WO1997033365A1 - Operationsverstärker - Google Patents

Operationsverstärker Download PDF

Info

Publication number
WO1997033365A1
WO1997033365A1 PCT/IB1997/000193 IB9700193W WO9733365A1 WO 1997033365 A1 WO1997033365 A1 WO 1997033365A1 IB 9700193 W IB9700193 W IB 9700193W WO 9733365 A1 WO9733365 A1 WO 9733365A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
operational amplifier
base
output
current
Prior art date
Application number
PCT/IB1997/000193
Other languages
English (en)
French (fr)
Inventor
Peter Wiese
Burkhard Dick
Original Assignee
Philips Electronics N.V.
Philips Patentverwaltung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Electronics N.V., Philips Patentverwaltung Gmbh filed Critical Philips Electronics N.V.
Priority to EP97904547A priority Critical patent/EP0830730A1/de
Priority to US08/973,072 priority patent/US5936468A/en
Priority to JP9531611A priority patent/JPH11504791A/ja
Publication of WO1997033365A1 publication Critical patent/WO1997033365A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3066Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the collectors of complementary power transistors being connected to the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45362Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their gates and drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45612Indexing scheme relating to differential amplifiers the IC comprising one or more input source followers as input stages in the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45658Indexing scheme relating to differential amplifiers the LC comprising two diodes of current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45708Indexing scheme relating to differential amplifiers the LC comprising one SEPP circuit as output stage

