WO1997031398A2 - Elektrolyt-gasdiffusionselektroden-einheit - Google Patents

Elektrolyt-gasdiffusionselektroden-einheit Download PDF

Info

Publication number
WO1997031398A2
WO1997031398A2 PCT/DE1997/000339 DE9700339W WO9731398A2 WO 1997031398 A2 WO1997031398 A2 WO 1997031398A2 DE 9700339 W DE9700339 W DE 9700339W WO 9731398 A2 WO9731398 A2 WO 9731398A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
gas diffusion
diffusion electrode
layer
catalyst
Prior art date
Application number
PCT/DE1997/000339
Other languages
English (en)
French (fr)
Other versions
WO1997031398A3 (de
Inventor
Hans-Fr. Oetjen
Volkmar M. Schmidt
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1997031398A2 publication Critical patent/WO1997031398A2/de
Publication of WO1997031398A3 publication Critical patent/WO1997031398A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a gas diffusion electrode electrolyte unit.
  • an electrolyte electrode unit which can be used in fuel cells or electrolyzers.
  • the electrolyte consists of an ion exchange material and electrodes connected to it on both sides.
  • electrodes and electrolyte are produced separately from one another and then joined together.
  • Substances or carrier-bound substances which are electrochemical catalysts for the redox reactions H 2 / H + and 0 2 / ⁇ " are used in particular as electrode materials.
  • elements of subgroup VIII of the periodic table are used in the form of metals, alloys, oxides and mixed oxides.
  • Gas diffusion electrode-electrolyte units must have a gas-tight electrolyte layer for use in a fuel cell. Furthermore, these should be designed so that ohmic losses are minimal. From DE 42 41 150 Cl it is also known to apply a 1 - 20 ⁇ m thin layer consisting of catalyst particles to a support structure and then detach it there to produce a (gas diffusion) electrode.
  • the known production method for a gas diffusion electrode-electrolyte unit has the disadvantage that the amount of the catalyst applied to the electrolyte is difficult to control. Therefore, expensive catalyst material is consumed in amounts that are not required for use in a fuel cell or in other applications.
  • the amount of catalyst material applied can be metered sparingly.
  • the object of the invention is to provide a gas diffusion electrode-electrolyte unit which is improved compared to the aforementioned prior art.
  • the task is solved by a sophisticated gas diffusion electrode-electrolyte unit.
  • a gas diffusion layer is first produced, i. H. a gas permeable layer.
  • electrically conductive material with a large surface area is first dispersed in a suitable dispersing agent (eg isopropanol).
  • a suitable dispersing agent eg isopropanol
  • Carbon powder is particularly suitable as the electrically conductive material.
  • a large surface here means powder grains with a diameter of 10 to 200 ⁇ m - in particular 50 ⁇ m.
  • the dispersed electrically conductive material is sprayed onto a suitable carrier as a diffusion layer.
  • a carrier As a carrier z.
  • a fabric is advantageously chosen, since this enables greater mechanical stability to be achieved in comparison to carbon paper.
  • the carrier material is advantageously provided with an impregnation which is comparable to the material of the catalyst with regard to the hydrophobicity.
  • impregnated layer should also be selected so that the corresponding gases (fuel gas or oxygen in the case of fuel cells) can diffuse well in order to reach the reaction zone of the gas diffusion electrode.
  • the hydrophobicity of the technical electrode is controlled by adding suitable materials, preferably PTFE powder or PTFE suspensions. It has proven to be advantageous here to also produce the electrode by means of a spraying process. For this purpose, electrically conductive powdery material is mixed together with PTFE powder or suspensions and the electrode is produced therefrom by means of a spraying process.
  • This method has the advantage that an electrode can be manufactured in a simple manner, which has the desired hydrophobicity.
  • the hydrophobicity is controlled by the ratio.
  • the spraying process also makes it possible to achieve a desired good uniform distribution of the different materials in the end product.
  • Teflon powder which is admixed in suitable amounts, in particular 0.1-50% by weight, based on the coal powder.
  • a catalyst material dispersed in a suitable dispersant is sprayed onto the diffusion layer produced.
  • a suitable wetting agent (detergent) can be added to the dispersant.
  • the catalyst material can be adsorbed on carbon, in the form of particles without carrier material or in dissolved form.
  • an ion exchange resin for example, which is dissolved in a suitable solvent, is advantageously sprayed onto the gas diffusion electrode produced. This has the effect that the ohmic conductivity in the reaction zone of the gas diffusion electrode is increased.
  • the catalyst can also be sprayed on together in a mixture with the ion exchange resin. In this way, layers of different thicknesses and compositions can be combined to form a technical gas diffusion electrode.
  • the electrodes produced in this way are applied to a pretreated solid electrolyte in a suitable process.
  • the electrolyte is also advantageously applied to the gas diffusion electrode by means of a spray process, since extremely thin electrolyte layers can be produced in this way.
  • Individual layers of an electrode and the electrolyte can be variably produced using the aforementioned production methods.
  • extremely thin catalyst or electrolyte layers can be produced.
