WO1997033332A1 - Verfahren zur herstellung einer kathode durch oxidation in einer schmelzkarbonat-brennstoffzelle - Google Patents

Verfahren zur herstellung einer kathode durch oxidation in einer schmelzkarbonat-brennstoffzelle

Info

Publication number
WO1997033332A1
WO1997033332A1 PCT/EP1997/001094 EP9701094W WO9733332A1 WO 1997033332 A1 WO1997033332 A1 WO 1997033332A1 EP 9701094 W EP9701094 W EP 9701094W WO 9733332 A1 WO9733332 A1 WO 9733332A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
fuel cell
molten carbonate
precursor
oxidation
Prior art date
Application number
PCT/EP1997/001094
Other languages
English (en)
French (fr)
Inventor
Hartmut Wendt
Hans-Jürgen SALGE
Manfred Bischoff
Original Assignee
Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh filed Critical Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh
Priority to JP53145997A priority Critical patent/JP3513516B2/ja
Priority to US09/142,410 priority patent/US6063141A/en
Priority to EP97906164A priority patent/EP0916165A1/de
Priority to CA002248341A priority patent/CA2248341C/en
Publication of WO1997033332A1 publication Critical patent/WO1997033332A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53204Electrode

Definitions

  • the invention relates to a method for producing a cathode for a molten carbonate fuel cell by electrochemical oxidation of a porous metallic precursor electrode and contact with molten carbonate, and to a cathode produced by the method.
  • Porous cathodes made from lithiated nickel oxide are generally used in molten carbonate fuel cells. From the book: Fuel Cell Handbook, by A. J. Appleby and F.R. Foulkes, Van Nostrand Reinhold, New York, p. 546 it is known to make these cathodes in the fuel cell itself from porous nickel precursor electrodes that are in contact with the
  • Melt flow electrolytes are to be formed by oxidation with atmospheric oxygen at 600 to 650 ° C. when the cells or the cell stack are started up. During the chemical reaction
  • lithium oxide from the melt is built into the nickel oxide, which finally gives the nickel oxide the p-semiconductor property necessary for its function (specific conductivity: around 20 S em " 1 at 650 ° C).
  • the speed of this formation process determines the morphological properties of the cathode, which in turn decisively influence the functionality and quality of the cathode.
  • Nickel oxide crystals and the formation of relatively large pores between the agglomerates should have a diameter of a few tenths of a micrometer, while the average diameter of the agglomerates and coarse pores should ideally be between 1 and 7 micrometers.
  • a relatively high reaction rate of the oxidation favors the formation of the desired cathode structure and morphology, while a too slow oxidation of the metal, which can extend over periods of more than 10 hours, for example 1 Formation of very coarse nickel oxide crystals, which can then measure several micrometers in diameter, and the formation of the desired agglomerates does not occur.
  • the rate of oxidation of the nickel metal can be influenced by the oxygen content and the flow rate of the forming gas.
  • Leakages of the cell at locally narrowly limited places to a small extent pass the reducing anode gas to the cathode side and there, in the vicinity of the point of passage, delay the oxidation of the nickel metal, so that due to the slow oxidation of the nickel there is a locally limited formation of undesirable or coarse nickel oxide structures , and in cell operation for training very low
  • the invention is based on the problem of specifying a method for producing a cathode 5 for a molten carbonate fuel cell by means of which heat-free oxidation with an adjustable oxidation rate is possible, and to provide a cathode produced by the method.
  • Precursor electrode a matrix layer with molten carbonate and a cell containing porous anode with a predeterminable course of the current density are anodically oxidized and doped by contact with molten carbonate.
  • anodic i.e. Electrochemical, oxidation are generated on the precursor electrode, which is connected as an anode, from oxygen molecules by the absorption of electrons
  • the structure of the nickel oxide layer essentially depends on the level and duration of the current load. It has been shown that with the anodic oxidation over the entire surface of the precursor electrode of a fuel cell and all Fuel cells in a stack can achieve an oxidation rate that is homogeneous in area.
  • a higher current density is impressed at the beginning of the anodic oxidation than towards the end of the oxidation of the precursor electrode. It is possible by impressing the current density, i.e. by means of a control of the current density to specify the oxidation rate precisely, so that the reaction rate can be adapted to the reaction time. At the beginning of the formation, high current densities result in high reaction rates, while at the end of the formation low current densities and therefore a low one
  • the rate of post-oxidation in order to increase the lithium absorption and improve the conductivity of the nickel oxide is particularly favorable.
  • precursor cathodes made of porous, sintered nickel sponge are used in particular
  • foils made of carbonyl nickel are heated in situ after installation in cells of a fuel cell stack and then anodically oxidized.