Definitions

  • the invention relates to an operational amplifier.
  • a constant current source ie a direct current source, the current of which is independent of the voltage at the base electrodes of the associated transistor pair, is connected to the common emitter lead of each of the transistor pairs.
  • the other terminal of the constant current source is connected to ground.
  • the collector electrode of a first transistor of the first transistor pair is connected to the collector electrode of a first transistor of the second transistor pair.
  • the collector electrodes of the second transistors of the transistor pairs are connected to one another accordingly.
  • the common collector connections are each connected to the positive supply voltage via a resistor and at the same time form the output terminals of the amplifier circuit.
  • the base electrode of the first transistor of the first transistor pair is connected to the base electrode of the first transistor of the second transistor pair via a DC voltage source. Accordingly, the base electrodes of the second transistors of the transistor pairs are connected to one another via a further DC voltage source.
  • These two DC voltage sources which represent a short circuit for AC signals, supply the same voltage with such polarity that the base of the first transistor of the second transistor pair is more positive than the base of the first transistor of the first transistor pair and that the base of the second transistor of the first transistor pair is more positive than the base of the second transistor of the second transistor pair.
  • the base electrodes of the first transistor of the first transistor pair and of the second transistor of the second transistor pair are connected to a low-resistance signal source.
  • a current amplifier which comprises a so-called voltage-current conversion circuit with a differential input and a differential output as well as two current sources, each of which supply the same currents.
  • the voltage-current conversion circuit has a resistor which is connected to the output terminals of the current sources.
  • PNP transistors have their emitters connected to the connection points between the output terminals of the current sources and the resistor; they convert the voltage produced by two input connections into a current.
  • second NPN transistors are connected to these input connections, while the emitters of the transistors in question are connected to the bases of the PNP transistors mentioned above.
  • the latter PNP transistors act as emitter followers, which drive the NPN transistors. The latter give off collector output currents.
  • two further PNP transistors have their bases connected to the input terminals; they form a first start circuit.
  • the emitters of these further PNP transistors are connected to the connection points between the resistor and the emitter electrodes of the first-mentioned PNP transistors, while the collectors of the transistors in question are connected to the collectors of the first-mentioned PNP transistors.
  • the other PNP transistors are not operated in continuous operation of the circuit, but are only operated at the time of commissioning, for example when the power supply or mains switch is actuated.
  • Such a circuit is intended to create a current amplifier in which the effects of the base current of a pair of transistors with a common emitter can be eliminated in a multiplier circuit in order to improve the linearity and the accuracy of the multiplication factor of the circuit in question.
  • the collector connections of the transistors of the two pairs of transistors are connected to a summing circuit to form an output current.
  • the voltages of two push-pull input connections are supplied to both pairs of emitter-coupled transistors at their base connections, via level-shifting resistors between the push-pull input connections and the base connections of the transistors.
  • a total of four level shift resistors are provided, one each between the non-inverting push-pull input connection and the base connection of a first of the transistors of the emitter-coupled pairs, and two further connections between the inverting push-pull input connection and the two other base connections.
  • the four level shift resistors are activated by four current sources.
  • the current sources are controlled as a function of the common-mode input voltage.
  • the current sources deliver their maximum current when the common mode input voltage is in the middle of their modulation range, and the current of the current sources takes on the value zero when the common mode input voltage approaches the level of one of the two supply voltage connections. A very complex circuit arrangement is necessary to achieve this effect.
  • the invention has for its object to provide an operational amplifier which can be operated at a low supply voltage, has a large modulation range for input voltage and output voltage, has a high-resistance switchable output and can be constructed with little circuit complexity.
  • an operational amplifier having a first differential amplifier which comprises a first emitter-coupled pair of a first and a second bipolar transistor of the NPN line type, a base connection of the first transistor having a first input connection of the operational amplifier and a base connection of the second Transistor with a second input terminal of the operational amplifier is connected, a second differential amplifier, which comprises a second emitter-coupled pair of a third and a fourth bipolar transistor of the NPN conduction type, a base connection of the third transistor via a first potential shift element to the first input connection and a base connection of the fourth transistor via a second potential shift element is guided to the second input terminal and the potential shifting elements are designed such that, in operation, the potentials at the base terminals of the third or fourth transistor are higher by a predetermined amount than the potentials at the first or second input terminal, a first differential current output node, at which one each
  • Collector connection of the first and the third transistor are connected to one another, a second differential current output node, at each of which a collector connection of the second and the fourth transistor are connected to one another, a control stage, the inputs of which are formed by the current output node, the control stage being used to form control currents the currents is set up at their inputs and has two outputs for delivering the control currents, and an output stage with two bipolar output transistors of opposite conduction type, the collector-emitter paths of which are connected to one another in series, one of the outputs of the control stage each having a base connection the output transistors is connected and the connection of the collector-emitter paths of the output transistors one
  • the operational amplifier according to the invention has good linearity with a low supply voltage and large modulation ranges for input voltage and output voltage, since both differential amplifiers are formed from transistors of the same conductivity type. Since transistors of the NPN conduction type generally have a higher current amplification factor than transistors of the PNP conduction type in preferred production methods, good values for the overall amplification factor of the operational amplifier can also be obtained with little effort.
  • the potential shifting elements used in the operational amplifier according to the invention manage without complex circuits for power supply and potential control.
  • the potential shifting elements are each formed by a transistor of the PNP line type, the base connections of which are connected to the associated input connections of the operational amplifier and the emitter connections of which are connected to the associated base connections of the third or fourth transistor and their base-emitter paths in operation be biased in the direction of flow.
  • control stage comprises one for each current output node
  • control stage design such that the control currents are formed as the difference between two currents, which are derived from the currents at the inputs of the control stage by current mirroring. This type of control stage design allows both linear transmission and use with very low supply voltages.
  • the single figure shows an embodiment of the operational amplifier according to the invention.
  • This comprises a first differential amplifier with a first bipolar transistor 1 and a second bipolar transistor 2, both of which are of the NPN conduction type and form a first emitter-coupled pair.
  • a second differential amplifier of the operational amplifier shown comprises a second emitter-coupled pair of a third bipolar transistor 3 and a fourth bipolar transistor 4, both of which are also of the NPN conduction type.
  • a base terminal of the first transistor 1 is connected to a first input terminal 5 of the operational amplifier.
  • This first input terminal 5 forms a non-inverting input terminal of the operational amplifier.