  • Applying the catalyst to the diffusion body only in a thin layer enables optimal use of the expensive catalyst material (in particular if platinum is used, for example).
  • the catalyst can be placed exactly where it is needed, namely in the reaction zone of the electrode.
  • the material can be dosed as economically as possible in a simple manner.
  • Catalyst layers preferably have a layer thickness of 10 to 100 nm - in particular 50 nm.
  • the manufacturing processes thus enable the production of optimal layer thicknesses for the respective application.
  • the production of diffusion electrodes or electrode-electrolyte units by means of spraying processes is easy to handle, inexpensive and can be carried out on an industrial scale.
  • Carbon powder e.g. of the Vulcan XC 72 type
  • PTFE powder is intimately mixed with 0.1 to 40% by weight of PTFE powder in a roller mixer and finely ground in a mill.
  • a suspension with water and preferably isopropanol is produced with this material.
  • PTFE can also be used in the form of a suspension in water or another suitable solvent (e.g. isopropanol).
  • the suspension is sprayed onto a suitable, electrically conductive carbon material (preferably a flexible carbon fabric) and then dried.
  • a further layer is applied to this diffusion layer produced in this way.
  • This consists of the electrochemically active material, the electrocatalyst (preferably Pt, Pt alloys, their oxides or elements of subgroup VIII).
  • the electrocatalyst is dispersed in a finely divided form with a size of the catalyst particles of preferably 1 to 10 nm in a suitable solvent (for example isopropanol).
  • a suitable wetting agent can be added to stabilize this colloidal solution. This suspension is sprayed onto the diffusion layer.
  • the occupation of the catalyst on the gas diffusion electrode can be adjusted by varying the proportion by weight of the catalyst in the dispersion. Let it this way catalyst occupancies of less than 0.1 mg catalyst per geometric surface area of the electrode are realized.
  • the gas diffusion electrode thus produced is impregnated with an ion exchange material which is dissolved in a solvent (for example isopropanol) with up to 5% by weight.
  • the covering of the gas diffusion electrode with the ion exchange material is preferably between 0.1 and 2 mg / cm 2 . In this way, the ionic conductivity in the gas diffusion electrode is increased.
  • the gas diffusion electrode thus prepared is placed on one side of a suitable polymeric solid electrolyte with high ionic conductivity (eg Nafion
  • a gas diffusion electrode can be used according to the same manufacturing process and the same composition or according to a different process and different composition with regard to the electrocatalyzer used.
  • electrolyte-electrode units which are characterized by a low catalyst occupancy and high electrochemical activity for the oxidation of hydrogen, hydrogen-containing fuel gases and alcohols and for the reduction of oxygen or air in a fuel cell .
  • the electrolyte electrode units have a low contact resistance.
  • the electrochemically active layer consists of an electrocatalyst which is applied in finely divided form to a carbon carrier (for example Vulcan XC 72).
  • the proportion by weight of catalyst based on the carbon carrier is preferably 0.1 to 80%.
  • the layer is applied as in 1.).
  • the impregnation with ion exchange material is carried out as under 1.).
  • the following steps are as in 1.).
  • the electrochemically active layer consists of an electrocatalyst which is applied in a finely divided form to a carbon carrier (e.g. Vulcan XC 72).
  • a suspension is produced from this as in 1.), but this suspension also contains the dissolved ion exchange material. The following steps are as described under 1.).
  • the electrolyte material is sprayed onto this gas diffusion electrode.
  • the electrolyte material is dissolved in a suitable solvent (eg Nafion in isopropanol) and sprayed onto the gas diffusion electrode.
  • a suitable solvent eg Nafion in isopropanol
  • electrolyte layers between 0.1 and 10 ⁇ m can be created Realize thickness.
  • Conventional electrolyte material e.g. Nafion 117 R
  • the layers produced by the described spraying process therefore have a significantly lower electrolyte resistance. As a result, the power densities of a fuel cell can be increased.
  • a further gas diffusion electrode as described under 1.), 2.) or 3.
  • the layer system thus produced consisting of the gas diffusion electrode (as described under 1.), 2.) and 3.)) and the thin electrolyte film .
  • a gas diffusion electrode serves as the substrate for the thin electrolyte film.
  • the spraying process allows the manufacturing parameters for an electrolyte electrode unit to be varied over a wide range and optimized depending on the application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Die Erfindung betrifft eine Elektrolyt-Gasdiffusionselektroden-Einheit mit extrem dünnen Katalysatorschichten von 10 bis 100 nm oder Elektrolytschichten von 1 bis 20 νm. Zur Herstellung einer Gasdiffusionselektrode wird zunächst eine Gasdiffusionsschicht hergestellt, d.h. eine gasdurchlässige Schicht. Auf die hergestellte Diffusionsschicht wird ein in einem geeigneten Dispergiermittel dispergiertes Katalysatormaterial aufgespritzt. Vorteilhaft wird auch der Elektrolyt auf die Gasdiffusionselektrode mittels eines Spritzverfahrens aufgebracht. Den Katalysator nur in einer dünnen Schicht auf den Diffusionskörper aufzubringen, ermöglicht eine optimale Ausnutzung des teuren Katalysatormaterials (insbesondere bei z.B. eingesetztem Platin). Dünne Elektrolytschichten ermöglichen entsprechend große Stromdichten.