  • the melt electrolyte is preferably melted in the respective fuel cell with the precursor electrode and, during the anodic oxidation, the cathode compartment is flushed with nitrogen and / or carbon dioxide and the anode compartment with a mixture of water vapor and carbon dioxide.
  • the gas in the cathode compartment during the anodic oxidation is composed in particular of nitrogen and carbon dioxide in a ratio of 1.0 / 0.0 to 0.0 / 1.0 volume percent and in the anode compartment of water vapor and carbon dioxide in a ratio of 0.1 / 0.9 to 0.9 / 0.1 percent by volume together.
  • double-layer electrodes can be produced by anodic oxidation of double-layer precursor electrodes made of carbonyl cobalt and
  • Carbonyl nickel or made of disperse cobalt and nickel corresponding distribution Furthermore, the method is favorable for the production of alloy cathodes from Ni / Co, Ni / Fe, Co / Mn, Co / Fe / Mn and Fe / Mn.
  • precursor cathodes are first produced.
  • Nickel powder becomes e.g. by adding binders, plasticizers and other auxiliaries, a slip is produced from which a thin film is produced.
  • a thin, porous nickel sponge is produced from this foil by sintering.
  • a film of loose carbonyl nickel can be used as another starting material.
  • the precursor electrodes made of thin, porous sintered nickel sponge or
  • Loose carbonyl nickel foils that are baked in situ are built into the fuel cells of a stack.
  • the melt electrolyte is then melted in the matrix.
  • the cathode compartment of the respective fuel cell is included Flushed with nitrogen, which is expedient for heat transfer and for taking up the carbon dioxide released in accordance with the following equation (4) in the anodic nickel oxidation,
  • the precursor electrode is made of nickel as an anode in one
  • the DC circuit arranged with which an impressed current can be generated.
  • the DC circuit contains a current regulator, the output current of which is set according to a reference variable.
  • the anodic oxidation of the cathode-side nickel sponge - coupled with the anode-side cathodic reduction of water (equation (2)) - is then started by impressing current densities which are between 10 and 1000 mA / cm 2 .
  • current densities between 100 and 500 mA / cm 2 are impressed, the oxidation of the nickel precursor cathode takes place, which usually has a specific nickel load of approx. 0.2 g / cm 2 , in a few hours and the formation can by a
  • This method can in particular be used in the same way for the production of cathodes from lithium cobaltite (LiCoO 2 ), lithium ferrite (LiFeO 2 ), from double-layer cathodes, as described in DE 43 03 136 C2, from LiCoO 2 and lithiated nickel oxide and from so-called alloy cathodes ( from eg Ni and Co, Ni and Mn or Co or Fe and Mn) from porous metallic precursor electrodes of appropriate composition and structure.
  • LiCoO 2 lithium cobaltite
  • LiFeO 2 lithium ferrite
  • alloy cathodes from eg Ni and Co, Ni and Mn or Co or Fe and Mn
  • Example 1 Production of lithiated NiO cathodes by means of anodic oxidation
  • the fuel cell is built in: the anode, the matrix, the pre-sintered cathode precursor made of porous nickel and an electrolyte foil if the required amount of electrolyte is not already contained in the aforementioned components.
  • the cell is covered on the ground and cathode sides with a 1 reductive gas mixture (in volume percentages: 10/5/85 H 2 / CO 2 / N 2 ) is charged.
  • a 1 reductive gas mixture in volume percentages: 10/5/85 H 2 / CO 2 / N 2
  • the fuel cell anode H 2 O / CO 2 in a ratio of 1: 2 (in volume percent) is fed to the cathode precursor (in volume percent :) 95/5 N 2 / CO 2 gas mixture.
  • the cathode precursor is now anodically loaded with 200 mA / cm 2 .
  • the cathode precursor is completely oxidized and sufficiently lithiated for three hours so that the fuel cell can now be put into operation with the usual operating gases.
  • cathodes with a polarization resistance of 0.25 ⁇ cm 2 or an IR-free overvoltage of 37.5 mV at 150 mA / cm 2 are obtained.
  • the fuel cell is equipped with an anode, matrix, electrolyte foil and a cathode precursor, which consists of pre-sintered porous cobalt oxide CoO with Li 2 CO 3 as a pore former.
  • anode-side gas mixture 10/5/85 5 H 2 / CO 2 / N 2 , (volume percent)
  • cathode-side 95/5 N 2 / CO 2 (volume percent)
  • the anodic oxidation of the cathode precursor is carried out for five hours at a current density of 300 mA / cm 2 .
  • This gives LiCoO 2 cathodes with 0 a polarization resistance of 0.2 ⁇ cm 2 or an IR-free ( cleaned of the ohmic internal resistance) overvoltage of 30 mV at 150 mA / cm 2 .
  • Example 3 Production of double-layer cathodes (LiCoO 2 / (Li) NiO) by means of anodic oxidation 5
  • the fuel cell is equipped with an anode, matrix, electrolyte film and the double-layer cathode precursor, as described in WO 94/18713.
  • anode-side gas mixture 10/5/85 H 2 / CO 2 / N 2 (volume percent)
  • cathode-side 5/5/90 H 2 / CO 2 / N 2 (volume percent)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle durch Oxidation einer porösen Vorläuferelektrode und Kontakt mit Schmelzkarbonat. Die Vorläuferelektrode wird nach dem Zusammenbau einer die Vorläuferelektrode, eine Matrixschicht mit Schmelzkarbonat und eine poröse Anode enthaltenden Schichtanordnung mit vorgebbarem Verlauf der Stromdichte anodisch oxidiert und durch Kontakt mit Schmelzkarbonat dotiert.