  • a second input terminal 6 of the operational amplifier which represents an inverting input of the operational amplifier, is connected to a base terminal of the second transistor 2.
  • a base connection of the third transistor 3 is connected to the first input connection 5 via a first potential sliding element 7.
  • a base connection of the fourth transistor 4 is connected to the second input connection 6 via a second potential shift element 8.
  • Both potential shift elements 7, 8 are each formed by a transistor of the PNP line type, in particular by their base-emitter paths, so that the Base connections of these PNP transistors are connected to the associated input connections ⁇ of the operational amplifier and the emitter connections of the PNP transistors are connected to the associated base connections of the third and fourth transistors 3 and 4, respectively.
  • the base-emitter paths of the PNP transistors are biased in the direction of flow so that the potentials at the base connections of the third and fourth transistors 3 and 4 are higher by a predetermined amount than the potentials at the first and second input connections 5 and 6.
  • the potential shifting elements 7, 8 are fed on the emitter side via a respective current source 9 or 10.
  • the first and the third transistor 1, 3 are with their
  • Collector connections are connected to a first differential current output node 11, and accordingly the second and fourth transistors 2, 4 are connected to their collector connections to a second differential current output node 12.
  • the first emitter-coupled pair 1, 2 is connected via a third current source 13 and the second emitter-coupled pair 3, 4 via a fourth current source 14 to a first current supply connection 15, here ground.
  • ground connections 15 of the potential sliding elements 7, 8 are connected to ground 15.
  • the operational amplifier shown in the figure also contains a control stage, the inputs of which are formed by the current output nodes 11, 12.
  • This control stage comprises a first current mirror comprising a first current mirror transistor 17 and a second current mirror transistor 18, a second current mirror comprising a third, fourth and fifth current mirror transistor 19, 20, 21 and a third current mirror comprising a sixth, seventh and eighth current mirror transistor 22, 23, 24
  • the first and the second current mirror together form a first current mirror arrangement, with the current at its input, which is formed by the first current output node 11, a first and a second current at a collector connection of the fourth and the fifth current mirror transistor 20, 21 are derived by current mirroring.
  • the third current mirror forms a second one Current mirror arrangement with which a third and a fourth current in collector connections of the seventh and eighth current mirror transistors 23 and 24 can be derived from the current at the second current output node 12 by current mirroring.
  • the second differential current output node 12 forms the input of this second current mirror arrangement 22, 23, 24.
  • the first, second, sixth, seventh and eighth current mirror transistors 17, 18, 22, 23, 24 are connected on the emitter side to the positive pole 16, and the third, fourth and fifth current mirror transistors are connected to ground 15 on the emitter side.
  • Base and collector connections of the first, third and sixth current mirror transistors 17, 19, 22 are each connected to one another, and the base connections of the current mirror transistors of each of the three current mirrors are each connected to one another in a conventional manner.
  • the connected base and collector connections of the first and sixth current mirror transistors 17 and 22 are connected to the first and second current output nodes 11 and 12, respectively.
  • Control stage comprising current mirrors 17 to 24, the collector connections of the fourth and seventh current mirror transistors are connected to one another; this first output of the control stage bears the reference number 25.
  • a second output 26 of the control stage connects the collector connections of the fifth and eighth current mirror transistors to one another. In addition, the collector connections of the second and third
  • the operational amplifier according to the embodiment shown also comprises an output stage with two bipolar output transistors 30, 31.
  • the first of these output transistors with the reference symbol 30 is of the PNP line type, the second output transistor 31 of the (opposite) NPN line type.
  • the collector-emitter paths of the output transistors 30, 31 are connected to one another in series, specifically via their collector connections, which are also connected to an output 32 of the operational amplifier.
  • a capacitance 28 or 29 is led from the output 32 to the first or the second output 25 or 26 of the control stage.
  • the first output transistor 30 is connected to the positive pole 16 and the second output transistor 31 is connected to ground 15.
  • a base connection of the first output transistor 30 is connected to the second output 26, and a base connection of the second output transistor 31 is connected to the first output 25 of the control stage.
  • the present operational amplifier uses two differential amplifiers 1, 2 and 3, 4 of the NPN line type in its input area. Both differential amplifiers operate on the common current output nodes 11, 12. Of the differential amplifiers serving as input stages, the first of the first and second transistors 1, 2 is used to transmit, in particular, the upper region of the
  • the second differential amplifier 3, 4 covers the lower range of the common mode input voltage as an input stage.
  • the potential shifting elements 7, 8 make it possible for the second differential amplifier 3, 4 to work with voltages of at least almost zero with respect to ground 15 at the input connections 5, 6; the potential shifting elements increase the voltages at the base connections of the third and fourth transistors 3, 4 compared to the voltages at the input connections 5 and 6 respectively by a diode flux voltage, which is also between the base and emitter connections of each of the transistors 3, 4 of the second differential amplifier occurs during operation.
  • the constant currents to be emitted by the first and second current sources 9, 10 are to be selected accordingly.
  • the current from the first differential current output node 11, the differential amplifier 1 to 4 is mirrored via the first current mirror 17, 18 to the connection point 27 and from there via the second current mirror 19 to 21 to the outputs 25, 26 of the control stage. From the second differential
  • the operational amplifier according to the invention preferably serves to create a large modulation range for its input and output voltages. This main goal is achieved with little circuit complexity, to which the combination of the collector connections of the transistors of the differential amplifiers in only two differential current output nodes also contributes.
  • the common mode input voltage and the common mode output voltage cover at least almost the entire supply voltage range between the potentials at the positive pole and to ground. In doing so, a perfect function even with very low Supply voltages, for example of 1.3 V between the positive pole and ground, are reached.
  • a capacitance diode, with which an oscillator is to be readjusted over the largest possible frequency range, can preferably be controlled with the operational amplifier according to the invention.
  • the output 32 becomes high-resistance in the currentless, switched-off state. If the output 32 is followed by a passive low-pass filter, via which the capacitance diode is driven, the operational amplifier and low-pass filter can operate as a sample and hold circuit for the tuning voltage of the capacitance diode without additional effort.
  • the operational amplifier according to the invention can preferably be used in an oscillator for a radio pager (pager).
  • the circuit arrangement shown in the exemplary embodiment for the operational amplifier according to the invention has a steepness which is doubled in the central input voltage range compared to its edge regions.
  • a current switchover between the two differential amplifiers can be provided, in which only one of the current sources assigned to the differential amplifiers is effective. In this way, the slope can be kept constant over the entire input voltage range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Beschrieben wird ein Operationsverstärker mit zwei Differenzverstärkern, von denen einer unmittelbar und der zweite über zwei Potentialschiebeelemente ausgesteuert wird. Von gemeinsamen differentiellen Stromausgangsknoten der Differenzverstärker werden Ströme abgegriffen und mittels einer Steuerstufe an einen Ausgang des Operationsverstärkers als Stromdifferenz gespiegelt. Dadurch wird ein großer Aussteuerungsbereich für Eingang und Ausgang bei niedriger Versorgungsspannung erhalten. Der Operationsverstärker weist außerdem einen hochohmig schaltbaren Ausgang auf und ist mit geringem Schaltungsaufwand aufzubauen.