Description

B e s c h r e i b u n g
Elektrolyt-Gasdiffusionselektroden-Einheit
Die Erfindung betrifft eine Gasdiffusionselektroden- Elektrolyt-Einheit .
Aus DE 42 41 150 Cl ist eine Elektrolyt-Elektroden-Ein¬ heit bekannt, die in Brennstoffzellen oder Elektroly- seuren einsetzbar ist. Der Elektrolyt besteht aus einem Ionenaustauschermaterial und daran beidseitig kontak¬ tierten Elektroden. Zunächst werden Elektroden und Elektrolyt getrennt voneinander hergestellt und an¬ schließend zusammengefügt. Als Elektrodenmaterialien werden insbesondere Substan¬ zen oder trägergebundene Substanzen eingesetzt, welche elektrochemische Katalysatoren für die Redoxreaktionen H2/H+ und 02" darstellen. Verwendet werden insbeson¬ dere Elemente der VIII Nebengruppe des Periodensystems in Form von Metallen, Legierungen, Oxiden und Mischoxi¬ den.
Gasdiffusionselektroden-Elektrolyt-Einheiten müssen für den Einsatz in einer Brennstoffzelle eine gasdichte Elektrolytschicht aufweisen. Ferner sollen diese so ausgestaltet sein, daß ohmsche Verluste minimal sind. Aus DE 42 41 150 Cl ist ferner bekannt, zur Herstellung einer (Gasdiffusions-)Elektrode eine 1 - 20 μm dünne, aus Katalysatorpartikeln bestehende Schicht auf eine Trägerstruktur aufzubringen und anschließend dort abzu- lösen.
Es ist zur Herstellung von Gasdiffusionselektroden be¬ kannt, eine katalytisch aktive Schicht auf eine als Elektrolyt fungierende Polymermembran aufzubringen und anschließend eine Gasdiffusionsschicht aufzupressen (Kordesch, Brennstoffbatterien, S. 104, Springer-Ver¬ lag, 1984) .
Das bekannte Herstellungsverfahren für eine Gasdiffusi¬ onselektroden-Elektrolyt-Einheit weist den Nachteil auf, daß die Menge des auf der Elektrolyt aufgebrachten Katalysators nur schwer zu steuern ist. Daher wird teu¬ res Katalysatormaterial in Mengen verbraucht, die für den Einsatz in einer Brennstoffzelle oder bei anderen Anwendungen nicht benötigt werden.
Aus EP 06 87 024 Al ist bekannt, daß Diffusionsschich- ten als Zwischenschicht auf einen Träger aus z.B. einem Kohlenfasergewebe herstellbar sind. Die Herstellung er¬ folgt zwischen einem Substrat und Schichten mit kataly- tischem Material durch z.B. Aufspritzen von Poly- tetrafluorethylen, das aktive Partikel enthält. Dieser Druckschrift ist nicht zu entnehmen, inwiefern die
Menge an aufgebrachtem Katalysatormaterial sparsam do¬ siert werden kann. Aufgabe der Erfindung ist die Bereitstellung einer ge¬ genüber dem vorgenannten Stand der Technik verbesserten Gasdiffusionselektroden-Elektrolyt-Einheit .
Gelöst wird die Aufgabe durch eine anspruchsgemäße Gasdiffusionselektroden-Elektrolyt-Einheit .
Zur Herstellung der anspruchsgemäßen Gasdiffusionselek¬ trode wird zunächst eine Gasdiffusionsschicht herge¬ stellt, d. h. eine gasdurchlässige Schicht.
Beispielsweise wird zu diesem Zweck zunächst elektrisch leitendes Material mit großer Oberfläche in einem ge¬ eigneten Dispergiermittel (z. B. Isopropanol) disper¬ giert. Als elektrisch leitendes Material eignet sich insbesondere Kohlepulver. Unter großer Oberfläche sind hier Pulverkörner mit einem Durchmesser von 10 bis 200 μm - insbesondere von 50 μm - zu verstehen. Das dispergierte elektrisch leitfähige Material wird als Diffusionsschicht auf einen geeigneten Träger aufge¬ spritzt. Als Träger eignet sich z. B. elektrisch leit¬ fähiges Kohlepapier oder Kohlegewebe mit hoher Porosi- tat. Vorteilhaft wird ein Gewebe gewählt, da hierdurch eine größere mechanische Stabilität im Vergleich zu ei¬ nem Kohlepapier erzielt werden kann.
