WO1997031229A1 - Refrigerateur a absorption - Google Patents

Refrigerateur a absorption Download PDF

Info

Publication number
WO1997031229A1
WO1997031229A1 PCT/JP1997/000552 JP9700552W WO9731229A1 WO 1997031229 A1 WO1997031229 A1 WO 1997031229A1 JP 9700552 W JP9700552 W JP 9700552W WO 9731229 A1 WO9731229 A1 WO 9731229A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
regenerator
heat
temperature
absorber
Prior art date
Application number
PCT/JP1997/000552
Other languages
English (en)
French (fr)
Inventor
Tsuneo Takaki
Mitsuaki Kanetsuki
Hajime Endou
Yoshinori Nagashima
Original Assignee
The Chugoku Electric Power Co., Inc.
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Chugoku Electric Power Co., Inc., Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical The Chugoku Electric Power Co., Inc.
Priority to EP97905403A priority Critical patent/EP0825397A4/en
Priority to KR1019970707316A priority patent/KR19990007793A/ko
Publication of WO1997031229A1 publication Critical patent/WO1997031229A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention mainly relates to an absorption refrigerator, more specifically, an evaporator, an absorber, a heat exchanger, a regenerator, a condenser, and the like, using water or ammonia as a refrigerant, and using bromide or water as an absorbent. It relates to an absorption chiller as a component.
  • the temperature levels of the absorption process and the regeneration process are different. Heat is exchanged with the concentrated refrigerant absorption solution (hereinafter referred to as the dilute solution), and the heat required for preheating the dilute solution is recovered from the concentrated solution.
  • the dilute solution concentrated refrigerant absorption solution
  • the diluted solution absorbs moisture in the absorber, and the concentrated solution regenerated in the regenerator releases moisture when regenerated, so the concentrated solution, which is the heat source, has a higher flow rate than the dilute solution. Less is. Also, concentrated solutions have a lower specific heat than dilute solutions. For these reasons, the temperature rise of a dilute solution is smaller than that of a concentrated solution.
  • the diluted solution can only recover heat to a temperature lower than the regeneration start temperature. This means that only a part of the dilute solution preheating can be performed in the heat exchanger, In the regenerator, the heat of the preheating part required to raise the temperature from the heat exchanger outlet temperature to the regeneration start temperature and the heat for regeneration (concentration) are required. Therefore, the heat source water is consumed more and the growth coefficient of the absorption chiller decreases.
  • the present invention has been made to solve such a conventional problem, and an object thereof is to reduce an amount of heating in a regenerator and improve an coefficient of performance.
  • an absorption refrigerator of the present invention comprises an evaporator, an absorber, a regenerator, a solution heat exchanger for exchanging heat between a solution regenerated in the regenerator and a dilute solution generated in the absorber, and Refrigerant vapor generated in a regenerator before the dilute solution sent from the absorber is supplied to the solution heat exchanger by setting the condensation temperature higher than the absorption temperature in an absorption refrigerator whose main component is a condenser. It is characterized in that the preheating is carried out by the following method.
  • the present invention sets the regenerating and condensing pressure higher than the conventional regenerating and condensing pressure so that the condensing temperature is higher than the absorption temperature and the refrigerant condensing temperature is higher than the dilute solution outlet temperature.
  • the heat of condensation of the refrigerant can be used for preheating the dilute solution.
  • the regeneration pressure matches the condensation pressure, so the regeneration temperature The degree is higher than before.
  • the condensing pressure of the refrigerant mainly depends on the cooling temperature, and setting the condensing temperature to an appropriate temperature for preheating the dilute solution by increasing the condensing pressure of the refrigerant is the condensing of the refrigerant in the condenser. It can be achieved simply by using a dilute solution. That is, the refrigerant vapor is cooled by the dilute solution sent from the absorber instead of the conventional cooling water of the condenser. Thus, the latent heat of condensation can be used for preheating the dilute solution.
  • the present invention preheats the dilute solution by using the condensate of the refrigerant in the condenser in addition to the concentrated solution which has been conventionally used as a heat source for preheating the dilute solution.
  • the amount of heat in the regenerator decreases, and the growth coefficient of the absorption refrigerator increases.
  • FIG. 1 is a schematic view of an embodiment of an absorption refrigerator according to the present invention.
  • FIG. 2 is a cycle diagram of the absorption refrigerator of FIG.
  • FIG. 3 is a schematic diagram of a conventional single-effect absorption refrigerator.
  • FIG. 4 is a cycle diagram of the absorption refrigerator of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram of an embodiment in which the present invention is applied to a single-effect absorption refrigerator using a LiBr solution
  • FIG. 2 is a cycle diagram (During bran diagram) for FIG.
  • the concentration of the aqueous solution of lithium bromide which is a refrigerant absorbing solution.
  • concentration of the aqueous solution of lithium bromide is 0%, that is, the saturated state of pure water.
  • the concentration of 5 5% of the bromide Lithium solution hereinafter, referred to as the diluted solution
  • f 2 6 0% concentration of bromide Richu Ichimu water solution hereinafter, dark as the solution
  • water 12 as a refrigerant evaporates by heat exchange with cold water 13 supplied to the evaporator 2] in the heat transfer section 211 of the evaporator 21.
  • the vaporized vapor 1 ′ is supplied to the absorber 22 through the passage 31.
  • the temperature of the cold water 13 decreases due to heat exchange and is sent out as cold water 14 for use.