Description

Operationsverstärker
Die Erfindung bezieht sich auf einen Operationsverstärker.
Aus der DE-OS 30 27 071 ist ein Transistorverstärker mit zwei emittergekoppelten NPN-Transistorpaaren bekannt. In die gemeinsame Emitterzuleitung jedes der Transistorpaare ist je eine Konstantstromquelle geschaltet, d.h. eine Gleichstromqeulle, deren Strom unabhängig von der Spannung an den Basiselektroden des zugeordneten Transistorpaares ist. Der andere Anschluß der Konstantstromquelle ist mit Masse verbunden. Die Kollektorelektrode eines ersten Transistors des ersten Transistorpaares ist mit der Kollektorelektrode eines ersten Transistors des zweiten Transistorpaares verbunden. Entsprechend sind die Kollektorelektroden der zweiten Transistoren der Transistorpaare miteinander verbunden. Die gemeinsamen Kollektoranschlüsse sind über je einen Widerstand mit der positiven Speisespannung verbunden und bilden gleichzeitig die Ausgangsklemmen der Verstärkerschaltung. Ferner ist die Basiselektrode des ersten Transistors des ersten Transistorpaares mit der Basiselektrode des ersten Transistors des zweiten Trans istorpaares über eine Gleichspannungsquelle verbunden. Entsprechend sind die Basiselektroden der zweiten Transistoren der Transistorpaare miteinander über eine weitere Gleichspannungsquelle verbunden. Diese beiden Gleichspannungsquellen, die für Wechselstromsignale einen Kurzschluß darstellen, liefern die gleiche Spannung mit einer solchen Polarität, das die Basis des ersten Transistors des zweiten Transistorpaares positiver ist als die Basis des ersten Transistor des ersten Transistorpaares und daß die Basis des zweiten Transistors des ersten Transistorpaares positiver ist als die Basis des zweiten Transistors des zweiten Transistorpaares. Außerdem sind die Basiselektroden des ersten Transistors des ersten Transistorpaares und des zweiten Transistors des zweiten Transistorpaares an eine niederohmige Signalquelle angeschlossen. Alle Transistoren haben die gleichen Kennlinien. Durch eine Wahl des Gleichstroms des zweiten Transistors des ersten Transistorpaares und des ersten Transistors des zweiten Transistorpaares auf das Drei- bis Zehnfache des Gleichstroms der übrigen Transistoren werden besonders geringe nichtlineare Verzerrungen erreicht. Aus der DE-PS 33 23 277 ist ein Stromverstärker bekannt, der eine sogenannte Spannungs-Strom-Umsetzschaltung mit einem Differenzeingang und einem Differenzausgang sowie zwei Stromquellen umfaßt, die jeweils gleiche Ströme liefern. Die Spannungs-Strom-Umsetzschaltung weist einen Widerstand auf, der an den Ausgangsanschlüssen der Stromquellen angeschlossen ist. PNP-Transistoren sind mit ihren Emittern an den Verbindungspunkten zwischen den Ausgangsanschlüssen der Stromquellen und dem Widerstand angeschlossen; sie setzen die von zwei Eingangsanschlüssen hergeführte Spannung in einen Strom um. Die Basen zweiter NPN-Transistoren sind mit diesen Eingangsanschlüssen verbunden, während die Emitter der betreffenden Transistoren mit den Basen der oben genannten PNP-Transistoren verbunden sind. Die letztgenannten PNP- Transistoren wirken als Emitterfolger, welche die NPN-Transistoren ansteuern. Letztere geben Kollektorausgangsströme ab. Darüber hinaus sind zwei weitere PNP-Transistoren mit ihren Basen an den Eingangsanschlüssen angeschlossen; sie bilden eine erste Startschaltung. Die Emitter dieser weiteren PNP-Transistoren sind mit den Verbindungspunkten zwischen den Widerstand und den Emitterelektroden der erstgenannten PNP-Transistoren angeschlossen, während die Kollektoren der betreffenden Transistoren mit den Kollektoren der erstgenannten PNP-Transistoren verbunden sind. Die weiteren PNP-Transistoren werden dabei nicht im Dauerbetrieb der Schaltung betrieben, sondern sie werden lediglich zum Zeitpunkt der Inbetriebsetzung betrieben, beispielsweise dann, wenn der Spannungsversorgungs- bzw. Netzschalter betätigt wird.
Mit einer solchen Schaltung soll ein Stromverstärker geschaffen werden, bei dem die Effekte des Basisstroms eines Transistorpaares mit gemeinsamem Emitter in einer Multiplizierschaltung eliminiert werden können, um die Linearität und die Genauigkeit des Multiplikatinsfaktors der betreffenden Schaltung zu verbessern.
Aus dem Aufsatz "1-V Operational Amplifier with Rail-to-Rail Input and Output Ranges" von Jeroen Fondrie in IEEE Journal of Solid-State Circuits, Band 24, Heft 6, vom Dezember 1989, Seiten 1551 bis 1559, ist ein bipolarer Operationsverstärker bekannt, dessen Eingangs- und Ausgangs-Aussteuerbereiche sehr nahe an die Potentiale der Stromversorgungsanschlüsse heranreichen. Der dort gezeigte Operationsverstärker ist für Versorgungsspannungen bis herab zu einem Volt geeignet. Insbesondere soll die Ausgangsspannung sich dem Potential der Versorgungsspannungsanschlüsse bis auf einen Wert innerhalb 100 mV nähern können. Dieser Operationsverstärker weist zwei zueinander komplementäre Eingangsstufen auf, von denen die erste ein emittergekoppeltes Transistorenpaar vom NPN-Leitungstyp und die zweite ein ebenso gekoppeltes Transistorenpaar vom PNP-Leitungstyp aufweist. Die Kollektoranschlüsse der Transistoren der beiden Transistorenpaare sind mit einem Summierschaltkreis zur Bildung eines Ausgangsstromes verbunden. Beiden emittergekoppelten Transistorenpaaren werden an ihren Basisanschlüssen die Spannungen von zwei Gegentakt-Eingangsanschlüssen zugeleitet, und zwar über Pegelschiebewiderstände zwischen den Gegentakt-Eingangsanschlüssen und den Basisanschlüssen der Transistoren. Insgesamt sind vier Pegelschiebewiderstände vorgesehen, und zwar je einer zwischen dem nicht invertierenden Gegentakt-Eingangsanschluß und dem Basisanschluß je eines ersten der Transistoren der emittergekoppelten Paare und zwei weitere Anschlüsse zwisen dem invertierenden Gegentakt-Eingangsanschluß und den beiden übrigen Basisanschlüssen. Die vier Pegelschiebewiderstände werden durch vier Stromquellen aktiviert. Da mit aktivierter Pegelverschiebung die Gegentakt-Eingangsanschlüsse nicht mehr das Potential des positiven bzw. des negativen Versorgungsspannungsanschlußes erreichen können, sind die Stromquellen von der Gleichtakt-Eingangsspannung abhängig gesteuert. Die Stromquellen geben dabei ihren maximalen Strom ab, wenn sich die Gleichtakt- Eingangsspannung in der Mitte ihres Aussteuerungsbereiches befindet, und der Strom der Stromquellen nimmt den Wert Null an, wenn die Gleichtakt-Eingangsspannung sich dem Pegel eines der beiden Versorgungsspannungsanschlüsse nähert. Zum Erreichen dieses Effektes ist eine sehr aufwendige Schaltungsanordnunganordnung nötig.
Die Erfindung hat die Aufgabe, einen Operationsverstärker zu schaffen, der bei niedriger Versorgungsspannung betrieben werden kann, einen großen Aussteuerungsbereich für Eingangsspannung und Ausgangsspannung aufweist, einen hochohmig schaltbaren Ausgang besitzt und mit geringem Schaltungsaufwand aufgebaut werden kann.