Description

B E S C H R E I B U N G
VERFAHREN ZUR HERSTELLUNG EINER KATHODE DURCH OXIDATION IN EINER SCHMELZ¬ KARBONAT-BRENNSTOFFZELLE
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle durch elektrochemische Oxidation einer porösen metallischen Vorläuferelektrode und Kontakt mit Schmelzkarbonat und auf eine nach dem Verfahren hergestellte Kathode.
In Schmelzkarbonat-Brennstoffzellen verwendet man in der Regel poröse Kathoden aus lithiiertem Nickeloxid. Aus dem Buch: Fuel Cell Handbook, von A. J. Appleby und F.R. Foulkes, Van Nostrand Reinhold, New York, S. 546 ist es bekannt, diese Kathoden in der Brennstoffzelle selbst aus porösen Nickelvorläuferelektroden, die sich im Kontakt mit dem
Schmelzflußelektrolyten befinden, durch Oxidation mit Luftsauerstoff bei 600 bis 650°C bei der Inbetriebnahme der Zellen bzw. des Zellenstapels zu formieren. Während die chemische Reaktion
Ni + '/2O2 → NiO (1)
abläuft, wird gegen Ende dieser Oxidation Lithiumoxid aus der Schmelze in das Nickeloxid eingebaut, was schließlich dem Nickeloxid die für seine Funktion notwendige p-Halbleitereigenschaft (spezifische Leitfähigkeit: rd. 20 S em"1 bei 650°C) verleiht.
Die Geschwindigkeit dieses Formierungsprozesses entscheidet über die morphologischen Eigenschaften der Kathode, die ihrerseits die Funktionsfähigkeit und Qualität der Kathode entscheidend beeinflussen.
Erwünscht ist die Bildung von relativ großen, porösen Agglomeraten von winzigen
Nickeloxidkriställchen und die Ausbildung relativ weiter Poren zwischen den Agglomeraten. Die kleinen Kristalle sollen nach Möglichkeit Durchmesser von wenigen Zehntel Mikrometern aufweisen, während die mittleren Durchmesser der Agglomerate und groben Poren optimal zwischen 1 und 7 Mikrometern betragen sollten.
Eine relativ hohe Reaktionsgeschwindigkeit der Oxidation begünstigt die Ausbildung der erwünschten Kathodenstruktur und Moφhologie, während eine zu langsame Oxidation des Metalls, die sich z.B. über Zeiträume von mehr als 10 Stunden erstrecken kann, zur 1 Ausbildung sehr grober Nickeloxidkristalle, die dann mehrere Mikrometer im Durchmesser messen können, und zum Ausbleiben der Bildung der gewünschten Agglomerate führt. Die Oxidationsgeschwindigkeit des Nickelmetalls kann durch den Sauerstoffgehalt und die Strömungsgeschwindigkeit des Formierungsgases beeinflußt werden.
5
Dabei ist die genaue Regelung der Oxidationsgeschwindigkeit des Nickelmetalls aus zwei Gründen schwierig.
(1) Es kommt häufig durch Hitzestau - verursacht durch die Freisetzung der o Reaktionsenthalpie der oben erläuterten exothermen Reaktion - zur Ausbildung von
Temperaturspitzen in der Fläche der Zelle. Zur Vermeidung dieser Überhitzung muß der Sauerstoffgehalt des Formierungsgases so weit gesenkt werden, daß unerwünscht lange Reaktionszeiten von mehr als 10 Stunden nicht mehr vermeidbar sind.
5 (2) Es läßt sich nicht vermeiden, daß durch statistisch über die Fläche verteilte
Undichtigkeiten der Zelle an lokal eng begrenzten Stellen in geringem Maß das reduzierend wirkende Anodengas auf die Kathodenseite übertritt und dort in der Nähe des Durchtrittpunktes die Oxidation des Nickelmetalls verzögert, so daß es dort wegen der verlangsamten Oxidation des Nickels zur lokal begrenzten Ausbildung unerwünschter o grober Nickeloxidstrukturen, und im Zellbetrieb zur Ausbildung sehr geringer
Stromdichten, d.h. zu einer unerwünschten, ungleichmäßigen Stromdichteverteilung kommt, die die Funktionsweise des Zellenstapels insgesamt beeinträchtigt.
Der Erfindung liegt das Problem zugrunde, ein Verfahren zur Herstellung einer Kathode 5 für eine Schmelzkarbonat-Brennstoffzelle anzugeben mit dem eine hitzestaufreie Oxidation mit einstellbarer Oxidationsgeschwindigkeit möglich ist, und eine nach dem Verfahren hergestellte Kathode bereitzustellen.
Das Problem wird bei einem Verfahren der eingangs beschriebenen Art erfindungsgemäß o dadurch gelöst, daß die Vorläuferelektrode nach dem Zusammenbau einer die
Vorläuferelektrode, eine Matrixschicht mit Schmelzkarbonat und eine poröse Anode enthaltenden Zelle mit vorgebbaren Verlauf der Stromdichte anodisch oxidiert und durch Kontakt mit Schmelzkarbonat dotiert wird. Bei der anodischen, d.h. elektrochemischen, Oxidation werden an der Vorläuferelektrode, die als Anode geschaltet ist, aus Sauerstoff- 5 Molekülen durch Aufnahme von Elektronen Sauerstoffionen erzeugt, die sich mit den
