erneut lyophilisiert. Es wurden 4 mg von 6 erhalten. Spektroskopische Daten von 6
ESI: -Q1MS LMR UP LR; Infusion 5 μl/min, MeOH
M (C14H22N5O7P) = 403; [M-H] 402.0 (100%)
1H-NMR (D2O, 250 Mhz) δ = 8,08 (s, 1 H, NH); 6,37 (dd, 1H, 1'-H); 4,92 (m, 1H, 3'-H); 4,48 (m, 2H, O5-CH2); 4,33 (m, 1 H, 4'-H); 3,84 (m, 2H, 5'-H); 2,70 (m, 2H, 2'-Ha); 1,80 (m, 2H, O6- C-CH2); 1,50 (m, 2H, O6-C-C-CH2); 0,95 (t,3H, O6-C-C-C-CH3)

Claims

Patentansprüche
1 . Verfahren zur Herstellung eines alkylierten Nucleosid-3 ' -Phosphats, wobei das Nucleosid-3 '-Phosphat eine Nucleobase, eine Pentose und eine Phosphat-Gruppe aufweist, umfassend die folgenden Schritte:
(a) Umsetzen eines Schutzgruppen aufweisenden Nucleosid-3 ' - Phosphats mit einem Alkylierungsmittel und
(b) Abspalten der Schutzgruppen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Nucleobase Purin, Pyrimidin oder ein Derivat von diesen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Pentose D-Ribofuranose oder 2-Desoxy-D-ribofuranose ist.
4. Verfahren nach einem der Ansprüche 1 -3, dadurch gekennzeichnet, daß die Phosphat-Gruppe ein Mono-, Di- oder Triphosphat ist.
5. Verfahren nach einem der Ansprüche 1 -4, dadurch gekennzeichnet, daß sich die Schutzgruppen an OH-Gruppen der Pentose, an OH-Gruppen der Phosphat-Gruppe und/oder an der Nucleobase befinden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Schutzgruppen an der Pentose Dimethoxytrityl-, Silyl- und/oder Acylgruppe sind.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Schutzgruppen an der Phosphat-Gruppe Cyanoethylgruppen oder ein Derivat davon sind.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Schutzgruppe an der Nucleobase Acylgruppen sind.
9. Verfahren nach einem der Ansprüche 1 -8, dadurch gekennzeichnet, daß das Alkylierungsmittel Carbokationen liefert.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Alkylierungsmittel ein Diazoalkan ist.
1 1 . Verfahren nach einem der Ansprüche 1 -10, dadurch gekennzeichnet, daß vor und/oder nach Schritt (b) ein Reinigungs- und/oder Trennschritt durchgeführt wird.
12. Nucleosid-3 '-Phosphat, umfassend eine Nucleobase, eine Pentose und eine Phosphat-Gruppe, wie sie in den Ansprüchen 1 bis 4 definiert sind, wobei die Nucleobase aikyliert ist.
13. Verwendung eines alkylierten Nucleosid-3 '-Phosphats nach Anspruch 12 in der Therapie von Tumoren.
14. Verwendung eines alkylierten Nucleosid-3 '-Phosphats nach Anspruch 1 2 als Vergleichssubstanz im 32P-Postlabeling-Verfahren.
PCT/DE1997/000957 1996-05-09 1997-05-09 Alkylierter nucleosid-3'-phosphate, verfahren zu ihrer herstellung und ihrer verwendung WO1997043299A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09540389A JP2000510127A (ja) 1996-05-09 1997-05-09 アルキル化ヌクレオシド―3’―ホスフェート、それらの製造方法および使用
EP97923808A EP0918784A1 (de) 1996-05-09 1997-05-09 Alkylierter nucleosid-3'-phosphate, verfahren zu ihrer herstellung und ihrer verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19618727.3 1996-05-09
DE19618727A DE19618727C2 (de) 1996-05-09 1996-05-09 Herstellung alkylierter Nucleosid-3'-Phosphate

Publications (1)

Publication Number Publication Date
WO1997043299A1 true WO1997043299A1 (de) 1997-11-20