Erfindungsgemäß wird diese Aufgabe gelöst durch einen Operationsverstärker mit - einem ersten Differenzverstärker, der ein erstes emittergekoppeltes Paar aus einem ersten und einem zweiten bipolaren Transistor vom NPN-Leitungstyp umfaßt, wobei ein Basisanschluß des ersten Transistors mit einem ersten Eingangsanschluß des Operationsverstärkers und ein Basisanschluß des zweiten Transistors mit einem zweiten Eingangsanschluß des Operationsverstärkers verbunden ist, einem zweiten Differenzverstärker, der ein zweites emittergekoppeltes Paar aus einem dritten und einem vierten bipolaren Transistor vom NPN-Leitungstyp umfaßt, wobei ein Basisanschluß des dritten Transistors über ein erstes Potentialschiebeelement an den ersten Eingangsanschluß und ein Basisanschluß des vierten Transistors über ein zweites Potentialschiebeelement an den zweiten Eingangsanschluß geführt ist und die Potentialschiebeelemente derart ausgebildet sind, daß im Betrieb die Potentiale an den Basisanschlüssen des dritten bzw. vierten Transistors um einen vorgegebenen Betrag höher sind als die Potentiale am ersten bzw. zweiten Eingangsanschluß, einem ersten differentiellen Stromausgangsknoten, an dem je ein
Kollektoranschluß des ersten und des dritten Transistors miteinander verbunden sind, einem zweiten differentiellen Stromausgangsknoten, an dem je ein Kollektoranschluß des zweiten und des vierten Transistors miteinander verbunden sind, einer Steuerstufe, deren Eingänge von den Stromausgangsknoten gebildet werden, wobei die Steuerstufe zum Bilden von Steuerströmen aus den Strömen an ihren Eingängen eingerichtet ist und zwei Ausgänge zum Abgeben der Steuerströme aufweist, und einer Ausgangsstufe mit zwei bipolaren Ausgangstransistoren zueinander entgegengesetzten Leitungstyps, deren Kollektor-Emitter-Strecken miteinander in Reihe verbunden sind, wobei je einer der Ausgänge der Steuerstufe mit je einem Basisanschluß der Ausgangstransistoren verbunden ist und die Verbindung der Kollektor-Emitter-Strecken der Ausgangstransistoren einen
Ausgang des Operationsverstärkers bildet.
Der erfindungsgemäße Operationsverstärker weist bei niedriger Versorgungsspannung und großen Aussteuerungsbereichen für Eingangsspannung und Ausgangsspannung eine gute Linearität auf, da beide Differenzverstärker aus Transistoren vom gleichen Leitungstyp gebildet sind. Da bei bevorzugten Herstellungsverfahren Transistoren vom NPN-Leitungstyp in der Regel einen höheren Stromverstärkungsfaktor aufweisen als Transistoren vom PNP-Leitungstyp, werden auch mit geringem Aufwand gute Werte für den gesamten Verstärkungsfaktor des Operationsverstärkers erhalten. Die verwendeten Potentialschiebeelemente kommen beim erfindungsgemäßen Operationsverstärker ohne aufwendige Schaltungen für Stromspeisung und Potentialsteuerung aus. Die Potentialschiebeelemente werden gemäß einer Weiterbildung der Erfindung durch je einen Transistor vom PNP-Leitungstyp gebildet, deren Basisanschlüsse mit den zugehörigen Eingangsanschlüssen des Operationsverstärkers und deren Emitteranschlüsse mit den zugehörigen Basisanschlüssen des dritten bzw. vierten Transistors verbunden sind und deren Basis-Emitter-Strecken im Betrieb in Flußrichtung vorgespannt werden.
In einer vorteilhaften Weiterbildung des erfindungsgemäßen Operationsverstärkers umfaßt die Steuerstufe zu jedem Stromausgangsknoten eine
Stromspiegelanordnung derart, daß die Steuerströme als Differenz je zweier Ströme gebildet werden, die aus den Strömen an den Eingängen der Steuerstufe durch Stromspiegelung abgeleitet werden. Diese Art der Ausbildung der Steuerstufe erlaubt sowohl eine lineare Übertragung als auch den Einsatz bei sehr geringen Versorgungsspannungen.
Die einzige Figur zeigt ein Ausführungsbeispiel des erfindungsgemäßen Operationsverstärkers. Dieser umfaßt einen ersten Differenzverstärker mit einem ersten bipolaren Transistor 1 und einem zweiten bipolaren Transistor 2, die beide vom NPN-Leitungstyp sind und ein erstes emittergekoppeltes Paar bilden. Ein zweiter Differenzverstärker des dargestellten Operationsverstärkers umfaßt ein zweites emittergekoppeltes Paar aus einem dritten bipolaren Transistor 3 und einem vierten bipolaren Transistor 4, die ebenfalls beide vom NPN-Leitungstyp sind. Ein Basisanschluß des ersten Transistors 1 ist mit einem ersten Eingangsanschluß 5 des Operationsverstärkers verbunden. Dieser erste Eingangsanschluß 5 bildet einen nicht invertierenden Eingangsanschluß des Operationsverstärkers. Ein zweiter Eingangsanschluß 6 des Operationsverstärkers, der einen invertierenden Eingang des Operationsverstärkers darstellt, ist mit einem Basisanschluß des zweiten Transistors 2 verbunden.
Beim zweiten Differenzverstärker ist ein Basisanschluß des dritten Transistors 3 über ein erstes Potentialschiebeelement 7 mit dem ersten Eingangsanschluß 5 verbunden. Entsprechend ist ein Basisanschluß des vierten Transistors 4 über ein zweites Potentialschiebeelement 8 mit dem zweiten Eingangsanschluß 6 verbunden. Beide Potentialschiebeelemente 7, 8 werden durch je einen Transistor vom PNP-Leitungstyp gebildet, und zwar insbesondere durch deren Basis-Emitter-Strecken, so daß die Basisanschlüsse dieser PNP-Transistoren mit den zugehörigen Eingangsanschlüsseή des Operationsverstärkers und die Emitteranschlüsse der PNP-Transistoren mit den zugehörigen Basisanschlüssen des dritten bzw. vierten Transistors 3 bzw. 4 verbunden sind. Im Betrieb sind die Basis-Emitter-Strecken der PNP-Transistoren in Flußrichtung vorgespannt, so daß die Potentiale an den Basisanschlüssen des dritten bzw. vierten Transistors 3 bzw. 4 um einen vorgegebenen Betrag höher sind als die Potentiale am ersten bzw. zweiten Eingangsanschluß 5 bzw. 6. Zu diesem Zweck werden die Potentialschiebeelemente 7, 8 emitterseitig über je eine Stromquelle 9 bzw. 10 gespeist.
Der erste und der dritte Transistor 1 , 3 sind mit ihren
Kollektoranschlüssen an einem ersten differentiellen Stromausgangsknoten 11 verbunden, und entsprechend sind der zweite und der vierte Transistor 2, 4 mit ihren Kollektoranschlüssen an einem zweiten differentiellen Stromausgangsknoten 12 verbunden. Emitterseitig ist das erste emittergekoppelte Paar 1, 2 über eine dritte Stromquelle 13 und das zweite emittergekoppelte Paar 3, 4 über eine vierte Stromquelle 14 mit einem ersten Strom Versorgungsanschluß 15, hier Masse, verbunden. Mit Masse 15 sind außerdem Kollektoranschlüsse der Potentialschiebeelemente 7, 8 verbunden. Ein zweiter Stromversorgungsanschluß 16, der eine gegenüber Masse 15 positive Versorgungsspannung führt und daher im folgenden als Pluspol bezeichnet werden soll, ist mit je einem Anschluß der ersten und der zweiten Stromquelle 9, 10 verbunden, wobei dies die den Potentialschiebeelementen 7, 8 abgewandten Anschlüsse der Stromquellen 9, 10 sind.
Der in der Figur dargestellte Operationsverstärker enthält weiterhin eine Steuerstufe, deren Eingänge von den Stromausgangsknoten 11, 12 gebildet werden. Diese Steuerstufe umfaßt einen ersten Stromspiegel aus einem ersten Stromspiegeltransistor 17 und einem zweiten Stromspiegeltransistor 18, einen zweiten Stromspiegel aus einem dritten, vierten und fünften Stromspiegeltransistor 19, 20, 21 und einen dritten Stromspiegel aus einem sechsten, siebten und achten Stromspiegeltransistor 22, 23, 24. Der erste und der zweite Stromspiegel bilden zusammen eine erste Stromspiegelanordnung, mit der aus dem Strom an ihrem Eingang, der durch den ersten Stromausgangsknoten 11 gebildet ist, ein erster und ein zweiter Strom an je einem Kollektoranschluß des vierten und des fünften Stromspiegel transistors 20, 21 durch Stromspiegelung abgeleitet werden.