Nickelatomen verbinden. Der Aufbau der Nickeloxidschicht hängt im wesentlichen von der Höhe und Dauer der Strombelastung ab. Es hat sich gezeigt, daß mit der anodischen Oxidation über die gesamte Fläche der Vorläuferelektrode einer Brennstoffzelle sowie aller Brennstoffzellen in einem Stapel eine in der Fläche homogene Oxidationsgeschwindigkeit erreichbar ist.
Bei einer bevorzugten Ausführungsform wird zu Beginn der anodischen Oxidation eine höhere Stromdichte als gegen Ende der Oxidation der Vorläuferelektrode eingeprägt. Es ist möglich durch die Einprägung der Stromdichte, d.h. durch eine Führungsgrößenregelung der Stromdichte, die Oxidationsgeschwindigkeit genau vorzugeben, so daß die Reaktionsgeschwindigkeit an die Reaktionszeit angepaßt werden kann. Zu Beginn der Formierung bewirken hohe Stromdichten hohe Reaktionsgeschwindigkeiten, während gegen Ende der Formierung niedrige Stromdichten und damit eine niedrige
Geschwindigkeit der Nachoxidation zwecks Erhöhung der Lithiumaufnahme und Verbesserung der Leitfähigkeit des Nickeloxids besonders günstig ist.
Zur Herstellung von lithierten Nickeloxid-Kathoden mit Agglomeratstruktur werden insbesondere Vorläuferkathoden aus porösem, gesintertem Nickelschwamm nach dem
Einbau in Zellen eines Brennstoffzellenstapel anodisch oxidiert.
Bei einer besonders günstigen Ausführungsform zur Herstellung von lithiierten Nickeloxid-Kathoden werden Folien aus Carbonylnickel nach dem Einbau in Zellen eines Brennstoffzellenstapels in-situ aufgeheizt und danach anodisch oxidiert.
Vorzugsweise wird in der jeweiligen Brennstoffzelle mit der Vorläuferelektrode der Schmelzelektrolyt aufgeschmolzen und während der anodischen Oxidation der Kathodenraum mit Stickstoff und/oder Kohlendioxid und der Anodenraum mit einer Mischung aus Wasserdampf und Kohlendioxid gespült.
Das Gas im Kathodenraum während der anodischen Oxidation setzt sich insbesondere aus Stickstoff und Kohlendioxid im Verhältnis 1,0/0,0 bis 0,0/1,0 Volumenprozent und im Anodenraum aus Wasserdampf und Kohlendioxid im Verhältnis 0,1/0,9 bis 0,9/0,1 Volumenprozent zusammen.
Mit dem oben beschriebenen Herstellungsverfahren können Brennstoffzellen-Kathoden mit relativ großen, porösen Agglomeraten von winzigen Oxidkriställchen und mit relativ weiten Poren zwischen den Agglomeraten erreicht werden. Es lassen sich Kristalle mit Querschnitten von wenigen Zehntel Mikrometern und Agglomerate mit groben Poren zwischen 1 und 7 Mikrometer erreichen. Überdies lassen sich noch folgende Vorteile erreichen: Der Einfluß des lokal auftretenden Durchtritts des Anodengases auf die Kathode beeinträchtigt die Oxidation des Nickels kaum mehr, da nach anfänglich durch anodische Oxidation erzwungener Bedeckung des metallischen Nickels durch Nickeloxid die reduzierende Wirkung des übergetretenen Anodengases nicht mehr durchschlägt, weil das Nickel als notwendiger Katalysator nicht mehr zur Verfügung steht.
Da als Gegenreaktion zur anodischen Oxidation des Nickels an der während der Formierung als Kathode wirkenden Anode Wasserdampf in Gegenwart von Kohlendioxid entsprechend Gleichung (2) zu Wasserstoff reduziert wird,
H2O + 2e- + CO2 → H2 + CO3 2- (2)
ist wegen der positiven Wärmetönung der Gesamtreaktion
Ni + H2O → NiO + H2 (3)
die Wärmeentwicklung in der Zelle während der Formierung sehr gering.
Mit dem oben beschriebenen Verfahren können Doppelschichtelektroden durch anodische Oxidation von Doppelschicht- Vorläuferelektroden aus Carbonylkobalt und
Carbonylnickel oder aus dispersem Kobalt und Nickel entsprechender Verteilung hergestellt werden. Weiterhin ist das Verfahren günstig zur Herstellung von Legierungskathoden aus Ni/Co, Ni/Fe, Co/Mn, Co/Fe/Mn und Fe/Mn.
Die Erfindung wird im folgenden an Hand von Ausführungsbeispielen näher beschrieben, aus denen sich weitere Einzelheiten, Merkmale und Vorteile ergeben.
Zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle werden zunächst Vorläuferkathoden hergestellt. Aus Nickelpulver wird z.B. durch Zugabe von Bindemitteln, Weichmachern und weiteren Hilfstoffen ein Schlicker hergestellt, aus dem eine dünne Folie hergestellt wird. Aus dieser Folie wird ein dünner, poröser Nickelschwamm durch Sintern erzeugt. Als anderes Ausgangsmaterial kann eine Folie von losem Carbonylnickel verwendet werden.
Die Vorläuferelektroden aus dünnem, porösem gesintertem Nickelschwamm oder aus
Folien aus losem Carbonylnickel, die in-situ ausgeheizt werden, werden in die Brennstoffzellen eines Stapels eingebaut. Danach wird der Schmelzelektrolyt in der Matrix aufgeschmolzen. Anschließend wird der Kathodenraum der jeweiligen Brennstoffzelle mit Stickstoff gespült, der zur Wärmeübertragung sowie zur Aufnahme des entsprechend folgender Gleichung (4) bei der anodischen Nickeloxidation freiwerdenden Kohlendioxids zweckmäßig ist,