  • the concentrated solution ⁇ ⁇ flows on the surface of the heat transfer section 22 1.
  • This “solution” absorbs the vapor generated in the evaporator 21, and the solution concentration is reduced to become a dilute solution.
  • the cooling water [5] supplied to the heat transfer part 22 1 of the absorber 22 controls the dilute solution ⁇ ⁇ ⁇ to be lower than a predetermined temperature (saturation temperature T 2 ).
  • saturated temperature T 2 saturated temperature
  • the dilute solution ⁇ accumulated at the bottom of the absorber 22 is sent out by the solution pump 25, and is preheated while passing through the heat transfer section 24 2 of the condenser 24 and the solution heat exchanger 27, respectively. After that, it is sent to the regenerator 23.
  • This dilute solution ⁇ is heated and boiled by the ripening water 30 flowing in the tube of the heat transfer part 23 ⁇ of the regenerator 23, and the water (refrigerant liquid) in the solution evaporates.
  • the ripening source water 30 becomes hot water 3 ⁇ ⁇ while passing through the heat transfer tube 23 1 of the regenerator 23 and flows into a water heater (not shown) or the like.
  • the steam 4 ′ generated in the regenerator 23 flows into the condenser 24 through the passage 32, and is condensed by mature exchange with the dilute solution ⁇ ⁇ ⁇ flowing in the pipe of the heat transfer part 242 of the condenser 24. Then, the liquid returns to the evaporator 21 via the expansion valve 20 as liquid water.
  • the concentrated solution ⁇ in the regenerator 23 is sent to the solution heat exchanger 27 and exchanges heat with the dilute solution ⁇ ⁇ to become low in temperature, and returns to the absorber 22 as a low-temperature concentrated solution 8.
  • the present invention is reproduced and the condensing pressure P higher by setting the condensation temperature higher than the absorption temperature, high Kusuru from the absorber outlet temperature T 2 of the diluted solution of the condensation temperature Ding 6 of the refrigerant. Therefore, the heat of condensation of the refrigerant can be used for preheating the dilute solution.
  • the dilute solution ⁇ sent from the absorber 22 is supplied to the heat transfer section 24 2 of the condenser 24 and the solution heat exchanger 27. Since is preheated in two steps Te, as shown in FIG. 2, approached dissolved liquid solution temperature Ding 7 in the outlet portion 7 of the heat exchanger 2 7 rises playback initial temperature Ding Mare ⁇ solution 2, the However, the heat consumption of the heat source water 30 in the absorber 22 can be reduced.
  • the conventional single-effect absorption refrigerator has a point that the dilute solution ⁇ in the absorber 22 is directly sent to the regenerator 23 via the solution heat exchanger 27 and the heat transfer provided in the condenser 24.
  • cooling water 17 is supplied from the outside to the unit 241, and the other points do not differ from the single-effect absorption refrigerator of the present invention, and therefore detailed description is omitted.
  • the same devices are denoted by the same reference numerals as those of the single-effect absorption refrigerator of the present invention.
  • the dilute solution is led to the heat transfer section 24 of the condenser 24, and the first stage is performed by the latent heat of the regenerated steam generated in the regenerator 23.
  • the temperature of the dilute solution (2) sent to the solution heat exchanger (27) rises to (4) from (36) the initial temperature of the dilute solution (2).
  • the dilute solution 2 Has the temperature increased to 7 8 hands in 7, when compared to conventional single effect for absorption refrigerating machine, it can be seen that the pole Umate close to the reproduction start temperature 8 l e C. Therefore, the amount of heating required for preheating (the temperature rise 3) of the dilute solution ⁇ ⁇ ⁇ ⁇ in the regenerator 23 is greatly reduced.
  • the heat input of the regenerator 23 is not shown, but in this figure, the flow rate of the heat source water could be reduced by about 28% compared to the conventional case.
  • the coefficient of performance of the conventional single-effect absorption refrigerator shown in FIG. 3 is 0.65
  • the coefficient of performance of the single-effect absorption refrigerator of the present invention shown in FIG. 1 is 0.83.
  • (1) indicates liquid water collected at the bottom of the evaporator 21 and 71 indicates an outlet of the heat transfer section 2442 of the condenser 24.
  • reference numeral 18 denotes cooling water sent from the heat transfer section 241 of the condenser 24.
  • Absorption refrigerators using water as a refrigerant and bromide as an absorbent include a single-effect type in this figure and a double-effect type that guides the steam generated in the regenerator to the second regenerator.
  • the double-effect type (not shown), the steam generated in the high-pressure regenerator is guided to the low-pressure regenerator and used as a heat source for the low-pressure regenerator. Effective utilization is doubled, and the coefficient of performance is doubled.
  • the dilute solution of the first stage is preheated by the heat of condensation of the steam generated in the low-pressure regenerator and then sent out to the heat exchanger for low-pressure solution, basically the same as the present invention is obtained. Detailed description is omitted because it can be applied.
  • the absorbent for the absorption refrigerator using water as the refrigerant is L i
  • I LiC1, LiNOs, KBr, NaBr, CaC12, ZnC12, ZnBr2 and mixtures thereof.
  • the single component of LiBr is widely used because of its good performance such as low corrosiveness and high crystallization concentration.
  • the refrigeration system is used for cooling (or cooling), but the heat source (cooling water) and heat output (cold water) are reversed according to the same principle, and the heat input to the evaporator is used as the heat source to absorb the heat. It can be used for heating (or heating) as a heat pump by using the heat output from the cooling heat of the vessel.
  • the present invention is a technology that is established on the rain side of the absorption refrigerator and the absorption heat pump, the scope of the present invention extends to the heat pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