Family

ID=7793871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000957 WO1997043299A1 (de) 1996-05-09 1997-05-09 Alkylierter nucleosid-3'-phosphate, verfahren zu ihrer herstellung und ihrer verwendung

Country Status (4)

Country Link
EP (1) EP0918784A1 (de)
JP (1) JP2000510127A (de)
DE (1) DE19618727C2 (de)
WO (1) WO1997043299A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021025341A2 (pt) * 2019-06-18 2022-02-01 Taiho Pharmaceutical Co Ltd Compostos de carbonato tendo esqueleto de pirrolopirimidina ou sal farmaceuticamente aceitável dos mesmos, agentes antitumorais e composições farmacêuticas compreendendo os ditos compostos, bem como usos e usos terapêuticos dos mesmos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1104328A (en) * 1965-07-26 1968-02-21 Dresden Arzneimittel Process for the preparation of xanthine derivatives
EP0212546A2 (de) * 1985-08-13 1987-03-04 Enzo Biochem, Inc. Verfahren zum Etikettieren von Polynukleotidsequenzen
WO1994029312A1 (en) * 1993-06-08 1994-12-22 Cancer Research Campaign Technology Limited O6-substituted guanine derivatives, a process for their preparation and their use in treating tumour cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2037289B (en) * 1978-10-31 1983-05-05 Katsunuma N Nucleoside derivatives and an antileukemial agent containing the same as an active ingredient
DE4304038A1 (de) * 1993-02-11 1994-08-18 Herbert Prof Dr Schott Neue Cytarabin-Derivate, ihre Herstellung und Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1104328A (en) * 1965-07-26 1968-02-21 Dresden Arzneimittel Process for the preparation of xanthine derivatives
EP0212546A2 (de) * 1985-08-13 1987-03-04 Enzo Biochem, Inc. Verfahren zum Etikettieren von Polynukleotidsequenzen
WO1994029312A1 (en) * 1993-06-08 1994-12-22 Cancer Research Campaign Technology Limited O6-substituted guanine derivatives, a process for their preparation and their use in treating tumour cells

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JIA LONG FANG ET AL.: "Development of a 32P-Postlabelling Method for the Analysis of Adducts Arising Through the Reaction of Acetaldehyde with 2'-Deoxyguanosine-3'-Monophosphate and DNA.", CARCINOGENESIS, vol. 16, no. 9, September 1995 (1995-09-01), pages 2177 - 2185, XP002043414 *
K.HAQUE ET AL.: "Optimization of 32P-Postlabelling Assays for the Quantitation of O6-Methyl and N7-Methyldeoxyguanosine-3'-Monophosphates in Human DNA.", CARCINOGENESIS, vol. 15, no. 11, November 1994 (1994-11-01), pages 2485 - 2490, XP002043413 *
K.K.OGILVIE ET AL.: "The Alkylation of Purines, Pyrimidines and Nucleotides by Dialkyl Sulfates with Tetrabutylammonium Fluoride.", TETRAHEDRON LETTERS., no. 35, August 1978 (1978-08-01), OXFORD GB, pages 3203 - 3206, XP002043410 *
M.PUTTA RAJU AT EL.: "Effect of Light on Nucleotide Modifications in the Transfer RNA of Cucumber Cotyledons.", JOURNAL OF BIOSCIENCES, vol. 13, no. 4, December 1988 (1988-12-01), pages 367 - 378, XP002043415 *
S.C.YUHASZ ET AL.: "Epitopic Discrimination by Monoclonal Antibodies Directed Against the Same Alkylated Nucleoside.", JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS, vol. 7, no. 1, August 1989 (1989-08-01), pages 151 - 165, XP002043412 *
S.UESUGI ET AL.: "Polynucleotides. LIII. Conformation of Dinucleoside Monophsophates containing 8-Methyladenosine Residue as Studied by Proton Magnetic Resonance.", CHEMICAL AND PHARMACEUTICAL BULLETIN., vol. 26, no. 12, 1978, TOKYO JP, pages 3732 - 3737, XP002043416 *
V.L.WILSON ET AL.: "O6-Alkyldeoxyguanosine Detection by 32P-Postlabelling and Nucleotide Chromatographic Analysis.", CANCER RESEARCH, vol. 48, no. 8, 15 April 1988 (1988-04-15), pages 2156 - 2161, XP002043411 *