Ni + CO3 2" - 2 e" → NiO + CO2 (4)
während der Anodenraum mit einer Mischung aus Wasserdampfund Kohlendioxid (z.B. im Volumenverhältnis 1 :1) gespült wird.
Bei der anodischen Oxidation wird die Vorläuferelektrode aus Nickel als Anode in einem
Gleichstromkreis angeordnet, mit dem ein eingeprägter Strom erzeugt werden kann. Der Gleichstromkreis enthält einen Stromregler, dessen Ausgangsstrom entsprechend einer Führungsgröße eingestellt wird.
Die anodische Oxidation des kathodenseitigen Nickelschwamms - gekoppelt mit der anodenseitigen kathodischen Reduktion von Wasser (Gleichung (2)) - wird sodann durch Aufprägen von Stromdichten, die zwischen 10 und 1000 mA/cm2 liegen, in Gang gesetzt. Bei der Aufprägung von Stromdichten zwischen 100 und 500 mA/cm2 vollzieht sich die Oxidation der Nickelvorläuferkathode, die in der Regel eine spezifische Nickelbeladung von rd. 0,2 g/cm2 aufweist, in wenigen Stunden und die Formierung kann durch eine
Überoxidation bei wesentlich geringeren Stromdichten vervollständigt und abgeschlossen werden.
Diese Methode kann insbesondere in gleicher Weise zur Herstellung von Kathoden aus Lithiumkobaltit (LiCoO2), Lithiumferrit (LiFeO2), von Doppelschichtkathoden, wie sie in der DE 43 03 136 C2 beschrieben sind, aus LiCoO2 und lithiiertem Nickeloxid und von sogenannten Legierungskathoden (aus z.B. Ni und Co, Ni und Mn oder Co bzw. Fe und Mn) aus porösen metallischen Vorläuferelektroden entsprechender Zusammensetzung und Struktur verwendet werden.
Die nachstehenden Beispiele dienen der weiteren Erläuterung der Erfindung:
Beispiel 1 : Herstellung von lithiierten NiO-Kathoden mittels anodischer Oxidation
In die Brennstoffzelle werden wie üblich eingebaut: die Anode, die Matrix, der vorgesinterte Kathodenvorläufer aus porösem Nickel sowie eine Elektrolytfolie, wenn die benötigte Elektrolytmenge nicht schon in den vorher genannten Komponenten enthalten ist. Beim Hochheizen auf 650°C wird die Zelle anöden- wie kathodenseitig mit einer 1 reduktiven Gasmischung ( in Volumenprozenten: 10/5/85 H2/CO2/N2) beschickt. Danach wird der Brennstoffzellen- Anode H2O/CO2 im Verhältnis 1 :2 (in Volumenprozent), dem Kathodenvorläufer eine (in Volumenprozenten:) 95/5 N2/CO2-Gasmischung zugeführt. Der Kathodenvorläufer wird nun galvanostatisch mit 200 mA/cm2 anodisch belastet. Nach ca.
5 drei Stunden ist der Kathodenvorläufer vollständig oxidiert und ausreichend lithiiert, so daß die Brennstoffzelle nun mit den üblichen Betriebsgasen in Betrieb genommen werden kann. Es werden mit dieser Methode Kathoden mit einem Polarisationswiderstand von 0,25 Ω cm2 bzw. einer IR-freien Überspannung von 37,5 mV bei 150 mA/cm2 erhalten.
o Beispiel 2: Herstellung von LiCoO2-Kathoden mittels anodischer Oxidation
Die Brennstoffzelle wird mit Anode, Matrix, Elektrolytfolie und einem Kathodenvorläufer bestückt, der aus vorgesintertem porösem Kobaltoxid CoO mit Li2CO3 als Porenformer besteht. Nach dem Hochheizen auf 650°C (anodenseitige Gasmischung: 10/5/85 5 H2/CO2/N2, (Volumenprozent) kathodenseitige: 95/5 N2/CO2 (Volumenprozent)wird die
Brennstoffzellenanode mit einer (in Volumenprozenten:) 2:1 CO2/H2O-Mischung der Kathodenvorläufer mit der (in Volumenprozenten:) 95/5/ N2/CO2-Gasmischung beschickt. Die anodische Oxidation des Kathodenvorläufers wird galvanostatisch fünf Stunden lang mit der Stromdichte von 300 mA/cm2 durchgeführt. Man erhält LiCoO2-Kathoden mit 0 einem Polarisationswiderstand von 0,2 Ω cm2 bzw. einer IR-freien (= vom ohmschen inneren Widerstand bereinigten) Überspannung von 30 mV bei 150 mA/cm2.
Beispiel 3: Herstellung von Doppelschichtkathoden (LiCoO2/(Li)NiO) mittels anodischer Oxidation 5
Die Brennstoffzelle wird mit Anode, Matrix, Elektrolytfolie und dem Doppelschichtkathoden- Vorläufer, wie in der WO 94/18713 beschrieben, bestückt. Nach dem Hochheizen auf 650°C (anodenseitige Gasmischung: 10/5/85 H2/CO2/N2 (Volumenprozent), kathodenseitig: 5/5/90 H2/CO2/N2 (Volumenprozent)) wird die o Brennstoffzellenanode mit einer (in Volumenprozenten:) 2: 1 CO2/H2O-Mischung, der
Kathodenvorläufer mit einer (in Volumenprozenten:) 95/5 N2/CO2-Gasmischung beschickt. Die anodische Oxidation des Kathodenvorläufers erfolgt wiederum galvanostatisch mit einer Stromdichte von 300 mA/cm2 und einer Dauer von fünf Stunden. Man erhält Doppelschichtkathoden mit einem Polarisationswiderstand von 0,2 Ω cm2 bzw. IR-freien 5 (IR = Intemal Resistance) Überspannung von 30 mV bei 150 mA/cm2.