明 細 書
吸収冷凍機
ά 分 野
本発明は、 吸収冷凍機、 更に詳しくは、 水あるいは アンモニアなどを冷媒とし、 臭化リチュームあるいは 水などを吸収剤とし、 蒸発器、 吸収器、 熱交換器、 再 生器および凝縮器などを主たる構成要素とする吸収冷 凍機に関する。
背 長 技 術
一般に、 吸収冷凍機は、 吸収プロセスと再生ブロセ スの温度レベルが異なるため、 熱交換器において高濃 度冷媒吸収溶液 (以下、 濃溶液と称する) と、 高濃度 冷媒吸収溶液より濃度の低い低濃度冷媒吸収溶液 (以 下、 稀溶液と称する) との間で熱交換を行い、 稀溶液 の予熱に要する熱を濃溶液から回収している。
ところが、 稀溶液は、 吸収器で水分を吸収し、 再生 器で再生された濃溶液は、 再生される際に水分を放出 しているため、 熱源である濃溶液の方が稀溶液より流 量が少ない。 また、 濃溶液は、 稀溶液よりも比熱が小 さい。 これらの理由から濃溶液の温度降下よりも稀溶 液の温度上昇の方が小さ くなる。
従って、 稀溶液は、 再生開始温度より低い温度まで しか熱回収できない。 このことは、 熱交換器において 稀溶液の予熱の一部しか行えないことを意味しており、 再生器において熱交換器出口温度から再生開始温度ま で温度上昇させるために要する予熱部分の熱と、 再生 (濃縮) のための熱が必要である。 従って、 熱源水が それだけ多く消費され、 吸収冷凍機の成縯係数が低下 している。
発 明 の 開 示
本発明は、 係る従来の問題を改善するためになされ たものであり、 その目的とするところは、 再生器にお ける加熱量を低減し、 成績係数の向上を計ることがで きる吸収冷凍機を提供するこ とにある。
上記目的を達成するため、 本発明の吸収冷凍機は、 蒸発器、 吸収器、 再生器、 再生器で再生された饞溶液 と吸収器で生じた稀溶液とを熱交換させる溶液熱交換 器および凝縮器を主な構成要素とする吸収冷凍機にお いて、 凝縮温度を吸収温度より高く し、 吸収器から送 出される稀溶液を溶液熱交換器に供給する前に再生器 において発生した冷媒蒸気により予熱することを特徵 とするものである。
本発明は、 再生および凝縮圧力を従来の再生および 凝縮圧力より高く設定して凝縮温度を吸収温度より高 く し、 冷媒の凝縮温度を稀溶液の吸収器出口温度より 高くする。 それによつて、 冷媒の凝縮熱量を稀溶液の 予熱に使用することができる。 この場合、 当然のこと ながら再生圧力は、 凝縮圧力と一致するので、 再生温 度は従来より上昇する。
冷媒の凝縮圧力は、 主として、 冷却温度に依存する ものであり、 冷媒の凝縮圧力を上昇させて凝縮温度を 稀溶液の予熱のために適正な温度に設定することは、 凝縮器における冷媒の凝縮に稀溶液を用いるだけで達 成できる。 即ち、 従来の凝縮器の冷却水に代わり吸収 器から送出される稀溶液により冷媒蒸気を冷却するの である。 このように、 凝縮潜熱を稀溶液の予熱に利用 することができる。
なお、 再生温度の上昇は、 必然的に熱源温度の上昇 を必要とするが、 ガス焚などでは熱源温度が高いため に問題がない。 また、 ガス焚のほかに、 灯油焚、 蒸気 焚、 高温水焚などを用いることもできる。
従って、 本発明は、 稀溶液の予熱の熱源として従来 使用されていた濃溶液に加え、 凝縮器において冷媒の 凝縮液を利用して稀溶液を予熱するので、 稀溶液の予 熟温度が上昇して再生器における加熱量が減少し、 吸 収冷凍機の成縝係数が上昇する。
図面の簡単な説明 第 1図は本発明に係る吸収冷凍機の一実施例の概略 図である。
第 2図は第 1 図の吸収冷凍機のサイクル図である。 第 3図は従来の単効用吸収冷凍機の概略図である。 第 4図は第 3図の吸収冷凍機のサイクル図である。 発明を実施するための最良の形態