Entsprechend bildet der dritte Stromspiegel eine zweite Stromspiegelanordnung, mit der aus dem Strom am zweiten Stromausgangsknoten 12 ein dritter und ein vierter Strom in Kollektoranschlüssen des siebten bzw. des achten Stromspiegeltransistors 23 bzw. 24 durch Stromspiegelung abgeleitet werden kann. Der zweite differentielle Stromausgangsknoten 12 bildet dazu den Eingang dieser zweiten Stromspiegelanordnung 22, 23, 24.
Im gezeigten Ausführungsbeispiel sind der erste, zweite, sechste, siebte und achte Stromspiegeltransistor 17, 18, 22, 23, 24 emitterseitig mit dem Pluspol 16, der dritte, vierte und fünfte Stromspiegeltransistor emitterseitig mit Masse 15 verbunden. Basis- und Kollektoranschlüsse des ersten, dritten und sechsten Stromspiegeltransistors 17, 19, 22 sind jeweils miteinander verbunden, und die Basisanschlüsse der Stromspiegeltransistoren jedes der drei Stromspiegel sind jeweils untereinander in üblicher Weise verbunden. Die verbundenen Basis- und Kollektoranschlüsse des ersten und des sechsten Stromspiegeltransistors 17 bzw. 22 sind mit dem ersten bzw. dem zweiten Stromausgangsknoten 11 bzw. 12 verbunden. In einem ersten Ausgang der die drei
Stromspiegel 17 bis 24 umfassenden Steuerstufe sind die Kollektoranschlüsse des vierten und des siebten Stromspiegeltransistors miteinander verbunden; dieser erste Ausgang der Steuerstufe trägt das Bezugszeichen 25. Ein zweiter Ausgangs 26 der Steuerstufe verbindet die Kollektoranschlüsse des fünften und des achten Stromspiegeltransistors miteinander. Außerdem sind die Kollektoranschlüsse des zweiten und des dritten
Stromspiegeltransistors 18, 19 miteinander in einem Verbindungspunkt 27 verbunden.
Der Operationsverstärker nach dem gezeigten Ausführungsbeispiel umfaßt außerdem eine Ausgangsstufe mit zwei bipolaren Ausgangstransistoren 30, 31. Der erste dieser Ausgangstransistoren mit dem Bezugszeichen 30 ist vom PNP-Leitungstyp, der zweite Ausgangstransistor 31 vom (entgegengesetzten) NPN-Leitungstyp. Die Kollektor-Emitter- Strecken der Ausgangstransistoren 30, 31 sind miteinander in Reihe verbunden, und zwar über ihre Kollektoranschlüsse, die außerdem mit einem Ausgang 32 des Operationsverstärkers verbunden sind. Vom Ausgang 32 ist je eine Kapazität 28 bzw. 29 an den ersten bzw. den zweiten Ausgang 25 bzw. 26 der Steuerstufe geführt. Emitterseitig ist der erste Ausgangstransistor 30 mit dem Pluspol 16 und der zweite Ausgangstransistor 31 mit Masse 15 verbunden. Ein Basisanschluß des ersten Ausgangstransistors 30 ist mit dem zweiten Ausgang 26, ein Basisanschluß des zweiten Ausgangstransistors 31 mit dem ersten Ausgang 25 der Steuerstufe verbunden. Der vorliegende Operationsverstärker verwendet zwei Differenz Verstärker 1, 2 und 3, 4 vom NPN-Leitungstyp in seinem Eingangsbereich. Beide Differenzverstärker arbeiten auf die gemeinsamen Stromausgangsknoten 11, 12. Von den als Eingangsstufen dienenden Differenzverstärkern dient der erste aus dem ersten und dem zweiten Transistor 1, 2 zur Übertragung insbesondere des oberen Bereiches der
Gleichtakteingangsspannung; entsprechend deckt der zweite Differenzverstärker 3, 4 als Eingangsstufe den unteren Bereich der Gleichtakteingangsspannung ab. Durch die Potentialschiebeelemente 7, 8 wird dabei ermöglicht, daß der zweite Differenzverstärker 3, 4 mit Spannungen von wenigstens nahezu Null gegenüber Masse 15 an den Eingangsanschlüssen 5, 6 arbeiten kann; die Potentialschiebeelemente erhöhen die Spannungen an den Basisanschlüssen des dritten und des vierten Transistors 3, 4 dazu gegenüber den Spannungen an den Eingangsanschlüssen 5 bzw. 6 um jeweils eine Diodenfluß Spannung, die auch zwischen dem Basis- und dem Emitteranschluß jedes der Transistoren 3, 4 des zweiten Differenzverstärkers im Betrieb auftritt. Entsprechend sind die von der ersten und der zweiten Stromquelle 9, 10 abzugebenden Konstantströme zu wählen.
Der Strom vom ersten differentiellen Stromausgangsknoten 11 , der Differenzverstärker 1 bis 4 wird über den ersten Stromspiegel 17, 18 auf den Verbindungspunkt 27 und von dort über den zweiten Stromspiegel 19 bis 21 auf die Ausgänge 25, 26 der Steuerstufe gespiegelt. Vom zweiten differentiellen
Stromausgangsknoten 12 wird der Strom über den dritten Stromspiegel 22 bis 24 ebenfalls an die Ausgänge 25, 26 gespiegelt. An jedem der Ausgänge 25, 26 der Steuerstufe entsteht somit eine Differenz von Strömen, die aus den Strömen an den Stromausgangsknoten 11, 12 abgebildet werden. Diese Stromdifferenzen dienen zur Steuerung der Ausgangstransistoren 30, 31 , welche eine Stromverstärkung der Differenzströme an den Ausgängen 25, 26 bewirken und diese verstärkten Ströme, wiederum als Differenz am Ausgang 32 des Operationsverstärkers zur Verfügung stellen. Der erfindungsgemäße Operationsverstärker dient bevorzugt der Schaffung eines großen Aussteuerungsbereiches seiner Eingangs- und Ausgangsspannungen. Dieses Hauptziel wird mit geringem Schaltungsaufwand erreicht, wozu auch die Zusammenfassung der Kollektoranschlüsse der Transistoren der Differenzverstärker in nur zwei differentiellen Stromausgangsknoten beiträgt. Die Gleichtakteingangsspannung und die Gleichtaktausgangsspannung decken wenigstens nahezu den gesamten Versorgungsspannungsbereich zwischen den Potentialen am Pluspol und an Masse ab. Dabei wird eine einwandfreie Funktion auch mit sehr geringen Versorgungsspannungen, beispielsweise von 1,3 V zwischen Pluspol und Masse, erreicht.
Mit dem erfindungsgemäßen Operationsverstärker kann bevorzugt eine Kapazitätsdiode, mit der ein Oszillator über einen möglichst großen Frequenzbereich nachgeregelt werden soll, angesteuert werden. Für diesen Zweck kann auf zusätzliche
Elemente zur Linearisierung des funktioneilen Zusammenhangs zwischen Eingangsspannung und Ausgangsspannung verzichtet werden. Dieser und den vorstehend beschriebenen Vereinfachungen des Schaltungsaufbaus wird dadurch kein Abbruch getan, daß zum Erreichen einer korrekten Funktionsfähigkeit über den gesamten Aussteuerungsbereich zwischen den Potentialen von Pluspol und Masse die Differenzverstärker aus getrennten Konstantstromquellen, im gezeigten Beispiel den Stromquellen 13, 14 gespeist werden.
Für die Verwendung zur Aussteuerung einer Kapazitätsdiode ist es bei dem erfindungsgemäßen Operationsverstärker weiterhin vorteilhaft, daß der Ausgang 32 im stromlosen, ausgeschalteten Zustand hochohmig wird. Wenn dem Ausgang 32 ein passiver Tiefpaß nachgeschaltet wird, über den die Kapazitätsdiode angesteuert wird, können Operationsverstärker und Tiefpaß ohne zusäztlichen Aufwand als Abtast- und -Halteschaltung für die Abstimmspannung der Kapazitätsdiode arbeiten.
Der erfindungsgemaße Operationsverstärker ist bevorzugt einsetzbar in einem Oszillator für einen Funkrufempfänger (Pager).
Die im Ausführungsbeispiel gezeigte Schaltungsanordnung für den erfmdungsgemäßen Operationsverstärker weist im mittleren Eingangsspannungsbereich eine gegenüber dessen Randbereichen verdoppelte Steilheit auf. Um diese Steilheitserhöhung zu vermeiden, kann eine Stromumschaltung zwischen den beiden Differenzverstärkern vorgesehen werden, bei der nur jeweils eine der den Differenzverstärkern zugeordneten Stromquellen wirksam ist. Auf diese Weise kann die Steilheit über den gesamten Eingangsspannungsbereich konstant gehalten werden.