Claims

P AT E N T A N S P R Ü C H E
1. Verfahren zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle durch Oxidation einer porösen Vorläuferelektrode und Kontakt mit Schmelzkarbonat, dadurch gekennzeichnet, daß die Vorläuferelektrode nach dem Zusammenbau einer die Vorläuferelektrode, eine Matrixschicht mit Schmelzkarbonat und eine poröse Anode enthaltenden Schichtanordnung mit vorgebbarem Verlauf der Stromdichte anodisch oxidiert und durch Kontakt mit Schmelzkarbonat dotiert wird.
10
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß zu Beginn der anodischen Oxidation eine höhere Stromdichte als gegen Ende der Oxidation der Vorläuferelektrode eingeprägt wird.
, r 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der jeweiligen
Brennstoffzelle mit der Vorläuferelektrode der Schmelzelektrolyt aufgeschmolzen wird, und daß während der anodischen Oxidation der Kathodenraum mit Stickstoff und/oder Kohlendioxid und der Anodenraum mit einer Mischung aus Wasserdampfund Kohlendioxid gespült wird.
20
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Stickstoff und Kohlendioxid den Kathodenraum im Verhältnis 1,0/0,0 bis 0,0/1,0 Volumenprozent und dem Anodenraum Wasserdampfund Kohlendioxid im Verhältnis 0,1/0,9 bis 0,9/0,1 Volumenprozent zugeführt werden.
25
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Vorläuferelektroden aus porösem, gesintertem Nickelschwamm nach dem Einbau in Brennstoffzellen eines Brennstoffzellenstapels anodisch oxidiert werden.
o 0 6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Folien aus Carbonylnickel nach dem Einbau in Zellen eines Brennstoffzellenstapels in-situ aufgeheizt und danach anodisch oxidiert werden.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch
35 gekennzeichnet, daß jeweils Doppelschichtenelektroden durch anodische Oxidation von Doppelschicht- Vorläuferelektroden aus Carbonylkobalt und Carbonylnickel oder aus dispersem Kobalt und Nickel entsprechender Verteilung hergestellt werden. 1 8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß aus Ni/Co, Ni/Fe, Co/Mn oder Fe/Mn Vorläuferelektroden für Legierungskathoden hergestellt werden.
5 9. Durch anodische Oxidation hergestellte Kathode für eine Schmelzkarbonat-
Brennstoffzelle dadurch gekennzeichnet, daß der Polarisationwiderstand im Bereich von etwa 0,2 bis 0,3 Ω cm2 liegt.
10. Kathoden nach Anspruch 9, dadurch gekennzeichnet, daß die IR-freie o Überspannung bei 150mA/cm2 im Breich von 30 bis 40 mV liegt.
11. Kathode nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß Agglomerate von Oxidkriställchen überwiegend Querschnitte von wenigen Mikrometern und Poren zwischen den Oxidkriställchen Querschnitte im Bereich von 1 bis 7 Mikrometern aufweisen. 5
0
5
0
5
PCT/EP1997/001094 1996-03-09 1997-03-05 Verfahren zur herstellung einer kathode durch oxidation in einer schmelzkarbonat-brennstoffzelle WO1997033332A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53145997A JP3513516B2 (ja) 1996-03-09 1997-03-05 溶融炭酸塩型燃料電池のためのカソードの製造方法およびこの方法で製造されたカソードを用いた溶融炭酸塩型燃料電池
US09/142,410 US6063141A (en) 1996-03-09 1997-03-05 Cathode for a molten carbonate fuel cell and method for manufacturing same
EP97906164A EP0916165A1 (de) 1996-03-09 1997-03-05 Verfahren zur herstellung einer kathode durch oxidation in einer schmelzkarbonat-brennstoffzelle
CA002248341A CA2248341C (en) 1996-03-09 1997-03-05 Method of producing a cathode by oxidation in a molten carbonate fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19609313.9 1996-03-09
DE19609313A DE19609313C1 (de) 1996-03-09 1996-03-09 Verfahren zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle und eine nach dem Verfahren hergestellte Kathode