第 1図は本発明を L i B r溶液を使用する単効用吸 収冷凍機に適用した場合の実施例の概略図、 第 2図は 第 1図に対するサイクル図 (デューリ ング糠図) であ り、 図中、 は冷媒吸収溶液である臭化リチューム水 溶液の濃度を表している。 例えば、 。 は臭化リチュ ーム水溶液の濃度が 0 %、 即ち、 純水の飽和状態を表 している。 は臭化リチューム水溶液の濃度が 5 5 % (以下、 稀溶液という) 、 f 2 は臭化リチュ一ム水 溶液の濃度が 6 0 % (以下、 濃溶液という) の状態を 表わしている。
第 1 図に示すように、 冷媒としての水 1 2は、 蒸発 器 2 1の伝熱部 2 1 1で蒸発器 2 】 に供耠される冷水 1 3 と熱交換して蒸発する。 蒸発した蒸気①' は、 通 路 3 1 を通って吸収器 2 2に供耠される。 冷水 1 3は 熱交換により温度が下がり冷水 1 4 として送出され、 利用される。
吸収器 2 2においては、 その伝熱部 2 2 1 の表面に 濃溶液⑧が流れている。 この饞溶液⑧は、 蒸発器 2 1 で発生した蒸気①' を吸収して溶液濃度が低下して稀 溶液②になる。 このとき、 吸収器 2 2の伝熱部 2 2 1 に供給されている冷却水】 5により稀溶液②が所定の 温度 (飽和温度 T 2 ) 以下になるように制御される。 冷却水 1 5は熱交換により温度上昇し、 冷却水 1 6 と して冷却塔 (図示せず) 等に還流する。
そして、 吸収器 2 2の底部に溜まった稀溶液②は、 溶液ポンプ 2 5により送出され、 凝縮器 2 4の伝熱部 2 4 2および溶液熱交換器 2 7を通過する間に夫々予 熱された後、 再生器 2 3に送られる。 この稀溶液②は、 再生器 2 3の伝熱部 2 3 〗 の管内を流れる熟源水 3 0 により加熱されて沸腾し、 溶液中の水分 (冷媒液) が 蒸発する。 熟源水 3 0は、 再生器 2 3の伝熱管 2 3 1 を通過する間に熱水 3 〗 になり、 温水器 (図示せず) 等に 流する o
再生器 2 3において発生した蒸気④' は、 通路 3 2 を通って凝縮器 2 4に流入し、 凝縮器 2 4の伝熱部 2 4 2の管内を流れる稀溶液②と熟交換して凝縮し、 液水⑤として膨張弁 2 0を経由して蒸発器 2 1 に戻る。 一方、 再生器 2 3内の濃溶液④は、 溶液熱交換器 2 7に送られ、 稀溶液②と熱交換して低温になり、 低 温の濃溶液⑧として吸収器 2 2に戻る。
上記のように、 本発明は、 再生および凝縮圧力 P を高く設定して凝縮温度を吸収温度より高く し、 冷媒 の凝縮温度丁 6 を稀溶液の吸収器出口温度 T 2 より高 くする。 そのため、 冷媒の凝縮熱を稀溶液の予熱に使 用することができる。
即ち、 吸収器 2 2から送出された稀溶液②は、 凝縮 器 2 4の伝熱部 2 4 2および溶液熱交換器 2 7によつ て 2段階に予熱されるから、 第 2図に示すように、 溶 液熱交換器 2 7の出口部⑦の液温丁7 が上昇して稀溶 液②の再生初期温度丁, に接近し、 吸収器 2 2におけ る熱源水 3 0の熱消費量を減少させることができる。 なお、 従来の単効用吸収冷凍機は、 吸収器 2 2内の 稀溶液②を溶液熱交換器 2 7を経由して再生器 2 3に 直送する点、 および凝縮器 2 4に設けた伝熱部 2 4 1 に外部から冷却水 1 7を供給する点が相違するだけで、 その他の点については、 本発明の単効用吸収冷凍機と 相違しないので、 詳細な説明を省略する。 なお、 同じ 機器には、 本発明の単効用吸収冷凍機と同じ符号を付 した。
従来の単効用吸収冷凍機は、 第 3図に示すように、 稀溶液②が溶液熱交換器 2 7において饞溶液④と熱交 換し、 3 6 eCから 5 5てに加熱されるが、 再生開始温 度 8 1 eCまでの予熱 (温度上昇分 2 6で) も再生器 2 3において行う必要がある。