Um eine gute Haltbarkeit der Elektroden sicherzustel¬ len, wird das Trägermaterial vorteilhaft mit einer Im- prägnierung versehen, die mit dem Material des Kataly¬ sators hinsichtlich der Hydrophobizität vergleichbar ist. Geeignet ist z. B. PTFE. Diese imprägnierte Schicht ist ferner so zu wählen, daß die entsprechenden Gase (Brenngas oder Sauerstoff im Fall von Brennstoffzellen) gut diffundieren können, um an die Reaktionszone der Gasdiffusionselektrode zu ge- langen.
Die Steuerung der Hydrophobizität der technischen Elek¬ trode geschieht durch Beigabe geeigneter Materialien, vorzugsweise PTFE-Pulver oder PTFE-Suspensionen. Als vorteilhaft hat sich hier herausgestellt, die Elektrode ebenfalls mittels eines Spritzverfahrens herzustellen. Elektrisch leitfähiges pulverförmiges Material wird zu diesem Zweck zusammen mit PTFE-Pulver oder -Suspen¬ sionen gemischt und hieraus mittels Spritzverfahren die Elektrode hergestellt . Dieses Verfahren weist den Vor- teil auf, daß auf einfache Weise eine Elektrode herge¬ stellt werden kann, die über die gewünschte Hydrophobi¬ zität verfügt. Die Hydrophobizität wird über das Mengenverhältnis gesteuert. Das Spritzverfahren ermög¬ licht ferner die Erzielung einer gewünschten guten Gleichverteilung der verschiedenen Materialien im End¬ produkt .
Als Material zur Steuerung der Hydrophobizität eignet sich insbesondere Teflon-Pulver, welches in geeigneten Mengen, insbesondere 0,1 - 50 Gew% bezogen auf das Koh- lepulver, zugemischt wird.
Auf die hergestellte Diffusionsschicht wird ein in ei¬ nem geeigneten Dispergiermittel dispergiertes Katalysa¬ tormaterial aufgespritzt. Für eine optimale Verarbei- tung kann dem Dispergiermittel ein geeignetes Netzmit¬ tel (Detergenzmittel) zugesetzt werden. Das Katalysa¬ tormaterial kann auf Kohle adsorbiert sein, in Form von Partikeln ohne Trägermaterial oder in gelöster Form vorliegen.
Zur Herstellung einer Gasdiffusionselektroden-Elektro¬ lyt-Einheit wird vorteilhaft auf die hergestellte Gas¬ diffusionselektrode beispielsweise ein lonenaustau¬ scherharz, welches in einem geeigneten Lösungsmittel gelöst ist, aufgespritzt. Dies bewirkt, daß die ohmsche Leitfähigkeit in der Reaktionszone der Gasdiffusions¬ elektrode erhöht wird.
Der Katalysator kann auch zusammen in einer Mischung mit dem lonenaustauscherharz aufgespritzt werden. Auf diese Weise können Schichten unterschiedlicher Dicke und Zusammensetzungen zu einer technischen Gasdiffusi¬ onselektrode zusammengefügt werden.
Die auf diese Weise hergestellten Elektroden werden in einem geeigneten Verfahren auf beispielsweise einen vorbehandelten Festelektrolyten aufgebracht .