Claims

PATENTANSPRÜCHE
1. Operationsverstärker mit einem ersten Differenzverstärker, der ein erstes emittergekoppeltes Paar aus einem ersten und einem zweiten bipolaren Transistor vom NPN-Leitungstyp umfaßt, wobei ein Basisanschluß des ersten Transistors mit einem ersten Eingangsanschluß des Operationsverstärkers und ein Basisanschluß des zweiten
Transistors mit einem zweiten Eingangsanschluß des Operationsverstärkers verbunden ist, einem zweiten Differenzverstärker, der ein zweites emittergekoppeltes Paar aus einem dritten und einem vierten bipolaren Transistor vom NPN-Leitungstyp umfaßt, wobei ein Basisanschluß des dritten Transistors über ein erstes
Potentialschiebeelement an den ersten Eingangsanschluß und ein Basisanschluß des vierten Transistors über ein zweites Potentialschiebeelement an den zweiten Eingangsanschluß geführt ist und die Potentialschiebeelemente derart ausgebildet sind, daß im Betrieb die Potentiale an den Basisanschlüssen des dritten bzw. vierten Transistors um einen vorgegebenen Betrag höher sind als die Potentiale am ersten bzw. zweiten Eingangsanschluß, einem ersten differentiellen Stromausgangsknoten, an dem je ein Kollektoranschluß des ersten und des dritten Transistors miteinander verbunden sind, - einem zweiten differentiellen Stromausgangsknoten, an dem je ein
Kollektoranschluß des zweiten und des vierten Transistors miteinander verbunden sind, einer Steuerstufe, deren Eingänge von den Stromausgangsknoten gebildet werden, wobei die Steuerstufe zum Bilden von Steuerströmen aus den Strömen an ihren Eingängen eingerichtet ist und zwei Ausgänge zum Abgeben der
Steuerströme aufweist, und einer Ausgangsstufe mit zwei bipolaren Ausgangstransistoren zueinander entgegengesetzten Leitungstyps, deren Kollektor-Emitter-Strecken miteinander in Reihe verbunden sind, wobei je einer der Ausgänge der Steuerstufe mit je einem Basisanschluß der Ausgangstransistoren verbunden ist und die Verbindung der Kollektor-Emitter-Strecken der Ausgangstransistoren einen Ausgang des Operationsverstärkers bildet.
2. Operationsverstärker nach Anspruch 1, dadurch gekennzeichnet, daß die Potentialschiebeelemente durch je einen Transistor vom PNP-Leitungstyp gebildet werden, deren Basisanschlüsse mit den zugehörigen Eingangsanschlüssen des Operationsverstärkers und deren Emitteranschlüsse mit den zugehörigen Basisanschlüssen des dritten bzw. vierten Transistors verbunden sind und deren Basis-Emitter-Strecken im Betrieb in Flußrichtung vorgespannt werden.
3. Operationsverstärker nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Steuerstufe zu jedem Stromausgangsknoten eine Stromspiegelanordnung derart umfaßt, daß die Steuerströme als Differenz je zweier Ströme gebildet werden, die aus den Strömen an den Eingängen der Steuerstufe durch Stromspiegelung abgeleitet werden.
4. Oszillator mit einer Kapazitätsdiode, gekennzeichnet durch einen Operationsverstärker nach Anspruch 1 , 2 oder 3 zum Beaufschlagen der Kapazitätsdiode mit einer Abstimmspannung.
5. Funkrufempfänger (Pager), gekennzeichnet durch einen Oszillator mit einem Operationsverstärker nach Anspruch 4.
PCT/IB1997/000193 1996-03-05 1997-03-03 Operationsverstärker WO1997033365A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97904547A EP0830730A1 (de) 1996-03-05 1997-03-03 Operationsverstärker
US08/973,072 US5936468A (en) 1996-03-05 1997-03-03 Operational amplifier having two differential amplifiers
JP9531611A JPH11504791A (ja) 1996-03-05 1997-03-03 演算増幅器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608452 1996-03-05
DE19608452.0 1996-03-05

Publications (1)

Publication Number Publication Date
WO1997033365A1 true WO1997033365A1 (de) 1997-09-12

Family

ID=7787267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1997/000193 WO1997033365A1 (de) 1996-03-05 1997-03-03 Operationsverstärker

Country Status (6)

Country Link
US (1) US5936468A (de)
EP (1) EP0830730A1 (de)
JP (1) JPH11504791A (de)
KR (1) KR19990008323A (de)
CN (1) CN1079611C (de)
WO (1) WO1997033365A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955725A2 (de) * 1998-05-08 1999-11-10 Lucent Technologies Inc. Differenzverstärker
JP2008048461A (ja) * 2007-10-29 2008-02-28 Fujitsu Ltd 差動増幅回路
WO2011156502A1 (en) * 2010-06-08 2011-12-15 Qualcomm Incorporated An improved rail-to-rail input stage circuit with dynamic bias control

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416479B2 (ja) * 1997-09-03 2003-06-16 キヤノン株式会社 演算増幅器
US6157255A (en) * 1999-01-28 2000-12-05 Agilent Technologies High performance operational amplifier
ITMI991371A1 (it) * 1999-06-18 2000-12-18 Ericsson Telefon Ab L M Amplificatore di architettura perfezionata ad alta precisione elevatavelocita' e basso consumo di potenza
FR2797537B1 (fr) * 1999-08-09 2001-10-19 St Microelectronics Sa Amplificateur operationnel a centrage de tension de decalage, et compatible basse-tension
US6420931B1 (en) * 2000-04-06 2002-07-16 National Semiconductor Corporation High swing output circuit having differential to single-ended conversion and method
US6255909B1 (en) * 2000-11-02 2001-07-03 Texas Instruments Incorporated Ultra low voltage CMOS class AB power amplifier with parasitic capacitance internal compensation
JP3761089B2 (ja) * 2003-04-25 2006-03-29 ローム株式会社 差動電流出力装置
US7180369B1 (en) 2003-05-15 2007-02-20 Marvell International Ltd. Baseband filter start-up circuit
KR100564630B1 (ko) * 2004-08-06 2006-03-29 삼성전자주식회사 디지털 입력 신호의 변화에 무관하게 고정적인 오프셋을가지는 아날로그 신호를 출력하는 d/a 컨버터
CN100428613C (zh) * 2004-09-16 2008-10-22 中芯国际集成电路制造(上海)有限公司 具有稳定快速响应和低待机电流的调压器用器件
EP1693963A3 (de) * 2005-02-10 2010-01-13 NEC Electronics Corporation Schnittstellenschaltung
JP2007074430A (ja) * 2005-09-07 2007-03-22 Flying Mole Corp 演算増幅器
JP4861791B2 (ja) * 2006-10-27 2012-01-25 ルネサスエレクトロニクス株式会社 演算増幅器及び表示装置
US9709603B2 (en) 2014-03-31 2017-07-18 Microsemi Corporation Current sensing system and method
US20170019069A1 (en) * 2015-07-16 2017-01-19 Eridan Communications, Inc. High-Speed, High-Voltage GaN-Based Operational Amplifier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027071A1 (de) * 1980-07-17 1982-02-11 Philips Patentverwaltung Gmbh, 2000 Hamburg Transistorverstaerker mit zwei emittergekoppelten transisorpaaren
JPH0198306A (ja) * 1987-10-12 1989-04-17 Toshiba Corp 線形差動増幅回路
US4918398A (en) * 1989-02-10 1990-04-17 North American Philips Corporation, Signetics Division Differential amplifier using voltage level shifting to achieve rail-to-rail input capability at very low power supply voltage
US4977378A (en) * 1989-09-08 1990-12-11 North American Philips Corp. Rapid-response differential amplifier with rail-to-rail input capability
EP0484059A2 (de) * 1990-10-31 1992-05-06 Plessey Semiconductors Limited Lade/Entladeschaltung
EP0595589A2 (de) * 1992-10-30 1994-05-04 STMicroelectronics, Inc. Differenzverstärker mit symmetrischem Ausgang und über den Betriebsspannungsbereich gehenden Gleichtaktbereich am Eingang
US5382923A (en) * 1992-06-12 1995-01-17 Shinko Electric Industries Co., Ltd. Charge-pump circuit for use in phase locked loop
US5455535A (en) * 1994-03-03 1995-10-03 National Semiconductor Corporation Rail to rail operational amplifier intermediate stage
US5604926A (en) * 1995-03-07 1997-02-18 Motorola, Inc. Phase locked loop circuit current mode feedback