Also Published As

Publication number Publication date
JP2000510127A (ja) 2000-08-08
DE19618727C2 (de) 2000-02-17
EP0918784A1 (de) 1999-06-02
DE19618727A1 (de) 1997-11-13

Similar Documents

Publication Publication Date Title
DE69333842T2 (de) Neue 2'-O-Alkyl-Nukleoside und -Phosphoramidite, Verfahren zu ihrer Herstellung und ihre Verwendungen
DE69407419T2 (de) 2' oder 3' -deoxy- und 2' -dideoxy-beta-l-pentafuranonukleoside, verfahren zur herstellung und anwendung in der therapie, insbesondere als antivirale wirkstoffe
EP0624161B1 (de) 2'-desoxy-isoguanosine, isostere analoge und isoguanosinderivate sowie deren anwendung
DE3739366A1 (de) Desaza-purin-nucleosid-derivate, verfahren zu deren herstellung sowie deren verwendung bei der nucleinsaeure-sequenzierung sowie als antivirale mittel
Robins et al. Nucleic Acid Related Compounds. LXXXI. Efficient General Synthesis of Purine (Amino, Azido, and Triflate)-Sugar Nucleosides
DE68906890T2 (de) Nukleoside derivate, nützlich für die synthese von markierten oligonukleotiden, mit diesen derivaten hergestellte oligonukleotide und ihre synthese.
DE19514523A1 (de) Neue Cytosin- und Cytidinderivate
DE60121425T2 (de) Verfahren zur Herstellung von 2-Chlor-9-(2-deoxy-2-flour-ß-D-arabinofuranosyl)-9H-purin-6-amin
Haraguchi et al. Electrophilic addition to 4-thio furanoid glycal: a highly stereoselective entry to 2′-deoxy-4′-thio pyrimidine nucleosides
DE2009834A1 (de) Neue Verbindungen und Verfahren zu ihrer Herstellung
DE19618727C2 (de) Herstellung alkylierter Nucleosid-3'-Phosphate
EP2321330B1 (de) Verfahren zur herstellung phosphatverbrückter nucleosid-konjugate
US3809689A (en) Synthetic polyoxin type nucleosides and methods of preparing
SU659573A1 (ru) Спин-меченые производные олигорибонуклеотидов как спиновые зонды дл исследовани механизма действи ферментов и способ их получени
EP0686150B1 (de) Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung
DE4320570C2 (de) Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga sowie deren Verwendung
Pankiewicz et al. A synthesis of ψ-cytidine
DE19627032C2 (de) Verfahren zum Abbau von potentiell veränderten Nukleinsäuren
DE3606394A1 (de) Neue ribonucleoside, verfahren zu deren herstellung und deren verwendung
EP0611373B1 (de) Oligo-2'-desoxynukleotide und ihre verwendung als arzneimittel mit antiviraler wirksamkeit
Ding et al. Synthesis of 2-deoxy ribose related disaccharide nucleoside and its phosphoramidite
DD213223A1 (de) Verfahren zur herstellung von / alpha hoch 32 p / nucleosid-5'-phosphaten hoher spezifischer aktivitaet
DE4400310A1 (de) Neue Nukleosid-Lipid-Addukte, ihre Herstellung und ihre pharmazeutische Verwendung
DD225696A1 (de) Verfahren zur herstellung von nucleosid-5'-di- und triphosphaten hoher spezifischer aktivitaet
Ikehara et al. Seven-membered cyclic phosphate: synthesis and properties of S-cycloadenosine 2′ 5′-cyclic phosphate and cordycepin 2′, 5′-cyclic phosphate. Studies of nucleosides and nucleotides. LXIV′ l). Purine cyclonucleosides 25.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997923808

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997923808

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997923808

Country of ref document: EP