Vorteilhaft wird auch der Elektrolyt auf die Gas- diffusionselektrode mittels eines Spritzverfahrens auf¬ gebracht, da so extrem dünne Elektrolytschichten herge¬ stellt werden können. Mittels der vorgenannten Herstellungsverfahren können einzelne Schichten einer Elektrode sowie der Elektrolyt variabel hergestellt werden. Insbesondere ist es mög¬ lich, einzelne Schichtdicken kontrolliert zu erzeugen. Auf diese Weise lassen sich extrem dünne Katalysator¬ oder Elektrolytschichten herstellen. Den Katalysator nur in einer dünnen Schicht auf den Diffusionskörper aufzubringen, ermöglicht eine optimale Ausnutzung des teuren Katalysatormaterials (insbesondere bei z. B. eingesetztem Platin) . Erstens kann auf diese Weise der Katalysator genau dort plaziert werden, wo er benötigt wird, nämlich in der Reaktionszone der Elektrode. Zwei¬ tens kann das Material auf einfache Weise so sparsam wie möglich dosiert werden.
Katalysatorschichten weisen vorzugsweise eine Schicht- dicke von 10 bis 100 nm - insbesondere 50 nm - auf.
Ferner ist es z. B. bei Brennstoffzellen von Vorteil, nur dünne Elektrolytschichten zwecks Verringerung ohm- scher Verluste zu verwenden. Es hat sich gezeigt, daß sich mittels des Spritzverfahrens 1 bis 20 μm dicke Elektrolytschichten herstellen lassen, die über die er¬ forderlichen Eigenschaften wie Gasundurchlässigkeit verfügen. Insbesondere 10 μm dicke Schichten sind einerseits genügend dünn und lassen sich andererseits verfahrensgemäß zuverlässig und einfach herstellen.
Die Herstellungsverfahren ermöglichen somit für den je¬ weiligen Anwendungsfall die Erzeugung optimaler Schichtdicken. Außerdem ist die Herstellung von Diffu- sionselektroden oder Elektroden-Elektrolyt-Einheiten mittels Spritzverfahren einfach zu handhaben, preiswert und kann großtechnisch durchgeführt werden. 1.) Ausführungsbeispiel
Kohlepulver (z.B. vom Typ Vulcan XC 72) wird mit 0.1 bis 40 Gew. % PTFE-Pulver in einem Rollenmischer innig vermischt und in einer Mühle fein vermählen. Es wird mit diesem Material eine Suspension mit Wasser und vor¬ zugsweise Isopropanol hergestellt.
PTFE kann auch in Form einer Suspension in Wasser oder einem anderen geeigneten Lösungsmittel (z.B. Isopro- panol) eingesetzt werden.
In einem geeigneten Spritzwerkzeug, vorzugsweise mit Druckluft unterstützt, wird die Suspension auf ein ge¬ eignetes elektrisch leitfähiges Kohlematerial (vorzugsweise ein flexibles Kohlegewebe) aufgespritzt und anschließend getrocknet. Auf diese so hergestellte Diffusionsschicht wird eine weitere Schicht aufgetra¬ gen. Diese besteht aus dem elektrochemisch aktiven Ma¬ terial, dem Elektrokatalysator (vorzugsweise Pt, Pt-Le- gierungen, deren Oxide oder Elemente der VIII Neben- gruppe) . Dazu wird der Elektrokatalysator in feinver¬ teilter Form mit einer Größe der Katalysatorpartikel von vorzugsweise 1 bis 10 nm in einem geeigneten Lö¬ sungsmittel (z.B. Isopropanol) dispergiert. Zur Stabi¬ lisierung dieser kolloidalen Lösung kann ein geeignetes Netzmittel zugesetzt werden. Diese Suspension wird auf die Diffusionsschicht aufgespritzt. Die Belegung des Katalysators auf der Gasdiffusionselektrode kann durch Variation des Gewichtsanteils des Katalysators in der Dispersion eingestellt werden. Auf diese Weise lassen sich Katalysatorbelegungen von unter 0.1 mg Katalysator pro geometrischer Fläche der Elektrode realisieren. Die so hergestellte Gasdiffusionselektrode wird mit einem Ionenaustauschermaterial, welches in einem Lösungsmit- tei (z.B. Isopropanol) mit bis zu 5 Gew. % gelöst ist, imprägniert. Die Belegung der Gasdiffusionselektrode mit dem Ionenaustauschermaterial beträgt vorzugsweise zwischen 0.1 und 2 mg/cm2. Auf diese Weise wird die io¬ nische Leifähigkeit in der Gasdiffusionselektrode er- höht . Die so präparierte Gasdiffusionselektrode wird auf eine Seite eines geeigneten polymeren Festelektro¬ lyten mit hoher ionischen Leifähigkeit (z.B. Nafion