Publications (1)

Publication Number Publication Date
WO1997033332A1 true WO1997033332A1 (de) 1997-09-12

Family

ID=7787817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001094 WO1997033332A1 (de) 1996-03-09 1997-03-05 Verfahren zur herstellung einer kathode durch oxidation in einer schmelzkarbonat-brennstoffzelle

Country Status (5)

Country Link
US (1) US6063141A (de)
EP (1) EP0916165A1 (de)
JP (1) JP3513516B2 (de)
DE (1) DE19609313C1 (de)
WO (1) WO1997033332A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603918C2 (de) * 1996-02-03 2000-10-05 Mtu Friedrichshafen Gmbh Verfahren zur Herstellung einer Elektrode für eine Schmelzkarbonat-Brennstoffzelle und deren Verwendung
DE19731772C2 (de) * 1996-07-26 1999-08-26 Mtu Friedrichshafen Gmbh Verfahren zur Herstellung einer porösen Kathode für eine Schmelzkarbonat-Brennstoffzelle
DE10045912C2 (de) * 2000-09-16 2002-08-01 Mtu Friedrichshafen Gmbh Verfahren zur Herstellung einer Schmelzcarbonat-Brennstoffzelle sowie Schmelzcarbonat-Brennstoffzelle
CN103746103B (zh) * 2014-01-15 2016-01-13 合肥国轩高科动力能源有限公司 一种钛酸锂薄膜的制备方法
KR102662253B1 (ko) 2018-11-30 2024-04-29 퓨얼셀 에너지, 인크 Co2 이용률이 향상된 용융 탄산염 연료 전지의 증가된 압력 작동
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
WO2020112895A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced co2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
JP2023503473A (ja) 2019-11-26 2023-01-30 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 高電解質充填レベルでの溶融炭酸塩型燃料電池の作動
JP2023503995A (ja) 2019-11-26 2023-02-01 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 燃料電池モジュールのアセンブリおよびそれを使用するシステム
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074272A (ja) * 1983-09-30 1985-04-26 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池の製造方法
JPH04280069A (ja) * 1991-03-06 1992-10-06 Sumitomo Metal Mining Co Ltd 溶融炭酸塩燃料電池用空気極材料
JPH05109413A (ja) * 1991-10-11 1993-04-30 Sumitomo Metal Mining Co Ltd 溶融炭酸塩燃料電池用空気極及びその製造方法
DE4224290A1 (de) * 1992-07-23 1994-01-27 Deutsche Aerospace Verfahren zur Herstellung einer lithiumoxidhaltigen Nickeloxid-Kathode für eine Schmelzcarbonatbrennstoffzelle
DE4302347C1 (de) * 1993-01-28 1994-06-23 Deutsche Aerospace Carbonatschmelzen-Brennstoffzelle und Verfahren zu deren Herstellung
WO1994018713A1 (de) * 1993-02-04 1994-08-18 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Verfahren zur herstellung der kathoden-schicht von schmelzkarbonat-brennstoffzellen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1241857B (it) * 1990-06-01 1994-02-01 Ansaldo Spa Procedimento per la fabbricazione di catodi per celle a carbonati fusi
DE4030944A1 (de) * 1990-09-29 1992-04-02 Siemens Ag Karbonatschmelzen-brennstoffzelle
US5589287A (en) * 1993-10-18 1996-12-31 Matsushita Electric Industrial Co., Ltd. Molten carbonate fuel cell
IT1269334B (it) * 1994-04-19 1997-03-26 Finmeccanica Spa Azienda Ansal Metodo per la fabbricazione di catodi per celle a combustibile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074272A (ja) * 1983-09-30 1985-04-26 Agency Of Ind Science & Technol 溶融炭酸塩型燃料電池の製造方法
JPH04280069A (ja) * 1991-03-06 1992-10-06 Sumitomo Metal Mining Co Ltd 溶融炭酸塩燃料電池用空気極材料
JPH05109413A (ja) * 1991-10-11 1993-04-30 Sumitomo Metal Mining Co Ltd 溶融炭酸塩燃料電池用空気極及びその製造方法
DE4224290A1 (de) * 1992-07-23 1994-01-27 Deutsche Aerospace Verfahren zur Herstellung einer lithiumoxidhaltigen Nickeloxid-Kathode für eine Schmelzcarbonatbrennstoffzelle
DE4302347C1 (de) * 1993-01-28 1994-06-23 Deutsche Aerospace Carbonatschmelzen-Brennstoffzelle und Verfahren zu deren Herstellung
WO1994018713A1 (de) * 1993-02-04 1994-08-18 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Verfahren zur herstellung der kathoden-schicht von schmelzkarbonat-brennstoffzellen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 103, no. 14, 7 October 1985, Columbus, Ohio, US; abstract no. 107690, AGENCY OF INDUSTRIAL SCIENCES AND TECHNOLOGY, JAPAN: "Manufacture of molten-carbonate fuel cell" XP002032358 *
CHEMICAL ABSTRACTS, vol. 119, no. 12, 20 September 1993, Columbus, Ohio, US; abstract no. 121300, YAMANAKA, ATSUSHI ET AL: "Air cathodes for molten-carbonate fuel cell and their manufacture" XP002032357 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 081 (E - 1321) 18 February 1993 (1993-02-18) *