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745477A (en) * 1972-01-26 1973-07-10 Honeywell Inc Amplifier apparatus for use with an inductive load
US3944944A (en) * 1974-10-24 1976-03-16 Ellenbecker Daniel G Power amplifier with distortion control
JPS592410A (ja) * 1982-06-28 1984-01-09 Sony Corp 電流増幅器
US5291149A (en) * 1992-03-30 1994-03-01 Murata Manufacturing Co., Ltd. Operational amplifier
US5371475A (en) * 1993-06-03 1994-12-06 Northern Telecom Limited Low noise oscillators and tracking filters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027071A1 (de) * 1980-07-17 1982-02-11 Philips Patentverwaltung Gmbh, 2000 Hamburg Transistorverstaerker mit zwei emittergekoppelten transisorpaaren
JPH0198306A (ja) * 1987-10-12 1989-04-17 Toshiba Corp 線形差動増幅回路
US4918398A (en) * 1989-02-10 1990-04-17 North American Philips Corporation, Signetics Division Differential amplifier using voltage level shifting to achieve rail-to-rail input capability at very low power supply voltage
US4977378A (en) * 1989-09-08 1990-12-11 North American Philips Corp. Rapid-response differential amplifier with rail-to-rail input capability
EP0484059A2 (de) * 1990-10-31 1992-05-06 Plessey Semiconductors Limited Lade/Entladeschaltung
US5382923A (en) * 1992-06-12 1995-01-17 Shinko Electric Industries Co., Ltd. Charge-pump circuit for use in phase locked loop
EP0595589A2 (de) * 1992-10-30 1994-05-04 STMicroelectronics, Inc. Differenzverstärker mit symmetrischem Ausgang und über den Betriebsspannungsbereich gehenden Gleichtaktbereich am Eingang
US5455535A (en) * 1994-03-03 1995-10-03 National Semiconductor Corporation Rail to rail operational amplifier intermediate stage
US5604926A (en) * 1995-03-07 1997-02-18 Motorola, Inc. Phase locked loop circuit current mode feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FONDERIE J ET AL: "1-V OPERATIONAL AMPLIFIER WITH RAIL-TO-RAIL INPUT AND OUTPUT RANGES", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 24, no. 6, 1 December 1989 (1989-12-01), pages 1551 - 1559, XP000100486 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 338 (E - 795) 28 July 1989 (1989-07-28) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955725A2 (de) * 1998-05-08 1999-11-10 Lucent Technologies Inc. Differenzverstärker
EP0955725A3 (de) * 1998-05-08 2004-11-17 Lucent Technologies Inc. Differenzverstärker
JP2008048461A (ja) * 2007-10-29 2008-02-28 Fujitsu Ltd 差動増幅回路
JP4713560B2 (ja) * 2007-10-29 2011-06-29 富士通セミコンダクター株式会社 差動増幅回路
WO2011156502A1 (en) * 2010-06-08 2011-12-15 Qualcomm Incorporated An improved rail-to-rail input stage circuit with dynamic bias control
US8102211B2 (en) 2010-06-08 2012-01-24 Qualcomm, Incorporated Rail-to-rail input stage circuit with dynamic bias control

Also Published As

Publication number Publication date
CN1189932A (zh) 1998-08-05
US5936468A (en) 1999-08-10
CN1079611C (zh) 2002-02-20
KR19990008323A (ko) 1999-01-25
JPH11504791A (ja) 1999-04-27
EP0830730A1 (de) 1998-03-25

Similar Documents

Publication Publication Date Title
DE3586863T2 (de) Verstaerker mit eingangsfaehigkeit ueber den gesamten versorgungsspannungsbereich und geregelter transkonduktanz.
EP0096944B1 (de) Schaltungsanordnung mit mehreren, durch aktive Schaltungen gebildeten Signalpfaden
WO1997033365A1 (de) Operationsverstärker
DE3446000C2 (de) Multiplizierschaltung
EP1119903B1 (de) Schaltungsanordnung zum mischen eines eingangssignals und eines oszillatorsignals miteinander
DE69315553T2 (de) Differenzverstärkeranordnung
EP0106088B1 (de) Halbleiter-Verstärkerschaltung
DE69119169T2 (de) Verstärkerschaltung
DE2623245B2 (de) Halbleiterverstärker
EP0021085B1 (de) Monolithisch integrierbarer Transistorverstärker
DE1537656B2 (de)
EP0196627B1 (de) Integrierte Verstärkerschaltung
DE3810058A1 (de) Schmitt-trigger-schaltung
DE3007715A1 (de) Verstaerkerschaltung mit durch eine steuerspannung steuerbarer gesamtverstaerkung
DE3026551C2 (de)
DE2903513C2 (de) Impulssignalverstärker
EP0429717B1 (de) Transkonduktanzverstärker
EP0681368B1 (de) Operationsverstärker mit hoher Gleichtaktunterdrückung
EP0133618A1 (de) Monolithisch integrierte Transistor-Hochfreqzenz-Quarzoszillatorschaltung
DE3854047T2 (de) Asymetrischer verstärker mit zwei eingängen.
EP0327846A1 (de) Schaltungsanordnung zum verzerrungsarmen Schalten von Signalen
EP0792021B1 (de) Treiberschaltung
DE3816140A1 (de) Videosignalumschalter
DE2514544A1 (de) Vorspannungsanordnung fuer einen gegentaktverstaerker
DE1944081A1 (de) Verstaerkender Modulator mit zwei Transistoren des einander entgegengesetzten Leitfaehigkeitstyps

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190437.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997904547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08973072

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1997 531611

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970707849

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997904547

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707849

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997904547

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970707849

Country of ref document: KR