117R) in einem Heißpreßverfahren aufgebracht. Auf der anderen Seite kann eine Gasdiffusionselektrode nach gleichem Herstellungsverfahren und gleicher Zusammen¬ setzung oder nach einem anderen Verfahren und anderer Zusammensetzung hinsichtlich des verwendeten Elektroka- talysators verwendet werden. So erhält man Elektrolyt- Elektroden-Einheiten, die sich durch eine geringe Kata- lysatorbelegung und einer hohen elektrochemischen Akti¬ vität für die Oxidation von Wasserstoff, Wasserstoff- haltiger Brenngase und Alkohole sowie für die Reduktion von Sauerstoff oder Luft in einer Brennstoffzelle aus¬ zeichnen. Darüber hinaus weisen die Elektrolyt-Elektro- den-Einheiten einen geringen Übergangswiderstand auf.
2. ) Ausführungsbeispiel Herstellung der Diffusionsschicht wie unter 1.) . Die elektrochemisch aktive Schicht besteht aus einem Elek¬ trokatalysator, der in feinverteilter Form auf einem Kohleträger aufgebracht ist (z.B. Vulcan XC 72) . Der Gewichtsanteil Katalysator bezogen auf den Kohleträger beträgt vorzugsweise 0.1 bis 80 %. Das Aufbringen der Schicht erfolgt wie unter 1. ) . Die Imprägnierung mit Ionenaustauschermaterial erfolgt wie unter 1. ) . Die folgenden Arbeitsschritte sind wie unter 1. ) .
3. ) Ausführungsbeispiel
Herstellung der Diffusionsschicht wie unter 1.) . Die elektrochemisch aktive Schicht besteht aus einem Elek¬ trokatalysator, der in feinverteilter Form auf einem Kohleträger aufgebracht ist (z.B. Vulcan XC 72) . Daraus wird eine Suspension hergestellt wie nach 1.) , jedoch enthält diese Suspension auch das gelöste Ionenaustau¬ schermaterial. Die nachfolgenden Schritte sind wie un¬ ter 1.) beschrieben.
Ausführungsbeispiel
Herstellung der Gasdiffusionselektrode wie unter 1.) , 2.) oder 3.) . Auf diese Gasdiffionselektrode wird das Elektrolytmaterial aufgespritzt. Dazu wird das Elektro- lytmaterial in einem geeigneten Lösungsmittel aufgelöst (z.B. Nafion in Isopropanol) und auf die Gasdiffusions- elektrode aufgespritzt. Auf diese Weise lassen sich sehr dünne Elektrolytschichten zwischen 0.1 und 10 μm Dicke realisieren. Herkömmliches Elektrolytmaterial (z.B. Nafion 117R) weist Schichtdicken von 170 μm auf. Die nach dem beschriebenen Spritzverfahren hergestell¬ ten Schichten haben daher einen deutlich geringeren Elektrolytwiderstand. Dadurch lassen sich die Lei¬ stungsdichten einer Brennstoffzelle erhöhen.
Auf dieses so hergestellte Schichtsystem bestehend aus der Gasdiffusionselektrode (wie unter 1.) , 2.) und 3.) beschrieben) und dem dünnen Elektrolytefilm wird eine weitere Gasdiffionselektrode, wie unter 1.) , 2.) oder 3.) beschrieben, aufgebracht.
Bei diesem Verfahren dient eine Gasdiffusionselektrode als Substrat für den dünnen Elektrolytfilm.
Durch das Spritzverfahren können die Herstellungspara- meter für eine Elektrolyt-Elektroden-Einheit in einem weiten Bereich variiert werden und je nach Anwendung optimiert werden.