Also Published As

Publication number Publication date
EP0916165A1 (de) 1999-05-19
JPH11506263A (ja) 1999-06-02
JP3513516B2 (ja) 2004-03-31
US6063141A (en) 2000-05-16
DE19609313C1 (de) 1997-09-25

Similar Documents

Publication Publication Date Title
DE2945565C2 (de) Poröse Anode für eine Hochtemperatur-Brennstoffzelle
DE19812592B4 (de) Membran-Elektroden-Einheit für Polymer-Elektrolyt-Brennstoffzellen, Verfahren zu ihrer Herstellung sowie Tinte
DE60101660T2 (de) Festoxidbrennstoffzelle
DE19609313C1 (de) Verfahren zur Herstellung einer Kathode für eine Schmelzkarbonat-Brennstoffzelle und eine nach dem Verfahren hergestellte Kathode
DE19737390A1 (de) Gasdiffusionselektroden auf Basis von Poly(vinylidenfluordid)-Kohlenstoff-Gemischen
EP0797265A2 (de) Gasdiffusionselektrode für Membranbrennstoffzellen und Verfahren zu ihrer Herstellung
DE10242911A1 (de) Elektrodenkatalysator für Brennstoffzelle und Verfahren zu dessen Herstellung
DD263086A5 (de) Feste polymerelektrolytstruktur
DE19782271B4 (de) Sauerstoffverbundelektroden/Elektrolyt-Struktur und Verfahren zu deren Herstellung
DE2216192C3 (de) Metallphosphid-Katalysator für Brennstoffelektroden von Brennstoffelementen und dessen Herstellung
DE102014205033A1 (de) Katalysatorschicht für eine Brennstoffzelle und Verfahren zur Herstellung einer solchen
DE102008009985B4 (de) Elektrolyt für eine elektrolytgestützte Hochtemperatur-Brennstoffzelle, Verfahren zu dessen Herstellung, dessen Verwendung für eine elektrolytgestützte Brennstoffzelle und Verwendung der Brennstoffzelle für einen Brennstoffzellen-Stapel
DE3524604C2 (de)
EP1261057A1 (de) Verfahren zur Herstellung einer Membran-Elektrodeneinheit und dadurch hergestellte Membran-Elektrodeneinheit
DE19721546C1 (de) Verfahren zur Herstellung von Doppelschichtkathoden-Vorläuferplatten, deren Verwendung zur Herstellung von Doppelschichtkathoden sowie Doppelschichtkathode für Schmelzkarbonatbrennstoffzellen
EP1224705B1 (de) Brennstoffzelle mit internem reformer und verfahren zu deren betrieb
DE10052189B4 (de) Mehrschichtige Gasdiffusionselektrode einer Polymerelektrolytmembran-Brennstoffzelle, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und einer Membranelektrodenanordnung sowie Verwendung der Membranelektrodenanordnung
DE19647534A1 (de) Elektrode für elektrochemische Energiewandler
DE4030944A1 (de) Karbonatschmelzen-brennstoffzelle
EP1150370A2 (de) Gasverteilerstrukturen und Gasdiffusionselektroden für Polymerelektrolyt-Brennstoffzellen
DE1496186A1 (de) Verfahren zur Herstellung von Elektroden fuer Brennstoffzellen
DE19620504C2 (de) Elektrode für eine Schmelzkarbonatbrennstoffzelle und Verfahren zur Herstellung einer solchen sowie deren Verwendung
DE4302347C1 (de) Carbonatschmelzen-Brennstoffzelle und Verfahren zu deren Herstellung
DE4224290A1 (de) Verfahren zur Herstellung einer lithiumoxidhaltigen Nickeloxid-Kathode für eine Schmelzcarbonatbrennstoffzelle
DE1571978A1 (de) Metallische Anoden fuer galvanische Hochtemperatur-Brennstoffzellen mit Festelektrolyt und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997906164

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2248341

Country of ref document: CA

Ref country code: CA

Ref document number: 2248341

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: JP

Ref document number: 1997 531459

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09142410

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997906164

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997906164

Country of ref document: EP