本発明においては、 第 1図に示すように、 稀溶液② を凝縮器 2 4の伝熱部 2 4 2に導き、 再生器 2 3にお いて生成された再生蒸気の潜熱によって第 1段目の予 熱を行うため、 溶液熱交換器 2 7に送入される稀溶液 ②の温度が稀溶液②の当初の温度 3 6てより 4 4でま で上昇する。
そのため、 稀溶液②は、 溶液熱交換器 2 7の出口部 ⑦において 7 8てまで温度上昇しており、 従来の単効 用吸収冷凍機と比較すると、 再生開始温度 8 l eCに極 めて近接していることがわかる。 そのため、 再生器 2 3における稀溶液②の予熱 (温度上昇分 3て) に要 する加熱量は、 大幅に軽減される。
この結果、 再生器 2 3の熱入力は、 図示していない が、 本図においては、 熱源水の流量を従来より約 2 8 %低減できた。 因みに、 第 3図に示す従来の単効用吸 収冷凍機の成績係数は 0 . 6 5であり、 第 1図に示す 本発明の単効用吸収冷凍機の成績係数は 0 . 8 3であ る
また、 第 1図中、 ①は蒸発器 2 1 の底に溜まった液 水、 7 1 は凝縮器 2 4の伝熱部 2 4 2の出口部を示し ている。 また、 第 3図中、 1 8は凝縮器 2 4の伝熱部 2 4 1から送出される冷却水を示している。
水を冷媒とし、 臭化リチュームを吸収剤とする吸収 冷凍機は、 本図における単効用型のほか、 再生器にお いて発生した蒸気を第 2再生器に誘導する二重効用型 がある。 二重効用型は (図示は省略する) 、 高圧再生 器において発生した蒸気を低圧再生器に導いて低圧再 生器の熱源にするので、 高圧再生器における入熱は、 単効用型より約 2倍有効利用され、 成績係数は 2倍に 改善される。
しかし、 単効用型と同様に、 熱交換器における稀溶 液の予熱のための熟量が不足するので、 高圧再生器に おける入熱量には稀溶液の予熱分に相当する割合が無 視できない。
従って、 低圧再生器において発生する蒸気の凝縮熱 により第 1段の稀溶液を予熱し、 しかる後に、 低圧溶 液用熱交換器に送出すれば、 基本的には、 本発明とほ ぼ同様の適用ができるので詳しい説明を省略する。 上記の説明では、 水を冷媒とし、 臭化リチュー厶を 吸収剤とする場合について説明したが、 水を冷媒とす る吸収式冷凍機の吸収剤には、 L i B rのほか、 L i I , L i C 1 , L i NOs , KB r, Na B r, C a C 12 , Z n C 12 , Z n B r 2 およびこれらの混合 物がある。 L i B rの単成分は、 腐食性が少なく、 か つ、 晶析濃度が高いなど、 性能が良いから広く使用さ れている。
また、 アンモニアを冷媒とし、 水を吸収剤とする吸 収冷凍機においては、 精留器ゃ分縮器などの構成要素 が加わる。 しかし、 熱サイクルは (デューリ ング線図 上で) 、 再生器に送られる溶液の熱交換器における予 熱が十分でなく、 再生器における加熱量が増大し、 成 績係数の低下を招いている点は、 L i B r溶液を使用 する吸収冷凍機と同様である。
従って、 再生器より送出されるアンモニア蒸気の凝 縮温度が吸収温度より高くなるよう再生および凝縮に 要する温度および圧力を設定し、 凝縮熱により溶液の 予熱を行うことにより、 再生器の加熱量を低減し成績 係数を上昇させることができる。 この点に関しては、 水と臭化リチュームを使用する吸収冷凍機と全く 同じ めな。
また、 冷凍装置は、 冷房 (又は冷却) を目的として 使用されるが、 同一原理により熱源 (冷却水) と熱出 力 (冷水) を逆にして、 蒸発器の入熱を熱源とし、 吸 収器の冷却熱を熱出力とすることにより ヒートポンプ として暖房 (又は加熱) にも使用できる。
従って、 本発明は、 吸収冷凍機および吸収ヒー トポ ンプの雨方に成立する技術であるので、 本発明の範囲 はヒー トポンプにも及ぶ。

Claims

請 求 の 範 囲
1 . 蒸発器、 吸収器、 再生器、 再生器で再生された 濃溶液と吸収器で生じた稀溶液とを熱交換させる溶液 熱交換器および凝縮器を主な構成要素とする吸収冷凍 機において、 凝縮温度を吸収温度より髙く し、 吸収器 から送出される稀溶液を溶液熱交換器に供耠する前に 再生器において発生した冷媒蒸気により予熱すること を特徵とする吸収冷凍機。
2 . 再生器から凝縮器に送出される冷媒蒸気を吸収 器から送出される稀溶液によって凝縮させるための伝 熱部を凝縮器に備えた請求項 1記載の吸収冷凍機。
PCT/JP1997/000552 1996-02-26 1997-02-26 Refrigerateur a absorption WO1997031229A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97905403A EP0825397A4 (en) 1996-02-26 1997-02-26 ABSORPTION REFRIGERATOR
KR1019970707316A KR19990007793A (ko) 1996-02-26 1997-02-26 흡수 냉동기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/38409 1996-02-26
JP8038409A JP2835945B2 (ja) 1996-02-26 1996-02-26 吸収冷凍機

Publications (1)

Publication Number Publication Date
WO1997031229A1 true WO1997031229A1 (fr) 1997-08-28

Family

ID=12524510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000552 WO1997031229A1 (fr) 1996-02-26 1997-02-26 Refrigerateur a absorption

Country Status (5)

Country Link
EP (1) EP0825397A4 (ja)
JP (1) JP2835945B2 (ja)
CA (1) CA2219159A1 (ja)
TW (1) TW342440B (ja)
WO (1) WO1997031229A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069050A1 (fr) * 2017-07-12 2019-01-18 Psa Automobiles Sa Installation de climatisation par absorption, a solution absorbante alimentant le condenseur et le desorbeur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101129B (zh) * 2014-07-25 2016-08-24 中能服能源科技股份有限公司 一种外置换热式热泵
SE1551159A1 (sv) * 2015-09-10 2017-02-14 Climatewell Ab (Publ) A substance to be used in an absorption machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101457A (ja) * 1983-11-09 1985-06-05 株式会社日立製作所 直焚吸収式冷温水機の排熱回収熱交換器
JPH02192549A (ja) * 1989-01-18 1990-07-30 Osaka Gas Co Ltd 吸収式冷房機
JPH07260280A (ja) * 1994-02-25 1995-10-13 Samsung Electronics Co Ltd 吸収式冷房機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638452A (en) * 1969-10-20 1972-02-01 Whirlpool Co Series water-cooling circuit for gas heat pump
JPS5825234Y2 (ja) * 1978-03-07 1983-05-30 三菱重工業株式会社 一重効用型吸収冷凍機
US4413480A (en) * 1982-04-05 1983-11-08 Institute Of Gas Technology Hyperabsorption space conditioning process and apparatus
DE3507887A1 (de) * 1985-03-06 1986-09-11 M A N Technologie GmbH, 8000 München Verfahren zur regelung von absorptions-kaelteanlagen oder -waermepumpen
US5127234A (en) * 1991-08-02 1992-07-07 Gas Research Institute Combined absorption cooling/heating
GB9301639D0 (en) * 1993-01-27 1993-03-17 Univ Sheffield Improvements relating to absorption refrigerators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101457A (ja) * 1983-11-09 1985-06-05 株式会社日立製作所 直焚吸収式冷温水機の排熱回収熱交換器
JPH02192549A (ja) * 1989-01-18 1990-07-30 Osaka Gas Co Ltd 吸収式冷房機
JPH07260280A (ja) * 1994-02-25 1995-10-13 Samsung Electronics Co Ltd 吸収式冷房機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069050A1 (fr) * 2017-07-12 2019-01-18 Psa Automobiles Sa Installation de climatisation par absorption, a solution absorbante alimentant le condenseur et le desorbeur

Also Published As

Publication number Publication date
TW342440B (en) 1998-10-11
EP0825397A4 (en) 1999-07-07
CA2219159A1 (en) 1997-08-28
EP0825397A1 (en) 1998-02-25
JP2835945B2 (ja) 1998-12-14
JPH09229510A (ja) 1997-09-05

Similar Documents

Publication Publication Date Title
WO1997040327A1 (fr) Pompe thermique d'absorption par compression
WO1997031229A1 (fr) Refrigerateur a absorption
JP2000205691A (ja) 吸収冷凍機
JP2837058B2 (ja) 吸収式ヒートポンプ装置
KR20080094985A (ko) 온수 이용 흡수식 냉동장치
WO2002018850A1 (en) Absorption refrigerating machine
JP2000154946A (ja) 三重効用吸収冷凍機
JP3387671B2 (ja) 吸収式ヒートポンプ装置
JPS58219371A (ja) 二重効用吸収式ヒ−トポンプ
JP3280169B2 (ja) 二重効用吸収冷凍機及び冷温水機
JPS6122225B2 (ja)
KR19990007793A (ko) 흡수 냉동기
JPS5825234Y2 (ja) 一重効用型吸収冷凍機
JPH04268170A (ja) 吸収式ヒートポンプ装置
JP3454617B2 (ja) 吸収式ヒートポンプ装置
JPH0820141B2 (ja) 吸収冷凍機
JPS59176550A (ja) 一重二重効用組合せ吸収式冷凍機
JP3480772B2 (ja) 吸収ヒートポンプ
JP3285306B2 (ja) 排熱投入型吸収冷凍機
JPS6024903B2 (ja) 多重効用吸収冷凍機
JPS59107158A (ja) 吸収式ヒ−トポンプ
CN1189213A (zh) 吸收式冷冻机
JPH0663672B2 (ja) 二重効用吸収冷温水機
JP2004069149A (ja) 多重効用吸収冷凍機
JP2000257978A (ja) 排熱投入型吸収冷温水機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190346.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 1019970707316

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997905403

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2219159

Country of ref document: CA

Ref document number: 2219159

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997905403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707316

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997905403

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970707316

Country of ref document: KR