Claims

P a t e n t a n s p r u c h
1. Gasdiffusionselektroden-Elektrolyt-Einheit für
Brennstoffzellen mit einer 1 bis 20 μm dicken Elek¬ trolytschicht und/oder mit einer 10 bis 100 nm dik- ken Katalysatorschicht zwischen Elektrode und Elek¬ trolyt .
PCT/DE1997/000339 1996-02-22 1997-02-19 Elektrolyt-gasdiffusionselektroden-einheit WO1997031398A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19606612.3 1996-02-22
DE19606612A DE19606612A1 (de) 1996-02-22 1996-02-22 Elektrolyt-Gasdiffusionselektroden-Einheit

Publications (2)

Publication Number Publication Date
WO1997031398A2 true WO1997031398A2 (de) 1997-08-28
WO1997031398A3 WO1997031398A3 (de) 1997-10-09

Family

ID=7786115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000339 WO1997031398A2 (de) 1996-02-22 1997-02-19 Elektrolyt-gasdiffusionselektroden-einheit

Country Status (2)

Country Link
DE (1) DE19606612A1 (de)
WO (1) WO1997031398A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007734A1 (fr) * 2016-07-05 2018-01-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de formulation d'une suspension catalytique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812498C1 (de) * 1998-03-21 1999-06-17 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung einer Elektrode für Niedertemperaturbrennstoffzellen
DE19812592B4 (de) 1998-03-23 2004-05-13 Umicore Ag & Co.Kg Membran-Elektroden-Einheit für Polymer-Elektrolyt-Brennstoffzellen, Verfahren zu ihrer Herstellung sowie Tinte
DE10114646A1 (de) * 2001-03-24 2002-09-26 Xcellsis Gmbh Herstellung einer festhaftenden, wasserabweisenden Katalysatorschicht

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594297A (en) * 1983-12-29 1986-06-10 Uop Inc. Fuel cell using novel electrolyte membrane
US4797185A (en) * 1985-07-19 1989-01-10 Allied-Signal Inc. Hydrogen separation and electricity generation using novel electrolyte membrane
US4863813A (en) * 1988-09-15 1989-09-05 Bell Communications Research, Inc. Primary source of electrical energy using a mixture of fuel and oxidizer
US5094927A (en) * 1989-09-07 1992-03-10 Kernforschungszentrum Karlsruhe Gmbh Hydrogen/oxygen fuel cell
US5102750A (en) * 1990-12-18 1992-04-07 Bell Communications Research, Inc. Efficiency enhancement for solid-electrolyte fuel cell
US5211984A (en) * 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5277996A (en) * 1992-07-02 1994-01-11 Marchetti George A Fuel cell electrode and method for producing same
DE4241150C1 (de) * 1992-12-07 1994-06-01 Fraunhofer Ges Forschung Elektrodenmembran-Verbund, Verfahren zu dessen Herstellung sowie dessen Verwendung
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
WO1996031913A1 (de) * 1995-04-07 1996-10-10 Siemens Aktiengesellschaft Brennstoffzelle mit festen polymerelektrolyten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008456A3 (nl) * 1994-06-07 1996-05-07 Vito Werkwijze ter vervaardiging van een gasdiffusie elektrode.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594297A (en) * 1983-12-29 1986-06-10 Uop Inc. Fuel cell using novel electrolyte membrane
US4797185A (en) * 1985-07-19 1989-01-10 Allied-Signal Inc. Hydrogen separation and electricity generation using novel electrolyte membrane
US4863813A (en) * 1988-09-15 1989-09-05 Bell Communications Research, Inc. Primary source of electrical energy using a mixture of fuel and oxidizer
US5094927A (en) * 1989-09-07 1992-03-10 Kernforschungszentrum Karlsruhe Gmbh Hydrogen/oxygen fuel cell
US5102750A (en) * 1990-12-18 1992-04-07 Bell Communications Research, Inc. Efficiency enhancement for solid-electrolyte fuel cell
US5211984A (en) * 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5277996A (en) * 1992-07-02 1994-01-11 Marchetti George A Fuel cell electrode and method for producing same
DE4241150C1 (de) * 1992-12-07 1994-06-01 Fraunhofer Ges Forschung Elektrodenmembran-Verbund, Verfahren zu dessen Herstellung sowie dessen Verwendung
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
WO1996031913A1 (de) * 1995-04-07 1996-10-10 Siemens Aktiengesellschaft Brennstoffzelle mit festen polymerelektrolyten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007734A1 (fr) * 2016-07-05 2018-01-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de formulation d'une suspension catalytique
FR3053607A1 (fr) * 2016-07-05 2018-01-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de formulation d'une suspension catalytique

Also Published As

Publication number Publication date
DE19606612A1 (de) 1997-08-28
WO1997031398A3 (de) 1997-10-09

Similar Documents

Publication Publication Date Title
DE60004594T2 (de) Geschichtete Kohlenstoffelektrode für elektrochemische Zellen
DE69911077T2 (de) Gasdiffusionselektroden auf Kohlenfasergewebe für elektrochemische Zellen und Verfahren zu ihrer Herstellung
EP0867048B1 (de) Gasdiffusionselektrode für polymerelektrolytmembran-brennstoffzellen
EP1176653B1 (de) Membran-Elektrodeneinheit für Polymerelektrolyt-Brennstoffzellen und Verfahren zu ihrer Herstellung
DE60022993T2 (de) Gasdiffusionsubstrat
EP1787342B1 (de) Gasdiffusionselektroden, verfahren zur herstellung von gasdiffusionselektroden und brennstoffzellen unter verwendung derartiger gasdiffusionselektroden
DE10007990B4 (de) Verfahren zum Herstellen eines Elektrodenaufbaus und eines kombinierten Elektrolyt- und Elektrodenaufbaus sowie ein Elektrodenaufbau und ein kombinierter Elektrolyt- und Elektrodenaufbau für elektrochemische Zellen
DE69829933T2 (de) Elektrode aus Festpolymerelektrolyt-Katalysator Kompositen, Elektrode für Brennstoffzellen und Verfahren zur Herstellung dieser Elektroden
DE2720529C2 (de) Verfahren zur Herstellung einer Brennstoffzellenelektrode
DE112006001111B4 (de) Brennstoffzellen
DE60016924T2 (de) Elektrochemische anwendungen von amorphen fluoropolymeren
WO1997023916A2 (de) Materialverbunde und ihre kontinuierliche herstellung
DE102010028242A1 (de) Elektrode für eine Polymer-Elektrolyt-Membran-Brennstoffzelle und Verfahren zum Bilden einer Membran-Elektroden-Anordnung unter Verwendung derselben
DE19837669A1 (de) Katalysatorschicht für Polymer-Elektrolyt-Brennstoffzellen
EP1239528A2 (de) Verfahren zur Herstellung einer mehrschichtigen Elektrode oder Membran-Elektrodenverbundeinheit, und Gasdiffusionselektrode
DE2951965A1 (de) Elektrochemische zellen
DE19548421A1 (de) Verfahren zur kontinuierlichen Herstellung von Laminaten
DE112007002953T5 (de) Auf Nanodraht getragene Katalysatoren für Brennstoffzellenelektroden
DE112004002061T5 (de) Verfahren zur Herstellung von Membranen und Membranelektrodenanordnungen mit einem Wasserstoffperoxid-zersetzungskatalysator
DE102008023781A1 (de) Kohlenstoff-Titanoxid-Träger für Elektrokatalysatoren zur Sauerstoffreduktion in PEM-Brennstoffzellen
EP1118129A2 (de) Verbesserte gasdiffusionselektrode, herstellungsverfahren dazu und verfahren zur hydrophobierung einer gasdiffusionselektrode
EP1769551B1 (de) SILBER-GASDIFFUSIONSELEKTRODE FÜR DEN EINSATZ IN CO<sb>2</sb>-HALTIGER LUFT SOWIE VERFAHREN ZUR HERSTELLUNG
DE602004010021T2 (de) Tinte zur Herstellung einer Katalysatorschicht, Elektrode und Membran-Elektrode-Anordnung in denen solche Tinte verwendet wird
DE10250884B4 (de) Elektrode für Polymerelektrolytbrennstoffzellen und Verfahren zur Herstellung derselben
WO1997031398A2 (de) Elektrolyt-gasdiffusionselektroden-einheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97529710

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase